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Neuronale Netzwerke

Konzept und Bau einer Lernmaschine
fiir neuronale Netze

Anton Gunzinger und Urs Miiller

Wahrend heute fiir den Vor-
wadrtspfad von neuronalen Net-
zen sehr schnelle Implementatio-
nen zur Verfiligung stehen, kann
das Lernen (Riickwiértspfad) sol-
cher Netze selbst mit sehr lei-
stungsfdhigen Rechnern Stunden
oder sogar Wochen dauern. In
diesem Artikel wird ein mit digi-
talen Signalprozessoren aufge-
bautes Mehrprozessorsystem
vorgestellt, das die Lernzeit
neuronaler Netze um zwei
Grdssenordnungen, das heisst
auf Minuten bis Stunden
reduzieren soll.

Alors que pour le trajet en direct
de réseaux neuraux on dispose
aujourd’hui d’implémentations
trés rapides, I'apprentissage
(trajet en indirect) de tels réseaux
peut durer des heures, voire des
semaines, méme en disposant de
calculateurs trés performants.
Dans cet article est présenté un
systeme multiprocesseur basé
sur des processeurs de signaux
numériques qui réduit la durée
d’apprentissage des réseaux neu-
raux de deux ordres de grandeur,
donc a des durées de minutes a
quelques heures.
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Dr. Anton Gunzinger und Urs Miiller,

Dipl. El.-Ing. ETH. Institut fiir Elektronik.
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Im Bereich der Mustererkennung,
Klassifikation und Regelungstechnik
gibt es viele Aufgaben. die sich mit
klassischen numerischen Klassifikato-
ren oder regelbasierten Systemen nur
schwer l16sen lassen. Die ersteren ver-
sagen, weil sie oft nur linear be-
schriankte Klassifikationsraume zulas-
sen. die zweiten, weil es sehr oft
schwierig ist — besonders fiir natiirli-
che Umgebungen —. Regeln anzuge-
ben. Eine Alternative fiir diese An-
wendungen bieten neuronale Netze.
Diese werden im Gegensatz zu klassi-
schen Methoden nicht programmiert,
sondern trainiert. Sie sind in der Lage,
anhand von vorgezeigten Beispielen
(d.h. anhand von Eingangs- und Aus-
gangsinformation) selbstdndig Regeln
zu finden (und zu verallgemeinern).
Ihr Hauptvorteil liegt demnach logi-
scherweise bei Anwendungen mit
schwer definierbaren Regeln. wie sie
in den Gebieten der Mustererken-
nung, Signalverarbeitung (Ton- und
Bildverarbeitung) und Regelungstech-
nik auftreten.

Obwohl neuronale Netze in gewis-
sen Anwendungsgebieten entschei-
dende Vorteile gegeniiber klassischen
Methoden besitzen. haben sie sich in-
dustriell noch nicht durchgesetzt. dies
hauptsédchlich aus folgenden Griinden:
— Das Trainieren der Netze. die Lern-

phase, dauert mit den heute verfiig-
baren Rechnern relativ lange. Dies
hat seinen Grund besonders darin,
dass zur Optimierung der Netzpara-
meter (Netzgrosse, Verkniipfung)
relativ viele Experimente (Simula-
tionen) notig sind, wobei die einzel-
nen Simulationen viel Zeit bean-
spruchen.

— Die heute verwendeten Lernalgo-
rithmen konvergieren relativ lang-
sam, und es kann keine Angabe
tiber die Qualitdt des gefundenen
Optimums angegeben werden.

— Es fehlt die notwendige Erfahrung
fiir die Losung komplexer Aufga-
ben mit Hilfe neuronaler Netze.

— Das Vertrauen der Ingenieure in
die «ungenauen» neuronalen Netze
ist noch nicht vorhanden.

In den meisten Anwendungen wer-
den die neuronalen Netze auf einem
herkommlichen Computer simuliert;
dadurch werden sie entsprechend
langsam abgearbeitet. Fur die relativ
einfachen Berechnungen im Vor-
wirtspfad kann auch auf spezielle,
zum Teil analoge Systeme [1] (im Vor-
wirtspfad geniigt deren beschrinkte
Auflosung) zuriickgegriffen werden;
der kompliziertere Lernvorgang muss
in der Regel simuliert werden. Selbst
mit sehr leistungsfihigen Rechnern
kann das Lernen eines einzelnen Net-
zes dabei Stunden oder sogar Wochen
dauern [2].

Viele Rechenfunktionen von neuro-
nalen Netzen konnen grundsitzlich
parallel abgearbeitet werden. Diese
konnten deshalb auch auf parallelen
Rechnern implementiert werden, wo-
bei allerdings, bedingt durch die
starke Vernetzung des neuronalen
Netzes, die Kommunikation im Mehr-
prozessorsystem zum Engpass werden
kann.

In diesem Artikel wird ein Mehr-
prozessorsystem vorgestellt, dessen
Kommunikation  durch  spezielle
Hardware unterstiitzt wird. Diese
Spezialhardware kann die Daten von
den einzelnen Prozessoren autonom
einsammeln bzw. unter diesen vertei-
len. Es wird weiter gezeigt, wie das
heute am meisten verwendete neuro-
nale Netz, das Mehrschicht-Perzep-
tron, auf diese Rechnerarchitektur ab-
gebildet werden kann. Die damit er-
zielbaren Resultate sind sehr ermuti-
gend: es scheint, dass sich mit diesem
System die Rechenzeit beim Lernen
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von neuronalen Netzen um eine bis
zwei Grossenordnungen reduzieren
lasst, womit diese Implementation zu
den derzeit schnellsten auf der Welt
gehort.

Das Mehrschicht-Perzeptron

Eine Ubersicht iiber die verschiede-
nen Typen von neuronalen Netzen
gibt [3]. Das heute am hiufigsten ver-
wendete neuronale Netz ist das Mehr-
schicht-Perzeptron (Bild 1). Ein
Mehrschicht-Perzeptron besteht aus
mehreren Schichten; einer Eingangs-
schicht (Input Layer), meistens einer
bis zwei verdeckten Schichten (Hid-
den Layer) und einer Ausgangsschicht
(Output Layer). Jedes Neuron der
Schicht n ist mit jedem Neuron der
Schicht n-1 verbunden und jeder Ver-
bindung ist ein Gewicht zugeordnet
(Bild 1).

Das neuronale Netz arbeitet in zwei
Betriebsmodi, im Arbeitsmodus und
im Lernmodus. Im Arbeitsmodus
(Feed-Foreward) wird der auszuwer-
tende Signalvektor an die Eingangs-
schicht angelegt (z.B. das Bild eines
Buchstabens). Nach der Propaga-
tionszeit steht in der Ausgangsschicht
das Resultat (z.B. Kklassifizierter
Buchstabe) zur Verfiigung, falls das
Netz vorher richtig gelernt hat, das
heisst falls die einzelnen Gewichte in
den Neuronenverbindungen richtig
eingestellt wurden.

Fiir das Trainieren eines neuronalen
Netzes muss eine gewisse Anzahl Ein-
gangsvektoren mit den gewiinschten
zugehorigen Ausgangsvektoren be-
reitgestellt werden. Die Gewichte im
neuronalen Netz miissen nun so modi-
fiziert werden, dass bei vorgegebenem
Eingangsvektor der vorgegebene Aus-
gangsvektor erzeugt wird. Dazu wird
an das Netz zuerst ein Eingangsvektor
angelegt und daraus ein Ausgangsvek-
tor berechnet. Nun wird dieser be-
rechnete Ausgangsvektor mit dem
Soll-Ausgangsvektor verglichen und
die Abweichung (Fehler) bestimmt.
Dieser Fehler wird jetzt anteilsméssig
auf die einzelnen Neuronen umge-
rechnet; anschliessend werden die Ge-
wichte so verdndert, dass der Fehler
kleiner wird (Back-Propagation).
Durch mehrmaliges Durchlaufen die-
ses Prozesses wird der Fehler minima-
lisiert.

Dieses Verhalten eines neuronalen
Netzes (inkl. Lernmechanismus) kann
mathematisch folgendermassen be-
schrieben werden [4]: Das Ausgangs-

Bild 1 Aufbau eines Mehrschicht-
Perzeptrons

signal a; eines Neurons berechnet sich
aus der gewichteten Summe (Gewicht
Wik) de}' Ein_gangssign.ale ay., verzerrt
durch eine Nichtlinearitét.

a; = fO_(wjk-ar)) = f(s;)
¢ (1)

Fiir den Lernvorgang werden eine
Anzahl Lernbeispiele (Index”) mit
Eingangsmuster i’ und den entspre-
chenden Ausgangsvektoren ¢’ beno-
tigt. Im ersten Schritt ldsst man das
Netz fiir ein bestimmtes Eingangsmu-
ster einen eigenen Ausgangsvektor o”
produzieren. Dann wird der mit der
Steilheit der Nichtlinearitdt (im Ar-
beitspunkt des jeweiligen Neuronaus-
gangssignals) gewichtete Fehler des
Netzwerkes in den Ausgangsneuronen
(Gl. 2) und ebenso in den Neuronen
der anderen Schichten (Gl. 3) be-
stimmt. Eine Herleitung des Verfah-
rens findet sich in [4].

;o= fi(sh)- (¢ —of) )
& = f/(sﬁ-’)'Z((SZ‘wkj) (3)
k

Aw?. =

PP
5 n-6;-a; 4)
Aus dem Fehler, dem konstanten
Lernfaktor n und der Neuronenaktivi-
tit a; wird fiir jedes Gewicht ein Kor-

rekturwert (Gl. 4) berechnet und an-
schliessend zum vorhandenen Ge-
wicht addiert (Gl. 5).

w;’iﬂ wfi + Awfi (5)

Dieser Vorgang wird fiir jede Pri-
sentation eines Lernbeispiels wieder-
holt. Um die Verallgemeinerungsqua-
litdt zu bestimmen, wird oft ein Teil
der Beispiele nicht trainiert. Mit die-
sen Beispielen konnen die Lernfort-
schritte des Netzes gemessen werden.
Als Nichtlinearitdat wird oft die soge-

nannte Sigmoidfunktion (Gl. 6) ver-

wendet. Diese begrenzt das Aus-
gangssignal auf den Wertebereich
[0...1].
f(z) - ©)
z) = —
l4e-

Die Ableitung der Sigmoidfunktion
an der Stelle x ist:

fz) = f=)-1-f(z)) O

Architektur des
Mehrprozessorsystems

Heute kann man auf dem Markt
sehr leistungsfdhige und kostengiin-
stige Mikroprozessoren erhalten. So
sind zum Beispiel Signalprozessoren
mit bis zu 50 Millionen Gleitkom-
mainstruktionen pro Sekunde fiir we-
nige 100 $ pro Stiick zu haben. Durch
geeignete Zusammenschaltung von 30
bis 100 solcher Prozessoren mittels
spezieller =~ Zusatzschaltungen  zur
Kommunikation kann ein Rechnersy-
stem realisiert werden, das mit seiner
Rechenleistung fiir eine Palette von
Algorithmen durchaus mit jener kon-
ventioneller Supercomputer konkur-
rieren kann, aber um den Faktor
100...1000 weniger kostet. Vorausset-
zung dafiir ist allerdings, dass im Sy-
stem geniigend Kommunikationslei-
stung vorhanden ist und dass das Sy-
stem von einem Beniitzer leicht pro-
grammiert werden kann. Am Institut
fiir Elektronik der ETH-Ziirich befin-
det sich ein solches Mehrprozessorsy-
stem im Aufbau. Das Mehrprozessor-
system hat den Namen MUSIC (Multi
Signalprozessor System with Intelli-
gent Communication) erhalten. Es
soll als Low-Cost Supercomputer zur
Signalverarbeitung, zur Simulation in
Physik und Chemie und fiir neuronale
Netze eingesetzt werden.

Jedes einzelne Prozessorelement
(PE) ist mit einem digitalen Signalpro-
zessor bestiickt und verfiigt {iber eine
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maximale Rechenleistung von 50
MFlops (Million Floatingpoint Opera-
tions per Second). Es sind Systeme
mit bis zu 60 Prozessorelementen ge-
plant; damit kann eine Spitzenleistung
von 3 GFlops erreicht werden. Die
einzelnen Prozessorelemente sind
iber ein Hochgeschwindigkeitsnetz-
werk (Ring) miteinander verbunden.
Das Netzwerk verfiigt iiber «verteilte
Intelligenz» und ist in der Lage, Daten
autonom von den einzelnen PEs ein-
zusammeln und wieder zu verteilen
(Bild 2).

Das Bild 3 zeigt das Blockschaltbild
einer Music-Karte. Ein mit einem
Transputer realisierter Knotenmana-
ger steuert eine Gruppe von PEs (in
diesem Fall 3). Als Recheneinheit
wird der digitale Signalprozessor DSP
96002 von Motorola mit 50 MFlops
Spitzen-Rechenleistung  eingesetzt.
Jeder Signalprozessor ist mit einem
schnellen statischen Speicher
(SRAM) von 128 kByte als Pro-
gramm- und einem dynamischen Vi-
deoschieberegister-Speicher (VRAM)
von 2 bzw. 8 MByte fiir Datenspeicher
ausgeriistet. Bei den dynamischen
Speichern handelt es sich um soge-
nannte Video-DRAMSs. Diese verfii-
gen iiber ein integriertes Hochge-

Bild 2 Architektur des Music-Systems

schwindigkeits-Schieberegister ~ zum
schnellen I/O-Verkehr. Die Daten
konnen mit einer Taktrate von bis zu
20 MHz vom Schieberegister iiber-
nommen bzw. ausgegeben werden.
Die Kommunikation mit dem Hoch-
geschwindigkeitsnetzwerk des Mehr-
prozessorsystems erfolgt iiber diese
Videoschieberegister. Als Netzwerk-
kontroller wird ein programmierbares
Gatearray, ein sogenanntes LCA (Lo-
gic Cell Array) von Xilinx eingesetzt.
Der Netzwerkkontroller nimmt die

- = — = = = — = — — —
\ 1
i ]
40 Bit (32 + 8) ; MM-
COMM- COMM co
'——P UNICA- T UNICA- I UNICA- F—>!
TION TION TION
A A A
Y Y Y
DRAM DRAM DRAM
8 MB 8 MB 8 MB
A A
SRAM ) SRAM ) SRAM | % 0
128k [ 2Bt |1gkp [ PP | gkp [ T
Y \ Y
DSP DSP DSP
96002 96002 96002
A A
\} 32 Bit
] 1
Link  ITRANS-| Link
RAM ~>|pUTER [+
4MB T800
Link t HOST

Bild3 Blockschaltbild einer Music-Karte

Daten aus dem in der Kette vorange-
henden PE auf (Ringarchitektur),
speichert sie wenn nétig im Video-
DRAM ab bzw. ersetzt sie durch Da-
ten aus dem Video-DRAM und gibt
sie anschliessend an den nichsten
Netzwerkkontroller weiter. Der Da-
tenbus ist 40 Bit breit: 32 Bit Daten
und 8 Bit Zusatzinformation (Ab-
senderadresse, Giiltigkeit des Daten-
werts). Die maximale Datenrate soll
im Endausbau 20 MHz betragen.

Das zentrale Problem in einem
Mehrprozessorsystem ist die Vertei-
lung der Arbeit auf die einzelnen Pro-
zessor- (PE) und Kommunikationsele-
mente. Beim Music-Konzept wird als
Grundoperation angenommen, dass
ein bestimmter Eingabe-Datensatz
sich durch einen (komplexen) Algo-
rithmus eindeutig in einen neuen Aus-
gabe-Datensatz transformieren ldsst
(Bild 4). Damit kann jedem Prozessor
die Aufgabe iibertragen werden, ei-
nen Teil der Ausgabedaten zu berech-
nen. Die Daten miissen dann nur noch
eingesammelt und bei einer iterativen
Anwendung wieder an die einzelnen
Prozessoren verteilt werden. Diese
Kommunikationsaufgabe wird durch
das Spezialnetzwerk des Music-Sy-
stems autonom, mit der maximalen
Datenrate von 20 MHz ausgefiihrt.
Da es sich bei den verwendeten Da-
tensdtzen meist um 1-, 2- oder 3-di-
mensionale Arrays handelt, werden
diese Datenstrukturen durch das
Netzwerk besonders unterstiitzt. In
der Regel wechseln sich Berechnungs-
und Kommunikationsphase ab (Bild
5). Bei einigen Anwendungen kann
mit der Kommunikation bereits wih-
rend der Berechnungsphase begonnen
werden.

Damit das System seine maximale
Rechenleistung erreichen kann, miis-
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INTELLIGENT COMMUNICATION NETWORK

¢ i !

Source Source Desti-
t+1 t nation
Processing
(Algorithm)
PE1

' % ?

Source Source Desti-
t+1 t nation
Processing
(Algorithm)
PEn

Bild4 Funktionsweise

Aus einem Eingabedatensatz werden durch die einzelnen PEs Teile des
Ausgabedatensatzes berechnet; diese Teildatensitze werden eingesammelt und stehen fiir
die néchste Iteration wieder als Eingabedatensétze zur Verfiigung

sen die einzelnen Prozessoren gleich-
mdssig ausgelastet sein. Fiir viele der
vorgesehenen Anwendungen ist die
Rechenzeit datenunabhingig; damit
kann ein Lastausgleich in der Regel
durch eine gleichméssige Verteilung
des Datensatzes auf die einzelnen PEs
erfolgen. Im Falle datenabhéngiger
Rechenzeit kann die Grosse des Da-
tensatzes bei iterativen Verfahren an-
hand der Rechenzeit in der vorausge-
henden Iteration dynamisch (durch
den Knotenmanager) angepasst wer-
den. Damit kann ein sehr guter Last-
ausgleich erreicht werden [5].

Der Speed-up-Faktor gibt den Re-
chengeschwindigkeitsgewinn in einem
Mehrprozessorsystem als Funktion
der Anzahl der verwendeten PEs an.
Es kann gezeigt werden, dass sich bei
einem Komplexititsfaktor von 1000
(pro 1000 Instruktionen wird ein
neuer Datenwert produziert und iiber
das Kommunikationsnetzwerk iiber-
mittelt) und bei 40 PEs ein Speed-up
von 38,5 und bei 100 PEs von 90,91
erreicht werden kann [6]. In der Ta-

belle I sind die Eckdaten des Music-
Systems zusammengefasst. Ein Sy-
stem mit 20 Karten findet in einem
19’-Gehduse Platz, ein Hochleistungs-
rechner fiir den Biirotisch.

Auflésung von 256 mal 256 Bildpunk-
ten (max. 256 Iterationen pro Bild-
punkt und 32 Bit Gleitkommaarith-
metik) sind in der Tabelle II fiir ver-
schiedene Rechner zusammengestellt.
Die Rechenleistung fiir das Music-10-
System wurde dabei geschitzt, da im
Moment noch nicht geniigend Karten
zur Verfiigung stehen. Die mit dem
Music-System erreichbaren Rechen-
leistungen sind beachtlich.

Parallele Implementation
neuronaler Netze

Im folgenden wird gezeigt, wie das
Mehrschicht-Perzeptron auf das Mu-
sic-System abgebildet werden kann.
Der rechenaufwendigste Teil fiir das
Mehrschicht-Perzeptron ist die Sum-
mation des Produktes aus Aktivitit
und Gewicht fiir den Vorwiértspfad so-
wie die Summation des Produktes von
Fehler und Gewicht im Riickwiirts-
pfad. Ein Beispiel aus der Bildverar-
beitung: Der Eingabevektor bestehe
aus den Werten von 256 Bildpunkten,
und in der ersten Schicht seien 512

Data Distribution | . Processing Data Collection

Data Distribution Data Collection

[~

Time

Bild5 Berechnungs- und Kommunikationsphase wechseln sich im Music-System ab

Um die Leistungsfihigkeit des Mu-
sic-Systems mit anderen Rechnern zu
vergleichen, wurde die Berechnung
von Fraktalen implementiert. Die Re-
chenzeit fiir die Grundfigur mit einer

1PE 1 Board | 10 Boards | 20 Boards

PEs 1 3 30 60
DSP 96002 1 3 30 60
Peak Performance

(MFLOPS) 50 150 1500 3000
SRAM (kB) 128 384 3840 7680
DRAM (MB) 8 24 240 480
Transputer - 1 10 20
T-DRAM (MB) - 4 40 80
Power Consummation (W) 10 30 300 600

TabelleI Wichtigste Daten des Music-Systems

Neuronen vorhanden. Dies bedeutet,
dass rund 130 000 Multiplikationen/
Additionen ausgefiihrt werden miis-
sen. Die nichtlineare Funktion wird
mit 512 Berechnungen vergleichsweise
wenige Male ausgewertet. Gliicklich-
erweise eignen sich Signalprozessoren
besonders fiir die Summation von Pro-
dukten, da diese Operation auch vie-
len  Signalverarbeitungsalgorithmen
wie Filterung, Vektormultiplikation
oder Fouriertransformation zugrunde
liegt.

Die Verteilung des neuronalen Net-
zes auf dem Music-System wird im fol-
genden anhand eines Beispiels ge-
zeigt. Der Einfachheit halber sei ein
neuronales Netz mit 3 Eingidngen, 3
Neuronen in der versteckten Schicht
und 3 Ausgangsneuronen gegeben.

30
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Dieses Netz soll jetzt auf 3 PEs verteilt
werden. In praktischen Anwendungen a
koénnen natiirlich viel mehr Neuronen
und PEs vorhanden sein, wobei die
Anzahl der Neuronen und PEs unab-
héngig voneinander sind. Die grosste
Effizienz wird erreicht, wenn alle PEs
etwa gleichviel Neuronen behandeln
miissen.

Zur Berechnung des Vorwirtspfa-
des gilt, dass die Aktivititen der ein-
zelnen Neuronen (Gl. 1) innerhalb
der Schicht n parallel ausgerechnet
werden konnen, sobald die Aktivita-
ten der Schicht n-1 bekannt sind. Nach
der Berechnung der Aktivitdt der
Schicht n miissen die Daten a” einge-
sammelt und auf alle PEs kopiert wer-
den; diese Daten werden in allen PEs
abgespeichert, da sie fiir die Berech-
nung der Aktivitdit der nédchsten
Schicht im Vorwirtspfad und fiir das
Lernen bendtigt werden. In Bild 6
wurde dieser Sachverhalt grafisch dar-
gestellt.

Analog zum Vorwirtspfad erfolgt <
die Berechnung fiir den Riickwirts- \ %\ Kommunikation \
pfad, wobei jetzt das Fehlersignal 67 3 k \
(Gl. 2 und 3) tibertragen wird (Bild 6).
Das Fehlersignal 6” wird ebenfalls in
allen PEs abgespeichert. Nun muss
nur noch das «Lernen» erfolgen, das
heisst die Gewichte der einzelnen
Neuronen miissen nach (Gl. 4 und 5) b X ~ . v, v ) D T 7
aufdatiert werden. Dabei ergibt sich ~ P =1l L=
aber ein Problem: die aufdatierten i Y P i e e

Gewichte w/ ™' sind in den meisten

Fillen nicht auf den PEs verfiigbar, 5 PE1 & PE2 5 PE3
auf denen sie im Vorwirtspfad ge- e f(a) * f(a) 0 Plag)
braucht werden. Beispiel: das Ge-
wicht wg,4 wird auf PE1 aufdatiert
(Bild 6b) und fiir den Vorwirtspfad in
PE2 benotigt (Bild 6a). Um dieses ¢ Tad) § s ;
Problem zu beheben., konnten die 8 & & )& 3 3 % 8 %
neuen Gewichte nach dem Lernen 9 . == — P ,

iber das Kommunikationsnetzwerk N I . P 7
eingesammelt und verteilt werden; da R el Ssuell on” Teme -
aber7 die Anzahl der Gewichte mit )
O(n?) wiichst (bei einer Schicht mit 7 5, )

Eingingen und n Neuronen). wiirde . o) e . . b
auch die Kommunikation mit O(n%) & a,=0 - 5=o0, ~ a=0,
anwachsen und bald wire eine Sitti- ;

gung des Kommunikationsnetzwerkes
(fiir das Music-System maximal 20 : BEL PE2 . PE3
Millionen Verbindungen pro Sekun- L L K :

de) erreicht. Damit wire keine weite- X ]
re Steigerung der Leistungsfihigkeit \ \  Kommunikation \
des Systems durch zusitzliche PEs A Y \

mehr moglich. 1
=) t, t3

Wie kann dieser gravierende Nach-
teil behoben werden? Yoon schligt
vor [7]., dass die Anpassung der Ge-
wichte gleichzeitig auf zwei verschie-  Biid 6a, 6b Partitionierung des neuronalen Netzes
denen PEs erfolgen soll: einmal fiir a Vorwirtspfad
den Vorwirtspfad und einmal fiir den b Riickwirtspfad
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Rickwirtspfad. Zur Anpassung der
Gewichte werden der Lernfaktor, die
Aktivitit eines Neurons, der Fehler
und der alte Gewichtswert benotigt.
Die Aktivitdt und die Fehler der Neu-
ronen sind bereits auf allen PEs abge-
speichert. Wenn die Aufdatierung der
Gewichte auf unterschiedlichen PEs
erfolgt, muss dafiir gesorgt werden,
dass die sich entsprechenden Gewich-
te mit dem gleichen Startwert initiali-
siert werden.

Durch diese zusidtzlichen Berech-
nungen (Aufdatieren der Gewichte
auf mehreren PEs) kann die Kommu-
nikation von der Ordnung O(2n+n?)
auf O(2n) reduziert werden. Damit
tritt eine Séttigung der Systemslei-
stung infolge der begrenzten Kommu-
nikationsleistung erst viel spiter auf
(hier bei maximal 10" Millionen Ver-
bindungen pro Sekunde).

Resultate, Ausblick

Eine Karte mit drei Signalprozesso-
ren und einem Transputer als Knoten-
manager des fiir die Simulation des
neuronalen Netzes verwendeten Mu-
sic-Systems wurde in Betrieb genom-
men. Der Lernalgorithmus fiir neuro-
nale Netze ist auf dem Simulator funk-
tionsfdhig, er wird im Moment auf das
Music-System tibertragen.

Die Tabelle III zeigt die abgeschétz-
ten Zieldaten fiir das Music-System im
Anwendungsbereich neuronaler Net-
ze. In diesem Anwendungsgebiet wird
die Leistungsfdhigkeit eines Rechners
in Anzahl Verbindungen pro Sekunde
(Connections per Second im Vor-
wirtspfad bzw. Backward-Propoga-
tion Connections per Second fiir den
Lernmodus) angegeben. Die Werte
fiir das Music-System sind hochge-
rechnet. Sie sollten praktisch verifi-

Computer Feed Foreward Back Propagation
MACII 30 kCPS

IBM 386 30 kCPS

SUN-3 30 kCPS

TMS320C25 5MCPS 0.4 BMCPS
DSP96°002 8 MCPS 2.8 MBCPS
Delta IT 11 MCPS 2.7MBCPS
WARP 20 MBCPS
IBM 3090 30 MBCPS
Music-1 (3 DSP) 24 MCPS 6 MBCPS
Music-10 (30 DSP) 240 MCPS 60 MBCPS

Tabelle III  Geschiitzte Zieldaten fiir das Music-System im Anwendungsbereich neuronaler

Netze

ziert werden konnen, sobald weitere
Karten betriebsbereit sind. Wenn die-
se Daten erreicht werden, wird die
hier vorgestellte Lernmaschine fiir
neuronale Netze zu den weltweit
schnellsten Implementationen geho-
ren, und dies bei missigem Arbeits-
und Materialaufwand.

Einige weiterfithrende Arbeiten
sind geplant: Wihrend die Untertei-
lung des neuronalen Netzes und seine
Zuordnung an die einzelnen Pro-
zessorelemente heute noch manuell
erfolgen muss, soll diese Aufgabe in
Zukunft von einem Codegenerator
tibernommen werden. Dieser Codege-
nerator soll auch fiir die Implementa-
tion von nicht vollstandig verkniipften
Mehrschicht-Perzeptrons  verwendet
werden koénnen, wie sie zum Beispiel
zum Erkennen handgeschriebener
Schriftzeichen  verwendet werden
[2:8]. Schliesslich erhoffen wir uns,
dass dank der hohen Lerngeschwin-
digkeit des Rechners grundlegend
neue Erkenntnisse auf den Gebieten
Entwurf, Lernen und Anwendung von
neuronalen Netzen erarbeitet werden
konnen. Falls dieses Ziel erreicht

Language Processor Time Performance
(s) (MFlops)
Pascal 80286/287 780 0,0437
Occam T800 22 1.5
C TMS 320C30 S 6.8
Assembler TMS 320C30 2,5 13.6
Assembler DSP 96002 2 17
Assembler Music-1 (3 DSP) 0,7 49
Assembler Music-10 (30 DSP) 0,07 490

Tabelle I Erwarteter Leistungsvergleich mit anderen Rechnern
Berechnungsbeispiel fiir Fraktale: Die Rechenzeiten fiir die Berechnung der Grundfigur mit
256 mal 256 Bildpunkten, maximal 256 Iterationen pro Bildpunkt und 32 Bit Gleitkomma-

arithmetik, sind dargestellt

wird, konnte dieses Projekt ein ent-
scheidender Schritt in Richtung indu-
strieller Nutzung neuronaler Netze
sein.
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