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Neuronale Netzwerke

Konzept und Bau einer Lernmaschine
für neuronale Netze
Anton Gunzinger und Urs Müller

Während heute für den
Vorwärtspfad von neuronalen Netzen

sehr schnelle Implementationen

zur Verfügung stehen, kann
das Lernen (Rückwärtspfad)
solcher Netze selbst mit sehr
leistungsfähigen Rechnern Stunden
oder sogar Wochen dauern. In
diesem Artikel wird ein mit
digitalen Signalprozessoren
aufgebautes Mehrprozessorsystem
vorgestellt, das die Lernzeit
neuronaler Netze um zwei
Grössenordnungen, das heisst
auf Minuten bis Stunden
reduzieren soll.

Alors que pour le trajet en direct
de réseaux neuraux on dispose
aujourd'hui d'implémentations
très rapides, l'apprentissage
(trajet en indirect) de tels réseaux
peut durer des heures, voire des
semaines, même en disposant de
calculateurs très performants.
Dans cet article estprésenté un
système multiprocesseur basé
sur des processeurs de signaux
numériques qui réduit la durée
d'apprentissage des réseaux
neuraux de deux ordres de grandeur,
donc à des durées de minutes à

quelques heures.

Adresse der Autoren
Dr. Anton Gunzinger und Urs Müller,
Dipl. El.-Ing. ETH, Institut für Elektronik.
ETH Zentrum, 8092 Zürich

Im Bereich der Mustererkennung,
Klassifikation und Regelungstechnik
gibt es viele Aufgaben, die sich mit
klassischen numerischen Klassifikato-
ren oder regelbasierten Systemen nur
schwer lösen lassen. Die ersteren
versagen, weil sie oft nur linear
beschränkte Klassifikationsräume zulassen.

die zweiten, weil es sehr oft
schwierig ist - besonders für natürliche

Umgebungen -, Regeln anzugeben.

Eine Alternative für diese
Anwendungen bieten neuronale Netze.
Diese werden im Gegensatz zu klassischen

Methoden nicht programmiert,
sondern trainiert. Sie sind in der Lage,
anhand von vorgezeigten Beispielen
(d.h. anhand von Eingangs- und
Ausgangsinformation) selbständig Regeln
zu finden (und zu verallgemeinern).
Ihr Hauptvorteil liegt demnach
logischerweise bei Anwendungen mit
schwer definierbaren Regeln, wie sie
in den Gebieten der Mustererkennung,

Signalverarbeitung (Ton- und
Bildverarbeitung) und Regelungstechnik

auftreten.
Obwohl neuronale Netze in gewissen

Anwendungsgebieten entscheidende

Vorteile gegenüber klassischen
Methoden besitzen, haben sie sich
industriell noch nicht durchgesetzt, dies
hauptsächlich aus folgenden Gründen:

- Das Trainieren der Netze, die
Lernphase, dauert mit den heute verfügbaren

Rechnern relativ lange. Dies
hat seinen Grund besonders darin,
dass zur Optimierung der Netzparameter

(Netzgrösse, Verknüpfung)
relativ viele Experimente (Simulationen)

nötig sind, wobei die einzelnen

Simulationen viel Zeit
beanspruchen.

- Die heute verwendeten Lernalgorithmen

konvergieren relativ langsam,

und es kann keine Angabe
über die Qualität des gefundenen
Optimums angegeben werden.

- Es fehlt die notwendige Erfahrung
für die Lösung komplexer Aufgaben

mit Hilfe neuronaler Netze.

- Das Vertrauen der Ingenieure in
die «ungenauen» neuronalen Netze
ist noch nicht vorhanden.

In den meisten Anwendungen werden

die neuronalen Netze auf einem
herkömmlichen Computer simuliert;
dadurch werden sie entsprechend
langsam abgearbeitet. Für die relativ
einfachen Berechnungen im
Vorwärtspfad kann auch auf spezielle,
zum Teil analoge Systeme [1] (im
Vorwärtspfad genügt deren beschränkte
Auflösung) zurückgegriffen werden;
der kompliziertere Lernvorgang muss
in der Regel simuliert werden. Selbst
mit sehr leistungsfähigen Rechnern
kann das Lernen eines einzelnen Netzes

dabei Stunden oder sogar Wochen
dauern [2].

Viele Rechenfunktionen von neuronalen

Netzen können grundsätzlich
parallel abgearbeitet werden. Diese
könnten deshalb auch auf parallelen
Rechnern implementiert werden, wobei

allerdings, bedingt durch die
starke Vernetzung des neuronalen
Netzes, die Kommunikation im
Mehrprozessorsystem zum Engpass werden
kann.

In diesem Artikel wird ein
Mehrprozessorsystem vorgestellt, dessen
Kommunikation durch spezielle
Hardware unterstützt wird. Diese
Spezialhardware kann die Daten von
den einzelnen Prozessoren autonom
einsammeln bzw. unter diesen verteilen.

Es wird weiter gezeigt, wie das
heute am meisten verwendete neuronale

Netz, das Mehrschicht-Perzep-
tron, auf diese Rechnerarchitektur
abgebildet werden kann. Die damit
erzielbaren Resultate sind sehr ermutigend;

es scheint, dass sich mit diesem
System die Rechenzeit beim Lernen
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Mehrprozessorsysteme

von neuronalen Netzen um eine bis
zwei Grössenordnungen reduzieren
lässt, womit diese Implementation zu
den derzeit schnellsten auf der Welt
gehört.

Das Mehrschicht-Perzeptron
Eine Übersicht über die verschiedenen

Typen von neuronalen Netzen
gibt [3]. Das heute am häufigsten
verwendete neuronale Netz ist das
Mehrschicht-Perzeptron (Bild 1). Ein
Mehrschicht-Perzeptron besteht aus
mehreren Schichten; einer Eingangsschicht

(Input Layer), meistens einer
bis zwei verdeckten Schichten (Hidden

Layer) und einer Ausgangsschicht
(Output Layer). Jedes Neuron der
Schicht n ist mit jedem Neuron der
Schicht n-1 verbunden und jeder
Verbindung ist ein Gewicht zugeordnet
(Bild 1).

Das neuronale Netz arbeitet in zwei
Betriebsmodi, im Arbeitsmodus und
im Lernmodus. Im Arbeitsmodus
(Feed-Foreward) wird der auszuwertende

Signalvektor an die Eingangsschicht

angelegt (z.B. das Bild eines
Buchstabens). Nach der Propaga-
tionszeit steht in der Ausgangsschicht
das Resultat (z.B. klassifizierter
Buchstabe) zur Verfügung, falls das
Netz vorher richtig gelernt hat, das
heisst falls die einzelnen Gewichte in
den Neuronenverbindungen richtig
eingestellt wurden.

Für das Trainieren eines neuronalen
Netzes muss eine gewisse Anzahl
Eingangsvektoren mit den gewünschten
zugehörigen Ausgangsvektoren
bereitgestellt werden. Die Gewichte im
neuronalen Netz müssen nun so
modifiziert werden, dass bei vorgegebenem
Eingangsvektor der vorgegebene
Ausgangsvektor erzeugt wird. Dazu wird
an das Netz zuerst ein Eingangsvektor
angelegt und daraus ein Ausgangsvektor

berechnet. Nun wird dieser
berechnete Ausgangsvektor mit dem
Soll-Ausgangsvektor verglichen und
die Abweichung (Fehler) bestimmt.
Dieser Fehler wird jetzt anteilsmässig
auf die einzelnen Neuronen
umgerechnet; anschliessend werden die
Gewichte so verändert, dass der Fehler
kleiner wird (Back-Propagation).
Durch mehrmaliges Durchlaufen dieses

Prozesses wird der Fehler minima-
lisiert.

Dieses Verhalten eines neuronalen
Netzes (inkl. Lernmechanismus) kann
mathematisch folgendermassen
beschrieben werden [4]: Das Ausgangs-

ü h h

Bild 1 Aufbau eines Mehrschicht-
Perzeptrons

signal öy eines Neurons berechnet sich

aus der gewichteten Summe (Gewicht
Wjk) der Eingangssignale ak, verzerrt
durch eine Nichtlinearität.

ai fC£2(wik Qfc)) f(s:)
k

(i)

Für den Lernvorgang werden eine
Anzahl Lernbeispiele (Indexp) mit
Eingangsmuster ip und den
entsprechenden Ausgangsvektoren tp benötigt.

Im ersten Schritt lässt man das
Netz für ein bestimmtes Eingangsmuster

einen eigenen Ausgangsvektor op

produzieren. Dann wird der mit der
Steilheit der Nichtlinearität (im
Arbeitspunkt des jeweiligen Neuronaus-
gangssignals) gewichtete Fehler des
Netzwerkes in den Ausgangsneuronen
(Gl. 2) und ebenso in den Neuronen
der anderen Schichten (Gl. 3)
bestimmt. Eine Herleitung des Verfahrens

findet sich in [4].

S" /VDVI-O?) C-)

«I /'(»?) EM • ">«) <3>

k

AwPj{ rj • 8t • at (4)

Aus dem Fehler, dem konstanten
Lernfaktor rj und der Neuronenaktivi-
tät üj wird für jedes Gewicht ein Kor¬

rekturwert (Gl. 4) berechnet und
anschliessend zum vorhandenen
Gewicht addiert (Gl. 5).

wpM wp]% + Awpji (5)

Dieser Vorgang wird für jede
Präsentation eines Lernbeispiels wiederholt.

Um die Verallgemeinerungsqualität
zu bestimmen, wird oft ein Teil

der Beispiele nicht trainiert. Mit diesen

Beispielen können die Lernfortschritte

des Netzes gemessen werden.
Als Nichtlinearität wird oft die
sogenannte Sigmoidfunktion (Gl. 6)
verwendet. Diese begrenzt das
Ausgangssignal auf den Wertebereich
[0...1],

Die Ableitung der Sigmoidfunktion
an der Stelle x ist:

f'(x) f(x) • (1 - /O)) (7)

Architektur des
Mehrprozessorsystems

Heute kann man auf dem Markt
sehr leistungsfähige und kostengünstige

Mikroprozessoren erhalten. So
sind zum Beispiel Signalprozessoren
mit bis zu 50 Millionen
Gleitkommainstruktionen pro Sekunde für
wenige 100 $ pro Stück zu haben. Durch
geeignete Zusammenschaltung von 30
bis 100 solcher Prozessoren mittels
spezieller Zusatzschaltungen zur
Kommunikation kann ein Rechnersystem

realisiert werden, das mit seiner
Rechenleistung für eine Palette von
Algorithmen durchaus mit jener
konventioneller Supercomputer konkurrieren

kann, aber um den Faktor
100... 1000 weniger kostet. Voraussetzung

dafür ist allerdings, dass im
System genügend Kommunikationsleistung

vorhanden ist und dass das
System von einem Benützer leicht
programmiert werden kann. Am Institut
für Elektronik der ETH-Zürich befindet

sich ein solches Mehrprozessorsystem
im Aufbau. Das Mehrprozessorsystem

hat den Namen MUSIC (Multi
Signalprozessor System with Intelligent

Communication) erhalten. Es
soll als Low-Cost Supercomputer zur
Signalverarbeitung, zur Simulation in
Physik und Chemie und für neuronale
Netze eingesetzt werden.

Jedes einzelne Prozessorelement
(PE) ist mit einem digitalen Signalprozessor

bestückt und verfügt über eine
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Bild 2 Architektur des Music-Svstems

maximale Rechenleistung von 50

MFlops (Million Floatingpoint Operations

per Second). Es sind Systeme
mit bis zu 60 Prozessorelementen
geplant; damit kann eine Spitzenleistung
von 3 GFlops erreicht werden. Die
einzelnen Prozessorelemente sind
über ein Hochgeschwindigkeitsnetzwerk

(Ring) miteinander verbunden.
Das Netzwerk verfügt über «verteilte
Intelligenz» und ist in der Lage, Daten
autonom von den einzelnen PEs
einzusammeln und wieder zu verteilen
(Bild 2).

Das Bild 3 zeigt das Blockschaltbild
einer Music-Karte. Ein mit einem
Transputer realisierter Knotenmanager

steuert eine Gruppe von PEs (in
diesem Fall 3). Als Recheneinheit
wird der digitale Signalprozessor DSP
96002 von Motorola mit 50 MFlops
Spitzen-Rechenleistung eingesetzt.
Jeder Signalprozessor ist mit einem
schnellen statischen Speicher
(SRAM) von 128 kByte als

Programm- und einem dynamischen
Videoschieberegister-Speicher (VRAM)
von 2 bzw. 8 MByte für Datenspeicher
ausgerüstet. Bei den dynamischen
Speichern handelt es sich um
sogenannte Video-DRAMs. Diese verfügen

über ein integriertes Hochge-

schwindigkeits-Schieberegister zum
schnellen I/O-Verkehr. Die Daten
können mit einer Taktrate von bis zu
20 MHz vom Schieberegister
übernommen bzw. ausgegeben werden.
Die Kommunikation mit dem
Hochgeschwindigkeitsnetzwerk des

Mehrprozessorsystems erfolgt über diese
Videoschieberegister. Als Netzwerkkontroller

wird ein programmierbares
Gatearray, ein sogenanntes LCA (Logic

Cell Array) von Xilinx eingesetzt.
Der Netzwerkkontroller nimmt die

Daten aus dem in der Kette vorangehenden

PE auf (Ringarchitektur),
speichert sie wenn nötig im Video-
DRAM ab bzw. ersetzt sie durch Daten

aus dem Video-DRAM und gibt
sie anschliessend an den nächsten
Netzwerkkontroller weiter. Der
Datenbus ist 40 Bit breit; 32 Bit Daten
und 8 Bit Zusatzinformation
(Absenderadresse, Gültigkeit des Datenwerts).

Die maximale Datenrate soll
im Endausbau 20 MHz betragen.

Das zentrale Problem in einem
Mehrprozessorsystem ist die Verteilung

der Arbeit auf die einzelnen
Prozessor- (PE) und Kommunikationselemente.

Beim Music-Konzept wird als

Grundoperation angenommen, dass
ein bestimmter Eingabe-Datensatz
sich durch einen (komplexen)
Algorithmus eindeutig in einen neuen
Ausgabe-Datensatz transformieren lässt
(Bild 4). Damit kann jedem Prozessor
die Aufgabe übertragen werden,
einen Teil der Ausgabedaten zu berechnen.

Die Daten müssen dann nur noch
eingesammelt und bei einer iterativen
Anwendung wieder an die einzelnen
Prozessoren verteilt werden. Diese
Kommunikationsaufgabe wird durch
das Spezialnetzwerk des Music-Systems

autonom, mit der maximalen
Datenrate von 20 MHz ausgeführt.
Da es sich bei den verwendeten
Datensätzen meist um 1-, 2- oder 3-di-
mensionale Arrays handelt, werden
diese Datenstrukturen durch das
Netzwerk besonders unterstützt. In
der Regel wechseln sich Berechnungsund

Kommunikationsphase ab (Bild
5). Bei einigen Anwendungen kann
mit der Kommunikation bereits während

der Berechnungsphase begonnen
werden.

Damit das System seine maximale
Rechenleistung erreichen kann, müs-Bild 3 Blockschaltbild einer Music-Karte
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INTELLIGENT COMMUNICATION NETWORK

PE 1

Processing
(Algorithm)

Source Source DestiSource Source
t+1 t nation t+1 t

PEn

Destination

Processing
(Algorithm)

Bild 4 Funktionsweise
Aus einem Eingabedatensatz werden durch die einzelnen PEs Teile des

Ausgabedatensatzes berechnet; diese Teildatensätze werden eingesammelt und stehen für
die nächste Iteration wieder als Eingabedatensätze zur Verfügung

sen die einzelnen Prozessoren gleich-
mässig ausgelastet sein. Für viele der
vorgesehenen Anwendungen ist die
Rechenzeit datenunabhängig; damit
kann ein Lastausgleich in der Regel
durch eine gleichmässige Verteilung
des Datensatzes auf die einzelnen PEs
erfolgen. Im Falle datenabhängiger
Rechenzeit kann die Grösse des
Datensatzes bei iterativen Verfahren
anhand der Rechenzeit in der vorausgehenden

Iteration dynamisch (durch
den Knotenmanager) angepasst werden.

Damit kann ein sehr guter
Lastausgleich erreicht werden [5].

Der Speed-up-Faktor gibt den
Rechengeschwindigkeitsgewinn in einem
Mehrprozessorsystem als Funktion
der Anzahl der verwendeten PEs an.
Es kann gezeigt werden, dass sich bei
einem Komplexitätsfaktor von 1000

(pro 1000 Instruktionen wird ein
neuer Datenwert produziert und über
das Kommunikationsnetzwerk
übermittelt) und bei 40 PEs ein Speed-up
von 38,5 und bei 100 PEs von 90,91
erreicht werden kann [6]. In der Ta¬

belle I sind die Eckdaten des Music-
Systems zusammengefasst. Ein
System mit 20 Karten findet in einem
19'-Gehäuse Platz, ein Hochleistungsrechner

für den Bürotisch.

Auflösung von 256 mal 256 Bildpunkten
(max. 256 Iterationen pro

Bildpunkt und 32 Bit Gleitkommaarithmetik)

sind in der Tabelle II für
verschiedene Rechner zusammengestellt.
Die Rechenleistung für das Music-10-
System wurde dabei geschätzt, da im
Moment noch nicht genügend Karten
zur Verfügung stehen. Die mit dem
Music-System erreichbaren
Rechenleistungen sind beachtlich.

Parallele Implementation
neuronaler Netze

Im folgenden wird gezeigt, wie das
Mehrschicht-Perzeptron auf das
Music-System abgebildet werden kann.
Der rechenaufwendigste Teil für das

Mehrschicht-Perzeptron ist die
Summation des Produktes aus Aktivität
und Gewicht für den Vorwärtspfad
sowie die Summation des Produktes von
Fehler und Gewicht im Rückwärtspfad.

Ein Beispiel aus der Bildverarbeitung:

Der Eingabevektor bestehe
aus den Werten von 256 Bildpunkten,
und in der ersten Schicht seien 512

Data Distribution Processing Data Collection Data Distribution Processing Data Collection

Bild 5 Berechnungs- und Kommunikationsphase wechseln sich im Music-System ab

Um die Leistungsfähigkeit des
Music-Systems mit anderen Rechnern zu
vergleichen, wurde die Berechnung
von Fraktalen implementiert. Die
Rechenzeit für die Grundfigur mit einer

1 PE 1 Board 10 Boards 20 Boards

PEs 1 3 30 60
DSP 96002 1 3 30 60
Peak Performance

(MFLOPS) 50 150 1500 3000
SRAM (kB) 128 384 3840 7680
DRAM (MB) 8 24 240 480
Transputer - 1 10 20
T-DRAM (MB) - 4 40 80
Power Consummation (W) 10 30 300 600

Tabelle I Wichtigste Daten des Music-Systems

Neuronen vorhanden. Dies bedeutet,
dass rund 130 000 Multiplikationen/
Additionen ausgeführt werden müssen.

Die nichtlineare Funktion wird
mit 512 Berechnungen vergleichsweise
wenige Male ausgewertet. Glücklicherweise

eignen sich Signalprozessoren
besonders für die Summation von
Produkten, da diese Operation auch vielen

Signalverarbeitungsalgorithmen
wie Filterung, Vektormultiplikation
oder Fouriertransformation zugrunde
liegt.

Die Verteilung des neuronalen Netzes

auf dem Music-System wird im
folgenden anhand eines Beispiels
gezeigt. Der Einfachheit halber sei ein
neuronales Netz mit 3 Eingängen, 3

Neuronen in der versteckten Schicht
und 3 Ausgangsneuronen gegeben.
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Dieses Netz soll jetzt auf 3 PEs verteilt
werden. In praktischen Anwendungen
können natürlich viel mehr Neuronen
und PEs vorhanden sein, wobei die
Anzahl der Neuronen und PEs
unabhängig voneinander sind. Die grösste
Effizienz wird erreicht, wenn alle PEs
etwa gleichviel Neuronen behandeln
müssen.

Zur Berechnung des Vorwärtspfades

gilt, dass die Aktivitäten der
einzelnen Neuronen (Gl. 1) innerhalb
der Schicht n parallel ausgerechnet
werden können, sobald die Aktivitäten

der Schicht n-1 bekannt sind. Nach
der Berechnung der Aktivität der
Schicht n müssen die Daten ap
eingesammelt und auf alle PEs kopiert werden;

diese Daten werden in allen PEs
abgespeichert, da sie für die Berechnung

der Aktivität der nächsten
Schicht im Vorwärtspfad und für das
Lernen benötigt werden. In Bild 6
wurde dieser Sachverhalt grafisch
dargestellt.

Analog zum Vorwärtspfad erfolgt
die Berechnung für den Rückwärtspfad,

wobei jetzt das Fehlersignal öp

(Gl. 2 und 3) übertragen wird (Bild 6).
Das Fehlersignal ôp wird ebenfalls in
allen PEs abgespeichert. Nun muss
nur noch das «Lernen» erfolgen, das
heisst die Gewichte der einzelnen
Neuronen müssen nach (Gl. 4 und 5)
aufdatiert werden. Dabei ergibt sich
aber ein Problem: die aufdatierten
Gewichte wp+i sind in den meisten
Fällen nicht auf den PEs verfügbar,
auf denen sie im Vorwärtspfad
gebraucht werden. Beispiel: das
Gewicht w'g,4 wird auf PE1 aufdatiert
(Bild 6b) und für den Vorwärtspfad in
PE2 benötigt (Bild 6a). Um dieses
Problem zu beheben, könnten die
neuen Gewichte nach dem Lernen
über das Kommunikationsnetzwerk
eingesammelt und verteilt werden; da
aber die Anzahl der Gewichte mit
0(n2) wächst (bei einer Schicht mit n
Eingängen und n Neuronen), würde
auch die Kommunikation mit 0(n2)
anwachsen und bald wäre eine Sättigung

des Kommunikationsnetzwerkes
(für das Music-System maximal 20
Millionen Verbindungen pro Sekunde)

erreicht. Damit wäre keine weitere

Steigerung der Leistungsfähigkeit
des Systems durch zusätzliche PEs
mehr möglich.

Wie kann dieser gravierende Nachteil

behoben werden? Yoon schlägt
vor [7], dass die Anpassung der
Gewichte gleichzeitig auf zwei verschie- Bild 6a. 6b Partitionierung des neuronalen Netzes
denen PEs erfolgen soll: einmal für a Vorwärtspfad
den Vorwärtspfad und einmal für den b Rückwärtspfad
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Rückwärtspfad. Zur Anpassung der
Gewichte werden der Lernfaktor, die
Aktivität eines Neurons, der Fehler
und der alte Gewichtswert benötigt.
Die Aktivität und die Fehler der
Neuronen sind bereits auf allen PEs
abgespeichert. Wenn die Aufdatierung der
Gewichte auf unterschiedlichen PEs
erfolgt, muss dafür gesorgt werden,
dass die sich entsprechenden Gewichte

mit dem gleichen Startwert initialisiert

werden.
Durch diese zusätzlichen Berechnungen

(Aufdatieren der Gewichte
auf mehreren PEs) kann die Kommunikation

von der Ordnung 0(2n+n2)
auf 0(2n) reduziert werden. Damit
tritt eine Sättigung der Systemsleistung

infolge der begrenzten
Kommunikationsleistung erst viel später auf
(hier bei maximal 1012 Millionen
Verbindungen pro Sekunde).

Resultate, Ausblick
Eine Karte mit drei Signalprozessoren

und einem Transputer als

Knotenmanager des für die Simulation des
neuronalen Netzes verwendeten Mu-
sic-Systems wurde in Betrieb genommen.

Der Lernalgorithmus für neuronale

Netze ist auf dem Simulator
funktionsfähig, er wird im Moment auf das

Music-System übertragen.
Die Tabelle III zeigt die abgeschätzten

Zieldaten für das Music-System im
Anwendungsbereich neuronaler Netze.

In diesem Anwendungsgebiet wird
die Leistungsfähigkeit eines Rechners
in Anzahl Verbindungen pro Sekunde
(Connections per Second im
Vorwärtspfad bzw. Backward-Propoga-
tion Connections per Second für den
Lernmodus) angegeben. Die Werte
für das Music-System sind
hochgerechnet. Sie sollten praktisch verifi-

Computer Feed Foreward Back Propagation

MAC II 30 kCPS
IBM 386 30 kCPS
SUN-3 30 kCPS
TMS320C25 5MCPS 0.4 BMCPS
DSP96'002 8MCPS 2.8 MBCPS
Delta II 11MCPS 2.7 MBCPS
WARP 20 MBCPS
IBM 3090 30 MBCPS
Music-1 (3 DSP) 24 MCPS 6 MBCPS
Music-10 (30 DSP) 240 MCPS 60 MBCPS

Tabelle III
Netze

Geschätzte Zieldaten für das Music-System im Anwendungsbereich neuronaler

ziert werden können, sobald weitere
Karten betriebsbereit sind. Wenn diese

Daten erreicht werden, wird die
hier vorgestellte Lernmaschine für
neuronale Netze zu den weltweit
schnellsten Implementationen gehören,

und dies bei mässigem Arbeitsund

Materialaufwand.
Einige weiterführende Arbeiten

sind geplant: Während die Unterteilung

des neuronalen Netzes und seine

Zuordnung an die einzelnen
Prozessorelemente heute noch manuell
erfolgen muss, soll diese Aufgabe in
Zukunft von einem Codegenerator
übernommen werden. Dieser Codegenerator

soll auch für die Implementation
von nicht vollständig verknüpften

Mehrschicht-Perzeptrons verwendet
werden können, wie sie zum Beispiel
zum Erkennen handgeschriebener
Schriftzeichen verwendet werden
[2;8]. Schliesslich erhoffen wir uns,
dass dank der hohen Lerngeschwindigkeit

des Rechners grundlegend
neue Erkenntnisse auf den Gebieten
Entwurf, Lernen und Anwendung von
neuronalen Netzen erarbeitet werden
können. Falls dieses Ziel erreicht

Language Processor Time Performance
(s) (MFlops)

Pascal 80286/287 780 0,0437
Occam T800 22 1,5
C TMS 320C30 5 6,8
Assembler TMS 320C30 2,5 13,6
Assembler DSP 96002 2 17

Assembler Music-1 (3 DSP) 0,7 49

Assembler Music-10 (30 DSP) 0,07 490

wird, könnte dieses Projekt ein
entscheidender Schritt in Richtung
industrieller Nutzung neuronaler Netze
sein.

Dank
An dieser Stelle möchten wir dem

Vorsteher des Instituts für Elektronik,
Prof. Dr. W. Guggenbühl, für seine
Unterstützung dieses Projekts herzlich
danken. Danken möchten wir auch
den Studenten U.M. Franz, H. von
der Mühll und H. Walther für den
Bau und die Inbetriebnahme des
Music-Systems im Rahmen ihrer Diplomarbeit.

Tabelle II Erwarteter Leistungsvergleich mit anderen Rechnern
Berechnungsbeispiel für Fraktale: Die Rechenzeiten für die Berechnung der Grundfigur mit
256 mal 256 Bildpunkten, maximal 256 Iterationen pro Bildpunkt und 32 Bit Gleitkommaarithmetik.

sind dargestellt
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