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Neuronale Netzwerke

Nichtlineare Filter und Neuronale Netzwerke

José A. Osuna

In der vorliegenden Einfiihrung
ins Gebiet der nichtlinearen Filter
werden die Begriffe System-
identifikation und -approxima-
tion présentiert. Die klassische
Approximation eines nicht-
linearen Systems mit der abge-
brochenen Volterrareihe weist
grundlegende Nachteile auf. Die-
jenige mit Hilfe des Perceptrons,
eines Neuronalen Netzwerkes,
erméglicht einen neuen, praxis-
gerechten Ansatz fiir nichtlineare
Filter.

Au cours de cette introduction
dans le domaine des filtres non-
linéaires, les notions d’identifica-
tion et d’approximation de sys-
teme sont présentés. L'approxi-
mation classique d’un systéme
non-linéaire avec une série Vol-
terra abrégée posséde des dés-
avantages fondamentaux; I'utili-
sation du Perceptron — un réseau
de neurones — représente, par
contre, une nouvelle approche
pratique des filtres non-linéaires.

Adresse des Autors

José A. Osuna, Dipl. El.-Ing. ETH. Institut fiir
Signal- und Informationsverarbeitung, ETH-Zen-
trum. 8092 Ziirich
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Bild1 Systemidentifikation fiir zeitdiskrete Signale mit Vernachlissigung der Rauschquellen

Nichtlineare Filter lassen sich mit
bisherigen Verfahren schwer realisie-
ren. Neuronale Netzwerke bieten ei-
nen neuen Ansatz, um die nichtlineare
Abbildung zwischen Filtereingang
und -ausgang auf einfache Art und
Weise zu verwirklichen. Im vorliegen-
den Artikel wollen wir die klassische
Vorgehensweise und den neuen An-
satz kurz besprechen. Doch zunichst
miissen wir das uns interessierende
Problem definieren.

Systemidentifikation

Dem Begriff Filter kommen in der
Signalverarbeitung mehrere Bedeu-
tungen zu. Unter einem Filter versteht
man sowohl eine Blackbox, die zum
Beispiel einen bestimmten Frequenz-
bereich aus einem elektrischen Signal
herauszufiltern hat (Bandpass-Filter
in der Telefoniibertragung), als auch —
im erweiterten Sinne — jedes System,
das Information verarbeitet. Um die-
ses allgemeinere Konzept eines Filters
zu erfassen, wollen wir den Begriff der
Systemidentifikation einfiihren.

Im Hinblick auf die adaptive Filte-
rung von Signalen in zeitvarianten,

kausalen Systemen beschrianken wir
uns auf zeitdiskrete Signale f[k] mit &k
>0

Das Modell tibernimmt die Funk-
tion eines Filters, indem es das Ein-
gangssignal verarbeitet, um das Aus-
gangssignal des unbekannten, nicht-
linearen Systems nachzubilden. Den
oberen Teil von Bild 1 kann man sich
auch abstrakt vorstellen, das heisst,
das unbekannte System muss nicht
real existieren. Wichtig ist, dass seine
nichtlineare Abbildung definiert ist.
Die Filterfunktion des Modells be-
steht darin, die definierte Abbildung
nachzuahmen. Um beim Beispiel des
Bandpasses in der Telefoniibertra-
gung zu bleiben, kann man sich vor-
stellen, dass das Gerdt mit der ge-
nannten Filterfunktion dasjenige Mo-
dell ist, welches die definierte. in die-
sem konkreten Falle bekannte Abbil-
dung Schneide alle Frequenzen unter-
halb f, und oberhalb f, ab, nachzuah-
men hat.

! f[k] folgt zum Beispiel aus der Abtastung des zeit-
kontinuierlichen Signals f(r) mit der Abtastperiode
T = 1: f[k] ist die Auswertung der Funktion f(r) an
den diskreten Zeitpunkten t = kT.
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Wir sprechen von nichtlinearen,
adaptiven Filtern, wenn die nichtline-
are Abbildungsvorschrift mit der Zeit
variieren kann. Das Modell muss dann
seine Systemparameter in einer end-
lich langen Zeit wieder so einstellen,
dass die neue Abbildungsvorschrift
moglichst genau nachgeahmt wird.
Das Modell adaptiert sich also auf die
neue Umgebung, damit das sich ver-
dndernde, unbekannte System laufend
identifiziert werden kann. Der soge-
nannte Adaptationsalgorithmus, der
aufgrund der Beobachtung des Ein-
gangs- und Ausgangssignals die Sy-
stemparameter des Modells einstellt,
muss entsprechend schnell sein.

Wir setzen voraus, dass das unbe-
kannte System nichtlinear ist, das
heisst, wir betrachten nichtlineare Fil-
ter. Nichtlinear bezieht sich, wie be-
reits oben angetént wurde, auf die
nichtlineare Abbildung vom Eingang
des Filters auf seinen Ausgang. Es hat
keinen Sinn, mit den nichtlinearen
neuronalen Netzwerken lineare Ab-
bildungen realisieren zu wollen, da
sich der lineare Ansatz eines linearen
Systems dazu offensichtlich besser eig-
net. Ein lineares Modell geniigt ande-
rerseits fiir die Approximation einer
nichtlinearen  Abbildungsvorschrift
des unbekannten Systems natiirlich
nicht, wenn das Fehlersignal fiir einen
begrenzten Bereich der Eingangsda-
ten beliebig klein gemacht werden
soll. Der Nachteil des klassischen,
nichtlinearen Ansatzes ist, dass der
Rechenaufwand fiir die Adaptation
der Modellparameter ins Unermessli-
che steigt, wenn die Systemidentifika-
tion moglichst genau erfolgen soll.
Wie gezeigt werden soll, konnen die
neuronalen Netzwerke gegeniiber den
klassischen Losungen ihre Vorteile
voll ausspielen und sie ermdglichen ei-
ne praxisgerechte Realisierung von
nichtlinearen Filtern.

Systemapproximation

In Bild 2 ist das unbekannte System
durch einen (unbekannten) nichtli-
nearen Operator T[-] reprisentiert,
seine «exakte»* Approximation durch
den Operator T[-]. T ist nicht mit dem
Modell in Bild 1 gleichzusetzen, weil
wir bei der praktischen Realisierung
nur einen endlichen Aufwand betrei-
ben konnen. Wir sagen, dass das Sy-
stem T[] das unbekannte System T[]

> Die Approximation ist exakt, wenn wir unendlich
viele Ressourcen zur Verfiigung haben.

u Yy
cwed ] e
G RIS Y

Bild2 Unbekanntes System T[] und
dessen Approximation T[]

mit Eingangssignal u[k] u in R" und
Ausgangssignale y k], §[k] y, ¥in R”

beliebig genau approximiert, wenn fir
jedes Eingangssignal u[k] in einem n-
dimensionalen Unterraum U von R”
die Ausgangssignale des unbekannten
Systems und des approximierenden
Systems fiir alle Zeitpunkte k bis auf
einen wahlbar kleinen absoluten Feh-
ler identisch sind.

Das approximierende System T[]
mit unendlich vielen Parametern wird
also in einer zweiten Phase durch ein
«endliches» Modell T[] ersetzt, wel-
ches. mit Ausgangssignal y in das Bild
1 eingesetzt, alle nichtlinearen Abbil-
dungsvorschriften T[], die mit T[]
beliebig genau angendhert werden
koénnen, modelliert.

Fassen wir die Grundgedanken der
Systemidentifikation und -approxima-
tion zusammen: Nach der Wahl der
Approximation T[-] und des damit
verbundenen Modells 7] stellen sich
dessen freie Parameter online so ein,
dass eine (im allgemeinen Fall mit ei-
nem Fehler behaftete) Identifikation
des unbekannten Systems T|-] resul-
tiert.

Das Volterrafilter

Damit wir uns die folgenden Aus-
flihrungen besser vergegenwirtigen
konnen. betrachten wir den eindimen-
sionalen Fall, nehmen also an, dass
sich alle Signale von Bild 1 im eindi-
mensionalen Raum R’ befinden und
demzufolge nur eine Komponente be-
sitzen. Wir wissen zu Beginn, dass das
unbekannte System nichtlinear ist, wir
haben aber sonst iiberhaupt keine A-
priori-Information tber seinen Auf-
bau. Es kann gezeigt werden, dass so-
wohl der klassische wie auch der neu-
ronale nichtlineare Ansatz fiir das
Modell den nichtlinearen Operator
T[] beliebig genau approximieren.
Mit einem grossen Implementations-

aufwand kann also der Restfehler be-
liebig klein gehalten werden.

Der klassische Ansatz fiir eine
nichtlineare Approximation. die dem
unbekannten, nichtlinearen Operator
T[-] moglichst gut entsprechen soll. ist
die abgebrochene® Volterrareihe, die
weiter unten ndher erklart wird:
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ulk = ir] - ulk — i)
(1)

(Fiir mehrdimensionale Signale, m1,
n > 1, sind die entsprechenden Ande-
rungen vorzunehmen, das heisst zum
Beispiel fiir die ersten zwei Summan-
den von GI. 1, dass hy durch den
(m < 1)-Vektor h zu ersetzen ist, und
dass /(7] auf die (m x n)-Matrix H,|[i]
Zu erweitern ist.)

In [1; 2] wird die auf der Volterra-
reihe basierende Wienertheorie pri-
sentiert. Ihre Behandlung sprengt den
Rahmen dieses Artikels. Wir wollen
uns darauf beschrdnken, den Aufbau
und die Bedeutung von Gl. 1 zu ver-
stehen.

Lisst man in Gl. 1 alle Summanden
weg bis auf den zweiten, dann folgt
daraus die vertraute Formel fiir die
zeitdiskrete Faltung des Eingangssi-
gnals u[k] mit der zeitdiskreten Im-
pulsantwort /[k] eines linearen, zeit-
invarianten und kausalen Systems:

wlk] = 3 hfilulk — 3]

=0

= hy[k] * u[k] (@)

Aus GI. 2 ist zu erkennen, dass zum
Zeitpunkt & der vor « Zeiteinheiten
am Systemeingang vorhandene Si-

* Eine Rethe hat im allgemeinen unendlich viele
nichtverschwindende Summanden. Brechen wir sie
ab. indem wir die Glieder ab einer gewissen Stelle
vernachlissigen. haben wir es mit einer Approxima-
tion dieser Reihe — also mit einem Polynom - zu
tun.
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Neuronale Netzwerke

Bedeutung der Systemidentifikation

Ein unbekanntes System (Bild 1) bildet ein Eingangssignal auf sein Ausgangs-
signal ab. In unserem Falle handelt es sich um eine nichtlineare Abbildung von
einem zeitdiskreten, im allgemeinen Fall mehrdimensionalen Eingangssignal
ufk] = [u,[k] us[k]...u,[k]]" (w'in R") auf das wiederum zeitdiskrete Ausgangs-
signal y[k] = [vi[k] vo[Kk]...ym[k]]" (y in R") fiir alle k € Z* (positive ganze
Zahlen). Das Modell. das keinerlei Informationen iiber das unbekannte.
nichtlineare System besitzt. basiert auf einer wie auch immer gewihlten
Approximation von nichtlinearen Systemen. Es versucht. durch blosse Beob-
achtung des Eingangs- und Ausgangssignals die Funktion des verhiillten.
nichtlinearen Systems zu identifizieren. Dabei adaptiert es sich nach einem
gewissen Qualititskriterium. indem es seine Systemparameter solange verin-
dert, bis das aus dem Ausgangssignal und seiner Schitzung gebildete Fehlersi-
gnal e ein minimales Mass erreicht hat. Das Fehlersignal strebt also fiir
aufeinanderfolgende Signalzeitpunkte zu einem absolut moglichst kleinen
Wert, das heisst, dass sich beide Systeme immer dhnlicher verhalten. und das
Modell, zum Beispiel ein neuronales Netzwerk, das unbekannte System nach-

bildet.

gnalwert ulk—«| mit h[a] gewich-
tet wird. Die Impulsantwort /1,[k] be-
schreibt also das Gedichtnis des Sy-
stems; vergangene Eingangssignal-
werte u[j] (0 = j < k) missen bei

nichtverschwindender Impulsantwort’

hy [j] fir die Ermittlung der System-
antwort  y[k]  mitberiicksichtigt
werden.

Ein lineares System ohne Gedicht-
nis hat die Impulsantwort

hi[k] = co[k] (3)

wobei ¢ eine reelle Konstante ist. und

bolk] = 4 1 T k=0 @)

0 sonst

den Einheitsimpuls definiert.

Die zeitdiskrete Systemantwort fiir
ein zeitinvariantes. lineares und kau-
sales System ohne Gedichtnis lautet
y[k] = culk] (5)
Wenn y(u[k]) Uber u[k] aufgetragen
wird, dann bestimmt die GI. 5 Punkte
(ug,yi) auf der Geraden
y(u) = cu (6)
Fiir ein nichtlineares, zeitinvariantes
und kausales System ohne Gedéichtnis
ist der Graph von y(u) tiber u nicht
mehr eine Gerade, sondern eine Kur-
ve y(u) = flu) (f: R — R, das heisst
f(u) ist eine nichtlineare Abbildung
von R nach R). die unter bestimmten

Einschrankungen durch die Taylor-
sche Potenzreihe

y(u) = fu) = 3 ealu — ug)”
mit Cn= m
n! (7)

dargestellt werden kann*.

Falls die unendliche Potenzreihe in
Gl. 7 abgebrochen wird. sprechen wir
von der Taylorschen Approximation.
Die Approximation ist so zu verste-
hen, dass soviele Summanden mitbe-

einzelnen Summanden der Volterra-
rethe entsprechen den Summanden
der Taylorschen Potenzreihe., wenn
wir die zeitdiskreten Faltungen mitbe-
riicksichtigen und u, = 0 setzen. In
Tab. I sind die aufgefiihrten Gedan-
kenschritte zusammengefasst.

Der approximative Charakter des
klassischen Ansatzes folgt aus der Tat-
sache, dass in GI. 1 die Volterrareihe
abgebrochen wird, was der Taylor-
schen Approximation entspricht. Wir
konnen aus praktischen Griinden
nicht unendlich viele Glieder der Rei-
he beriicksichtigen und miissen uns
mit einer endlichen Anzahl zufrieden-
geben, die das nichtlineare System
nicht mehr exakt darstellt, sondern im
Sinne von Ungleichung (8) nur noch
approximiert.

Fassen wir kurz zusammen: Volter-
ra-Filter sind eine spezielle Klasse von
nichtlinearen Filtern, die dem auf den
nichtlinearen Fall erweiterten Impuls-
antwort-Konzept entspringen.

Vorteile und Nachteile der
Volterrareihe

Ein lineares. zeitinvariantes und
zeitdiskretes System ist durch seine
Impulsantwort /,[i] vollstindig cha-
rakterisiert. Systeme, bei denen die

lineares System mit Gedachtnis

_»x:-wm»-:

lineares System ohne Gedachtnis
nichtlineares System ohne Gedachtnis
nichtlineares System mit Gedachtnis

— y[k] = ha[k] * u[k]
—  y[k] = culk]

— y[k] = Taylorreihe
— ylk] = Volterrareihe

Tabelle I Lineare und nichtlineare zeitdiskrete Systeme mit und ohne Gedichtnis und exakte
Darstellungen der entsprechenden Systemantworten

riicksichtigt werden. wie es fiir das Er-
fullen der nidchsten Ungleichung notig
ist:

Bag ly(u) —g(u)] < e
N

g(u) = Z Cn(u = uo)n

n=0

mit

(8)

und D, C R: Definitionsbereich der
Taylorreihe y(u) sowie €. eine kleine
positive Zahl.

Die Volterrareihe ist anschaulich
nichts anderes als die Erweiterung von
Gl. 7 auf Systeme mit Gedéachtnis: Die

*uy ist der Entwicklungspunkt der Reihe. und

f"(11y) stellt die n-te Ableitung der nichtlinearen

Funktion f(«) nach « an der Stelle u, dar.

Impulsantwort auf den Wert Null ab-
klingt (FIR-Filter), werden durch die
I Werte hy[0],....[I — 1] bestimmt,
wobei / — 1 die Geddichtnisldnge des
linearen Systems darstellt. Analog ist
ein nichtlineares, zeitinvariantes und
zeitdiskretes System, das durch eine
Volterrareihe  dargestellt  werden
kann®, durch sie vollstdndig charakte-
risiert. Verschwinden deren Volterra
Kernels A,[i,....i,] fiir n > ny, dann
wird das nichtlineare System durch die
ersten ny+1 Volterra Kernels /g bis
/’ln()[il ..... in()] (Vg] Gl. 1 fir n = Il())
vollstdndig bestimmt. Wir betrachten
nur symmetrische Kernels, da es sich

* Das Konvergenzproblem wird weiter unten be-
sprochen.
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zeigen lidsst [1]. dass diese Bedingung
keine Einschrinkung der Allgemein-
heit ist. Der Wert eines sym-
metrischen Kernels /,[i;.....i,] bleibt
fur alle ! Permutationen seiner Argu-
mente fj..... i, unverdndert. so dass
zum Beispiel fiir n = 2 folgendes gilt:

holiysis] = holiz.dy] firalle 7y, = 0

Die Volterra Kernels /h,ij...., A
sind die durch den Adaptationsalgo-
rithmus einzustellenden Parameter
des Modells (Bild 1). Die Volterrarei-
he hat den Vorteil, dass sie linear ist
beziiglich der h,[i;.....;,]. das heisst.
das Modell ist linear beziiglich der

freien Parameter /4,[i).....1,]. Der
Fehler
elk] = y[k] — J[] 9)

ist ebenfalls linear von den Volterra
Kernels abhingig. Bei einem linearen
Verhalten des Modells beziiglich der
zu adaptierenden Parameter besitzt
die durch den MSE® aufgespannte Fli-
che im (L+1)-dimensionalen Raum
(L sei die Anzahl der zu adaptieren-
den Parameter) ein rein quadratisches
Verhalten mit einem einzigen Mini-
mum. Als Beispiel einer quadrati-
schen MSE-Fliche fiirn =1und / =1
sei der in Bild 3 dargestellte Parabo-
loid

§=(ho=2y+(h =1y (10)
angegeben. Ein auf dem Gradienten-
verfahren basierender Adaptationsal-
gorithmus, der das globale Minimum
Emin der MSE-Fliche sucht, kann bei
einer quadratischen Fliche nicht in ei-
nem lokalen Minimum verharren
(weil es keines gibt), so dass das Errei-
chen von &,;, gewihrleistet ist. Das
Problem der lokalen Minima fallt
beim Approximieren des unbekann-
ten Systems durch die abgebrochene
Volterrareihe somit weg.

Trotz dieser schénen Eigenschaft
treten mit dem klassischen Ansatz
Schwierigkeiten auf:

Eine erste Schwierigkeit bei der
Approximation durch die abgebroche-
ne Volterrareihe ist, dass unsere adap-
tiven Filter nicht wie oben angenom-
men zeitinvariante Systeme sind. Viel-
mehr soll der nichtlineare, sich zeitlich
verandernde Operator T[] laufend
identifiziert werden konnen. Der In-

® MSE steht fiir den englischen Ausdruck Mean
Squared Error. den Erwartungswert des Fehlers im
Quadrat, und wird folgendermassen definiert:
& = E[|e]'](z.B.[3)).

Bild 3
Dreidimensionale
Skizze des durch
Gl. 10 gegebenen
Paraboloids (L = 2)

4 he

genieur meistert dieses Problem fol-
gendermassen: Er trifft die Annahme.
dass die Zeitkonstante. mit der die
Anderung von T[] erfolgt. sehr viel
grosser als die Zeitkonstante des
Adaptationsalgorithmus ist. Das un-
bekannte System sieht fiir die System-
identifikation dann so aus. wie wenn
es zeitinvariant wire. Wir betonen.
dass dieses Vorgehen eine vereinfa-
chende Annahme ist. um zeitverin-
derliche Systeme mathematisch in den
Griff zu bekommen.

Um die néchste Schwierigkeit bes-
ser zu verstehen. wollen wir den Vol-
terra Operator n-ter Ordnung H,[:]
definieren:

oo [o o]

Ho[uk]) = 3 - 3 (halia, ..

11=0 1n=0

ulk — 4] ulk —14,])

) Zn]

(11)

Damit konnen wir die abgebroche-
ne Volterrareihe (Gl. 1) abgekiirzt wie
folgt aufschreiben:

glk] = ho+ H, [ulk]] + H ) [u[k]]

+ -+ H[u[k]] (12)

Eine der grossten Schwierigkeiten
beim Approximieren des unbekann-
ten Systems durch die abgebrochene
Volterrareihe stellt sich in der Kon-
vergenzanalyse. Die Volterrareihe ist

eine Potenzrethe mit Gedichtnis.
Dies kann schnell eingesehen werden,
wenn wir das Eingangssignal mit ei-
nem reellen Faktor ¢ multiplizieren
und cu[k] als neues Eingangssignal be-
trachten. Wir gehen von GIl. 12 aus
und sehen aus der nichsten Glei-
chung. dass wir die Volterrareihe als
Potenzreihe des Amplitudenfaktors c¢
interpretieren konnen.

ho + i H , [cul[k]]

n=1

= kot 3 " Hofulk]

n=1

ylk] =
(13)

Gl. 13 ist eine Potenzreihe mit Ge-
ddchtnis. weil die Volterra-Operato-
ren H,[-] Faltungen darstellen.

Aus der Analysis wissen wir. dass
eine Potenzreihe nicht immer konver-
gieren muss, das heisst. gewisse nicht-
lineare Funktionen f(u) konnen nicht
fiir alle « durch die Taylorsche Po-
tenzreihe in Gl. 7 exakt dargestellt
werden. Als Beispiel sei hier die
Signumfunktion

f(u) = |E| sgn[y] ; E€R
—|E| fir u<0
S 0 fir u=0

|E| fir 0 <u
(14)

gegeben. Es existiert keine konvergie-
rende Taylorreihe um wu, = 0 fiir diese

20
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Tabelle II K

Auswertung von L If1)2|3] 4] 5] 6] 7] 8 | 9 10

nach GI. 15 und 16 111 2 3 2 5 6 7 8 9 10
211 3 6 10 15 21 28 36 45 55
311 4 10 20 35 56 84 120 165 220
411 5 15 35 70 126 210 330 495 T15
51 6 21 56 126 252 462 792 1287 2002
6 |1 7 28 84 210 462 924 1716 3003 5005
711 8 36 120 330 792 1716 3432 6435 11440
8 1 9 45 165 495 1287 3003 6435 12870 24310
9 (|1 10 55 220 715 2002 5005 11440 24310 48620
101 11 66 286 1001 3003 8008 19448 43758 92378

ideale  Begrenzungsfunktion. Das proximation von T[-] mit dem verblei-

heisst, hier existiert die Taylorsche
Potenzreihe fiir keinen Wert von u.

Da die Volterrareihe eine Potenz-
reihe darstellt, treten wegen des Kon-
vergenzproblems  Einschrinkungen
auf beim Approximieren des nichtli-
nearen Operators T[-]. Das Konver-
genzproblem ist so zu deuten, dass die
Volterrareihe bei gewissen unbekann-
ten Systemen nicht fiir jedes Ein-
gangssignal u[k] konvergiert. Der An-
satz in Gl. 1 kann also nicht vorbehalt-
los gemacht werden.

Die dritte Schwierigkeit haben wir
bereits oben erwidhnt: Der Ansatz der
abgebrochenen Volterrareihe hat die
Anwendung der entsprechenden
nichtlinearen Filter wegen der auf-
wendigen Berechnung der Systempa-
rameter, das heisst der Volterra Ker-
nels i,[iy.....i,]. stark beeintréchtigt.

Beriicksichtigen wir die symmetri-
sche Eigenschaft der Kernels, sehen
wir, dass A,[iy,....i,]” durch

I+n—-1

(15)

Werte bestimmt wird. Wir nehmen in
allen Faltungen von Gl. 1 eine Ge-
ddchtnislinge von /—1 an, das heisst,
wir summieren von i; = 0 bis; = [ — 1
auf fiir alle Laufvariablen i;. Die GI.
15 stellt die Anzahl der Kombinatio-
nen zu je n Elementen aus / verschie-
denen Elementen mit Wiederholung
der Elemente dar. (Beispiel: 1 = 4.
Elemente a,b,c,d; n = 2; Kombinatio-
nen: aa,ab,ac,ad,bb,bc,bd,cc,cd,dd).
Wir miissen also /,, Terme berechnen,
um A,[iy,...,i,] zu bestimmen. Nehmen
wir weiterhin an, dass wir die Volter-
rareihe nach K = n+1 Summanden
abbrechen, weil wir uns bei der Ap-

7 hyliy.....dy) erstreckt sich iiber die n Dimensionen
iy bis iy,.

benden Fehler zufriedengeben. Dann
ist

(16)

K
L=3 L,

7=1

ungeeignet, wenn &,;, moglichst klein
gehalten werden soll.

Das Perceptron

In [4] findet sich eine allgemeine
Einfithrung in das Gebiet der neuro-
nalen Netzwerke. Hier wird nur in
Zusammenhang mit nichtlinearen Fil-
tern darauf eingegangen. Das Percep-
tron, ein neuronales Netzwerk ohne
Riickkopplungen, gehdrt zu den soge-
nannten Feedforward-Netzwerken
und besitzt eine Struktur entspre-
chend Bild 4. Die Eingangssignale u;
bis u, sind hier der Einfachheit halber
als Skalare angenommen. Dasselbe
gilt fiir die Ausgangssignale y; bis y,.
Der Aufbau der einzelnen Neuronen
wird in Bild 5 aufgezeigt: Die Ein-

p Neuronen
im 1. Layer

q Neuronen

im 2. Layer

7 Neuronen
im letzten Layer

Bild 4 Das Multi-Layer-Perceptron

mit Eingangssignalen u, bis «, und den Ausgangssignalen y, bis v,

die Anzahl der zu adaptierenden Pa-
rameter im Modell.

L explodiert mit wachsenden Para-
metern / und K. Die Tabelle II listet
die Funktionswerte von L fiir [, K =
1,...,10 auf. Mit der rapid steigenden
Anzahl freier Parameter in Funktion
der Gedichtnislinge /—1 und der K
Summanden der abgebrochenen Vol-
terrareihe steigt auch die bendtigte
Zeit, um die entsprechenden Rechen-
operationen im Adaptationsalgorith-
mus durchzufiihren. Aus praktischen
Griinden ist im allgemeinen der An-
satz der abgebrochenen Volterrareihe

gangssignale v; zu jedem einzelnen
Neuron werden mit den Skalaren a;
gewichtet und aufsummiert. Dazu
wird der konstante Term b aufaddiert.
Die resultierende Summe x ist das Ar-
gument der nichtlinearen Funktion

fO)

¥ Die Nichtlinearitiit macht die neuronalen Netz-
werke iiberhaupt interessant. Wiire sie nicht vor-
handen. kénnte man z.B. komplizierte. aus vielen
Neuronen aufgebaute Netzwerke auf ein idquivalen-
tes mit cinfacherem Aufbau zuriickfiihren. Das
heisst. dass ohne die nichtlineare Eigenschaft der
neuronalen Netzwerke bestimmte Leistungsgrenzen
nicht iiberschritten werden konnten.
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Filter

Fiir die nichtlineare Aktivierungs-
funktion f(-) des neuronalen Netzwer-
kes setzen wir eine sigmoidale Nicht-
linearitiat @(-) ein. @(-) wird in Bild 6
definiert und skizziert. Der Ausgang
w des Neurons ist der Funktionswert
von f(-) = @(-) an der Stelle x. Die
einzelnen Neuronen des Netzwerkes
haben im allgemeinen verschiedene
Werte fiir die Gewichte a, bis a, und
fiir den konstanten Term b. Die ein-
zelne «Nervenzelle» ist also durch ihre
Gewichtsfaktoren a, bis @, und durch
thren konstanten Term b charakteri-
siert.

Bei einer Approximation T[] des
unbekannten, nichtlinearen Systems
T[] mit einem Zweischichten-Percep-
tron sieht der Filterausgang y folgen-
dermassen aus [5; 6] (vgl. Bild 7):

y=Co(AU +b)+d (17)
mit
aj, ap aj;,
A=| a0 ajy a1 |,
! ’ A
Qko Qg1 Ak 11
a;;= (aij)h (aij)2 (@i)n ]’
€11 Ci2 aGK
C=| €1 C22 C2K |,
Cm1 Gm2 CmK
b] dl
b — b2 . d = d2 y
bx bm
Uo ¢()
U=| u und @(.)=| ¢(.) |,
Ur_1 ¢()

wobei @(x) = [P(x)) D(x5)...DP(xk)]’
fir x € RY wy = uwulk]. uy, =
ulk—(I-1)] in R* und § = y[k] in R"
ist. Die zweite Schicht (Layer) am
Ausgang kommt ohne Nichtlinearitit
aus.

In [6] wird gezeigt, dass das Zwei-
schichten-Perceptron jedes zeitinva-
riante System T[-], das vergangene

Bild 5

Das kiinstliche

Neuron

X Summe der mit a;
gewichteten
Eingangssignale v;,
i=l.p

b konstanter Term

f(+) nichtlineare

Funktion
w Ausgang

Eingangswerte vergessen kann, belie-
big genau approximieren kann. In
(17) haben wir eine Geddchtnisldnge
von /—1 angesetzt und K Neuronen
(«Summanden») der Approximation
beriicksichtigt. Um einen Vergleich
mit dem vorhin besprochenen Volter-
rafilter machen zu kénnen. setzen wir
n=m=1 und betrachten wieder
eindimensionale Signale.

Eigenschaften des
Zweischichten-Perceptrons
Gl. 17 sieht fiir den eindimensiona-

len Fall (n = m = 1) folgendermassen
aus:

17=[c1 ¢ cK]‘f’(a’)'*'d
Qjo da11 ay -1
a a ap -
5= 20 21 21-1
aKo AaK1 aAK -1
Ug bl
U + bg
ur_q bx

(18)

Wir setzen diese neuronale Appro-
ximation als Modell 7[-] in Bild 1 ein
(fiir eindimensionale Signale). Die
Anzahl L der zu adaptierenden Para-
meter des Perceptron-Modells 77-]
betrigt

L=K({I+2)+1 (19)
Wir Dberticksichtigen dabei alle
freien Parameter des Zweischichten-
Perceptrons (die K-/ Elemente der A-
Matrix, ¢; bis ¢k, by bis b und d).

L wichst linear mit K und /. In Ta-
belle I1I ist die Trennlinie eingezeich-
net, ab welcher L(Perceptron) kleiner
als L(Volterrafilter) ist. Wichtig ist,
dass fiir genauere Approximationen
des unbekannten Systems im Falle des
Zweischichten-Perceptrons die An-
zahl freier Parameter mit grosseren K
und / nicht explodiert.

Wenn wir es mit zeitvarianten Sy-
stemen zu tun haben., dann miissen
wir beim Perceptron-Modell wie vor-
hin beim Volterrafilter annehmen,
dass das unbekannte System T[] sich
langsam édndert. So hat der Adapta-
tionsalgorithmus geniigend Zeit, um
die freien Parameter des neuronalen
Netzwerkes auf die bestmogliche
Identifikation einzustellen, bevor er
bei jeder Anderung von T[] die Para-
meterwerte auf die neue unbekannte
Abbildung trimmt.

Als Adaptationsalgorithmus eignet
sich ein Gradientenverfahren® wie der
vom Perceptron her bestbekannte
Backpropagation-Algorithmus [7]. In
der Regel handelt es sich bei den
Adaptationsalgorithmen um nichtli-
neare Verfahren, welche die Parame-
terwerte des Modells 7[-] nach einem
gewissen Qualitédtskriterium, zum Bei-
spiel nach dem minimalen Erwar-
tungswert des Fehlers im Quadrat.
einstellen. Die Algorithmen wurden
fiir lineare Filter entwickelt ([3; §]).
Wir kénnen sie fiir unser Problem
prinzipiell ~ iibernehmen, da die

Y Die Gradientenverfahren suchen den tiefsten
Punkt der MSE-Fliche (Bild 3) entlang der grossten
negativen Steilheit.
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Neuronale Netzwerke

Tabelle IIT K
Anzahl der zu
adaptierenden ; 1 I 2 I 3 l 3 I § l 8 l ! I L [ : l 1
Parameter 1 4 7 10 13 16 19 22 25 28 31
im Zweischichten- 2 5 9 13 17 21 25 29| 33 37 41
Perceptron fiir 3 6 11 16 21 |26 31 36 41 46 51
g:gﬁ;ﬁi‘r‘fg’;‘;‘g]on 4| 7 13 19[25 31 37 43 49 55 6l
der Gediichtnislinge 5 8 15 22|29 36 43 50 57 64 T1
I—1undder K 6 9 17 |25 33 41 49 57 65 73 81
Neuronen im ersten T 10 19 | 28 37 46 55 64 T3 82 91
Layer 8 11 21|31 41 51 61 71 81 91 101
9 12 23 |34 45 56 67 78 83 100 111
10 || 13 25 |37 49 61 73 85 97 109 121

Systemapproximation und die Adap-
tation der Modellparameter zwei ge-
trennte Aufgaben sind. Fir den ein-
zelnen Fall muss iiberpriift werden. ob
der Adaptationsalgorithmus beim
nichtlinearen System auch konver-
giert.

Zum Abschluss wollen wir betonen.
dass die Approximation einer unbe-

1

Th % , A>0

#(a) =

Bild 6 Sigmoidale Aktivierungsfunktion
@ (x) des neuronalen Netzwerkes
f(+) = ®(-) tiir alle Neuronen

kannten. nichtlinearen Abbildung mit
dem Zweischichten-Perceptron garan-
tiert fiir diejenigen nichtlinearen Sy-
stemen konvergiert, welche vergange-
ne Eingangswerte mit der Zeit verges-
sen. Fiir diese weite Klasse von Syste-
men ldsst sich mit dem vorgestellten
neuronalen Netzwerk ein nichtline-
ares Filter realisieren. bei welchem
bekannte Algorithmen die praxisge-
rechte Anzahl freier Parameter adap-
tieren.

Zusammenfassung

Ein Filterungsproblem kann als Sy-
stemidentifikationsproblem aufgefasst
werden. Nichtlineare Abbildungen
lassen sich bei der Systemidentifika-
tion im allgemeinen nur approximie-

ren. Der Approximationsansatz mit
Hilfe der abgebrochenen Volterrarei-
he weist die giinstige Eigenschaft auf,
dass die als Modell eingesetzte. abge-
brochene Reihe linear von den freien
Parametern abhédngt. Das Problem
der lokalen Minima fillt somit weg.
Die Volterrareihe konvergiert aber
nicht fiir jede nichtlineare Abbildung,
und die Anzahl freier Parameter ex-
plodiert mit steigender Approxima-
tionsgenauigkeit.

Der Ansatz des Zweischichten-Per-
ceptrons fiir die Approximation von

nichtlinearen Systemen. die vergange-
ne Eingangswerte mit der Zeit verges-
sen. erweist sich als praxisgerecht: Die
Anzahl freier Parameter wichst linear
mit der gewiinschten Genauigkeit. Als
Adaptationsalgorithmus kann jedes
bekannte Verfahren angewendet wer-
den. das fir nichtlineare Systeme mit
beschrinkter Gedichtnislinge kon-
vergiert.
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K Neuronen

im 1. Layer

m Summatoren

im 2. Layer

Bild 7 Zweischichten-Perceptron

mit den I Eingangsvektoren u, = u[k]bisu, |, = u[k — ({/ = 1)]in R". dem Ausgangsvektor
¥ = F[k] in R" und mit den freien Parametern a';;, b; bis by, ¢;;und d, bis d,),
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