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Neuronale Netzwerke

Nichtlineare Filter und Neuronale Netzwerke
José A. Osuna

Eingangssignal
u[Ä:]

unbekanntes,
nichtlineares

System

Ausgangssignal

Modell

l_ geschätztes
Ausgangssig-
nal y[k]

y[k]

o
Fehlersignal

e[k]

Bild 1 Systemidentifikation für zeitdiskrete Signale mit Vernachlässigung der Rauschqueilen

In der vorliegenden Einführung
ins Gebiet der nichtlinearen Filter
werden die Begriffe System -

identifikation und -approximation

präsentiert. Die klassische
Approximation eines
nichtlinearen Systems mit der
abgebrochenen Volterrareihe weist
grundlegende Nachteile auf.
Diejenige mit Hilfe des Perceptrons,
eines Neuronalen Netzwerkes,
ermöglicht einen neuen,
praxisgerechten Ansatz für nichtlineare
Filter.

Au cours de cette introduction
dans le domaine des filtres non-
linéaires, les notions d'identification

et d'approximation de
système sont présentés. L'approximation

classique d'un système
non-linéaire avec une série Vol-
terra abrégée possède des
désavantages fondamentaux;
l'utilisation du Perceptron - un réseau
de neurones - représente, par
contre, une nouvelle approche
pratique des filtres non-linéaires.

Adresse des Autors
José A. Osuna, Dipl. El.-Ing. ETH. Institut für
Signal- und Informationsverarbeitung. ETH-Zen-
trum. 8092 Zürich

Nichtlineare Filter lassen sich mit
bisherigen Verfahren schwer realisieren.

Neuronale Netzwerke bieten
einen neuen Ansatz, um die nichtlineare
Abbildung zwischen Filtereingang
und -ausgang auf einfache Art und
Weise zu verwirklichen. Im vorliegenden

Artikel wollen wir die klassische
Vorgehensweise und den neuen Ansatz

kurz besprechen. Doch zunächst
müssen wir das uns interessierende
Problem definieren.

Systemidentifikation
Dem Begriff Filter kommen in der

Signalverarbeitung mehrere Bedeutungen

zu. Unter einem Filter versteht
man sowohl eine Blackbox, die zum
Beispiel einen bestimmten Frequenzbereich

aus einem elektrischen Signal
herauszufiltern hat (Bandpass-Filter
in der Telefonübertragung), als auch -
im erweiterten Sinne - jedes System,
das Information verarbeitet. Um dieses

allgemeinere Konzept eines Filters
zu erfassen, wollen wir den Begriff der
Systemidentifikation einführen.

Im Hinblick auf die adaptive Filterung

von Signalen in zeitvarianten.

kausalen Systemen beschränken wir
uns auf zeitdiskrete Signale f[k] mit k
>0'.

Das Modell übernimmt die Funktion

eines Filters, indem es das
Eingangssignal verarbeitet, um das
Ausgangssignal des unbekannten,
nichtlinearen Systems nachzubilden. Den
oberen Teil von Bild 1 kann man sich
auch abstrakt vorstellen, das heisst,
das unbekannte System muss nicht
real existieren. Wichtig ist, dass seine
nichtlineare Abbildung definiert ist.
Die Filterfunktion des Modells
besteht darin, die definierte Abbildung
nachzuahmen. Um beim Beispiel des

Bandpasses in der Telefonübertragung

zu bleiben, kann man sich
vorstellen, dass das Gerät mit der
genannten Filterfunktion dasjenige Modell

ist. welches die definierte, in
diesem konkreten Falle bekannte Abbildung

Schneide alle Frequenzen unterhalb

/„ und oberhalb f0 ab, nachzuahmen

hat.

1 f[k\ folgt zum Beispiel aus der Abtastung des

zeitkontinuierlichen Signals/(0 mit der Abtastperiode
7=1: f[k] ist die Auswertung der Funktion/(f) an
den diskreten Zeitpunkten t kT.
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Filter

Wir sprechen von nichtlinearen,
adaptiven Filtern, wenn die nichtlineare

Abbildungsvorschrift mit der Zeit
variieren kann. Das Modell muss dann
seine Systemparameter in einer endlich

langen Zeit wieder so einstellen,
dass die neue Abbildungsvorschrift
möglichst genau nachgeahmt wird.
Das Modell adaptiert sich also auf die
neue Umgebung, damit das sich
verändernde, unbekannte System laufend
identifiziert werden kann. Der
sogenannte Adaptationsalgorithmus, der
aufgrund der Beobachtung des

Eingangs- und Ausgangssignals die
Systemparameter des Modells einstellt,
muss entsprechend schnell sein.

Wir setzen voraus, dass das
unbekannte System nichtlinear ist, das
heisst, wir betrachten nichtlineare Filter.

Nichtlinear bezieht sich, wie
bereits oben angetönt wurde, auf die
nichtlineare Abbildung vom Eingang
des Filters auf seinen Ausgang. Es hat
keinen Sinn, mit den nichtlinearen
neuronalen Netzwerken lineare
Abbildungen realisieren zu wollen, da
sich der lineare Ansatz eines linearen
Systems dazu offensichtlich besser
eignet. Ein lineares Modell genügt
andererseits für die Approximation einer
nichtlinearen Abbildungsvorschrift
des unbekannten Systems natürlich
nicht, wenn das Fehlersignal für einen
begrenzten Bereich der Eingangsdaten

beliebig klein gemacht werden
soll. Der Nachteil des klassischen,
nichtlinearen Ansatzes ist. dass der
Rechenaufwand für die Adaptation
der Modellparameter ins Unermessli-
che steigt, wenn die Systemidentifikation

möglichst genau erfolgen soll.
Wie gezeigt werden soll, können die
neuronalen Netzwerke gegenüber den
klassischen Lösungen ihre Vorteile
voll ausspielen und sie ermöglichen
eine praxisgerechte Realisierung von
nichtlinearen Filtern.

Systemapproximation
In Bild 2 ist das unbekannte System

durch einen (unbekannten) nichtlinearen

Operator F[-] repräsentiert,
seine «exakte»2 Approximation durch
den Operator j[-]. T ist nicht mit dem
Modell in Bild 1 gleichzusetzen, weil
wir bei der praktischen Realisierung
nur einen endlichen Aufwand betreiben

können. Wir sagen, dass das
System ?[•] das unbekannte System F[-]

2 Die Approximation ist exakt, wenn wir unendlich
viele Ressourcen zur Verfügung haben.

Bild 2 Unbekanntes System Tp] und
dessen Approximation Tp]
mit Eingangssignal u[k\ u in R" und
Ausgangssignale y [A:], y [k] y, y in Rm

beliebig genau approximiert, wenn für
jedes Eingangssignal u[k] in einem n-
dimensionalen Unterraum U von R"
die Ausgangssignale des unbekannten
Systems und des approximierenden
Systems für alle Zeitpunkte k bis auf
einen wählbar kleinen absoluten Fehler

identisch sind.
Das approximierende System Ff-]

mit unendlich vielen Parametern wird
also in einer zweiten Phase durch ein
«endliches» Modell F[-] ersetzt,
welches, mit Ausgangssignal y in das Bild
1 eingesetzt, alle nichtlinearen
Abbildungsvorschriften F[-], die mit 7"[-]
beliebig genau angenähert werden
können, modelliert.

Fassen wir die Grundgedanken der
Systemidentifikation und -approximation

zusammen: Nach der Wahl der
Approximation F[-] und des damit
verbundenen Modells F[-] stellen sich
dessen freie Parameter online so ein.
dass eine (im allgemeinen Fall mit
einem Fehler behaftete) Identifikation
des unbekannten Systems F[-] resultiert.

Das Volterrafilter
Damit wir uns die folgenden

Ausführungen besser vergegenwärtigen
können, betrachten wir den eindimensionalen

Fall, nehmen also an, dass
sich alle Signale von Bild 1 im
eindimensionalen Raum R' befinden und
demzufolge nur eine Komponente
besitzen. Wir wissen zu Beginn, dass das
unbekannte System nichtlinear ist, wir
haben aber sonst überhaupt keine A-
priori-Information über seinen Aufbau.

Es kann gezeigt werden, dass
sowohl der klassische wie auch der
neuronale nichtlineare Ansatz für das
Modell den nichtlinearen Operator
F[-] beliebig genau approximieren.
Mit einem grossen Implementations¬

aufwand kann also der Restfehler
beliebig klein gehalten werden.

Der klassische Ansatz für eine
nichtlineare Approximation, die dem
unbekannten, nichtlinearen Operator
F[' | möglichst gut entsprechen soll, ist
die abgebrochene3 Volterrareihe, die
weiter unten näher erklärt wird:

j/[&] Aq+

oo

h\\i\u\k — z] -}-
»=o

oo oo

J2 - i2] +
»1 =0 »2=0

oo oo oo

zL H X^(^3[2l,î2,î3]u[^-îl]
«1 =0 »2=0 »3=0

u[k - i2\u[k - i3]) + • • +
oo oo

^ ' (hn [ll • • ln]
11=0 :„=0

u[k - ii\ u[k - in])
(1)

(Für mehrdimensionale Signale, m,
n > 1, sind die entsprechenden
Änderungen vorzunehmen, das heisst zum
Beispiel für die ersten zwei Summanden

von Gl. I, dass h0 durch den
(m x l)-Vektor h0 zu ersetzen ist, und
dass hx[i\ auf die (m x«)-Matrix H\\i\
zu erweitern ist.)

In [1; 2] wird die auf der Volterrareihe

basierende Wienertheorie
präsentiert. Ihre Behandlung sprengt den
Rahmen dieses Artikels. Wir wollen
uns darauf beschränken, den Aufbau
und die Bedeutung von Gl. 1 zu
verstehen.

Lässt man in Gl. 1 alle Summanden

weg bis auf den zweiten, dann folgt
daraus die vertraute Formel für die
zeitdiskrete Faltung des Eingangssignals

u\k] mit der zeitdiskreten
Impulsantwort h\[k\ eines linearen,
zeitinvarianten und kausalen Systems:

OO

vi M - »1

»=0

hi [&] * u[fc] (2)

Aus Gl. 2 ist zu erkennen, dass zum
Zeitpunkt k der vor a Zeiteinheiten
am Systemeingang vorhandene Si-

3 Eine Reihe hat im allgemeinen unendlich viele
nichtverschwindende Summanden. Brechen wir sie
ab. indem wir die Glieder ab einer gewissen Stelle
vernachlässigen, haben wir es mit einer Approximation

dieser Reihe - also mit einem Polynom - zu
tun.
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Neuronale Netzwerke

Bedeutung der Systemidentifikation
Ein unbekanntes System (Bild 1) bildet ein Eingangssignal auf sein Ausgangssignal

ab. In unserem Falle handelt es sich um eine nichtlineare Abbildung von
einem zeitdiskreten, im allgemeinen Fall mehrdimensionalen Eingangssignal
u[k] [u[[k] u2[k]...un[k]]' (u1 in R") auf das wiederum zeitdiskrete Ausgangssignal

y[k] [y|[k] y2[k]...ym[k]] ' (y in Rm) für alle k£Z( (positive ganze
Zahlen). Das Modell, das keinerlei Informationen über das unbekannte,
nichtlineare System besitzt, basiert auf einer wie auch immer gewählten
Approximation von nichtlinearen Systemen. Es versucht, durch blosse
Beobachtung des Eingangs- und Ausgangssignals die Funktion des verhüllten,
nichtlinearen Systems zu identifizieren. Dabei adaptiert es sich nach einem
gewissen Qualitätskriterium, indem es seine Systemparameter solange verändert,

bis das aus dem Ausgangssignal und seiner Schätzung gebildete Fehlersignal

e ein minimales Mass erreicht hat. Das Fehlersignal strebt also für
aufeinanderfolgende Signalzeitpunkte zu einem absolut möglichst kleinen
Wert, das heisst, dass sich beide Systeme immer ähnlicher verhalten, und das

Modell, zum Beispiel ein neuronales Netzwerk, das unbekannte System
nachbildet.

gnalwert u[k — a] mit A,H gewichtet
wird. Die Impulsantwort li\[k]

beschreibt also das Gedächtnis des
Systems; vergangene Eingangssignalwerte

u\j] (0 < j < k) müssen bei
nichtverschwindender Impulsantwort
h i [/] für die Ermittlung der Systemantwort

yi[k] mitberücksichtigt
werden.

Ein lineares System ohne Gedächtnis

hat die Impulsantwort

hi[k] c«50[fc]

y(u) f(u) cn(u - w0)"
n=0

/(n)Mmit Cr, -—kJE
(7)

dargestellt werden kann4.
Falls die unendliche Potenzreihe in

Gl. 7 abgebrochen wird, sprechen wir
von der Taylorschen Approximation.
Die Approximation ist so zu verstehen,

dass soviele Summanden mitbe-
(3)

einzelnen Summanden der Volterra-
reihe entsprechen den Summanden
der Taylorschen Potenzreihe, wenn
wir die zeitdiskreten Faltungen
mitberücksichtigen und w0 0 setzen. In
Tab. I sind die aufgeführten
Gedankenschritte zusammengefasst.

Der approximative Charakter des
klassischen Ansatzes folgt aus der
Tatsache, dass in Gl. 1 die Volterrareihe
abgebrochen wird, was der Taylorschen

Approximation entspricht. Wir
können aus praktischen Gründen
nicht unendlich viele Glieder der Reihe

berücksichtigen und müssen uns
mit einer endlichen Anzahl zufriedengeben,

die das nichtlineare System
nicht mehr exakt darstellt, sondern im
Sinne von Ungleichung (8) nur noch
approximiert.

Fassen wir kurz zusammen: Volter-
ra-Filter sind eine spezielle Klasse von
nichtlinearen Filtern, die dem auf den
nichtlinearen Fall erweiterten
Impulsantwort-Konzept entspringen.

Vorteile und Nachteile der
Volterrareihe

Ein lineares, zeitinvariantes und
zeitdiskretes System ist durch seine
Impulsantwort h | [/] vollständig
charakterisiert. Systeme, bei denen die

wobei c eine reelle Konstante ist. und

60[k]:=\ 1 fÜr fc °
(4)

0 sonst

den Einheitsimpuls definiert.
Die zeitdiskrete Systemantwort für

ein zeitinvariantes, lineares und
kausales System ohne Gedächtnis lautet

y[fc] cu[k] (5)

Wenn y(u[k\) über u[k\ aufgetragen
wird, dann bestimmt die Gl. 5 Punkte
(uk,yk) auf der Geraden

y(u) cu (6)

Für ein nichtlineares, zeitinvariantes
und kausales System ohne Gedächtnis
ist der Graph von y(u) über w nicht
mehr eine Gerade, sondern eine Kurve

y(u) f(u) (f: R —» R, das heisst
/(w) ist eine nichtlineare Abbildung
von R nach R), die unter bestimmten
Einschränkungen durch die Taylor-
sche Potenzreihe

1. lineares System mit Gedächtnis > y[£] hi[k] * iz[&]
2. lineares System ohne Gedächtnis y[k] cu[k\
3. nichtlineares System ohne Gedächtnis —> y[k\ Taylorreihe
4. nichtlineares System mit Gedächtnis > y[k] Volterrareihe

Tabelle I Lineare und nichtlineare zeitdiskrete Systeme mit und ohne Gedächtnis und exakte
Darstellungen der entsprechenden Systemantworten

rücksichtigt werden, wie es für das
Erfüllen der nächsten Ungleichung nötig
ist:

sup \y(u) - y(u)\ < e
UeDy

N
mit y(u)= w0)n (8)

n=0

und Dy C R: Definitionsbereich der
Taylorreihe y(w) sowie e, eine kleine
positive Zahl.

Die Volterrareihe ist anschaulich
nichts anderes als die Erweiterung von
Gl. 7 auf Systeme mit Gedächtnis: Die

4 u() ist der Entwicklungspunkt der Reihe, und

f""(uo) stellt die «-te Ableitung der nichtlinearen
Funktion f(u) nach u an der Stelle ua dar.

Impulsantwort auf den Wert Null
abklingt (FIR-Filter), werden durch die
7 Werte /zi[0],...,/zi[/ - 1] bestimmt,
wobei 7-1 die Gedächtnislänge des
linearen Systems darstellt. Analog ist
ein nichtlineares, zeitinvariantes und
zeitdiskretes System, das durch eine
Volterrareihe dargestellt werden
kann5, durch sie vollständig charakterisiert.

Verschwinden deren Volterra
Kernels hn[il,...1i„] für n > no, dann
wird das nichtlineare System durch die
ersten w0+1 Volterra Kernels h() bis
/7„o[zi..z„o] (vgl. Gl. 1 für n n0)
vollständig bestimmt. Wir betrachten
nur symmetrische Kernels, da es sich

5 Das Konvergenzproblem wird weiter unten
besprochen.
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zeigen lässt [1], dass diese Bedingung
keine Einschränkung der Allgemeinheit

ist. Der Wert eines
symmetrischen Kernels bleibt
für alle n\ Permutationen seiner
Argumente unverändert, so dass

zum Beispiel für n 2 folgendes gilt:

Flh^h] h2[ii,i\\ für alle i[,i2 ^ 0

Die Volterra Kernels h„[i\ („]
sind die durch den Adaptationsalgorithmus

einzustellenden Parameter
des Modells (Bild 1). Die Volterrarei-
he hat den Vorteil, dass sie linear ist
bezüglich der hn[i\ /„], das heisst,
das Modell ist linear bezüglich der
freien Parameter h„[i Der
Fehler

e[k] ^[Ar] - y[k] (9)

ist ebenfalls linear von den Volterra
Kernels abhängig. Bei einem linearen
Verhalten des Modells bezüglich der
zu adaptierenden Parameter besitzt
die durch den MSE'' aufgespannte Fläche

im (LEindimensionalen Raum
(L sei die Anzahl der zu adaptierenden

Parameter) ein rein quadratisches
Verhalten mit einem einzigen
Minimum. Als Beispiel einer quadratischen

MSE-Fläche für n l und 7=1
sei der in Bild 3 dargestellte Paraboloid

§=(ho-2):+(h1-l)= (10)

angegeben. Ein auf dem Gradientenverfahren

basierender Adaptationsalgorithmus,

der das globale Minimum
|min der MSE-Fläche sucht, kann bei
einer quadratischen Fläche nicht in
einem lokalen Minimum verharren
(weil es keines gibt), so dass das Erreichen

von Imin gewährleistet ist. Das
Problem der lokalen Minima fällt
beim Approximieren des unbekannten

Systems durch die abgebrochene
Volterrareihe somit weg.

Trotz dieser schönen Eigenschaft
treten mit dem klassischen Ansatz
Schwierigkeiten auf:

Eine erste Schwierigkeit bei der
Approximation durch die abgebrochene

Volterrareihe ist, dass unsere adaptiven

Filter nicht wie oben angenommen

zeitinvariante Systeme sind.
Vielmehr soll der nichtlineare, sich zeitlich
verändernde Operator T[ ] laufend
identifiziert werden können. Der In-

6 MSE steht für den englischen Ausdruck Mean
Squared Error, den Erwartungswert des Fehlers im
Quadrat, und wird folgendermassen definiert:
|: E[M;] (z.B. [3]).

Bild 3

Dreidimensionale
Skizze des durch
Gl. 10 gegebenen
Paraboloids (L 2)

genieur meistert dieses Problem
folgendermassen: Er trifft die Annahme,
dass die Zeitkonstante, mit der die
Änderung von T[-] erfolgt, sehr viel
grösser als die Zeitkonstante des

Adaptationsalgorithmus ist. Das
unbekannte System sieht für die
Systemidentifikation dann so aus. wie wenn
es zeitinvariant wäre. Wir betonen,
dass dieses Vorgehen eine vereinfachende

Annahme ist, um zeitveränderliche

Systeme mathematisch in den
Griff zu bekommen.

Um die nächste Schwierigkeit besser

zu verstehen, wollen wir den
Volterra Operator n-ter Ordnung //„[•]
definieren:

iT„[u[A:]] •••>»*]
»1=0 In —0

u[k - z'x] • • -u[k - i„])

OD

Damit können wir die abgebrochene
Volterrareihe (Gl. 1 abgekürzt wie

folgt aufschreiben:

y[k] Ao + Ä"i [«[*]]+ fl"2[«[*]]

+ ••• + .»>[*]] (12)

Eine der grössten Schwierigkeiten
beim Approximieren des unbekannten

Systems durch die abgebrochene
Volterrareihe stellt sich in der
Konvergenzanalyse. Die Volterrareihe ist

eine Potenzreihe mit Gedächtnis.
Dies kann schnell eingesehen werden,
wenn wir das Eingangssignal mit
einem reellen Faktor c multiplizieren
und c«[Ar] als neues Eingangssignal
betrachten. Wir gehen von Gl. 12 aus
und sehen aus der nächsten
Gleichung, dass wir die Volterrareihe als
Potenzreihe des Amplitudenfaktors c

interpretieren können.

oo

h0 + ^2 Hn[cu[k]]
71=1

OO

K+ J2cnHn[u[k}\ (13)
n= 1

Gl. 13 ist eine Potenzreihe mit
Gedächtnis. weil die Volterra-Operato-
ren H„[-\ Faltungen darstellen.

Aus der Analysis wissen wir, dass
eine Potenzreihe nicht immer konvergieren

muss, das heisst, gewisse
nichtlineare Funktionen /(n) können nicht
für alle u durch die Taylorsche
Potenzreihe in Gl. 7 exakt dargestellt
werden. Als Beispiel sei hier die
Signumfunktion

/(") \E\ sgn[u] ; E £ R

— |.E| für u < 0

:= ' 0 für u 0

I.EI für 0 < u
(14)

gegeben. Es existiert keine konvergierende

Taylorreihe um w(l 0 für diese
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Tabelle II
Auswertung von L
nach Gl. 15 und 16

7 1 2 3 4 5 6

K
7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 1 3 6 10 15 21 28 36 45 55

3 1 4 10 20 35 56 84 120 165 220

4 1 5 15 35 70 126 210 330 495 715

5 1 6 21 56 126 252 462 792 1287 2002
6 1 7 28 84 210 462 924 1716 3003 5005
7 1 8 36 120 330 792 1716 3432 6435 11440

8 1 9 45 165 495 1287 3003 6435 12870 24310
9 1 10 55 220 715 2002 5005 11440 24310 48620

10 1 11 66 286 1001 3003 8008 19448 43758 92378

ungeeignet, wenn §mi

gehalten werden soll.
möglichst klein

ideale Begrenzungsfunktion. Das
heisst, hier existiert die Taylorsche
Potenzreihe für keinen Wert von u.

Da die Volterrareihe eine Potenzreihe

darstellt, treten wegen des
Konvergenzproblems Einschränkungen
auf beim Approximieren des nichtlinearen

Operators J[-]. Das
Konvergenzproblem ist so zu deuten, dass die
Volterrareihe bei gewissen unbekannten

Systemen nicht für jedes
Eingangssignal u[k] konvergiert. Der Ansatz

in Gl. 1 kann also nicht vorbehaltlos

gemacht werden.
Die dritte Schwierigkeit haben wir

bereits oben erwähnt: Der Ansatz der
abgebrochenen Volterrareihe hat die
Anwendung der entsprechenden
nichtlinearen Filter wegen der
aufwendigen Berechnung der Systemparameter,

das heisst der Volterra Kernels

h„[istark beeinträchtigt.
Berücksichtigen wir die symmetrische

Eigenschaft der Kernels, sehen
wir, dass/z„[ii,...,;'„]7durch

In

\I + n — 1

\

(15)

/

Werte bestimmt wird. Wir nehmen in
allen Faltungen von Gl. 1 eine
Gedächtnislänge von /—I an, das heisst,
wir summieren von it 0 bis 7, 7—1
auf für alle Laufvariablen it. Die Gl.
15 stellt die Anzahl der Kombinationen

zu je n Elementen aus 7 verschiedenen

Elementen mit Wiederholung
der Elemente dar. (Beispiel: 7 4.
Elemente a,b,c,d\ n 2; Kombinationen

: aa, ab,ac, ad, bb,bc,bd,cc, cd, dd).
Wir müssen also 7„ Terme berechnen,
um hn[ii,.zu bestimmen. Nehmen
wir weiterhin an. dass wir die Volterrareihe

nach K 77 + I Summanden
abbrechen, weil wir uns bei der Ap-

7 h„\i, /„] erstreckt sich über die n Dimensionen
// bis /„.

proximation von T[-] mit dem verbleibenden

Fehler zufriedengeben. Dann
ist

L Ek-i (16)
1=1

Das Perceptron
In [4] findet sich eine allgemeine

Einführung in das Gebiet der neuronalen

Netzwerke. Hier wird nur in
Zusammenhang mit nichtlinearen
Filtern darauf eingegangen. Das Perceptron,

ein neuronales Netzwerk ohne
Rückkopplungen, gehört zu den
sogenannten Feedforward-Netzwerken
und besitzt eine Struktur entsprechend

Bild 4. Die Eingangssignale ux
bis us sind hier der Einfachheit halber
als Skalare angenommen. Dasselbe
gilt für die Ausgangssignale yt bis yr.
Der Aufbau der einzelnen Neuronen
wird in Bild 5 aufgezeigt: Die Ein-

• • m—vi

Ô—

p Neuronen

im 1. Layer
q Neuronen

im 2. Layer
r Neuronen

im letzten Layer

Bild 4 Das Multi-Layer-Perceptron
mit Eingangssignalen u 1 bis us und den Ausgangssignalen >'i bis v,

die Anzahl der zu adaptierenden
Parameter im Modell.

L explodiert mit wachsenden
Parametern 7 und K. Die Tabelle II listet
die Funktionswerte von L für I,K
1,...,10 auf. Mit der rapid steigenden
Anzahl freier Parameter in Funktion
der Gedächtnislänge 7—1 und der K
Summanden der abgebrochenen
Volterrareihe steigt auch die benötigte
Zeit, um die entsprechenden
Rechenoperationen im Adaptationsalgorithmus

durchzuführen. Aus praktischen
Gründen ist im allgemeinen der Ansatz

der abgebrochenen Volterrareihe

gangssignale v, zu jedem einzelnen
Neuron werden mit den Skalaren
gewichtet und aufsummiert. Dazu
wird der konstante Term b aufaddiert.
Die resultierende Summe x ist das

Argument der nichtlinearen Funktion
/(•)*•

8 Die Nichtlinearität macht die neuronalen
Netzwerke überhaupt interessant. Wäre sie nicht
vorhanden, könnte man z.B. komplizierte, aus vielen
Neuronen aufgebaute Netzwerke auf ein äquivalentes

mit einfacherem Aufbau zurückführen. Das
heisst. dass ohne die nichtlineare Eigenschaft der
neuronalen Netzwerke bestimmte Leistungsgrenzen
nicht überschritten werden könnten.
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Filter

Für die nichtlineare Aktivierungsfunktion/(•)

des neuronalen Netzwerkes

setzen wir eine sigmoidale Nicht-
linearität 0(-) ein. 4>(-) wird in Bild 6

definiert und skizziert. Der Ausgang
w des Neurons ist der Funktionswert
von /(•) &() an der Stelle x. Die
einzelnen Neuronen des Netzwerkes
haben im allgemeinen verschiedene
Werte für die Gewichte ax bis ap und
für den konstanten Term b. Die
einzelne «Nervenzelle» ist also durch ihre
Gewichtsfaktoren a{ bis ap und durch
ihren konstanten Term b charakterisiert.

Bei einer Approximation 7"[-] des
unbekannten, nichtlinearen Systems
7"[-] mit einem Zweischichten-Percep-
tron sieht der Filterausgang y folgen-
dermassen aus [5; 6] (vgl. Bild 7):

y C4>(AU + b) + d (17)

mit

A

LK 0 LK 1

*1 7-1

•*•2 7-1

K 7—1

(a'j) 1 (a'j)l ••• (a>j)"

c

b

C\\ C12

C2 1 C2 2

Cm 1 2

W

bK

C\K

C2K

Fm K

d

di

d?

U
u0

Ui

«7-1

und
*()
*()

*(•)

wobei £f»(x) [tP(.Y|) <P(x2)...<P(xK)]'
für x E RK, «o u[k], M|_j
u[k—(/— 1)] in R" und y y[A:] in Rm

ist. Die zweite Schicht (Layer) am
Ausgang kommt ohne Nichtlinearität
aus.

In [6] wird gezeigt, dass das Zwei-
schichten-Perceptron jedes zeitinvariante

System T[-], das vergangene

Bild 5

Das künstliche
Neuron
x Summe der mit a,

gewichteten
Eingangssignale v„
/ l...p

b konstanter Term
/(•) nichtlineare

Funktion
w Ausgang

Eingangswerte vergessen kann, beliebig

genau approximieren kann. In
(17) haben wir eine Gedächtnislänge
von 7—1 angesetzt und K Neuronen
(«Summanden») der Approximation
berücksichtigt. Um einen Vergleich
mit dem vorhin besprochenen Volter-
rafilter machen zu können, setzen wir
n m 1 und betrachten wieder
eindimensionale Signale.

Eigenschaften des
Zweischichten-Perceptrons

Gl. 17 sieht für den eindimensionalen
Fall (n m 1) folgendermassen

aus:

y Ci c2 CK <j>(x) + d

aio all
Û20 021

al 7-1

Û2 7-1

CK 0 OTCl aK 7-1

«0

Ui

"7-1

+
bi
t>2

bh'

L K(I + 2) + 1 (19)

(18)

Wir setzen diese neuronale
Approximation als Modell T[-] in Bild 1 ein
(für eindimensionale Signale). Die
Anzahl L der zu adaptierenden
Parameter des Perceptron-Modells T[-]
beträgt

Wir berücksichtigen dabei alle
freien Parameter des Zweischichten-
Perceptrons (die K I Elemente der A-
Matrix, c; bis cK, bi bis bK und d).

L wächst linear mit K und I. In
Tabelle III ist die Trennlinie eingezeichnet,

ab welcher L(Perceptron) kleiner
als L(Volterrafilter) ist. Wichtig ist,
dass für genauere Approximationen
des unbekannten Systems im Falle des

Zweischichten-Perceptrons die
Anzahl freier Parameter mit grösseren K
und I nicht explodiert.

Wenn wir es mit Zeitvarianten
Systemen zu tun haben, dann müssen
wir beim Perceptron-Modell wie vorhin

beim Volterrafilter annehmen,
dass das unbekannte System T[-] sich
langsam ändert. So hat der
Adaptationsalgorithmus genügend Zeit, um
die freien Parameter des neuronalen
Netzwerkes auf die bestmögliche
Identifikation einzustellen, bevor er
bei jeder Änderung von 7[ ] die
Parameterwerte auf die neue unbekannte
Abbildung trimmt.

Als Adaptationsalgorithmus eignet
sich ein Gradientenverfahren" wie der
vom Perceptron her bestbekannte
Backpropagation-Algorithmus [7]. In
der Regel handelt es sich bei den
Adaptationsalgorithmen um nichtlineare

Verfahren, welche die Parameterwerte

des Modells T[-] nach einem
gewissen Qualitätskriterium, zum
Beispiel nach dem minimalen
Erwartungswert des Fehlers im Quadrat,
einstellen. Die Algorithmen wurden
für lineare Filter entwickelt ([3; 8]).
Wir können sie für unser Problem
prinzipiell übernehmen, da die

9 Die Gradientenverfahren suchen den tiefsten
Punkt der MSE-Fläche (Bild 3) entlang der grössten
negativen Steilheit.
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Neuronale Netzwerke

Tabelle III
Anzahl der zu
adaptierenden
Parameter
im Zweischichten-
Perceptron für
eindimensionale
Signale in Funktion
der Gedächtnislänge
/ - 1 und der K
Neuronen im ersten
Layer

K
I 1 2 3 4 5 1 6 7 8 9 10

1 4 7 10 13 16 19 22 25 28 31

2 5 9 13 17 21 25 29 33 37 41

3 6 11 16 21 26 31 36 41 46 51

4 7 13 19 25 31 37 43 49 55 61

5 8 15 22 29 36 43 50 57 64 71

6 9 17 25 33 41 49 57 65 73 81

7 10 19 28 37 46 55 64 73 82 91

8 11 21 31 41 51 61 71 81 91 101

9 12 23 34 45 56 67 78 89 100 111

10 13 25 37 49 61 73 85 97 109 121

Systemapproximation und die Adaptation

der Modellparameter zwei
getrennte Aufgaben sind. Für den
einzelnen Fall muss überprüft werden, ob
der Adaptationsalgorithmus beim
nichtlinearen System auch konvergiert.

Zum Abschluss wollen wir betonen,
dass die Approximation einer unbe-

ßild 6 Sigmoidalc Aktivierungsfunktion
0 (x) des neuronalen Netzwerkes
/(•) &(•) für alle Neuronen

kannten, nichtlinearen Abbildung mit
dem Zweischichten-Perceptron garantiert

für diejenigen nichtlinearen
Systemen konvergiert, welche vergangene

Eingangswerte mit der Zeit vergessen.

Für diese weite Klasse von Systemen

lässt sich mit dem vorgestellten
neuronalen Netzwerk ein nichtlineares

Filter realisieren, bei welchem
bekannte Algorithmen die praxisgerechte

Anzahl freier Parameter
adaptieren.

Zusammenfassung
Ein Filterungsproblem kann als

Systemidentifikationsproblem aufgefasst
werden. Nichtlineare Abbildungen
lassen sich bei der Systemidentifikation

im allgemeinen nur approximie¬

ren. Der Approximationsansatz mit
Hilfe der abgebrochenen Volterrarei-
he weist die günstige Eigenschaft auf,
dass die als Modell eingesetzte,
abgebrochene Reihe linear von den freien
Parametern abhängt. Das Problem
der lokalen Minima fällt somit weg.
Die Volterrareihe konvergiert aber
nicht für jede nichtlineare Abbildung,
und die Anzahl freier Parameter
explodiert mit steigender
Approximationsgenauigkeit.

Der Ansatz des Zweischichten-Per-
ceptrons für die Approximation von

nichtlinearen Systemen, die vergangene
Eingangswerte mit der Zeit vergessen,

erweist sich als praxisgerecht: Die
Anzahl freier Parameter wächst linear
mit der gewünschten Genauigkeit. Als
Adaptationsalgorithmus kann jedes
bekannte Verfahren angewendet werden,

das für nichtlineare Systeme mit
beschränkter Gedächtnislänge
konvergiert.
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m Summatoren
im 2. Layer

Bild 7 Zweischichten-Perceptron
mit den/Eingangsvektoren «H u[/v]bis«l_1 u[k - (/
y y[k] in R'" und mit den freien Parametern a ,v bi bis bK.

- 1)] in Rdem Ausgangsvektor
C/fi und di bis d,„
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