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Neuronale Netzwerke

Neuronale Netzwerke: Theorie und Praxis
Jakob Bernasconi

Neuronale Netzwerke haben sich
in verschiedenen Anwendungsbereichen

als vielversprechende
Alternative zu den traditionellen
Lösungsansätzen entpuppt. Der
vorliegende Beitrag befasst sich
mit entsprechenden
Untersuchungen, die zurzeit im Asea
Brown Boveri Forschungszentrum

in Baden durchgeführt werden.

Ein konkretes Beispiel aus
dem Gebiet der Materialoptimierung

demonstriert das Potential
von Neuronalen-Netzwerk-Me-
thoden bei der Lösung von
komplexen technischen Problemen.

Dans plusieurs domaines d'application,

des réseaux neuronaux se
sont trouvés être une alternative
prometteuse aux approches
traditionnelles. La présente
contribution s'occupe de recherches
qui à l'heure actuelle sont réalisées

au centre de recherches de
Asea Brown Boveri à Baden. Un
exemple concret provenant du
domaine de l'optimisation des
matériaux démontre la puissance
de méthodes qui se servent de
réseaux neuronaux pour résoudre

des problèmes techniques
complexes.

Künstliche Neuronale Netzwerke
besitzen eine Reihe von Eigenschaften,

die sie gegenüber konventionellen
Methoden der Informationsverarbeitung

auszeichnen [1;2;3]. Sie müssen

nicht programmiert werden,
sondern lernen ihre Aufgabe aus Beispielen.

Sie verhalten sich sehr robust in
bezug auf den Ausfall von Teilkomponenten

und können auch fehlerhafte
oder unvollständige Inputdaten
verarbeiten. Ihre spezielle Struktur erlaubt
zudem eine massiv parallele
Informationsverarbeitung. Bei der Lösung von
komplexen technischen Problemen
können diese Eigenschaften entscheidende

Vorteile bringen, insbesondere
wenn es sich um Aufgaben handelt,
die analytisch nur schwer oder
überhaupt nicht erfasst werden können.
Dazu kommt, dass die Entwicklungszeiten

für Neuronale-Netzwerk-Syste-
me oft viel kürzer sind als für entsprechende

konventionelle Lösungen.
Vielversprechende Anwendungsgebiete

für Neuronale Netzwerke sind
Muster- und Spracherkennung,
Signalverarbeitung, maschinelles
Lernen, Diagnose, Prognose, Optimie¬

rung sowie Steuerung und Regelung.
Konkrete Anwendungsbeispiele, die
in den letzten Jahren realisiert wurden,

reichen von der Erkennung
handgeschriebener Buchstaben und
Ziffern [4] über die Entdeckung von
Sprengstoff im Flugzeuggepäck [5] bis
zur Steuerung von Robotern [6]. Bei
den meisten dieser Anwendungen
handelt es sich um Forschungsprojekte

oder Prototypsysteme, die aber
eindrücklich das Potential dieser neuen
Art der Informationsverarbeitung
demonstrieren.

Im Asea Brown Boveri Forschungszentrum

in Baden existiert seit etwa
zwei Jahren ein interdisziplinäres
Projekt, das sich einerseits mit grundlegenden

Untersuchungen zum Lern-
und Verallgemeinerungsverhalten
Neuronaler Netzwerke und anderseits
mit konkreten Anwendungen von
Neuronalen-Netzwerk-Methoden
befasst. Das gemeinsame Ziel dieser
Studien ist die Entwicklung und
Implementierung von effizienten
Lernstrategien für verschiedene industriell
interessante Anwendungsbereiche.
Der vorliegende Beitrag gibt, nach ei-

Adresse des Autors
Dr. Jakob Bernasconi. Asea Brown Boveri
Forschungszentrum. 5405 Baden-Dättwil Bild 1 Schematische Darstellung eines künstlichen Neurons
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Neuronale Netzwerke

ner kurzen Einführung in die
Funktionsweise von Neuronalen Netzwerken,

eine Übersicht über die einzelnen
Themen dieses Forschungsprojekts.
Ein konkretes Anwendungsbeispiel,
das den Einsatz und die Leistungsfähigkeit

von Neuronalen Netzwerken
bei der Optimierung von
Materialeigenschaften demonstriert, wird dann
noch etwas ausführlicher vorgestellt.

Neuronale Netzwerke
Die Bausteine von Neuronalen

Netzwerken sind sogenannte künstliche

Neuronen. Diese imitieren die
Signalverarbeitung in biologischen
Nervenzellen und können auf einem
Computer simuliert oder in Hardware
(z.B. auf einem Chip) realisiert werden.

Ein künstliches Neuron (Bild 1)
bildet eine gewichtete Summe der bei
ihm ankommenden Signale 5;, S?,...,
Sn (Skalarprodukt des Eingangsvektors

S mit dem Gewichtsvektor W)
und berechnet daraus mittels der
Aktivierungsfunktion f(.v) seinen
Aktivitätszustand S, der dann als Signal an
andere Neuronen weitergeleitet wird:

S f IwjSj
Vj=1

(1)

Die Gewichte VF, können positiv
oder negativ sein, und als
Aktivierungsfunktion / wird meistens eine
Schwellenfunktion gewählt, z.B.

f(x) sign(x) :

+1 falls x > 0

1 falls x < 0

oder

f(x) rM - Ml
Im ersten Fall kann das Neuron nur

zwei Zustände annehmen. S +1
und 5 —1, während bei der
sogenannten sigmoiden Aktivierungsfunktion

(2b) der Aktivitätszustand S

kontinuierlich zwischen —1 und +1 variieren

kann.
Ein künstliches Neuron ist also ein

sehr primitives Element. Durch das
Zusammenwirken vieler solcher
Neuronen entstehen aber Netzwerkstrukturen,

die fähig sind, sehr komplexe
Aufgaben zu lösen. Die am häufigsten
verwendete Netzwerkarchitektur ist
das «Multilayer-Perceptron» [1;2;3]
(Bild 2). Es besteht aus einer Schicht

Output - Neuronen

"versteckte" Neuronen

Input - Neuronen

Bild 2 Ein Multilaycr-I'ereeptron

Input-Neuronen, einer oder mehreren
Schichten von «versteckten» Neuronen

(hidden neurons) und einer
Schicht Output-Neuronen. Nur
benachbarte Schichten sind miteinander
verknüpft, und die Signale werden nur
in Vorwärtsrichtung, von den Input-
zu den Output-Neuronen, weitergeleitet.

Die Informationsverarbeitung in
einem solchen Feedforward-Netzwerk
besteht aus einem einzigen Durchgang,

wobei die Neuronen Schicht für
Schicht ihre Aktivitätszustände Sj
berechnen. Die Berechnung erfolgt
gemäss

(2a)

(2b)

Form dieser Abbildung ist durch die
Netzwerkarchitektur und die
Verbindungsgewichte Wjj bestimmt, das
heisst in einem Neuronalen Netzwerk
ist die Information delokalisiert im
Muster der Verbindungsgewichte
gespeichert und nicht in einer separaten
Datenbank. Das erklärt die Robustheit

von Neuronalen Netzwerken in
bezug auf den Ausfall von einzelnen
Komponenten.

Ein Multilayer-Perceptron kann im
Prinzip beliebig komplexe Input-Out-
put-Zusammenhänge modellieren [3],
allerdings nur wenn genügend viele
versteckte Neuronen zur Verfügung
stehen. Die optimale Wahl der Netz-
werkgrösse ist daher ein kritisches

(3) Problem, das meist nur mit empiri¬
schen Methoden gelöst werden kann.
Ist die Netzwerkarchitektur einmal
festgelegt, müssen noch die Gewichte

wobei W,j das Gewicht der Verbin- VE, so bestimmt werden, dass das Neu-

SwljSj
V >

dung vom Neuron j zum Neuron ;

bezeichnet. Ein vorgegebener Netz-
werk-Input wird durch die Aktivitätszustände

der Input-Neuronen dargestellt

und der entsprechende
Netzwerk-Output durch die Zustände der
Output-Neuronen. Werden die
Aktivitätszustände dieser speziellen
Neuronen mit /, bzw. Oj bezeichnet, so
kann die Funktion, die das Netzwerk
ausübt, durch

0; (4)

beschrieben werden. Das Netzwerk
realisiert also eine Abbildung, die
einem Inputvektor {/,•} einen Outputvektor

{Oj} zuordnet. Die genaue

renale Netzwerk seine Aufgabe
möglichst gut löst. Dies geschieht in einem
sogenannten Lernprozess, in dem die
Gewichte aufgrund von Input-Output-
Beispielen sukzessive angepasst werden.

Diese Fähigkeit, aus Beispielen
zu lernen, ist eine der wichtigsten
Eigenschaften von Neuronalen Netzwerken,

und soll deshalb im nächsten
Abschnitt noch etwas genauer beschrieben

werden.

Aus Beispielen lernen
Das Lernen in Neuronalen

Netzwerken ist ein Prozess, in dem die
Effizienz des Netzwerks bezüglich einer
vorgegebenen Aufgabe optimiert
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Neuronale Netzwerke

wird. Wie diese Effizienz gemessen
oder bewertet wird, hängt von der
jeweiligen Problemstellung ab. In vielen
Fällen steht eine Anzahl von Lernbeispielen

zur Verfügung, das heisst für
gewisse Inputvektoren {//}, v 1,...,
N, ist der zugehörige Soll-Output-
Vektor, der mit {Dl} bezeichnet wird,
bekannt. Dann wählt man oft den
quadratischen Outputfehler,
summiert über alle Lernbeispiele,

N

F=lFv,
V=1

F'-WK-orf,
(5)

als Mass für die Effizienz des Neuronalen

Netzwerks. Für einen vorgegebenen

Inputvektor {//} hängt der
Netzwerkoutput {O}} von den
Gewichten Wjj ab, und diese sollen nun in
der Lernphase so angepasst werden,
dass der totale Outputfehler F minimal

wird. Die meisten Lernstrategien
benutzen ein Gradientenverfahren zur
Bestimmung eines optimalen Satzes

von Verbindungsgewichten. Dabei
werden die Lernbeispiele {/,}/{£),} in
zufälliger Reihenfolge immer wieder
präsentiert und die Gewichte Wtj
jedesmal um einen Betrag A VF,y verändert,

der proportional zum negativen
Gradienten des jeweiligen Outputfehlers

ist:

AW, —p
3FV

awi;
(6)

Dieses Verfahren konvergiert
gegen ein Minimum des totalen Fehlers
F, vorausgesetzt, dass der
Proportionalitätsfaktor ri genügend klein
gewählt wird. Für Feedforward-Netz-
werke stellt der berühmte Backpropa-
gation-Lernalgorithmus [3;7] eine
besonders effiziente Implementierung
einer solchen Gradientenmethode
dar. Er ist heute das wohl am häufigsten

verwendete Lernverfahren für
Neuronale Netzwerke.

Wie alle Gradientenverfahren
leidet aber auch der Backpropagation-
Algorithmus unter einer Anzahl von
Problemen. Die Fehlerfunktion F enthält

nämlich oft sehr flache Täler oder
Plateaus, was zu extrem langen
Lernzeiten führt. Besitzt F zudem mehrere
lokale Minima, so kann der Algorithmus

in einer relativ schlechten Lösung
steckenbleiben. In vielen Fällen ist es
deshalb nötig, zusätzliche Tricks
anzuwenden oder effizientere
Optimierungsverfahren zu benutzen [3;8;9].

Die soeben beschriebene Art des
Lernens ist für viele Anwendungen
von Neuronalen Netzwerken geeignet,

zum Beispiel für die Modellierung

von komplexen physikalischen
oder technischen Zusammenhängen
oder für die Entwicklung von Diagnose-

und Prognosesystemen. Die
Lernbeispiele sind dann experimentelle
Daten, die entweder bereits zur
Verfügung stehen oder generiert werden
können.

Andere interessante Anwendungen
von Neuronalen Netzwerken beziehen
sich auf das Lernen einer Strategie,
zum Beispiel einer Regel- oder
Steuerstrategie. In solchen Fällen ist der
gewünschte Netzwerkoutput für die
Lernbeispiele oft nicht explizite
bekannt, und die Effizienz des
Netzwerks kann erst nach einer gewissen
Zeit beurteilt werden. Die obigen
Verfahren zur Minimierung des
Outputfehlers sind dann nicht direkt
anwendbar, und es müssen kompliziertere

Lernstrategien entwickelt werden
[9]-

Neben dem Lernverhalten interessiert

man sich natürlich auch für das

Verallgemeinerungsverhalten von
Neuronalen Netzwerken.
Verallgemeinerung bezieht sich dabei auf die
Art und Weise, wie das Netzwerk
nach der Lernphase neue, unbekannte
Inputdaten verarbeitet.

Analyse und Anwendung
neuronaler Lernstrategien

Die detaillierte Analyse der Lern-
und Verallgemeinerungseigenschaften

von Neuronalen Netzwerken ist
Voraussetzung für eine optimale
Implementierung und Anwendung entsprechender

Lernverfahren. Dieser
Aspekt hat deshalb in unseren
Untersuchungen eine zentrale Bedeutung.
Ein weiterer wichtiger Punkt ist der
Vergleich verschiedener neuronaler
Lernstrategien und der Vergleich mit
konventionellen Lösungsansätzen.
Die folgenden Ausführungen geben
einen Überblick über die verschiedenen

Studien, mit denen wir uns zurzeit

befassen und über bereits vorliegende

Resultate.
Die Anwendung von Neuronalen

Netzwerken auf Steuer- und
Regelprobleme stellt spezielle Anforderungen

an die Entwicklung geeigneter
Lernstrategien. Als Testproblem für
unsere Untersuchungen haben wir das
Balancieren eines Stabes gewählt. Das
entsprechende System ist in Bild 3

dargestellt. Der Stab ist auf einem
Wagen montiert, der sich auf einer
etwa 4 m langen Laufschiene bewegen
kann und von einem Motor angetrieben

wird. Sensoren messen den
Drehwinkel cp des Stabes, die
Drehgeschwindigkeit cp, sowie die Position x
und die Geschwindigkeit x des
Wagens. Diese Messdaten werden als
Input einem Neuronalen Netzwerk
zugeführt, das die Aufgabe hat, daraus
die zur Stabilisierung des Stabes
erforderliche Beschleunigungskraft F zu
bestimmen. Für die Simulation des
Neuronalen Netzwerks wurde ein
Multitransputer-System entwickelt,
das sich speziell für Echtzeitanwendungen

eignet [10]. In einer ersten
Studie wurde das neuronale Netz auf¬

Bild 3 Balancieren eines auf einem Wagen montierten Stabes
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Bild 4 Strom-Spannungs-Kennlinie eines ZnO-Varistors (schematisch)
Uy Betriebsspannung
UD Durchbruchsspannung
Up Norm-Überspannung
a Nichtlinearitätskoeffizient

grund einer vorgegebenen Regelstrategie

trainiert. Diese stellt den «Lehrer»

dar, der während des Regelprozesses

die notwendigen Lernbeispiele
liefert. Nach der Lernphase erweist
sich die neuronale Regelung als sehr
robust in bezug auf den Ausfall einzelner

Komponenten, was durch das
Unterbrechen von Netzwerkverbindungen

getestet werden kann. Ein
entsprechendes Demonstrationssystem
wird an der Heureka-Ausstellung in
Zürich gezeigt, wobei das neuronale
Netz in Analog-Hardware realisiert
wurde.

Wenn keine Regelstrategie bekannt
ist, muss das Neuronale Netzwerk diese

von Grund auf selbst lernen. Eine
unmittelbare Bewertung des
Netzwerkoutputs ist dann aber nicht mehr
möglich, und die Effizienz der neuronalen

Regelung kann erst nach einer
gewissen Zeit, dass heisst in der
Zukunft, beurteilt werden [9; 11]. Ohne
näher auf diese Problematik einzugehen,

sei nur angedeutet, dass beim
Stab-Balancieren diese Effizienz zum
Beispiel mit einer integralen
Fehlerfunktion der Form

G(t) Jdt(Acp2+Ax2) (7)

gemessen werden kann. Die Funktion
(7) soll möglichst klein sein. Dabei
bezeichnet Acp die Differenz des
Drehwinkels bezüglich der Senkrechten
und A.r die Abweichung der
Wagenposition vom Mittelpunkt der
Laufschiene. Eine elegante Möglichkeit,
die neuronale Regelung kontinuierlich

zu verbessern, beruht auf der
Verwendung eines zusätzlichen
Neuronalen Netzwerks, des sogenannten
«Kritikers» [11]. Der Kritiker lernt,
die Bewertungsfunktion G(t) immer
genauer vorherzusagen, und das
Regler-Netzwerk benutzt diese Vorhersage

um seine Strategie zu optimieren.
Erste Versuche haben das prinzipielle
Funktionieren dieser kombinierten
Lernstrategie nachgewiesen.

Weitere Studien befassen sich mit
der Anwendung Neuronaler Netzwerke

auf Probleme aus den Bereichen
Mustererkennung, Diagnose, Prognose

und Optimierung:
Bei der Messung von Stromsignalen

wird der Sekundärstrom durch
magnetische Sättigungseffekte im
Stromwandler verzerrt. Die Rekonstruktion
des Primärstroms aus dem verzerrten

Sekundärstrom ist ein wichtiges
Problem bei Schutzanwendungen, das im
Prinzip mit numerischen Methoden
gelöst werden kann. Diese sind aber
sehr rechenintensiv und setzen eine
genaue Kenntnis der Stromwandlerparameter

voraus. In einer Studie
wird deshalb abgeklärt, ob Neuronale
Netzwerke diese Aufgabe aus Beispielen

von verzerrten Stromsignalen
lernen und dann im Echtzeit-Betrieb
durchführen können.

Eine weitere Anwendung betrifft
die Diagnose von Isolationssystemen.
Aufgrund von gemessenen
Teilentladungsmustern soll ein Neuronales
Netzwerk den Zustand der Isolation
und die Art der Defekte erkennen
und diagnostizieren. Das
Teilentladungsmuster liegt in der Form eines
zweidimensionalen Histogramms vor,
das die Anzahl der über eine
Zeitspanne gemessenen Teilentladungen
als Funktion ihrer Phasenlage und
ihrer Stärke wiedergibt. Ein Hauptproblem

liegt nun darin, aus diesen Daten
geeignete Inputdaten für das Neuronale

Netzwerk herauszukristallisieren,
so dass ein möglichst effizientes Lern-
und Verallgemeinerungsverhalten
resultiert. Eine detaillierte Analyse der
vorhandenen Daten, kombiniert mit
physikalischen Modellrechnungen,
hat zu verschiedenen Vorschlägen für
ein solches Preprocessing geführt.

Darauf basierende Diagnosesysteme
sollen nun getestet und miteinander
verglichen werden.

In Zusammenarbeit mit der SKA
Zürich studieren wir den Einsatz von
Neuronalen Netzwerken bei der
Prognose von Devisenkursen. Insbesondere

werden Methoden untersucht,
die es erlauben, die Zuverlässigkeit
einer Prognose quantitativ abzuschätzen

und entsprechende Konfidenzintervalle

zu bestimmen. Neuronale
Netzwerke, die eine Wahrscheinlichkeit

oder eine Wahrscheinlichkeitsverteilung

lernen, scheinen in diesem
Zusammenhang von besonderem
Interesse zu sein. Solche Netzwerke
können zum Beispiel entscheiden, in
welchen Situationen eine Prognose so
unsicher wird, dass es vorteilhafter ist,
keine Aussage zu machen. Das
Studium von vereinfachten Prognose-
Problemen hat gezeigt, dass dadurch
die Vorhersagegenauigkeit in den
übrigen Fällen beträchtlich erhöht werden

kann.
Eine ausführliche Studie, die

weitgehend abgeschlossen ist, befasste
sich schliesslich mit der Verwendung
von Neuronalen Netzwerken zur
Optimierung der Zusammensetzung von
ZnO-Varistoren. Die entsprechenden
Untersuchungen wurden zum grossen
Teil im Rahmen einer ETH-Diplom-
arbeit durchgeführt [12], Das gewähl-
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te Vorgehen erwies sich als sehr
vielversprechend und wird im nächsten
Abschnitt naher vorgestellt.

Optimierung der Dotierung
von ZnO-Varistoren

Varistoren (Variable Resistors)
sind keramische Bauelemente für den
Überspannungsschutz [13]. Speziell
im Mittel- und Hochspannungsbereich
basieren Abieiter heute auf solchen
Schutzelementen. Varistoren bestehen

zur Hauptsache aus Zinkoxid
(ZnO), einem Halbleiter mit grosser
Energielücke. Durch Zugabe geeigneter

Dotierstoffe kann diesem Material
im polykristallinen Verbund eine stark
nichtlineare Strom-Spannungskenn-
linie verliehen werden (Bild 4). Beim
Überschreiten einer materialabhängigen

Schwellenspannung UD schalten
solche Elemente innert Nanosekun-
den und reversibel von einem
isolierenden in einen gut leitenden
Zustand. Die elektrische Charakteristik
der Varistoren hängt in komplexer
Weise von der Dotierung und von der
Temperaturführung beim Sinterpro-
zess ab. In der technischen Ausführung

werden bis zu zehn verschiedene
Dotierstoffe verwendet, welche in
sehr unterschiedlichen
Konzentrationsbereichen (ppm bis % vorliegen.
Die Wahl dieser Zugaben erfolgt heute

fast ausschliesslich aus rein empirischen

Überlegungen, und der Hersteller

sieht sich mit der beinahe unlösbaren

Aufgabe konfrontiert, ein bis zu
lOkomponentiges System bezüglich
verschiedener elektrischer Kenngrös-
sen zu optimieren.

Die wichtigsten Kenngrössen sind
die im Betriebspunkt Uv gemessene
Verlustleistung /V, das
Restspannungsverhältnis Rv Up/UDl wobei
Up eine durch einen Normstrompuls
erzeugte Überspannung bezeichnet,
und der Nichtlinearitätskoeffizient
a d(\ogJ)/d (log U), der bei einer
Normstromdichte unterhalb des

Betriebspunktes gemessen wird. Um eine

gute thermische Stabilität zu
gewährleisten, sollte die Verlustleistung
Pv möglichst klein sein. Das
Restspannungsverhältnis Rv zeigt an, wie
gut sich das «Stromventil» bei
Überspannung öffnet. Rv sollte also auch
möglichst klein sein. Der
Nichtlinearitätskoeffizient a hingegen muss für eine

gute Schaltcharakteristik möglichst
gross sein. Eine vierte Kenngrösse ist
der Langzeitstabilitätsparameter Pv,
die bei 500 oder 1000 Stunden Be¬

triebsdauer gemessene zeitliche
Änderung der Verlustleistung. Für ein
gutes Betriebsverhalten muss Pv < 0

erfüllt sein.
Bei ABB wurde eine umfangreiche

Studie durchgeführt, die darauf
hinzielte, die Zusammenhänge zwischen
Dotierung und elektrischem Verhalten

von ZnO-Varistoren in den Griff
zu bekommen. Ausgehend von einer
empirisch optimierten
Referenz-Zusammensetzung wurde zuerst der Ein-
fluss jedes Dotierelementes einzeln
untersucht. Mit einem Satz von 5

Elementen, die alle einen besonders starken

Einfluss zeigten, wurde dann ein
systematischer Variationsversuch
durchgeführt, der 25 32 verschiedene

Zusammensetzungen umfasste.
Die statistische Analyse dieser
experimentellen Daten mit konventionellen
Methoden ergab keine befriedigenden
Ergebnisse, was auf die starken
Wechselwirkungen zwischen den Dotierelementen

und auf die teilweise extrem
nichtlinearen Abhängigkeiten zurückgeführt

werden kann.
Aus diesem Grund haben wir

versucht, das schwierige Optimierungsproblem

mit Hilfe der Lern- und
Verallgemeinerungsfähigkeit von Neuronalen

Netzwerken zu lösen [12], Als
Lernbeispiele standen experimentelle
Daten für insgesamt etwa 50 verschiedene

Dotierungen zur Verfügung. Der
Netzwerkinput bestand aus den
Konzentrationen der 5 Dotierelemente
und der Output sollte die zugehörigen
4 elektrischen Kenngrössen anzeigen.
Die unterschiedlichen
Konzentrationsbereiche der einzelnen Elemente
und die inhomogene Verteilung der
Lerndaten erforderten ein relativ
aufwendiges Preprocessing (z.B.
Skalierungen) sowohl der Input- als auch
der Outputdaten. Es stellte sich heraus,

dass ein sorgfältiges Preprocessing
die Lern- und Verallgemeine¬

rungseigenschaften der neuronalen
Netze beträchtlich verbessern kann.

Die Netzwerke wurden mit dem
Backpropagation-Lernverfahren
trainiert, und die Auswahl von geeigneten
Netzwerk-Architekturen erfolgte
aufgrund einer sogenannten Crossvalida-
tion-Methode. Dabei werden die
Voraussagen von trainierten Netzwerken
mit Messdaten verglichen, die im
Lernset nicht berücksichtigt wurden.
Die Untersuchungen ergaben, dass

Feedforward-Netzwerke mit zwei
Schichten von «versteckten» Neuronen

die Aufgabe befriedigend lösen
können. Ein Vergleich hat ferner
gezeigt, dass Neuronale Netzwerke den
Zusammenhang zwischen Dotierung
und elektrischen Kenngrössen wesentlich

zuverlässiger zu modellieren
vermögen als eine polynomiale
Regressionsanalyse.

Im eigentlichen Optimierungspro-
zess ersetzen die trainierten Netzwerke

dann das Durchführen von aufwendigen

Experimenten. Durch eine
systematische Variation der Inputdaten
können so Konzentrationsbereiche für
die Dotierelemente identifiziert werden.

die zu optimalen Werten für die
elektrischen Kenngrössen führen sollten.

Dabei werden nur diejenigen
Voraussagen berücksichtigt, die durch
mehrere, verschiedene trainierte
Netzwerke bestätigt werden. Dadurch
werden die Prognosen zwar etwas
konservativer, ihre Zuverlässigkeit
hingegen wird beträchtlich erhöht.

Die Vorhersagen der Neuronalen
Netzwerke in bezug auf optimale
Dotierkonzentrationen werden zurzeit
experimentell überprüft. Die ersten
Resultate sind sehr vielversprechend
(Tab. 1).

Bei der Bewertung der erzielten
Verbesserungen muss berücksichtigt
werden, dass das Verbesserungspotential

der einzelnen Kenngrössen

Zusammensetzung Pv
Prog. Exp.

RV
Prog. Exp.

a
Prog. Exp.

1 -25% -28 % - 3.1 % - 7.9 % + 48 % + 65%

2 - 15 % -36% - 2.5 % - 8.0 % + 30% + 78 %

3 -41 % - 37 % - 2.5 % - 4.6 % + 74 % + 96%

Tabelle I Prognostizierte (Prog.) und experimentell gemessene (Exp.) Verbesserungen der
Kenngrössen Pv, R\ und a in bezug auf das Referenzmaterial.
Die drei Zusammensetzungen wurden aufgrund der Modellierung durch Neuronale Netzwerke
ausgewählt
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sehr unterschiedlich ist und dass sich
nicht nur in bezug auf das Referenzmaterial,

sondern auch im Vergleich
mit den besten Lerndaten zum Teil
noch beträchtliche Verbesserungen
ergeben. Zudem erfüllen alle drei
Zusammensetzungen das Langzeit-Stabilitätskriterium

Pv < 0 nach 1000 Stunden

Betriebsdauer. Die Tatsache, dass
die gemessenen Verbesserungen
durchwegs grösser sind als prognostiziert,

lässt sich mit der eher konservativen

Beurteilung der Netzwerk-Vorhersagen

erklären.

Ausblick
Die bisherigen Erfahrungen und

Ergebnisse haben uns dem Hauptziel
unserer Studien, die Einsatzfähigkeit
von Neuronalen Netzwerken in
industriellen Anwendungen zu
demonstrieren, einen wesentlichen Schritt
näher gebracht. Die Optimierung von
ZnO-Varistoren bezog sich zwar nur
auf die elektrischen Kenngrössen und
auf deren Abhängigkeit von der
Dotierung. Der Einfluss der Prozessparameter

und die Auswirkungen auf
andere, für die Fabrikation wichtige
Kenngrössen wurden nicht in Betracht
gezogen. Die erzielten Resultate
zeigen aber eindeutig, dass auf Neuronalen

Netzwerken basierende Methoden
bei der Optimierung von
Materialeigenschaften mit Erfolg eingesetzt werden

können. Auch unsere Untersuchungen

von Steuer- und Regelstrategien

demonstrieren die potentiellen

Vorteile von Neuronalen-Netzwerk-
Lösungen in praktischen Anwendungen.

Weitere Studien, die zum Teil
erst vor kurzem aufgenommen wurden,

zielen ebenfalls daraufhin,
vielversprechende Anwendungsgebiete
für Neuronale Netzwerke zu identifizieren

und diese Methoden dann optimal

einzusetzen.
Zusammenfassend kann aber

bereits jetzt festgehalten werden, dass
selbst relativ einfache Neuronale
Netzwerke fähig sind, komplexe
Probleme aus verschiedenen Bereichen
effizient und ökonomisch zu lösen,
falls genügend Lernbeispiele zur
Verfügung stehen. Voraussetzung dazu
sind allerdings ein fundiertes
Verständnis des Lern- und
Verallgemeinerungsverhaltens solcher Systeme
und ein intelligentes Preprocessing
der Lerndaten.
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