Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 82 (1991)

Heft: 13

Artikel: Neuronale Netzwerke : Theorie und Praxis

Autor: Bernasconi, Jakob

DOl: https://doi.org/10.5169/seals-902976

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-902976
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Neuronale Netzwerke

Neuronale Netzwerke: Theorie und Praxis

Jakob Bernasconi

Neuronale Netzwerke haben sich
in verschiedenen Anwendungs-
bereichen als vielversprechende
Alternative zu den traditionellen
Lésungsanséatzen entpuppt. Der
vorliegende Beitrag befasst sich
mit entsprechenden Untersu-
chungen, die zurzeit im Asea
Brown Boveri Forschungszen-
trum in Baden durchgefiihrt wer-
den. Ein konkretes Beispiel aus
dem Gebiet der Materialoptimie-
rung demonstriert das Potential
von Neuronalen-Netzwerk-Me-
thoden bei der Lésung von kom-
plexen technischen Problemen.

Dans plusieurs domaines d’appli-
cation, des réseaux neuronaux se
sont trouvés étre une alternative
prometteuse aux approches tra-
ditionnelles. La présente contri-
bution s’occupe de recherches
qui a I'heure actuelle sont réali-
sées au centre de recherches de
Asea Brown Boveri a Baden. Un
exemple concret provenant du
domaine de I'optimisation des
matériaux démontre la puissance
de méthodes qui se servent de
réseaux neuronaux pour résou-
dre des problémes techniques
complexes.

Adresse des Autors

Dr. Jakob Bernasconi, Asea Brown Boveri For-
schungszentrum, 5405 Baden-Dittwil

Kiinstliche Neuronale Netzwerke
besitzen eine Reihe von Eigenschaf-
ten, die sie gegeniiber konventionel-
len Methoden der Informationsverar-
beitung auszeichnen [1;2:3]. Sie miis-
sen nicht programmiert werden, son-
dern lernen ihre Aufgabe aus Beispie-
len. Sie verhalten sich sehr robust in
bezug auf den Ausfall von Teilkompo-
nenten und konnen auch fehlerhafte
oder unvollstindige Inputdaten verar-
beiten. Thre spezielle Struktur erlaubt
zudem eine massiv parallele Informa-
tionsverarbeitung. Bei der Losung von
komplexen technischen Problemen
konnen diese Eigenschaften entschei-
dende Vorteile bringen, insbesondere
wenn es sich um Aufgaben handelt,
die analytisch nur schwer oder iiber-
haupt nicht erfasst werden konnen.
Dazu kommt, dass die Entwicklungs-
zeiten fiir Neuronale-Netzwerk-Syste-
me oft viel kiirzer sind als fiir entspre-
chende konventionelle Losungen.

Vielversprechende Anwendungsge-
biete fiir Neuronale Netzwerke sind
Muster- und Spracherkennung, Si-
gnalverarbeitung, maschinelles Ler-
nen, Diagnose, Prognose, Optimie-

rung sowie Steuerung und Regelung.
Konkrete Anwendungsbeispiele, die
in den letzten Jahren realisiert wur-
den, reichen von der Erkennung
handgeschriebener Buchstaben und
Ziffern [4] tiber die Entdeckung von
Sprengstoff im Flugzeuggepick [5] bis
zur Steuerung von Robotern [6]. Bei
den meisten dieser Anwendungen
handelt es sich um Forschungsprojek-
te oder Prototypsysteme, die aber ein-
driicklich das Potential dieser neuen
Art der Informationsverarbeitung de-
monstrieren.

Im Asea Brown Boveri Forschungs-
zentrum in Baden existiert seit etwa
zwei Jahren ein interdisziplindres Pro-
jekt. das sich einerseits mit grundle-
genden Untersuchungen zum Lern-
und Verallgemeinerungsverhalten
Neuronaler Netzwerke und anderseits
mit konkreten Anwendungen von
Neuronalen-Netzwerk-Methoden be-
fasst. Das gemeinsame Ziel dieser
Studien ist die Entwicklung und Im-
plementierung von effizienten Lern-
strategien fiir verschiedene industriell
interessante  Anwendungsbereiche.
Der vorliegende Beitrag gibt, nach ei-

Bild1 Schematische Darstellung eines kiinstlichen Neurons
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ner kurzen Einfithrung in die Funk-
tionsweise von Neuronalen Netzwer-
ken, eine Ubersicht iiber die einzelnen
Themen dieses Forschungsprojekts.
Ein konkretes Anwendungsbeispiel,
das den Einsatz und die Leistungsfi-
higkeit von Neuronalen Netzwerken
bei der Optimierung von Material-
eigenschaften demonstriert, wird dann
noch etwas ausfiihrlicher vorgestellt.

Neuronale Netzwerke

Die Bausteine von Neuronalen
Netzwerken sind sogenannte kiinstli-
che Neuronen. Diese imitieren die Si-
gnalverarbeitung in biologischen Ner-
venzellen und koénnen auf einem
Computer simuliert oder in Hardware
(z.B. auf einem Chip) realisiert wer-
den. Ein kiinstliches Neuron (Bild 1)
bildet eine gewichtete Summe der bei
ithm ankommenden Signale §;. S>.....
S, (Skalarprodukt des Eingangsvek-
tors S mit dem Gewichtsvektor W)
und berechnet daraus mittels der Ak-
tivierungsfunktion f(x) seinen Aktivi-
tiatszustand S, der dann als Signal an
andere Neuronen weitergeleitet wird:

n
S=f] Y\ W;S; (1)
=1

Die Gewichte W; konnen positiv
oder negativ sein, und als Aktivie-
rungsfunktion f wird meistens eine
Schwellenfunktion gewihlt, z.B.

+1falls x>0

f(x) = sign(x) = {-1 Blspsd
oder

_1zeT (X 2b
f(x) - Tgh(zj (2b)

Im ersten Fall kann das Neuron nur
zwei Zustinde annehmen, § = +1
und § = —1. wihrend bei der soge-
nannten sigmoiden Aktivierungsfunk-
tion (2b) der Aktivititszustand S kon-
tinuierlich zwischen —1 und +1 variie-
ren kann.

Ein kiinstliches Neuron ist also ein
sehr primitives Element. Durch das
Zusammenwirken vieler solcher Neu-
ronen entstehen aber Netzwerkstruk-
turen, die fihig sind. sehr komplexe
Aufgaben zu l6sen. Die am hiufigsten
verwendete Netzwerkarchitektur ist
das «Multilayer-Perceptron» [1;2;3]
(Bild 2). Es besteht aus einer Schicht

Output - Neuronen

"versteckte' Neuronen

Input - Neuronen

Bild2 Ein Multilayer-Perceptron

Input-Neuronen, einer oder mehreren
Schichten von «versteckten» Neuro-
nen (hidden neurons) und einer
Schicht Output-Neuronen. Nur be-
nachbarte Schichten sind miteinander
verkniipft, und die Signale werden nur
in Vorwirtsrichtung, von den Input-
zu den Output-Neuronen, weiterge-
leitet.

Die Informationsverarbeitung in ei-
nem solchen Feedforward-Netzwerk
besteht aus einem einzigen Durch-
gang, wobei die Neuronen Schicht fiir
Schicht ihre Aktivitdtszustinde S; be-
rechnen. Die Berechnung erfolgt ge-
mass

5 = f[Ewij SJ 3)

wobei W;; das Gewicht der Verbin-
dung vom Neuron j zum Neuron ¢ be-
zeichnet. Ein vorgegebener Netz-
werk-Input wird durch die Aktivitits-
zustdnde der Input-Neuronen darge-
stellt und der entsprechende Netz-
werk-Output durch die Zustédnde der
Output-Neuronen. Werden die Akti-
vitdtszustinde dieser speziellen Neu-
ronen mit /; bzw. O; bezeichnet, so
kann die Funktion, die das Netzwerk
ausiibt, durch

Q= Oi({Ii}’{Wij}) 4)

beschrieben werden. Das Netzwerk
realisiert also eine Abbildung, die ei-
nem Inputvektor {/;} einen Output-
vektor {O;} zuordnet. Die genaue

Form dieser Abbildung ist durch die
Netzwerkarchitektur und die Verbin-
dungsgewichte W, Dbestimmt, das
heisst in einem Neuronalen Netzwerk
ist die Information delokalisiert im
Muster der Verbindungsgewichte ge-
speichert und nicht in einer separaten
Datenbank. Das erkldrt die Robust-
heit von Neuronalen Netzwerken in
bezug auf den Ausfall von einzelnen
Komponenten.

Ein Multilayer-Perceptron kann im
Prinzip beliebig komplexe Input-Out-
put-Zusammenhinge modellieren [3],
allerdings nur wenn geniigend viele
versteckte Neuronen zur Verfiigung
stehen. Die optimale Wahl der Netz-
werkgrosse ist daher ein kritisches
Problem, das meist nur mit empiri-
schen Methoden gelost werden kann.
Ist die Netzwerkarchitektur einmal
festgelegt, miissen noch die Gewichte
Wi; so bestimmt werden, dass das Neu-
ronale Netzwerk seine Aufgabe mog-
lichst gut 16st. Dies geschieht in einem
sogenannten Lernprozess, in dem die
Gewichte aufgrund von Input-Output-
Beispielen sukzessive angepasst wer-
den. Diese Fdhigkeit, aus Beispielen
zu lernen, ist eine der wichtigsten Ei-
genschaften von Neuronalen Netzwer-
ken, und soll deshalb im nédchsten Ab-
schnitt noch etwas genauer beschrie-
ben werden.

Aus Beispielen lernen

Das Lernen in Neuronalen Netz-
werken ist ein Prozess. in dem die Ef-
fizienz des Netzwerks beziiglich einer
vorgegebenen  Aufgabe optimiert
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wird. Wie diese Effizienz gemessen
oder bewertet wird, hingt von der je-
weiligen Problemstellung ab. In vielen
Féllen steht eine Anzahl von Lernbei-
spielen zur Verfligung, das heisst fiir
gewisse Inputvektoren {//},v = 1....,
N, ist der zugehorige Soll-Output-
Vektor, der mit {D;} bezeichnet wird,
bekannt. Dann wihlt man oft den
quadratischen  Outputfehler, sum-
miert iiber alle Lernbeispiele,

N
P=3F, FV=%2(D¥—OY)2,
v=l i
(5)

als Mass fiir die Effizienz des Neuro-
nalen Netzwerks. Fiir einen vorgege-
benen Inputvektor {/;} hingt der
Netzwerkoutput {O;} von den Ge-
wichten W;; ab, und diese sollen nun in
der Lernphase so angepasst werden,
dass der totale Outputfehler F mini-
mal wird. Die meisten Lernstrategien
benutzen ein Gradientenverfahren zur
Bestimmung eines optimalen Satzes
von Verbindungsgewichten. Dabei
werden die Lernbeispiele {/;}/{D;} in
zufilliger Reihenfolge immer wieder
prasentiert und die Gewichte W je-
desmal um einen Betrag AW;; verin-
dert, der proportional zum negativen
Gradienten des jeweiligen Outputfeh-
lers ist:

oF"
oW,

i

Avvij =T

(6)

Dieses Verfahren konvergiert ge-
gen ein Minimum des totalen Fehlers
F, vorausgesetzt, dass der Proportio-
nalitdtstaktor 7 gentigend klein ge-
wihlt wird. Fir Feedforward-Netz-
werke stellt der berithmte Backpropa-
gation-Lernalgorithmus [3:7] eine be-
sonders effiziente Implementierung
einer solchen Gradientenmethode
dar. Er ist heute das wohl am héufig-
sten verwendete Lernverfahren fir
Neuronale Netzwerke.

Wie alle Gradientenverfahren lei-
det aber auch der Backpropagation-
Algorithmus unter einer Anzahl von
Problemen. Die Fehlerfunktion F ent-
hilt ndamlich oft sehr flache Tiler oder
Plateaus, was zu extrem langen Lern-
zeiten fiihrt. Besitzt F zudem mehrere
lokale Minima, so kann der Algorith-
mus in einer relativ schlechten Losung
steckenbleiben. In vielen Fillen ist es
deshalb notig, zusétzliche Tricks anzu-
wenden oder effizientere Optimie-
rungsverfahren zu benutzen [3:8:9].

Die soeben beschriebene Art des
Lernens ist fiir viele Anwendungen
von Neuronalen Netzwerken geeig-
net. zum Beispiel fiir die Modellie-
rung von komplexen physikalischen
oder technischen Zusammenhingen
oder fiir die Entwicklung von Diagno-
se- und Prognosesystemen. Die Lern-
beispiele sind dann experimentelle
Daten, die entweder bereits zur Ver-
fiigung stehen oder generiert werden
konnen.

Andere interessante Anwendungen
von Neuronalen Netzwerken beziehen
sich auf das Lernen einer Strategie,
zum Beispiel einer Regel- oder Steu-
erstrategie. In solchen Fillen ist der
gewiinschte Netzwerkoutput fiir die
Lernbeispiele oft nicht explizite be-
kannt, und die Effizienz des Netz-
werks kann erst nach einer gewissen
Zeit beurteilt werden. Die obigen
Verfahren zur Minimierung des Out-
putfehlers sind dann nicht direkt an-
wendbar, und es miissen komplizierte-
re Lernstrategien entwickelt werden
[9].

Neben dem Lernverhalten interes-
siert man sich natiirlich auch fiir das
Verallgemeinerungsverhalten von
Neuronalen Netzwerken. Verallge-
meinerung bezieht sich dabei auf die
Art und Weise. wie das Netzwerk
nach der Lernphase neue. unbekannte
Inputdaten verarbeitet.

Analyse und Anwendung
neuronaler Lernstrategien

Die detaillierte Analyse der Lern-
und Verallgemeinerungseigenschaften

von Neuronalen Netzwerken ist Vor-
aussetzung fiir eine optimale Imple-
mentierung und Anwendung entspre-
chender  Lernverfahren. Dieser
Aspekt hat deshalb in unseren Unter-
suchungen eine zentrale Bedeutung.
Ein weiterer wichtiger Punkt ist der
Vergleich verschiedener neuronaler
Lernstrategien und der Vergleich mit
konventionellen Losungsansitzen.
Die folgenden Ausfithrungen geben
einen Uberblick iiber die verschiede-
nen Studien, mit denen wir uns zur-
zeit befassen und iiber bereits vorlie-
gende Resultate.

Die Anwendung von Neuronalen
Netzwerken auf Steuer- und Regel-
probleme stellt spezielle Anforderun-
gen an die Entwicklung geeigneter
Lernstrategien. Als Testproblem fiir
unsere Untersuchungen haben wir das
Balancieren eines Stabes gewihlt. Das
entsprechende System ist in Bild 3
dargestellt. Der Stab ist auf einem
Wagen montiert, der sich auf einer
etwa 4 m langen Laufschiene bewegen
kann und von einem Motor angetrie-
ben wird. Sensoren messen den Dreh-
winkel ¢ des Stabes, die Drehge-
schwindigkeit ¢, sowie die Position x
und die Geschwindigkeit x des Wa-
gens. Diese Messdaten werden als In-
put einem Neuronalen Netzwerk zu-
gefiihrt, das die Aufgabe hat, daraus
die zur Stabilisierung des Stabes erfor-
derliche Beschleunigungskraft F zu
bestimmen. Fiir die Simulation des
Neuronalen Netzwerks wurde ein
Multitransputer-System  entwickelt,
das sich speziell fiir Echtzeitanwen-
dungen eignet [10]. In einer ersten
Studie wurde das neuronale Netz auf-

Q- A

PN

Bild 3 Balancieren eines auf einem Wagen montierten Stabes
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grund einer vorgegebenen Regelstra-
tegie trainiert. Diese stellt den «Leh-
rer» dar, der wahrend des Regelpro-
zesses die notwendigen Lernbeispiele
liefert. Nach der Lernphase erweist
sich die neuronale Regelung als sehr
robust in bezug auf den Ausfall einzel-
ner Komponenten, was durch das Un-
terbrechen von Netzwerkverbindun-
gen getestet werden kann. Ein ent-
sprechendes  Demonstrationssystem
wird an der Heureka-Ausstellung in
Zirich gezeigt, wobei das neuronale
Netz in Analog-Hardware realisiert
wurde.

Wenn keine Regelstrategie bekannt
ist, muss das Neuronale Netzwerk die-
se von Grund auf selbst lernen. Eine
unmittelbare Bewertung des Netz-
werkoutputs ist dann aber nicht mehr
moglich, und die Effizienz der neuro-
nalen Regelung kann erst nach einer
gewissen Zeit, dass heisst in der Zu-
kunft, beurteilt werden [9;11]. Ohne
nidher auf diese Problematik einzuge-
hen, sei nur angedeutet, dass beim
Stab-Balancieren diese Effizienz zum
Beispiel mit einer integralen Fehler-
funktion der Form

oo

G(t) = J'dt(Aq>2 +Ax?)

t

(7)

gemessen werden kann. Die Funktion
(7) soll moglichst klein sein. Dabei be-
zeichnet A die Differenz des Dreh-
winkels beziiglich der Senkrechten
und Ax die Abweichung der Wagen-
position vom Mittelpunkt der Lauf-
schiene. Eine elegante Moglichkeit,
die neuronale Regelung kontinu-
ierlich zu verbessern, beruht auf der
Verwendung eines zusitzlichen Neu-
ronalen Netzwerks, des sogenannten
«Kritikers» [11]. Der Kritiker lernt,
die Bewertungsfunktion G(t) immer
genauer vorherzusagen, und das Reg-
ler-Netzwerk benutzt diese Vorhersa-
ge um seine Strategie zu optimieren.
Erste Versuche haben das prinzipielle
Funktionieren dieser kombinierten
Lernstrategie nachgewiesen.

Weitere Studien befassen sich mit
der Anwendung Neuronaler Netzwer-
ke auf Probleme aus den Bereichen
Mustererkennung, Diagnose, Progno-
se und Optimierung:

Bei der Messung von Stromsignalen
wird der Sekundérstrom durch ma-
gnetische Sattigungseffekte im Strom-
wandler verzerrt. Die Rekonstruktion
des Primdrstroms aus dem verzerrten

log U

J~U“

oee———T

log J

Bild 4 Strom-Spannungs-Kennlinie eines ZnO-Varistors (schematisch)

Uy Betriebsspannung

Up Durchbruchsspannung

Up Norm-Uberspannung

a  Nichtlinearitdtskoeffizient

Sekundérstrom ist ein wichtiges Pro-
blem bei Schutzanwendungen, das im
Prinzip mit numerischen Methoden
gelost werden kann. Diese sind aber
sehr rechenintensiv und setzen eine
genaue Kenntnis der Stromwandler-
parameter voraus. In einer Studie
wird deshalb abgeklért, ob Neuronale
Netzwerke diese Aufgabe aus Beispie-
len von verzerrten Stromsignalen ler-
nen und dann im Echtzeit-Betrieb
durchfiihren kénnen.

Eine weitere Anwendung betrifft
die Diagnose von Isolationssystemen.
Aufgrund von gemessenen Teilentla-
dungsmustern soll ein Neuronales
Netzwerk den Zustand der Isolation
und die Art der Defekte erkennen
und diagnostizieren. Das Teilentla-
dungsmuster liegt in der Form eines
zweidimensionalen Histogramms vor,
das die Anzahl der iiber eine Zeit-
spanne gemessenen Teilentladungen
als Funktion ihrer Phasenlage und ih-
rer Stirke wiedergibt. Ein Hauptpro-
blem liegt nun darin, aus diesen Daten
geeignete Inputdaten fiir das Neuro-
nale Netzwerk herauszukristallisieren,
so dass ein moglichst effizientes Lern-
und Verallgemeinerungsverhalten re-
sultiert. Eine detaillierte Analyse der
vorhandenen Daten, kombiniert mit
physikalischen =~ Modellrechnungen,
hat zu verschiedenen Vorschldagen fiir
ein solches Preprocessing gefiihrt.

Darauf basierende Diagnosesysteme
sollen nun getestet und miteinander
verglichen werden.

In Zusammenarbeit mit der SKA
Zirich studieren wir den Einsatz von
Neuronalen Netzwerken bei der Pro-
gnose von Devisenkursen. Insbeson-
dere werden Methoden untersucht,
die es erlauben, die Zuverlissigkeit ei-
ner Prognose quantitativ abzuschét-
zen und entsprechende Konfidenzin-
tervalle zu bestimmen. Neuronale
Netzwerke, die eine Wahrscheinlich-
keit oder eine Wahrscheinlichkeits-
verteilung lernen, scheinen in diesem
Zusammenhang von besonderem In-
teresse zu sein. Solche Netzwerke
konnen zum Beispiel entscheiden, in
welchen Situationen eine Prognose so
unsicher wird, dass es vorteilhafter ist,
keine Aussage zu machen. Das Stu-
dium von vereinfachten Prognose-
Problemen hat gezeigt, dass dadurch
die Vorhersagegenauigkeit in den iib-
rigen Fillen betrdchtlich erhoht wer-
den kann.

Eine ausfiihrliche Studie, die weit-
gehend abgeschlossen ist, befasste
sich schliesslich mit der Verwendung
von Neuronalen Netzwerken zur Op-
timierung der Zusammensetzung von
ZnO-Varistoren. Die entsprechenden
Untersuchungen wurden zum grossen
Teil im Rahmen einer ETH-Diplom-
arbeit durchgefiihrt [12]. Das gewihl-

14
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te Vorgehen erwies sich als sehr viel-
versprechend und wird im néchsten
Abschnitt ndher vorgestellt.

Optimierung der Dotierung
von ZnO-Varistoren

Varistoren (Variable Resistors)
sind keramische Bauelemente fiir den
Uberspannungsschutz [13].  Speziell
im Mittel- und Hochspannungsbereich
basieren Ableiter heute auf solchen
Schutzelementen. Varistoren beste-
hen zur Hauptsache aus Zinkoxid
(Zn0O), einem Halbleiter mit grosser
Energieliicke. Durch Zugabe geeigne-
ter Dotierstoffe kann diesem Material
im polykristallinen Verbund eine stark
nichtlineare  Strom-Spannungskenn-
linie verliechen werden (Bild 4). Beim
Uberschreiten einer materialabhéngi-
gen Schwellenspannung Up schalten
solche Elemente innert Nanosekun-
den und reversibel von einem isolie-
renden in einen gut leitenden Zu-
stand. Die elektrische Charakteristik
der Varistoren hidngt in komplexer
Weise von der Dotierung und von der
Temperaturfithrung beim Sinterpro-
zess ab. In der technischen Ausfiih-
rung werden bis zu zehn verschiedene
Dotierstoffe verwendet. welche in
sehr unterschiedlichen Konzentra-
tionsbereichen (ppm bis % ) vorliegen.
Die Wahl dieser Zugaben erfolgt heu-
te fast ausschliesslich aus rein empiri-
schen Uberlegungen, und der Herstel-
ler sieht sich mit der beinahe unloésba-
ren Aufgabe konfrontiert, ein bis zu
10komponentiges System beziiglich
verschiedener elektrischer Kenngros-
sen zu optimieren.

Die wichtigsten Kenngrossen sind
die im Betriebspunkt U, gemessene
Verlustleistung Py, das Restspan-
nungsverhiltnis Ry = Up/Up, wobei
Up eine durch einen Normstrompuls
erzeugte Uberspannung bezeichnet,
und der Nichtlinearitdtskoeffizient
a = d(log/)/d (log U), der bei einer
Normstromdichte unterhalb des Be-
triebspunktes gemessen wird. Um ei-
ne gute thermische Stabilitdt zu ge-
wihrleisten, sollte die Verlustleistung
Py moglichst klein sein. Das Rest-
spannungsverhiltnis Ry zeigt an, wie
gut sich das «Stromventil» bei Uber-
spannung 6ffnet. Ry sollte also auch
moglichst klein sein. Der Nichtlineari-
tatskoeffizient a hingegen muss fiir ei-
ne gute Schaltcharakteristik moglichst
gross sein. Eine vierte Kenngrosse ist
der Langzeitstabilititsparameter Py,
die bei 500 oder 1000 Stunden Be-

triebsdauer gemessene zeitliche An-
derung der Verlustleistung. Fiir ein
gutes Betriebsverhalten muss Py = 0
erfiillt sein.

Bei ABB wurde eine umfangreiche
Studie durchgefiihrt, die darauf hin-
zielte, die Zusammenhinge zwischen
Dotierung und elektrischem Verhal-
ten von ZnO-Varistoren in den Griff
zu bekommen. Ausgehend von einer
empirisch optimierten Referenz-Zu-
sammensetzung wurde zuerst der Ein-
fluss jedes Dotierelementes einzeln
untersucht. Mit einem Satz von 5 Ele-
menten, die alle einen besonders star-
ken Einfluss zeigten, wurde dann ein
systematischer Variationsversuch
durchgefiihrt, der 2° = 32 verschie-
dene Zusammensetzungen umfasste.
Die statistische Analyse dieser experi-
mentellen Daten mit konventionellen
Methoden ergab keine befriedigenden
Ergebnisse, was auf die starken Wech-
selwirkungen zwischen den Dotierele-
menten und auf die teilweise extrem
nichtlinearen Abhéngigkeiten zurtick-
gefiihrt werden kann.

Aus diesem Grund haben wir ver-
sucht, das schwierige Optimierungs-
problem mit Hilfe der Lern- und Ver-
allgemeinerungsfahigkeit von Neuro-
nalen Netzwerken zu losen [12]. Als
Lernbeispiele standen experimentelle
Daten fiir insgesamt etwa 50 verschie-
dene Dotierungen zur Verfiigung. Der
Netzwerkinput bestand aus den Kon-
zentrationen der 5 Dotierelemente
und der Output sollte die zugehorigen
4 elektrischen Kenngrossen anzeigen.
Die unterschiedlichen Konzentra-
tionsbereiche der einzelnen Elemente
und die inhomogene Verteilung der
Lerndaten erforderten ein relativ auf-
wendiges Preprocessing (z.B. Skalie-
rungen) sowohl der Input- als auch
der Outputdaten. Es stellte sich her-
aus, dass ein sorgfiltiges Preprocess-

rungseigenschaften der neuronalen
Netze betrichtlich verbessern kann.

Die Netzwerke wurden mit dem
Backpropagation-Lernverfahren trai-
niert, und die Auswahl von geeigneten
Netzwerk-Architekturen erfolgte auf-
grund einer sogenannten Crossvalida-
tion-Methode. Dabei werden die Vor-
aussagen von trainierten Netzwerken
mit Messdaten verglichen, die im
Lernset nicht beriicksichtigt wurden.
Die Untersuchungen ergaben, dass
Feedforward-Netzwerke mit zwei
Schichten von «versteckten» Neuro-
nen die Aufgabe befriedigend l6sen
konnen. Ein Vergleich hat ferner ge-
zeigt, dass Neuronale Netzwerke den
Zusammenhang zwischen Dotierung
und elektrischen Kenngréssen wesent-
lich zuverldssiger zu modellieren ver-
mogen als eine polynomiale Regres-
sionsanalyse.

Im eigentlichen Optimierungspro-
zess ersetzen die trainierten Netzwer-
ke dann das Durchfiihren von aufwen-
digen Experimenten. Durch eine sy-
stematische Variation der Inputdaten
konnen so Konzentrationsbereiche fiir
die Dotierelemente identifiziert wer-
den. die zu optimalen Werten fiir die
elektrischen Kenngrossen fithren soll-
ten. Dabei werden nur diejenigen
Voraussagen beriicksichtigt, die durch
mehrere,  verschiedene  trainierte
Netzwerke bestitigt werden. Dadurch
werden die Prognosen zwar etwas
konservativer, ihre Zuverldssigkeit
hingegen wird betréchtlich erhoht.

Die Vorhersagen der Neuronalen
Netzwerke in bezug auf optimale Do-
tierkonzentrationen werden zurzeit
experimentell iberpriift. Die ersten
Resultate sind sehr vielversprechend
(Tab. I).

Bei der Bewertung der erzielten
Verbesserungen muss beriicksichtigt
werden, dass das Verbesserungspo-

ing die Lern- und Verallgemeine- tential der einzelnen Kenngrdssen
Zusammen- Py Ry (o}
setzung Prog.  Exp. Prog. Exp. Prog.  Exp.
1 -25% -28% -31% -79% +48% +65%
2 -15% -36% -25% -8.0% +30% +78%
3 -41% -37T% -25% -4.6% +74% +96%
Tabelle I Prognostizierte (Prog.) und experimentell gemessene (Exp.) Verbesserungen der

Kenngrossen Py, Ry und « in bezug auf das Referenzmaterial.
Die drei Zusammensetzungen wurden autgrund der Modellierung durch Neuronale Netzwerke

ausgewdhlt
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sehr unterschiedlich ist und dass sich
nicht nur in bezug auf das Referenz-
material, sondern auch im Vergleich
mit den besten Lerndaten zum Teil
noch betriachtliche Verbesserungen
ergeben. Zudem ertiillen alle drei Zu-
sammensetzungen das Langzeit-Stabi-
litdtskriterium Py =< 0 nach 1000 Stun-
den Betriebsdauer. Die Tatsache, dass
die  gemessenen  Verbesserungen
durchwegs grésser sind als prognosti-
ziert, ldsst sich mit der eher konserva-
tiven Beurteilung der Netzwerk-Vor-
hersagen erklédren.

Ausblick

Die bisherigen Erfahrungen und
Ergebnisse haben uns dem Hauptziel
unserer Studien, die Einsatzfihigkeit
von Neuronalen Netzwerken in indu-
striellen Anwendungen zu demon-
strieren, einen wesentlichen Schritt
ndher gebracht. Die Optimierung von
ZnO-Varistoren bezog sich zwar nur
auf die elektrischen Kenngrossen und
auf deren Abhingigkeit von der Do-
tierung. Der Einfluss der Prozesspara-
meter und die Auswirkungen auf an-
dere, fiir die Fabrikation wichtige
Kenngrossen wurden nicht in Betracht
gezogen. Die erzielten Resultate zei-
gen aber eindeutig, dass auf Neurona-
len Netzwerken basierende Methoden
bei der Optimierung von Materialei-
genschaften mit Erfolg eingesetzt wer-
den konnen. Auch unsere Untersu-
chungen von Steuer- und Regelstrate-
gien demonstrieren die potentiellen

Vorteile von Neuronalen-Netzwerk-
Losungen in praktischen Anwendun-
gen. Weitere Studien, die zum Teil
erst vor kurzem aufgenommen wur-
den, zielen ebenfalls daraufhin, viel-
versprechende  Anwendungsgebiete
fiir Neuronale Netzwerke zu identifi-
zieren und diese Methoden dann opti-
mal einzusetzen.

Zusammenfassend kann aber be-
reits jetzt festgehalten werden. dass
selbst relativ einfache Neuronale
Netzwerke fihig sind. komplexe Pro-
bleme aus verschiedenen Bereichen
effizient und Okonomisch zu ldsen,
falls gentigend Lernbeispiele zur Ver-
fiigung stehen. Voraussetzung dazu
sind allerdings ein fundiertes Ver-
standnis des Lern- und Verallgemei-
nerungsverhaltens solcher Systeme
und ein intelligentes Preprocessing
der Lerndaten.
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