Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 82 (1991)

Heft: 7

Artikel: Aktives Leistungsfilter für statischen Frequenzumrichter mit einem

Wechselrichter mit eingeprägtem Strom

Autor: Alexa, Dimitrie

DOI: https://doi.org/10.5169/seals-902953

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aktives Leistungsfilter für statischen Frequenzumrichter mit einem Wechselrichter mit eingeprägtem Strom

Dimitrie Alexa

In der vorliegenden Arbeit wird ein aktives Leistungsfilter vorgestellt, das die Stromharmonischen eines Wechselrichters mit eingeprägtem Strom sowohl am Eingang als auch am Ausgang stark reduziert. Dieses Zusatzfilter erlaubt gleichzeitig, die Kapazitäten der Löschkondensatoren um einen Drittel zu reduzieren und den Frequenzbereich des Wechselrichters bis hinunter auf 1...1,5 Hz auszudehnen.

L'article présente un filtre de puissance actif qui réduit fortement, tant à l'entrée qu'à la sortie, les harmoniques de courant d'un onduleur à courant indépendant de la charge. Ce filtre supplémentaire permet en même temps de réduire d'un tiers les capacités des condensateurs étouffants et d'étendre la gamme des fréquences vers le bas jusqu'à 1...1,5 Hz.

Bei zahlreichen Anwendungen von elektrischen Antrieben mit variabler Geschwindigkeit, speziell für mittlere und grosse Leistungen, werden Kurzschlussläufer-Asynchronmotoren verwendet, die von statischen Frequenzumrichtern mit Wechselrichtern mit eingeprägtem Strom gespeist werden. Die hauptsächlichen Vorteile eines solchen Umrichters sind [1]:

- die Aufladung der Löschkondensatoren des Wechselrichters erfolgt durch den Laststrom und nicht durch die Spannung des Zwischenstromkreises
- es ist kein zusätzlicher Wechselrichter zur Rückgewinnung der Energie im Falle der Nutzbremsung des gespeisten Motors notwendig, da die Stromrichtung im Zwischenkreis beibehalten wird
- für den Wechselrichter können Netzthyristoren mit erhöhter Freiwerdezeit t_q (150...200 μ s) verwendet werden.

Solche Frequenzumrichter besitzen auch einige Nachteile, von denen der

wichtigste darin besteht, dass die Asynchronmaschine mit Phasenströmen in Form von rechteckigen Blökken, die eine Zeitdauer von einem Drittel der Periode dieser Ströme haben, gespeist wird. Die Fourier-Analyse für diese Ströme zeigt starke Beiträge von Harmonischen (6 $k \pm 1$)-ter Ordnung (k = 1, 2, 3, ...). Diese Harmonischen verursachen zusätzliche Verluste und erzeugen Pendelmomente, deren grösstes Moment eine Frequenz hat, die der 6fachen Grundfrequenz entspricht. Aus diesem Grunde lässt sich mit der Ausgangsfrequenz bei diesem Umrichter kaum unter 4...5 Hz gehen, woraus ein beschränkter Regelbereich der Geschwindigkeit Asynchronmotors resultiert. Gleichzeitig wird das Netz stark mit Stromharmonischen gleicher ($6k \pm 1$)ter Ordnung belastet [2, 3, 4, 5].

Im folgenden wird nun ein aktives Leistungsfilter beschrieben, das eine bedeutende Reduktion der in den Motor eingeführten oder im Speisenetz erzeugten Harmonischen der Ordnung n = 5, 7, 11 und 13 erlaubt.

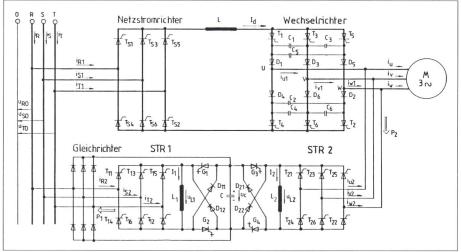


Bild 1 Prinzipschema des aktiven Leistungsfilters

Adresse des Autors

Prof.Dr.-Ing. *Dimitrie Alexa*, Lehrstuhl für Elektronik am Polytechnischen Institut Iassy, Strada 23 August Nr. 22, RO-6600 Iassy, Romania

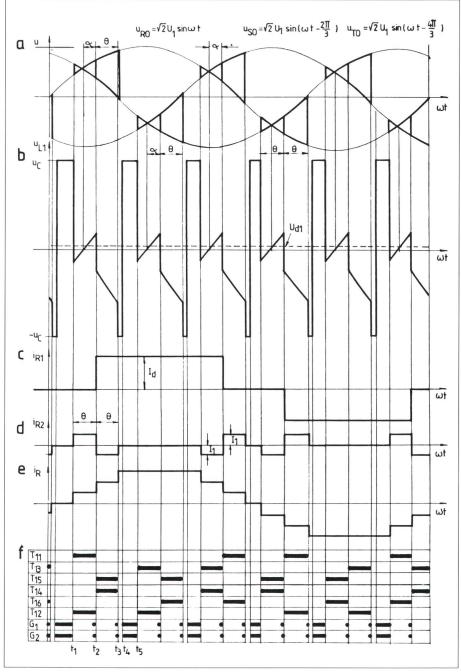


Bild 2 Funktionsprinzip des Stromrichters STR 1

a Phasenspannungen u_{R0} , u_{S0} und u_{T0} des Speisenetzes

b über die Induktivität L_I geschaltete Spannung u_{LI}

c, d, e Eingangsströme i_{R1}, i_{R2} und i_R

f Programm für die Einschaltdauer der Thyristoren

übrige Bezeichnungen: siehe Text

Aktive Leistungsfilter sind vor allem von grossem Interesse für den Einsatz in elektrischen Energieversorgungsnetzen [6, 7, 8, 9].

Funktionsprinzip eines aktiven Leistungsfilters

In Bild 1 ist die Struktur eines aktiven Leistungsfilters wiedergegeben, durch das man eine gute Kompensa-

tion der Stromharmonischen eines Frequenzumrichters mit Wechselrichter mit eingeprägtem Strom erreicht. Das Filter besteht aus zwei Spulen L_1 und L_2 , zwei Stromrichtern STR1 und STR2 mit je 6 Frequenzthyristoren $(T_{11}...T_{16}$ und $T_{21}...T_{26})$, einem elektrolytischen Kondensator C und 4 GTO-Thyristoren $(G_1...G_4)$.

Im folgenden wird angenommen, dass durch die Spule L im Zwischen-

kreis des Frequenzumrichters aufgrund des grossen Induktivitätswertes von L ein praktisch konstanter Strom I_d fliesst. Unter dieser Bedingung zeigt die Kurve c von Bild 2 die Wellenform des Phaseneingangsstromes in den Netzstromrichter für i_{RI} bei einem Steuerwinkel der Thyristoren $T_{s1}...T_{s6}$ von α (siehe Bild 2, a). Die Kurve dvon Bild 2 gibt die Form des Stromes i_{R2} wieder, der in das Netz injiziert werden muss, um so gut wie möglich die Stromharmonischen von i_{RI} auszugleichen. Nach dem Ausgleich hat der Gesamtstrom i_R die Wellenform gemäss Kurve *e* von Bild 2.

Das Steuerprogramm der Frequenzthyristoren $T_{11}...T_{16}$ und der GTO-Thyristoren G_1 und G_2 wird in Bild 2, f, gezeigt. Es wurde so konzipiert, dass an die Spule L_1 eine Spannung u_{L1} gelegt wird (Kurve b von Bild 2), deren Gleichspannungskomponente U_{d1} ausreichend gross ist, um durch L_1 einen praktisch konstanten Strom mit dem Wert I_1 aufrecht zu erhalten.

Die Arbeitsweise des Stromrichters STR1 zwischen den Zeitpunkten t_1 und t_5 geht aus Bild 2 hervor. Vor dem Zeitpunkt t_1 sind die GTO-Thyristoren G_1 und G_2 leitend, und die Spule L_1 nimmt vom Kondensator C Energie auf. Zum Zeitpunkt t_I werden G_I und G_2 blockiert, und die Thyristoren T_{11} und T_{12} werden leitend. Bis der Strom i_{R2} den Wert I_1 erreicht, wird die Spule L_1 teilweise auf C mittels der Dioden D_{11} und D_{12} entladen. Zum Zeitpunkt t_2 , der dem Steuerwinkel α der Thyristoren T_{s1} und T_{s6} entspricht (siehe Bild 2, a), werden G_1 und G_2 zur Sperrung der Thyristoren T_{11} und T_{12} gezündet, und nach dieser Operation zünden T_{15} und T_{14} . Man bemerkt, dass der Stromrichter STR1 zwischen t_1 und t_3 mehr oder weniger als Wechselrichter funktioniert und die Spule L_1 Energie in das Netz abgibt. Zum Zeitpunkt t₃ werden für kurze Zeit die Thyristoren G_1 und G_2 leitend, wodurch T_{15} und T_{14} gesperrt werden. Zwischen t_3 und t_4 liefert die Spule L_1 Energie an den Kondensator C. Schliesslich zünden zum Zeitpunkt t_4 die Thyristoren G_1 und G_2 , und bis zum Zeitpunkt t_5 erhält die Spule L_1 Energie von C.

Was den Wechselrichter mit eingeprägtem Strom des Frequenzumrichters anbelangt, werden dessen Ausgangsströme i_{UI} , i_{VI} und i_{WI} aus rechteckigen Stromblöcken gebildet, die 1/3 der Ausgangsperiode $2\pi/\omega_I$ ausmachen. Um die Ausgangs-Stromhar-

monischen aus dem Wechselrichter so genau wie möglich auszugleichen, können in die Motorphasen die durch die Spule L_2 und den Stromrichter STR2 erzeugten Ströme i_{U2} , i_{V2} und i_{W2} , entsprechend Kurve c von Bild 3, injiziert werden. Die Kurven a von Bild 3 zeigen die Phasenspannungen e_U , e_V und e_W sowie die Zeitpunkte für die Einschaltung der Hauptthyristoren $T_1...T_6$ des Wechselrichters. Der Winkel φ stellt den Winkel der Phasenverschiebung zwischen den Fundamentalen der Spannungen e_U , e_V , e_W und den Strömen i_{UI} , i_{VI} , i_{WI} dar. Die an die Spule L_2 angelegte Spannung u_{L2} ist im Teil b von Bild 3 dargestellt. Die Gleichspannungskomponente U_{d2} dieser Spannung ist ausreichend gross, um einen praktisch konstanten Strom vom Wert I_2 durch L_2 beizubehalten. Der vom aktiven Leistungsfilter auf der Phase U injizierte Strom i_{U2} ist in cund der vom Motor aufgenommene

Gesamtstrom i_U in d von Bild 3 wiedergegeben. Teil e von Bild 3 schliesslich zeigt das Steuerungsprogramm der Thyristoren $T_{21}...T_{26}$ des Stromrichters STR2 sowie der GTO-Thyristoren G_3 und G_4 .

Die Arbeitsweise des Stromrichters STR2 zwischen den Zeitpunkten t₁ und t₅ lässt sich mit Hilfe von Bild 3 wie folgt beschreiben. Vor dem Zeitpunkt t_1 sind die Thyristoren G_3 und G_4 eingeschaltet, und die Spule L_2 nimmt vom Kondensator C Energie auf. Nach Sperrung dieser Thyristoren zum Zeitpunkt t_1 werden die Thyristoren T_{25} und T_{24} gezündet, und die Spule L_2 gibt an den Motor, bis zum Zeitpunkt t_2 , Strom ab. Nach Sperrung der Thyristoren G_3 und G_4 , nachdem der Strom i_{U2} den Wert I_2 und i_{W2} den Wert $-I_2$ erreicht hat, wird die Spule L_2 teilweise auf C entladen.

Zum Zeitpunkt t_2 wird T_1 , G_3 und G_4 eingeschaltet (siehe Bild 4). Die

Thyristoren T_5 , T_{24} und T_{25} werden brüsk gesperrt. Zu diesem Zeitpunkt haben die Spannungen, mit denen die Kondensatoren C_1 , C_3 und C_5 aufgeladen sind, die Werte 0, $+U_{Cmax}$ und $-U_{Cmax}$; ihre Polaritäten für diesen Zeitpunkt sind in Bild 4, a, gezeigt. Der Strom I_d , der durch T_5 fliesst, wird auf T_1 umgeschaltet. Der Strom $i_{TI} = I_d$ wird in 2 Teilströme verzweigt. Ein Teilstrom von $I_d - I_2$ fliesst durch den zu $C_5//C_{13}$ äquivalenten Kondensator (C_{13} : äquivalente Kapazität zu Serieschaltung von C_1 und C_3), der sich mit der Diode D_5 in Reihenschaltung befindet. Der andere Teilstrom von I_2 fliesst durch die Diode D_1 . Weiter werden G_3 und G_4 zum Zeitpunkt $t_2 + \Delta t'$ ($\Delta t'$: einige μ s) gesperrt und T_{21} und T_{22} gezündet. Der Strom I_2 der Spule L_2 wird bis zum Zeitpunkt $t_2 + \Delta t''$ von den Dioden D_{21} , D_{22} und dem Kondensator C auf die mit den Phasen U und W verbun-

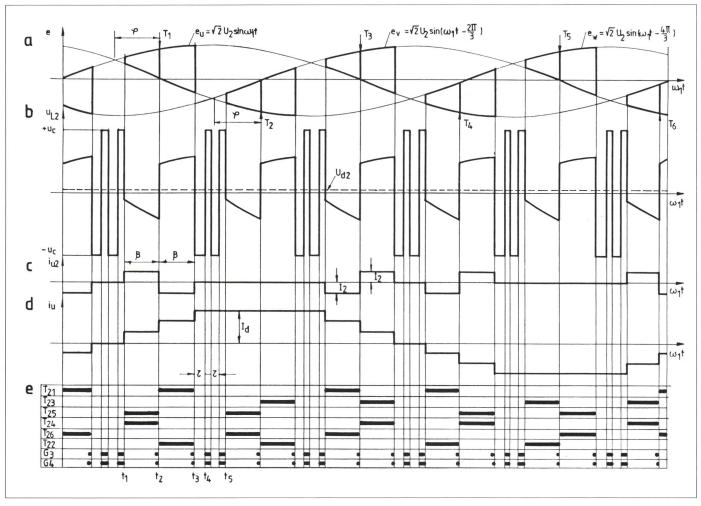


Bild 3 Funktionsprinzip des Stromrichters STR 2

- *a* Phasenspannungen e_U , e_V und e_W des Motors
- b über die Induktivität L_2 geschaltete Spannung u_{L_2}
- c, d Ausgangsströme i_{U2} und i_U
- e Programm für die Einschaltdauer der Thyristoren

übrige Bezeichnungen: siehe Text

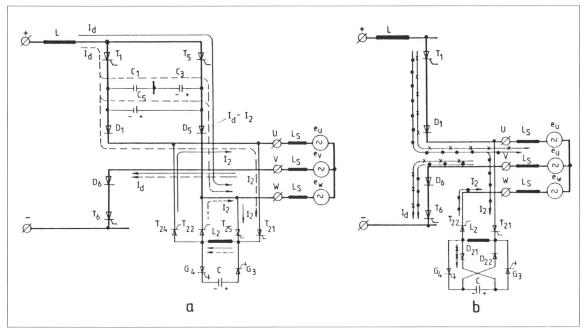


Bild 4 Ströme für verschiedene Zeitintervalle

- Zeitintervall $t_2 < t < t_2 + \Delta t'$ $(\Delta t' : siehe Text)$
- b Zeitintervall $t_2 + \Delta t' < t < t_2 + \Delta t''$ $(\Delta t'': \text{ siehe Text})$

denen Thyristoren T_{2I} und T_{22} umgeschaltet. Annähernd bis zum Zeitpunkt $t_2 + \Delta t''$ wächst der Strom i_{UI} bis zum Wert I_d an, und der Strom i_{WI} fällt auf Null ab. Das Zeitintervall $\Delta t''$ hat gewöhnlicherweise einen Wert von der Grössenordnung 200...300 μ s, wobei $T_1...T_6$ Netzthyristoren sind.

In den Bildern 4 und 5 bemerkt man, dass die Umschaltkondensatoren $C_1...C_6$ für einen Laststrom von $I_d - I_2$ dimensioniert werden müssen und nicht für I_d . Da, wie aus dem folgenden Abschnitt hervorgeht, der optimale Wert von I_2 gleich $I_d/3$ ist, kann man die Schlussfolgerung ziehen, dass bei einem Wechselrichter nach Bild 1 die Umschaltkondensatoren $C_1...C_6$ um 33 % kleinere Kapazitäten benötigen als entsprechende Kondensatoren eines Wechselrichters mit eingeprägtem Strom ohne aktivem Leistungsfilter, der für die Speisung eines Asynchronmotors gleicher Leistung bestimmt ist. Dies stellt einen wesentlichen Vorteil dar, weil Wechselrichter mit eingeprägtem Strom Umschaltkondensatoren hoher Kapazität benötigen, die durch grosse Abmessungen und hohe Kosten gekennzeichnet sind.

Im weiteren bleiben die Thyristoren T_{21} und T_{22} zwischen $t_2 + \Delta t''$ und t_3 eingeschaltet, der Strom i_{U2} ist praktisch gleich $-I_2$, und die Spule L_2 nimmt Energie von den Phasen U und W auf. Zum Zeitpunkt t_3 zünden G_3 und G_4 , und der Strom mit dem Wert I_2 der Spule L_2 wird annähernd bis zum Zeitpunkt $t_3 + \Delta t''$ von T_{21} und

 T_{22} auf die Dioden D_{21} und D_{22} umgeschaltet (siehe Schema b von Bild 4). Zwischen $t_3 + \Delta t''$ und $t_3 + \tau$ gibt die Spule L_2 Energie an C ab, und zwischen $t_3 + \tau$ und t_4 nimmt sie Energie von C durch die Thyristoren G_3 und G_4 auf.

Während der Zeitdauer, in der L_2 an C angeschlossen ist (z.B. zwischen t_3 und t_5 in Bild 3), werden die Thyristoren G_3 und G_4 abwechselnd mit einer Frequenz bis 1 kHz eingeschaltet, so dass der Strom durch L_2 praktisch konstant auf dem Wert I_2 gehalten wird, ohne dass ein sehr grosser Wert für die Induktivität der Spule L_2 notwendig ist. Ferner ist die Tatsache hervorzuheben, dass bei tiefen Ausgangsfrequenzen $f_I = \omega_I/2\pi$ die Amplituden der Spannungen e_U , e_V und e_W viel kleiner sind als U_c , und deshalb können diese Spannungen keine grosse Änderungen des durch L_2 fliessenden Stromes verursachen. Aus diesem Grunde kann die Ausgangsfrequenz f_1 bis auf 1...1,5 Hz reduziert werden, was einen weiteren Vorteil des Frequenzumrichters nach Bild 1 darstellt.

Aus der Beschreibung des Funktionsprinzips des aktiven Leistungsfilters folgt, dass der Stromrichter STR2 als Gleichrichter arbeitet und eine Leistung P_2 vom Dreiphasensystem U, V, W aufnimmt, während der Stromrichter STR1 als Wechselrichter arbeitet und eine Leistung P_1 in das Netz abgibt. In stationärem Betrieb der Asynchronmaschine, und wenn die Leistungsverluste aus dem aktiven Filter und dem Frequenzumrichter

vernachlässigt werden, sind diese beiden Leistungen gleich. Wenn die Asynchronmaschine als Generator arbeitet, und dabei elektrische Energie über den Frequenzumrichter in das Versorgungsnetz abgibt, dann kehren sich die Richtungen der Leistungen P_I und P_2 um.

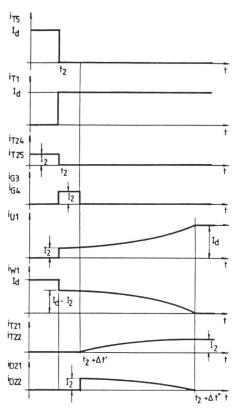


Bild 5 Ausschaltvorgang des Thyristors T_5 : Spannungs- und Stromverläufe

Frequenzspektrum der Eingangsund Ausgangsströme

Die Zeitabhängigkeit des Gesamtstromes in den Phasen des Netzes, zum Beispiel für i_R , ist in Bild 2, e, wiedergegeben. Dieser Strom (mit 12 Stufen pro Periode) kann in eine Fourier-Reihe der Form

$$\begin{split} \mathbf{i}_{R}(t) &= \sum_{n=1}^{n=\infty} \\ &\frac{4[\sin(n\pi/2)]^{2} \cdot \cos(n\pi/6)}{\pi n} \\ &\cdot [1-4a_{1} \cdot \sin^{2}(n\Theta/2)] \\ &\cdot \mathbf{I}_{d} \cdot \sin[n(\omega t - \alpha)] \end{split} \tag{1}$$

zerlegt werden, wobei ω die Kreisfrequenz des Speisenetzes, n die Ordnung der Harmonischen und $a_1 = I_1/I_d$ bedeuten.

Der Phasengesamtstrom des Asynchronmotors andererseits, zum Beispiel i_U , ist in Bild 3, d, wiedergegeben und kann in eine Fourier-Reihe der Form

$$i_{U}(t) = \sum_{n=1}^{n=\infty} \frac{4[\sin(n\pi/2)]^{2} \cdot \cos(n\pi/6)}{\pi n} \cdot [1-4a_{2} \cdot \sin^{2}(n\beta/2)] \cdot I_{d} \cdot \sin[n(\omega_{1}t-\phi)]$$
 (2)

zerlegt werden, wobei ω_1 die Ausgangskreisfrequenz und $a_2 = I_2/I_d$ be-

Aus den Beziehungen (1) und (2) kann man folgern, das die Phasengesamtströme aus dem Netz und dem Motor keine geraden Harmonischen oder Vielfache 3ter Ordnung beinhalten. Der Anteil der Grundschwingung am Totalstrom erreicht für $a_1 = a_2 =$ 1/3 und $\theta = \beta = 21^{\circ}$ einen maximalen Wert von 0,99315. Für diesen Fall sind in Bild 6 die Verhältnisse zwischen den Amplituden $I_{(n)}$ der Haupharmonischen und der Amplitude $I_{(I)}$ der Grundschwingung wiedergegeben. Man stellt fest, dass mit dem Einsatz

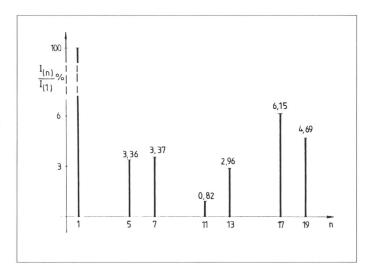


Bild 6 Oberschwingungsspektrum der Eingangs- und Ausgangsströme $I_{(1)}$ Effektivwert

der Strom-Grundschwingung $I_{(n)}$ Effektivwert des Stromes der Oberschwingung mit der Ordnungszahl n

eines aktiven Leistungsfilters die Harmonischen der 5-, 7-, 11- und 13ten Ordnung eines statischen Frequenzumrichters erheblich reduziert werden können.

dynamischem Betrieb der Asynchronmaschine können bei Veränderungen der Kreisfrequenz ω_1 die Winkel θ und β in engen Grenzen geregelt werden, um den Strom durch die Spulen L_1 und L_2 nahe der Werte I_1 und I_2 beizubehalten. Falls die Spannung U_C am Kondensator C über einen bestimmten Grenzwert hinaus ansteigt, dann fällt die Gleichspannungskomponente U_{d2} (siehe Bild 3), und auch der Strom I2 verkleinert sich. Die Aufladung von C erfolgt mit einem kleineren Strom. Dagegen wächst die Gleichspannungskomponente U_{d1} (siehe Bild 2), und somit vergrössert sich auch der Strom I_1 . Die Entladung von C erfolgt mit einem grösseren Strom. Auf diese Weise ergibt sich eine Selbstregelung der Spannung dieses Kondensators. Der an C angeschlossene Gleichrichter mit Dioden hat die Aufgabe, das Auftreten von plötzlichen Stromsprüngen am Eingang des aktiven Leistungsfilters zu vermeiden.

Schlussfolgerungen

Die Verwendung des in der Arbeit vorgeschlagenen aktiven Leistungsfilters hat folgende Vorteile:

starke Reduktion der in den Motor eingeführten oder im Speisenetz

- verursachten Harmonischen 5-, 7-, 11- und 13ter Ordnung
- Verkleinerung der Kapazitäten der Löschkondensatoren des Wechselrichters um 33 %
- Erweiterung des Bereichs der Ausgangsfrequenz des Wechselrichters bis hinunter zu 1...1,5 Hz.

Literatur

- [1] W. Landeck und U. Putz: Selbstgeführter Zwischenkreisumrichter mit eingeprägtem Strom für Drehstrom-Asynchronmotoren. Techn. Mitt. AEG-Telefunken 67(1977)1, S. 11...15.
- [2] R. Gretsch und G. Krost: Transiente Harmonische durch Reversierantriebe mit Stromrichtern. Bull. SEV/VSE 77(1986)5, S. 243...250.
- Energiebericht der Elektroindustrie. Frankfurt/ M., Zentralverband der Elektrotechnischen Industrie e.V. (ZVEI) 1980.
 [4] R. Gretsch und G. Krost: Betrags- und winkel-
- richtige Messung von Spannungs- und Strom-harmonischen. ETZ-Archiv 3(1981)5, S. 149...152
- [5] M. A. Pesonen: Harmoniques, paramètres caractéristiques, méthodes d'étude, estimation de valeurs existantes en réseau. Electra (CIGRE) – (1981)77. p. 35...54.
 [6] H. Kawahira a. o.: Active power filter. International Power Electronics Conference. Tokyo.
- March 27...31, 1983. Conference Record, vol. 2, p. 981...992.
- [7] H. Akagi, A. Nabae and S. Atoh: Control strategy of active-power filters using multiple voltage-source PWM converters. IEEE-IAS-1985. IEEE Industry Applications Society Annual Meeting, Toronto, October 6...11, 1985. Con-
- [8] L. Malesani, L. Rossetto and P. Tenti: Active filter for reactive power and harmonics compensation. 17th Annual IEEE Power Electronics Specialists Conference PESC'86 Record.
- 17(1986), p. 321...330.

 C. Tuttas: Anwendung aktiver Saugkreise in elektrischen Energieversorgungsnetzen. ETZ-Archiv 9(1987)4, S. 93...100