Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 82 (1991)

Heft: 3

Artikel: Aktives Leistungsfilter zur Kompensation von Strom-Oberschwingungen

in Verteilnetzen

Autor: Alexa, Dimitrie

DOI: https://doi.org/10.5169/seals-902929

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aktives Leistungsfilter zur Kompensation von Strom-Oberschwingungen in Verteilnetzen

Dimitrie Alexa

Aktive Leistungsfilter zeichnen sich durch eine ausgezeichnete Dynamik, hohe Funktionssicherheit und vorteilhafte Abmessungen aus. In der vorliegenden Arbeit wird ein aktives Leistungsfilter mit induktiver Speicherung für die Kompensation von Stromharmonischen in Verteilnetzen vorgestellt.

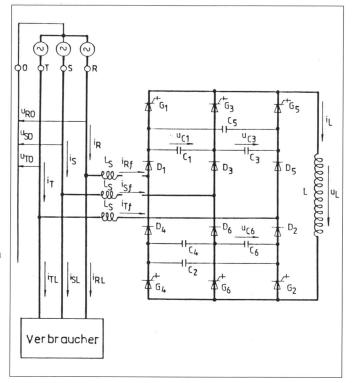
Les filtres de puissance actifs se distinguent par une excellente dynamique, une haute sécurité de fonctionnement et des dimensions avantageuses. L'article présente un filtre de puissance actif avec accumulation inductive pour la compensation des harmoniques de courant dans les réseaux de distribution.

Die Kompensation der von seiten verschiedener Verbraucher im Verteilungsnetz erzeugten Stromharmonischen mit Hilfe von aktiven Leistungsfiltern ist von grossem Interesse. Aktive Leistungsfilter zeichnen sich durch erhöhtes dynamisches stungsvermögen, Funktionssicherheit und reduzierte Abmessungen aus. Im Gegensatz zu den mit LC-Reihenschaltungen realisierten konventionellen passiven Filtern wird ihr Betrieb auch nicht durch Veränderungen der Frequenz und der Konfiguration des Starkstromnetzes beeinflusst.

Die allgemeine Anordnung eines aktiven Leistungsfilters beinhaltet ein oder mehrere Blindelemente zur Energiespeicherung, die durch einen oder mehrere Stromrichter an das Netz angeschlossen sind. Die Elemen-

te zur Energiespeicherung können induktiv oder kapazitiv sein.

Im folgenden wird ein aktives Leistungsfilter beschrieben, das eine sehr gute Kompensation einer bestimmten Stromharmonischen (zum Beispiel der 5ten oder 7ten Ordnung), die in einem Elektrizitätsverteilnetz auftritt, erlaubt.


Funktionsprinzip

In Bild 1 wird der Aufbau eines aktiven Leistungsfilters wiedergegeben, das eine bestimmte Stromharmonische (zum Beispiel 5ter Ordnung, entsprechend Bild 2), die in einem Verteilnetz auftritt, kompensiert. Das aktive Filter setzt sich aus 6 GTO-Thyristoren $G_1...G_6$ (oder 6 bipolaren Leistungstransistoren), 6 Trenndioden

Bild 1 Prinzipschema eines aktiven Leistungsfilters

 $C_1...C_6$ Kondensatoren $D_1...D_6$ Trenndioden $G_1...G_6$ GTO-

 $L \\ L_s \\ E_s \\ E_t \\$

Adresse des Autors

Prof.Dr.-Ing. *Dimitrie Alexa*, Lehrstuhl für Elektronik am Polytechnischen Institut Iassy, Strada 23 August Nr. 22, RO-6600 Iassy, Romania

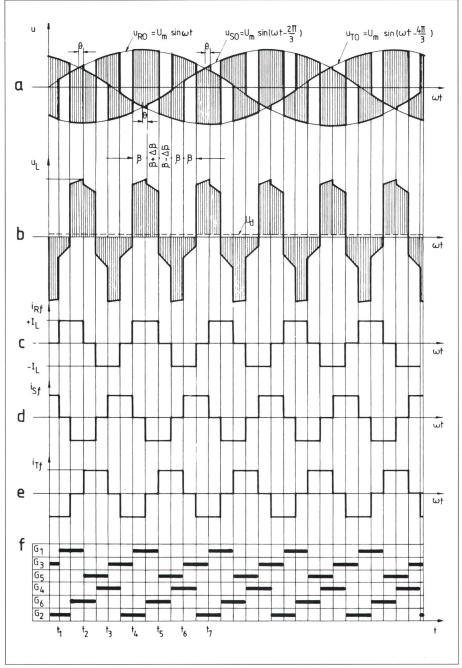


Bild 2 Funktionsprinzip des aktiven Leistungsfilters

a Phasenspannungen u_{RO} , u_{SO} und u_{TO} des Netzes b an die Induktivität Langelegte Spannung u_{L}

c, d, e Eingangsströme i_{Rf}, i_{Sf}, i_{Tf} f Einschaltdauer der Thyristoren $\Theta, \Delta\beta$ Steuerparameter, siehe Text

 U_d Gleichspannungsanteil an der Induktivität L C Kapazität der Kondensatoren $C_1...C_6$

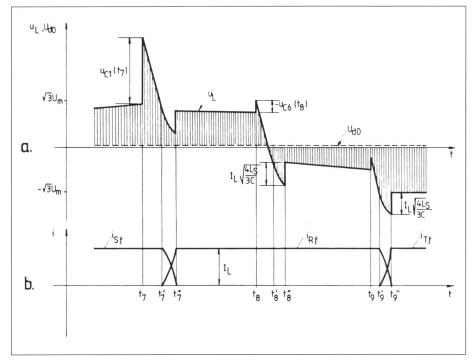
 $D_1...D_6$, 6 Kondensatoren $C_1...C_6$ und einer Spule L hoher Induktivität zusammen. Die Kurven a von Bild 2 stellen die Wellenformen der Phasenspannungen u_{RO} , u_{SO} und u_{TO} am Filtereingang dar. Mit einem Steuerprogramm zum Schalten der GTO-Thyristoren entsprechend Schema f von Bild 2 wird an die Spule L eine Spannung u_L entsprechend Kurve b ange-

legt. Alle Wellenformen in Bild 2 vernachlässigen die Umschaltprozesse des Stromes in den verschiedenen Phasen des Zeitablaufes.

Im folgenden wird angenommen, dass infolge des grossen Induktivitätswertes von L der durch die Spule L fliessende Strom i_L praktisch konstant und gleich I_L sei. Die Gleichspannungskomponente der Spannung u_L ,

die an dem Element L anliegt, sei U_d . Die Spannung U_d muss ausreichend gross sein, damit die Leistungsverluste der Thyristoren, der Dioden und der Spule L abgedeckt werden können. Diese Spannung kann durch Veränderung in engen Grenzen des Winkels $\Delta\beta$ variiert und eingestellt werden.

Wenn die Umschaltprozesse vernachlässigt werden und angenommen wird, dass der Winkel β (siehe Bild 2) für die 5. Harmonische gleich $\pi/15$ ist, wird der Spannungswert U_d in Abhängigkeit von den Winkeln θ und $\Delta\beta$ (siehe Bild 2) durch folgende Beziehung gegeben:


$$U_{d} = \frac{3\sqrt{3}U_{m}}{\pi} \{ [2\cos(\pi/5) - \sin(\pi/10) - 1 - \sin(\pi/10 - \Delta\beta)] \cos\theta + [\cos (\pi/10) - \Delta\beta) - \cos(\pi/10)] \sin\theta \}$$
(1)

Da man näherungsweise $\cos \Delta \beta \approx 1$ setzen kann, folgt

$$U_{d} = \frac{3\sqrt{3}U_{m}}{\pi} \cdot \cos[(\pi/10) - \theta] \cdot \sin\Delta\beta$$
(2)

Somit kann man annehmen, dass U_d proportional zum Winkel $\Delta\beta$ ist. Praktisch muss der Wert von U_d einige Prozent des Wertes von $\sqrt{3}U_m$ betragen.

In Bild 3 sind die Wellenformen der Spannung u_L und der Phasenströme i_{Rf} , i_{Sf} und i_{Tf} für das Zeitintervall zwischen t_7 und t_9 dargestellt, wobei nun auch die Umschaltprozesse der oben erwähnten Ströme berücksichtigt werden. Zum Zeitpunkt t_7 wird der Thyristor G_1 gezündet. Der äquivalente Kondensator $C_1//C_{35}$ (C_{35} äquivalent zur Reihenschaltung von C_3 und C_5), der mit einer positiven Spannung $u_{CI}(t_7)$ entsprechend Bild 4, a, geladen ist, bewirkt die Blockierung des Thyristors G_3 . Zur grösseren Funktionssicherheit des Filters wird nach der Zündung von G_1 sofort die Löschung von G_3 veranlasst. Der Strom I_L der Spule L wird von G_3 auf den Reihenkreis, bestehend aus dem äquivalenten Kondensator C1//C35 und dem Thyristor G_I , umgeschaltet. Ein Teilstrom von $2I_L/3$ fliesst durch C_I , und ein anderer Teilstrom von $I_L/3$ fliesst durch C_3 , der mit C_5 reihengeschaltet ist. Zum Zeitpunkt t'_7 , wenn die Spannung auf dem oben erwähnten äquivalenten Kondensator $C_1//C_{35}$ den momentanen Wert der Spannungsdifferenz zwischen den Phasen R und S

Bild 3 Spannungs- und Stromverläufe bei den Umschaltvorgängen Bezeichnungen: siehe Bilder 1 und 2

erreicht, öffnet die Diode D_1 , und es beginnt der Umschaltprozess des Stromes I_L von der Phase S auf die Phase R. Dieser Prozess ist durch die äquivalenten Kurzschlussinduktanzen L_s am Eingang des Filters bestimmt und endet zum Zeitpunkt t''_7 , wenn die Diode D_3 in den Sperrzustand übergeht. Auf ähnliche Weise finden auch die anderen Umschaltprozesse statt (z.B. jene zu den Zeitpunkten t_8 und t_9 in Bild 3). Aus der Beschreibung des Funktionsprinzips des Filters ergibt sich die Schlussfolgerung, dass die Trenndioden $D_1...D_6$ die Aufgabe haben, die Umschaltkondensatoren $C_1...C_6$ in bestimmten Phasen ausserhalb der Umschaltprozesse vom Netz trennen.

Infolge der Induktanzen L_s und der Kondensatoren $C_1...C_6$, auch wenn der Winkel $\Delta\beta$ vorübergehend gleich Null ist, liegt auf der Induktanz L die Gleichspannung U_{d0}, entsprechend Bild 3, an. Damit durch die Spule L dauernd der gewünschte Strom I_L mit einer Gleichspannungskomponente U_d fliesst, ist es jedoch notwendig, dass der Winkel $\Delta\beta$ auf den dazu erforderlichen Wert eingestellt wird. Was den Winkel Θ betrifft, muss dieser derart zwischen 0 und $\pi/5$ eingestellt werden, dass sich eine Phasenverschiebung von π für die in das Netz Stromharmonische gelieferte Ordnung ergibt. Auf diese Art erreicht man eine Kompensation der Netzharmonischen 5ter Ordnung, ungeachtet ihrer Phasenverschiebungen. Die Veränderung des Winkels Θ kann mit Hilfe einer PLL-Schleife, die sich

in der Regel- und Steuerschaltung des Filters befindet, erreicht werden.

In Bild 4 sind die Wellenformen der an die Kondensatoren C_I und C_3 angelegten Spannungen u_{CI} und u_{C3} für den speziellen Fall von $\Theta = 0$ wiedergegeben, wobei die Umschaltprozesse angedeutet sind. Durch diese Umschaltprozesse erhalten die Ströme i_{Rf} , i_{Sf} und i_{Tf} am Filtereingang eine Wellenform entsprechend Bild 5. Eine Fourier-Reihenzerlegung dieser Wellenform ergibt:

$$i = \sum_{n=1}^{n=\infty} [A_n sin(nk\omega t) + B_n cos(nk\omega t)]$$
(3)

wobei ω die Netzfrequenz ist und k=5 oder 7 die Ordnung der Netzharmonischen, die durch das Aktivfilter kompensiert wird. Die Koeffizienten der Fourier-Reihe berechnen sich zu

$$A_{n} = \frac{4\lambda I_{L}}{\pi (n^{2} - \lambda^{2})}$$

 $\cdot \cos(n\pi)\sin(n\pi/2)\sin(n\pi/3)$

$$\cdot [\lambda/n-\sin(nkY)]$$
 (4)

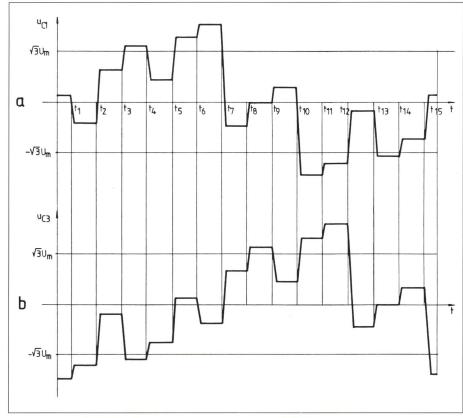


Bild 4 Kondensatorspannungen

a Spannungsverlauf u_{CI} am Kondensator C_I während einer Netzperiode b Spannungsverlauf u_{C3} am Kondensator C_3 während einer Netzperiode

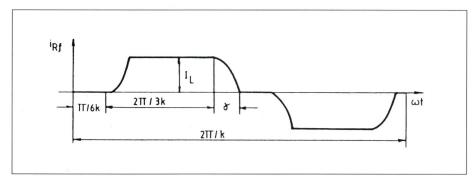


Bild 5 Verlauf des Phasenstromes i_{Rf}

Angabe des typischen Verlaufes von i_{Rf} während einer Periode $2\pi/k$ der kompensierten Oberschwingungen kter Ordnung. γ : siehe (6).

$$B_{\rm n} = \frac{4nI_{\rm L}}{\pi (n^2 - \lambda^2)} \cdot \cos(n\pi) \sin(n\pi/2)$$

$$\cdot \sin(n\pi/3)\cos(nk\gamma)$$
 (5)

$$\lambda = \pi/2kY$$

Der maximale Anteil der Harmonischen kter Ordnung am vom Aktivfil-

ter gelieferten Leitungsstrom beträgt etwa 0,9594 und wird bei einem Winkel $\gamma=\pi/21k$ erhalten. Im Falle einer Netzfrequenz von 50 Hz entspricht dieser Winkel bei der 5. Harmonischen einer Zeit von 95,2 μ s und bei der 7. Harmonischen einer Zeit von 68 μ s. Die Werte der Kapazitäten C der Kondensatoren $C_1...C_6$ bestimmt man aus der Bedingung, dass

der zu den Umschaltprozessen (siehe Bilder 3 und 5) gehörende Winkel γ

$$Y = \omega(t_7'' - t_7') = (\pi/2)\omega\sqrt{3CL_s}$$
 (6)

einen der oben erwähnten optimalen Werte haben muss.

Literatur

- R. Gretsch und G. Krost: Betrags- und winkelrichtige Messung von Spannungs- und Stromharmonischen. ETZ.Archiv 3(1981)5, S. 149...
- [2] H. Kawahira a.o.: Active power filter. International Power Electronics Conference, Tokyo, March 27...31 1983. Conference Record, vol. 2, p. 981...992
- [3] H. Akagi, A. Nabae and S. Atoh: Control strategy of active-power filters using multiple voltage-source PWM converters. IEEE-IAS-1985. IEEE Industry Applications Society Annual Meeting. Toronto, October 6...11, 1985. Conference Record p. 460...466
- [4] L. Malesani, L. Rossetto and P. Tenti: Active filter for reactive power and harmonics compensation. 17th Annual IEEE Power Electronics Specialists Conference PESC'86 Record. 17 (1986), p. 321...330
- [5] C. Tuttas: Anwendung aktiver Saugkreise in elektrischen Energieversorgungsnetzen. ETZ-Archiv 9(1987)4, S. 93...100