
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 81 (1990)

Heft: 21

Artikel: Von der Subroutinentechnik zur objektorientierten Programmierung :
Teil 3 : das Prinzip der objektorientierten Programmierung

Autor: Marty, Rudolf

DOI: https://doi.org/10.5169/seals-903178

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903178
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Objektorien tierte Programmierung

Von der Subroutinentechnik zur
objektorientierten Programmierung
Teil 3 Das Prinzip der objektorientierten Programmierung
Rudolf Marty

In den beiden ersten Teilen dieser

Reihe wurde die Softwareentwicklung

von der Subroutinentechnik

bis zu den abstrakten
Datentypen dargestellt. Der
dritte und letzte Teil befasst sich
mit der Erweiterung dieser
Konzepte zum Prinzip der
objektorientierten Programmierung.
Wichtigste Merkmale dieser
modernen Softwaretechnik sind
das Vererbungsprinzip sowie die
Definition von Objekten als
einheitliche Beschreibung von
Daten und (auf diese anwendbaren)

Operationen.

Dans les deux premiers articles
de cette série, on a présenté le
développement des logiciels en
partant de la technique des
subroutines précoces jusqu'au
concept des types de données
abstraites. Le troisième et
dernier article s'occupe de l'évolution

de ce concept vers le principe

de la programmation orientée

objet dont les principales
caractéristiques sont le principe
génétique et la définition d'objets

en tant que description
unitaire des données et opérations
(applicables sur ces données).

6. Ein fünfter
Abstraktionsschritt :

Objektorientierte
Programmierung

Durch Angabe der Ahnenklasse in
einer Klassendefinition entstehen
explizite Vererbungshierarchien. Bild 11

zeigt einen Ausschnitt aus einer
Klassenhierarchie für geometrische Objekte,

wie sie z.B. in einem Grafik-Softwarepaket

verwendet werden könnten.
Explizit in eine solche Klassenhierarchie

eingebunden, wird RechteckRund
durch die Deklaration in Bild 12

vollständig definiert. Es fallen im
Vergleich mit der Definition eines abgeleiteten

ADT (Bild 10, dort jedoch nur
auszugsweise wiedergegeben) einige
Änderungen auf:

- Im Kopf der Klassendeklaration
erscheint die Angabe der Oberklasse
Rechteck. Konkret bedeutet der C+ +

Text

class RechteckRund : public Rechteck

Bild 11

Klassenhierarchie für
geometrische
Objekte

folgendes: Es wird eine Klasse
RechteckRund definiert, die von der Klasse
Rechteck abgeleitet ist, wobei public
an dieser Stelle bedeutet, dass alle
öffentlichen Namen von Rechteck auch
öffentliche Namen von RechteckRund
sind.

- Die Klasse RechteckRund enthält
nur eine Instanzvariable Eckradius.
Die beiden anderen zur Definition
eines Rechtecks benötigten Instanzvariablen

(die Eckpunkte) sind ja bereits
in der Oberklasse Rechteck enthalten.
Da RechteckRund von Rechteck
abgeleitet ist, erbt sie automatisch all
deren Instanzvariablen.
- Neben den Instanzvariablen erbt
eine Klasse auch alle Funktionen ihrer
Oberklasse. Zur Definition der Klasse
RechteckRund müssen demzufolge
nur noch diejenigen Funktionen
ausprogrammiert werden, die in der
Oberklasse fehlen oder in einer ungeeigneten

Form definiert sind. Das sind
lediglich die Funktion Setze, die neu
zusätzlich den Eckradius als Parameter

Adresse des Autors

Prof. Dr. RudolfMarty, Schweiz.
Bankgesellschaft, UBILAB (UBS Informatics
Laboratory), 8021 Zürich

Bulletin SEV/VSE 81(1990)21, 10. November 23



Informatik

class RechteckRund : public Rechteck {

public:
int Eckradius;
void Setze (Punkt *Pa, Punkt *Pb, int Radius);
float Flaeche );

} :

void RechteckRund:: Setze (Punkt *Pa, Punkt *Pb, int Radius)

Rechteck:: Setze(Pa,Pb);
Eckradius Radius;

float RechteckRund::Flaeche
{

return Rechteck::Flaeche() -
Eckradius * Eckradius * (4 - pi);

Bild 12 Abgeleitete Klasse
RechteckRund ist durch diese Deklaration vollständig definiert.

übernimmt, und die abgeänderte
Funktion Flaeche. Alle anderen zur
Klasse Rechteck gehörenden Funktionen

(cf. Bild 7 und 8) gelten unverändert

auch für die Klasse RechteckRund.

Basierend auf den Definitionen der
Klassen Rechteck und RechteckRund
sind beispielsweise die Deklarationen
und Anweisungen in Bild 13 denkbar.

Rechteck
RechteckRund
Punkt
float

rl, r2 ;
rul, ru2;
pl, p2, p3, p4 ;

a,b;

rl.Setze(pl,p2);
ru2.Setze(p3,p4,5);
rl.Verschiebet-12,10)'
ru2.Verschiebe(42,0);
a rl.Flaeche() + ru2.Flaeche()
b ru2.Eckradius ;

ist, ist ein Objekt von einer bestimmten
Klasse.

2. Die Funktionen einer Klasse
werden Methoden genannt. Es wird
also eine Methode eines Objektes
aufgerufen. Noch präziser gesprochen: Es
wird ein Objekt aufgerufen, wobei im
Aufruf der Name der auf dieses Objekt
auszuführenden Methode genannt
wird. In Bild 13 bedeutet z.B.

r1.Verschiebe(-12,10)

«Rufe das Objekt rl auf (das von der
Klasse Rechteck ist) und führe dessen
Methode Verschiebe mit den
Argumenten —12,10 aus.»

3. Die Klasse, von der eine
bestimmte Unterklasse (Subclass) abge¬

leitet wird, wird als deren Oberklasse
(Superclass) bezeichnet. Die Unterklasse

erbt (Inherits, Inheritance) alle
Instanzvariablen und Methoden der
Oberklasse. Die Vererbungshierarchie
ist in ihrer Tiefe nicht begrenzt. Von
einer Klasse können beliebig viele
Unterklassen abgeleitet werden.

4. Eine Unterklasse kann geerbte
Instanzvariablen durch eigene
Instanzvariablen ergänzen. In der Unterklasse

RechteckRund haben wir z.B.
die Instanzvariable Eckradius zugefügt.

5. Eine Unterklasse kann geerbte
Methoden durch Deklaration
gleichnamiger Methoden ersetzen (z.B. Flaeche

in RechteckRund) und auch neue
Methoden einführen (z.B. Eckradius in
RechteckRund).

6. Wird ein Objekt zusammen mit
einer Methode aufgerufen, die es nicht
kennt, dann wird der Aufruf an die
Oberklasse weitergereicht. In Bild 13

wird mit

ru2.Verschiebe(42,0)

die Methode Verschiebe des Objektes
ru2 (das von der Klasse RechteckRund
ist) aufgerufen. Da in der Klasse
RechteckRund keine solche Methode
definiert wurde, wird der Aufruf automatisch

an die Oberklasse Rechteck
weitergereicht, die nun ihrerseits die
Methode Verschiebe kennt. Hätte
auch sie die Methode nicht gekannt, so
wäre der Aufruf Stufe um Stufe
weitergereicht worden (die Klassenhierarchie

hinauf). Ein Objekt reagiert auf
einen Methodenaufruf demnach wie
in Bild 14 dargestellt.

Bild 13 Objektdeklarationen und -Verwendungen

Basierend auf den Definitionen der Klassen
Rechteck und RechteckRund sind beispielsweise
die obigen Deklarationen und Anweisungen
denkbar, wobei vier Instanzen definiert sind.

rundkonzepte objektorientierter
'rogrammierung

Bevor wir weitergehen, müssen eini-
e Begriffe der objektorientierten Pro-
rammierung eingeführt und gewisse
Lonzepte gefestigt werden:

1. Eine Instantiierung einer Klasse
drd als Objekt bezeichnet. Wie eine
ariable von einem bestimmten Typ

'//////////////?\Meldung %

Objekt •

Meldung
bearbeiten

Weiterreichen
Originalmeldung
an Oberklasse

Weiterreichen
modifizierte Meldung(en)
an Oberklasse

weitere Meldung(en)
an beMetMgeJ<lassen

Bild 14 Objektverhalten bei Empfang einer Meldung

24 Bulletin ASE/UCS 81(1990)21, 10 novembre



Objektorientierte Programmierung

Systeme aus wiederverwendbaren
Klassenhierarchien

Betrachten wir in Bild 15 ein weiteres

Beispiel einer Klassenhierarchie:
Die Klasse Matrix implementiert eine
einfache, zweidimensionale Tabelle
ohne Formatierinformationen und
Rechenformeln für die einzelnen
Matrixfelder. Die Klasse Spreadsheet
baut auf der Klasse Matrix auf und
führt die aus Tabellenkalkulationsprogrammen

bekannten Möglichkeiten
der automatischen Berechnung von
Feldern, der Formatierung der Tabelle
sowie der Verknüpfung mit anderen
Tabellen ein. Das Kontoblatt schliesslich

ist im Grunde genommen nichts
anderes als eine spezielle Art von
Tabelle; wir bilden die Klasse Kontoblatt
also als Subklasse von Spreadsheet
(Bild 16).

Bereits an den kleinen Beispielen
von geometrischen Objekten und von
Tabellenstrukturen erkennen wir eine
zentrale Eigenschaft objektorientierter
Systeme, eine Eigenschaft von Systemen

also, die aus Objekten als Instanzen

von in Hierarchien eingebundenen
Klassen bestehen: Eine Klassendefinition

wird sehr klein und übersichtlich,
da sie auf einer bereits bestehenden
Klasse aufbaut und diese lediglich
leicht verändert oder ergänzt. Diese
Situation ist uns bestens aus der
industriellen Fertigung bekannt, wo man
auch auf Halbfabrikaten aufbaut, diese

u.U. leicht abändert (z.B. in einem
Apparat einen Gleichstrommotor
durch einen Wechselstrommotor
ersetzt) oder ergänzt (etwa durch eine

Halterung oder ein Anschluss-Zwi-
schenstück).

Die Vorteile dieses Vorgehens sind
weitreichender, als man dies auf den
ersten Blick erahnt. In der Modultechnik

und bei Verwendung von abstrakten

Datentypen haben wir entweder
bestehende Module bzw. Klassen
übernommen und deren Quelltext ma-

Bild 15

Klassenhierarchie für
tabellarische Objekte

I 1 ca

Matrix Spreadsheet Kontoblatt

Bild 16 Matrizen, Spreadsheets und Kontoblätter

nuell modifiziert oder aber Funktionen

eines allgemeineren Moduls bzw.
ADT explizit, also auch unter Kenntnis

dessen Parameterstruktur, aufgerufen.

Damit wird nicht nur die
Programmierung ungebührlich belastet,
wichtiger ist der Verlust an Flexibilität.
Weil wir im objektorientierten Ansatz
auf jeder Stufe der Klassenhierarchie
nur genau die Differenz zu der
Oberklasse ausformulieren und alles andere
unbesehen übernehmen, schlagen
Änderungen an einer Klasse automatisch
auf alle Unterklassen durch.

Stellen wir uns hierzu vor, man hätte
die Klasse Matrix so implementiert,
dass alle Matrixfelder als zweidimensionales

Feld im Hauptspeicher
abgespeichert sind. Folglich werden also
auch alle Felder des Spreadsheets und
des Kontoblatts hauptspeicherintern
gehalten, da diese beiden Klassen bei
korrektem objektorientiertem Aufbau
nicht selbst einen Code für die Verwaltung

der Einzelfelder und den Zugriff
hierauf enthalten. Tritt nun das
Bedürfnis nach grösseren Tabellen auf,
was gerade für Konten mit möglicherweise

Tausenden von Einzelbuchungen

typisch ist, so wird in der Klasse
Matrix die Organisation der Felder
und der Zugriff hierauf verändert: Es
wird nicht mehr die ganze Matrix im
Hauptspeicher gehalten, sondern nur
gerade derjenige Teil, der benötigt
wird; der Rest wird auf Sekundärspeicher

ausgelagert, wie wir das von Sei-
tenaustauschverfahren in Betriebssystemen

kennen. Diese Änderung der
Klasse Matrix schlägt auf alle
Unterklassen durch. Beliebig grosse Spreadsheets

und Konten mit beliebig vielen
Einzelbuchungen sind ohne auch nur
die kleinste Korrektur an deren
Klassendefinition Wirklichkeit geworden.

Bei kluger objektorientierter
Programmierung ist auch das Anzeigen
von Tabellenteilen in der Klasse Matrix

(oder sogar noch höher in der
Klassenhierarchie) auscodiert worden.
Spreadsheet und Kontoblatt basieren
auf den Anzeigemethoden der Ober¬

klasse Matrix. Werden nun, wie
vorgängig umschrieben, beliebig grosse
Matrizen eingeführt, so wird innerhalb
der Klasse Matrix auch die Anzeigemethode

so umprogrammiert, dass
Tabellenteile, die nicht gesamtheitlich
auf einem Bildschirm Platz finden,
horizontal und vertikal «gerollt» werden
können. Auch diese Neuerung steht
allen Unterklassen zur Verfügung; ein
Kontoblatt wird plötzlich mit einem
Rollbalken für den Buchungsteil angezeigt,

ohne dass auch nur das Geringste

an der Klasse Kontoblatt geändert
worden wäre.

Damit haben wir auf der Ebene der
Programmstruktur einen Grad an
Wiederverwendbarkeit erreicht, wie er
in der Softwareentwicklung mit allen
bisher bekannten Methoden klassischer

Programmierung nicht erreichbar

war. Softwaresysteme entstehen
als Hierarchie von Klassen, wobei von
Hierarchiestufe zu Hierarchiestufe
typischerweise nur sehr kleine Änderungen

und Erweiterungen an den Klassen

vorgenommen werden. Eine
einzelne Klassendefinition und insbesondere

die Definition einer Methode
wird recht klein. Methoden mit zwei
bis fünf Zeilen Code sind keine Seltenheit.

Die Kunst der objektorientierten
Programmierung besteht darin, kluge
Klassenhierarchien aufzubauen, das
heisst insbesondere, in Unterklassen
entstehende Gemeinsamkeiten und
Doppelspurigkeiten zu erkennen, aus
diesen Gemeinsamkeiten ein allgemeines,

höheres Schema abzuleiten und
dieses sodann in der richtigen
Oberklasse zu implementieren. Damit
entsteht für alle Unterklassen dieser
Oberklasse (nicht nur für diejenigen,
aus der die Gemeinsamkeiten heraus-
faktorisiert wurden) eine zusätzliche
Funktionalität.

Dynamische Bindung
Es wurde aus den vorangehenden

Ausführungen zu der objektorientierten
Programmierung klar, dass diesel-

Bulletin SEV/VSE 81(1990)21, 10. November 25



Informatik

Dreieck *Dreieckl, *Dreieck2, *Dreieck3;
Viereck *Viereckl, *Viereck2, *Viereck3;
Quadrat *Quadratl, *Quadrat2;
Polygon *Polygonl, *Polygon2;
RechteckRund RRundl, *RRund2, *RRund3, *RRund4;

GeomObj ekt »ObjTab[20];

In C++ wird durch einen Stern * vor einer Variablendeklaration der angegebene

Name als Zeiger (Pointer) vereinbart. Mit der untersten Deklaration
wird beispielsweise eine Tabelle mit 20 Zeigern auf Objekte des Typs
GeomObjekt angelegt.

be Methode sehr oft auf verschiedenen
Stufen der Klassenhierarchie verwendet

wird (beispielsweise die Methode
Flaeche für geometrische Objekte). In
den bisherigen Beispielen war aus der
syntaktischen Form des Methodenaufrufs

stets die angesprochene Klasse
ersichtlich: In Bild 13 resultiert z.B. die
Ausführung des Ausdrucks

r1.Flaeche() + ru1.Flaeche()

im Aufruf der Methode Flaeche der
Klasse Rechteck für r1 (das ja eine
Instanz dieser Klasse ist) und im Aufruf
der Methode Flaeche der Klasse Recht-
eckRund für das Objekt ru1. Die Klasse

dieser Objekte ist aus deren Deklaration

ersichtlich; die Methodenaufrufe
können also zur Übersetzungszeit

an eine Klasse gebunden werden.
Begnügten wir uns mit der Bindung

zur Übersetzungszeit, auch statische
Bindung genannt, so würden wir
enorm viel an Flexibilität und
Wiederverwendbarkeit von Klassen verlieren.
Betrachten wir zur Begründung der
dynamischen Bindung ein paar
Programmfragmente, die auf der
Klassenhierarchie von geometrischen Objekten

basieren, wie sie in Bild 11 dargestellt

ist. In C++ wird durch einen Stern
* vor einer Variablendeklaration der
angegebene Name als Zeiger (Pointer)
vereinbart. In Bild 17 werden also
ausschliesslich Zeiger auf Objekte der
angegebenen Klasse deklariert. Mit der
untersten Deklaration wird beispielsweise

eine Tabelle mit 20 Zeigern auf
Objekte des Typs GeomObjekt angelegt.

GeomObjekt ist die Wurzel der
Klassenhierarchie gemäss Bild 11.

ObjTab kann somit Zeiger auf Objekte
aller GeomObjekt untergeordneten
Klassen aufnehmen.

Betrachten wir die vier Abschnitte
aus Bild 18:

1. Im ersten Abschnitt werden
(dynamisch) drei Objekte angelegt. In
C++ kann, wie bereits früher bemerkt,
für jede Klasse eine Initialisierungsfunktion

angegeben werden. Diese

Bild 17

Objektreferenzen
und Objekttabelle

wird bei dynamischen Objekten
unmittelbar nach Anlegen des Objektes,
das heisst als Teil der durch new ausgelösten

Aktionen ausgeführt.
2. Im zweiten Abschnitt erscheinen

einige Zuweisungen von Objektzeigern.

Die Zuweisung eines Objektzeigers

an einen Zeiger, der auf ein in der
Klassenhierarchie höher gelegenes
Objekt verweist, ist zulässig. Diese Regel
ist durchaus einsichtig: Eine Klasse
umfasst wie besprochen alle
Instanzvariablen ihrer Oberklasse. Wird ein
Objektzeiger einem klassenhierarchisch

übergeordneten Objektzeiger
zugewiesen, so verweist dieser nach
der Zuweisung vermeintlich auf ein
Objekt seiner Klasse und damit auch
auf die in seiner Klasse bekannten
Instanzvariablen. In der Tat besteht die
Referenz jedoch auf ein Objekt tieferer
Klasse, das meist weitere Instanzvariablen

kennt. Dies schadet jedoch
nichts, denn die zusätzlichen
Instanzvariablen werden strukturell an die
bestehenden angehängt, so dass auf
höherer Stufe automatisch die dieser
Klassenstufe zugehörenden Instanzvariablen

referenziert werden, ob das
referenzierte Objekt von dieser oder
einer beliebigen Unterklasse ist.

Ungültig ist die zweitletzte Zuweisung,

da Viereck nicht eine Oberklasse
von Dreieck ist. Auch Zuweisungen
hierarchieabwärts sind nicht gestattet,
da damit beispielsweise ein Zeiger auf

Bild 18

Objektverwendungen
mit dynamischer
Bindung

ein Objekt der Klasse RechteckRund
auf eines der Klasse Rechteck zeigen
könnte, in dem die in der Klasse
RechteckRund definierte Instanzvariable
Eckradius fehlen würde (cf. Bild 12).

3. Aus dem dritten Abschnitt in
Bild 18 wird ersichtlich, dass Referenzen

auf Instanzvariablen und Methoden

dynamisch angelegter Objekte mit
dem Zeiger-Dereferenzierungssymbol
«->» codiert werden. RRund2->Eckra-
dius bezeichnet die Instanzvariable
Eckradius des Objektes, auf welches
der Zeiger RRund2 zeigt; Vier-
eck2->Verschiebe(10,-5) ruft die
Methode Verschiebe des mit Viereck2
referenzierten Objektes auf.

Die Frage entsteht nun sofort, welche

Methode Verschiebe in der
Konstruktion ObjTab[j]->Verschie-
be(dx,dy) angesprochen wird.
Offensichtlich diejenige des Objektes, auf
welches der an Stelle j im Array
ObjTab liegende Zeiger verweist. Je
nach vorangegangener Zuweisung an
ObjTab[j] kann dies ein Objekt einer
beliebigen Unterklasse von GeomObjekt

sein. Folglich kann der Methodenaufruf

Verschiebe nicht zur
Übersetzungszeit an eine Klasse gebunden
werden; erst zur Laufzeit wird
aufgrund des referenzierten Objektes
entschieden, welche Klasse angesprochen
werden muss. Dies nennt man dynamische

Bindung (Dynamic Binding).
4. Im letzten Abschnitt von Bild 18

wird mit einer Schleife die Gesamtfläche

aller durch ObjTab referenzierten
geometrischen Objekte errechnet.
Wiederum gelangt dynamische Bindung
zum Einsatz, da zur Übersetzungszeit
nicht entschieden werden kann, an
welche Klasse der Methodenaufruf
Flaeche gebunden werden muss.

Die dynamische Bindung bringt
ausserordentlich viel an Zusatzflexibilität

und Wiederverwendbarkeit. Es
können auf hierarchisch höherer Stufe
allgemeingültige Algorithmen ausco-

Dreieckl new Dreieck;
Polygon3 new Polygon;
Quadrat2 new Quadrat;

Viereckl Quadratl;
Viereck2 RRund4;
Viereck3 Dreieck2; ungültig!
ObjTab[12] Polygon2;

r RRund2->Eckradius;
Viereck2->Verschiebe(10,-5) ;
Obj Tab[j]->Verschiebe(dx,dy);
Gesamtflaeche 0;
for (i 0; i < Anzahlobjekte; ++i)

Gesamtflaeche += ObjTab[i]->Flaeche();

26 Bulletin ASE/UCS 81 1990)21,10 novembre



Objektorien tierte Programmierung

class GeomObjekt : public Object {

public:
virtual float Flaeche ;

):

float GeomObjekt::Flaeche
{

Fehler("Flaeche nicht definiert");

In C++ wird durch den Zusatz des Schlüsselwortes virtual zu einer
Methodendefinition angeben, dass deren Aufrufe in dieser und allen untergeordneten

Klassen dynamisch gebunden werden sollen.

diert werden, ohne die Struktur der
durch sie behandelten Objekte zu kennen.

Die Gesamtflächen-Berechnung,
wie sie in Bild 18 dargestellt ist, bleibt
unverändert, auch bei Definition von
neuen Unterklassen von GeomObjekt,
solange jede Klasse eine Methode zur
Berechnung ihrer Fläche kennt. Bei

Anwendung statischer Bindung müss-
te zwecks Aufruf der korrekten Methode

eine Fallunterscheidung mit einer
Switch-Anweisung (entspricht case in
Modula-2) codiert werden. Ausserdem
wären die Instanzvariablen in einen
Variantenrecord einzugliedern. Damit
wird nicht nur der Code erheblich
verlängert und unlesbarer gemacht,
gravierender ist die Tatsache, dass bei
Einführung einer neuen Klasse an
allen betroffenen Stellen die
Fallunterscheidungen und der Variantenrecord
nachgetragen werden müssen.

In C++ wird durch den Zusatz des
Schlüsselwortes virtual zu einer
Methodendefinition angegeben, dass deren
Aufrufe in dieser und allen
untergeordneten Klassen dynamisch gebunden

werden sollen. Die Definition der
Klasse GeomObjekt könnte beispielsweise,

wie in Bild 19 gezeigt, codiert
werden.

Die Funktion Flaeche der Klasse
GeomObjekt kann selbstverständlich
keine Flächenberechnung vornehmen,
da die konkrete geometrische Gestalt
der Figur nicht bekannt ist. Erst in
Unterklassen kann die Flächenberechnung

auscodiert werden. Die in Bild 19

deklarierte Funktion Flaeche ist gewis-
sermassen ein «Fangnetz»: Wird in
einer Unterklasse von GeomObjekt die
Methode Flaeche nicht redefiniert, so
wird bei deren Aufruf die geerbte
Methode Flaeche von GeomObjekt ausgeführt,

die lediglich eine Fehlermeldung

produziert. Dies wäre beispielsweise

dann der Fall, wenn der
Klassenhierarchie von Bild 11 eine Unterklasse

Kreis zugefügt würde, die die
Methode Flaeche nicht explizit
beinhaltet.

Bild 19

Dynamisch
gebundene Methode
in C+ +

In der Praxis der objektorientierten
Programmierung führt eine kluge
Anwendung dynamischer Bindung dazu,
dass algorithmische Gemeinsamkeiten
möglichst hoch in die Klassenhierarchie

«herausfaktorisiert» werden. Es
entstehen algorithmische Grundmuster,

die völlig unabhängig von den
behandelten Objekten funktionieren.
Diese Unabhängigkeit ist dabei nicht
nur so zu verstehen, dass ein generi-
scher Algorithmus beschrieben wird,
der für verschiedenste Objekttypen in-
stantiiert werden kann (wie wir das
z.B. von generischen Modulen oder ge-
nerischen ADT kennen), sondern dass
der Algorithmus überhaupt unabhängig

von den Objekttypen (bzw.
Objektklassen) wird. Erst zur Laufzeit wird
unmittelbar bei Anwendung einer
Methode auf ein Objekt entschieden, welche

konkrete Methode auszuführen ist.
Natürlich kostet die dynamische

Bindung etwas: In C++ wird für jede
Klasse eine Referenztabelle ihrer
dynamisch gebundenen Methoden angelegt;

bei einem dynamisch gebundenen
Methodenaufruf wird dann über einen
Verweis aus dem Objektdeskriptor die
der Methode zugeordnete Prozeduradresse

aus der Referenztabelle geladen

und auf diese verzweigt. Die
Mehrkosten bestehen also hauptsächlich

aus einem gesteigerten
Hauptspeicherbedarf. Die Laufzeitmehrkosten

sind fast vernachlässigbar und
werden durch eine üblicherweise
gesteigerte Qualität der herausfaktori-
sierten Algorithmen mehr als wettgemacht.

7. Schlussbemerkungen
Zweifellos ist es ausserordentlich

schwierig, aus dieser kurzen Einführung

soviel an Einsicht und Verständnis

zu gewinnen, um die technischen
Möglichkeiten objektorientierter
Programmierung umfassend erkennen
und deren Auswirkungen auf Struktur,
Flexibilität, Wartbarkeit und Wieder¬

verwendbarkeit ganzer Softwaresysteme
beurteilen zu können. Nur durch

Auseinandersetzung mit objektorientierter

Programmierung wird diese
Erfahrung geschaffen und gefestigt.
Wichtig ist dabei, dass man nicht auf
dem absoluten Nullpunkt beginnt. Es
sollte wenn möglich bereits eine
vernünftige Klassenhierarchie bestehen.
Andernfalls beschränkt sich die Erfahrung

aufdie «Mikro»-Ebene objektorientierter

Programmierung: auf die
Konstrukte der Programmiersprachen.

Der Einsatz einer Klassenhierarchie

in Entwurf und Implementation
von Software ist aber ebenso wichtig
wie das Beherrschen einer objektorientierten

Programmiersprache allein.
Eine umfassende und konzeptionell
reine, jedoch recht umfangreiche
Umgebung für einen Einstieg in die Welt
der objektorientierten Softwareentwicklung

bietet z.B. ein Smalltalk-System,

wie es heute auf vielen PC
verfügbar ist.

Nach einer Einführung in die Welt
objektorientierter Programmierung
hört man oft den Kommentar: «Das
kann man ja alles auch mit Modula-2,
Pascal, C, PL/I...». Selbstverständlich

kann eine objektorientierte
Softwarestruktur auch in anderen Sprachen
nachgebildet werden, selbst in Assembler.

Letztlich sind es ja auch nur
«gewöhnliche Maschineninstruktionen»,
die ausgeführt werden. Man kann
auch Module mit C, strukturierte
Programmierung mit Assembler, Klassen
mit Modula-2 nachbilden. Das
Problem dabei ist nur, dass der
Softwareentwickler in zwei Welten denkt: in der
Entwurfswelt und in der Implementierungswelt.

Seit geraumer Zeit hat sich
die Erkenntnis durchgesetzt, dass die
Programmstruktur möglichst kongruent

mit dem abstrakten Denkmodell
sein soll. Diese Suche nach
Übereinstimmung von Denkmodell mit
Beschreibungsmodell hat denn auch zur
Entwicklung von Sprachen wie Pascal
(das auf sauber strukturierte Programmierung

ausgerichtet ist) und Modula-2

(wo das Modulkonzept als
Sprachbestandteil übernommen wurde)

geführt. Genauso verhält es sich in
der objektorientierten Systementwicklung.

Erst durch eine geeignete
Programmiersprache wird es gelingen, die
herausragenden Vorteile objektorientierter

Programmierung zu nutzen. Bei
Verwendung eines nichtobjektorien-
tierten Entwicklungswerkzeuges
erscheint die Systemstruktur auf Ebene
des Quellcodes als unübersichtliches
«Flickwerk».

Bulletin SEV/VSE 81(1990)21,10. November 27



Geographisches
Informationssystem
der Zukunft

GRADIS-UX, Software-Lösung
der Firma Strässle, ist ein modulares,
Workstation-basierendes,
Geographisches Informations-System
mit integrierter relationaler Datenbank
ORACLE.

Die konzeptionelle Neuentwicklung
GRADIS-UX vereint modernste
Hardwaretechnologie auf der Basis der
Computersysteme HP 9000/xxx unter
dem Betriebssystem UNIX.

Mit GRADIS-UX steht Ihnen eine

leistungsfähige Software für folgende
Bereiche zur Verfügung:

• Energiewirtschaft
• Ver- und Entsorgung
• Vermessungswesen
• Planung und Umwelt

GIS-Seminar

Zusammen mit der Firma Strässle
führen wir zu diesem Thema ein
Seminar durch:

Datum/Ort 11. Dezember 1990
im Hotel Hilton,
Glattbrugg/Zürich

Zeit 09.00 Uhr zum Thema:
Vermessung und
Energieversorgung

14.00 Uhr zum Thema:
Planung und Umwelt

Kosten Die Teilnahme ist kostenlos

Weitere Auskunft und Anmeldung bei:
Hewlett-Packard (Schweiz) AG, Zürich,
Frau Lucia Frei, Telefon 01-315 81 81

strässle What
nic/~hta /nfnrmatinnco/ctomoTechnische Informationssysteme

HEWLETT
PACKARD

Elektro - Zeichnungs - Service
Haben Sie einen Engpass -

oder suchen Sie eine langfristige Entlastung?

^^erstehen Fabrikations-, Installations- und
Service-Unterlagen nach Ihren
Entwürfen und Angaben.

Auch Ändern und Nachführen von bestehenden
Zeichnungen

Technisches Büro Ulrich Bircher
5000 Aarau Tel. 064 24 60 06 T

v///mr////jmr////A

01/207 86 32
Direktwahl zu Ihrem Zielpublikum.

Elektroingenieure ETH/HTL
Leser des Bulletin SEV/VSE

mit Einkaufsentscheiden

28


	Von der Subroutinentechnik zur objektorientierten Programmierung : Teil 3 : das Prinzip der objektorientierten Programmierung

