Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 81 (1990)

Heft: 21

Artikel: Von der Subroutinentechnik zur objektorientierten Programmierung :
Teil 3 : das Prinzip der objektorientierten Programmierung

Autor: Marty, Rudolf

DOl: https://doi.org/10.5169/seals-903178

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903178
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Objektorientierte Programmierung

Von der Subroutinentechnik zur
objektorientierten Programmierung

Teil 3 Das Prinzip der objektorientierten Programmierung

Rudolf Marty

In den beiden ersten Teilen die-
ser Reihe wurde die Softwareent-
wicklung von der Subroutinen-
technik bis zu den abstrakten
Datentypen dargestelit. Der
dritte und letzte Teil befasst sich
mit der Erweiterung dieser Kon-
zepte zum Prinzip der objekt-
orientierten Programmierung.
Wichtigste Merkmale dieser
modernen Softwaretechnik sind
das Vererbungsprinzip sowie die
Definition von Objekten als ein-
heitliche Beschreibung von
Daten und (auf diese anwendba-
ren) Operationen.

Dans les deux premiers articles
de cette série, on a présenté le
développement des logiciels en
partant de la technique des sub-
routines précoces jusqu’au
concept des types de données
abstraites. Le troisieme et der-
nier article s’occupe de I'évolu-
tion de ce concept vers le prin-
cipe de la programmation orien-
tée objet dont les principales
caractéristiques sont le principe
génétique et la définition d’ob-
jets en tant que description uni-
taire des données et opérations
(applicables sur ces données).

Adresse des Autors

Prof. Dr. Rudolf Marty , Schweiz.
Bankgesellschaft, UBILAB (UBS Informatics

Laboratory), 8021 Ziirich

6. Ein fiinfter
Abstraktionsschritt:
Objektorientierte
Programmierung

Durch Angabe der Ahnenklasse in

einer Klassendefinition entstehen ex-
plizite Vererbungshierarchien. Bild 11
zeigt einen Ausschnitt aus einer Klas-
senhierarchie fiir geometrische Objek-
te, wie sie z.B. in einem Grafik-Softwa-
repaket verwendet werden konnten.
Explizit in eine solche Klassenhierar-
chie eingebunden, wird RechteckRund
durch die Deklaration in Bild 12 voll-
stindig definiert. Es fallen im Ver-
gleich mit der Definition eines abgelei-
teten ADT (Bild 10, dort jedoch nur
auszugsweise wiedergegeben) einige
Anderungen auf:
- Im Kopf der Klassendeklaration er-
scheint die Angabe der Oberklasse
Rechteck. Konkret bedeutet der C**
Text

class RechteckRund : public Rechteck

folgendes: Es wird eine Klasse Recht-
eckRund definiert, die von der Klasse
Rechteck abgeleitet ist, wobei public
an dieser Stelle bedeutet, dass alle 6f-
fentlichen Namen von Rechteck auch
6ffentliche Namen von RechteckRund
sind.

- Die Klasse RechteckRund enthilt
nur eine Instanzvariable Eckradius.
Die beiden anderen zur Definition
eines Rechtecks benétigten Instanzva-
riablen (die Eckpunkte) sind ja bereits
in der Oberklasse Rechteck enthalten.
Da RechteckRund von Rechteck ab-
geleitet ist, erbt sie automatisch all de-
ren Instanzvariablen.

- Neben den Instanzvariablen erbt
eine Klasse auch alle Funktionen ihrer
Oberklasse. Zur Definition der Klasse
RechteckRund miissen demzufolge
nur noch diejenigen Funktionen aus-
programmiert werden, die in der Ober-
klasse fehlen oder in einer ungeeigne-
ten Form definiert sind. Das sind le-
diglich die Funktion Setze, die neu zu-
siatzlich den Eckradius als Parameter

Bild 11
Klassenhierarchie fiir
geometrische geometrisches
Objekte Objekt
Dreieck Viereck Polygon

Parallelogramm

Rechteck

|

-

Quadrat

Rechteck
rund

Bulletin SEV/VSE 81(1990)21, 10. November

23

Informatik

class RechteckRund :

public:
int Eckradius;
void Setze
float Flaeche ();

}i

Rechteck::Setze(Pa,Pb) ;
Eckradius = Radius;
}

{

public Rechteck (

(Punkt *Pa, Punkt *Pb, int Radius);

void RechteckRund::Setze (Punkt *Pa, Punkt *Pb, int Radius)

float RechteckRund::Flaeche ()

return Rechteck: :Flaeche() -
Eckradius * Eckradius * (4 - pi);

Bild 12 Abgeleitete Klasse

RechteckRund ist durch diese Deklaration vollstindig definiert.

ibernimmt, und die abgednderte
Funktion Flaeche. Alle anderen zur
Klasse Rechteck gehorenden Funktio-
nen (cf. Bild 7 und 8) gelten unverin-
dert auch fiir die Klasse Rechteck-
Rund.

Basierend auf den Definitionen der
Klassen Rechteck und RechteckRund
sind beispielsweise die Deklarationen
und Anweisungen in Bild 13 denkbar.

Rechteck rl, r2:
RechteckRund rul, ruz2;

Punkt pl, p2, p3, p4:
float a,bs

rl.Setze(pl,p2);
ru2.sSetze(p3,p4,5):
rl.Verschiebe(-12,10);
ru2.Verschiebe(42,0);

a rl.Flaeche() + ru2.Flaeche():
b ru2.Eckradius;

Bild 13 Objektdeklarationen und -verwen-
dungen

Basierend auf den Definitionen der Klassen
Rechteck und RechteckRund sind beispielsweise
die obigen Deklarationen und Anweisungen
denkbar, wobei vier Instanzen definiert sind.

Grundkonzepte objektorientierter
Programmierung

Bevor wir weitergehen, miissen eini-
ge Begriffe der objektorientierten Pro-
grammierung eingefiihrt und gewisse
Konzepte gefestigt werden:

1. Eine Instantiierung einer Klasse
wird als Objekt bezeichnet. Wie eine
Variable von einem bestimmten Typ

ist, ist ein Objekt von einer bestimmten
Klasse.

2. Die Funktionen einer Klasse
werden Methoden genannt. Es wird
also eine Methode eines Objektes auf-
gerufen. Noch préaziser gesprochen: Es
wird ein Objekt aufgerufen, wobei im
Aufruf der Name der auf dieses Objekt
auszufithrenden Methode genannt
wird. In Bild 13 bedeutet z.B.

r1.Verschiebe(—12,10)

«Rufe das Objekt rl auf (das von der
Klasse Rechteck ist) und fiihre dessen
Methode Verschiebe mit den Argu-
menten —12,10 aus.»

3. Die Klasse, von der eine be-
stimmte Unterklasse (Subclass) abge-

leitet wird, wird als deren Oberklasse
(Superclass) bezeichnet. Die Unter-
klasse erbt (Inherits, Inheritance) alle
Instanzvariablen und Methoden der
Oberklasse. Die Vererbungshierarchie
ist in ihrer Tiefe nicht begrenzt. Von
einer Klasse konnen beliebig viele Un-
terklassen abgeleitet werden.

4. Eine Unterklasse kann geerbte
Instanzvariablen durch eigene In-
stanzvariablen ergénzen. In der Unter-
klasse RechteckRund haben wir z.B.
die Instanzvariable Eckradius zuge-
fugt.

5. Eine Unterklasse kann geerbte
Methoden durch Deklaration gleich-
namiger Methoden ersetzen (z.B. Flae-
che in RechteckRund) und auch neue
Methoden einfiihren (z.B. Eckradius in
RechteckRund).

6. Wird ein Objekt zusammen mit
einer Methode aufgerufen, die es nicht
kennt, dann wird der Aufruf an die
Oberklasse weitergereicht. In Bild 13
wird mit

ru2.Verschiebe(42,0)

die Methode Verschiebe des Objektes
ru2 (das von der Klasse RechteckRund
ist) aufgerufen. Da in der Klasse Recht-
eckRund keine solche Methode defi-
niert wurde, wird der Aufruf automa-
tisch an die Oberklasse Rechteck
weitergereicht, die nun ihrerseits die
Methode Verschiebe kennt. Hitte
auch sie die Methode nicht gekannt, so
wire der Aufruf Stufe um Stufe weiter-
gereicht worden (die Klassenhierar-
chie hinauf). Ein Objekt reagiert auf
einen Methodenaufruf demnach wie
in Bild 14 dargestellt.

Meldung 7
77

Objekt ———

Methode nein

) bekannt?

Weiterreichen
Originaimeldung
an Oberklasse

Weiterreichen
modifizierte Meldung(en)

Meldung
bearbeiten

an Oberklasse
f LA 7
Meldung

weitere Meldung(en)

an beliebige Klassen
)

FAA

2 Meldung 72
QARNARALRRAIA

Bild 14 Objektverhalten bei Empfang einer Meldung

24

Bulletin ASE/UCS 81(1990)21, 10 novembre

Objektorientierte Programmierung

Systeme aus wiederverwendbaren
Klassenhierarchien

Betrachten wir in Bild 15 ein weite-
res Beispiel einer Klassenhierarchie:
Die Klasse Matrix implementiert eine
einfache, zweidimensionale Tabelle
ohne Formatierinformationen und
Rechenformeln fiir die einzelnen Ma-
trixfelder. Die Klasse Spreadsheet
baut auf der Klasse Matrix auf und
fiihrt die aus Tabellenkalkulationspro-
grammen bekannten Maoglichkeiten
der automatischen Berechnung von
Feldern, der Formatierung der Tabelle
sowie der Verkniipfung mit anderen
Tabellen ein. Das Kontoblatt schliess-
lich ist im Grunde genommen nichts
anderes als eine spezielle Art von Ta-
belle; wir bilden die Klasse Kontoblatt
also als Subklasse von Spreadsheet
(Bild 16).

Bereits an den kleinen Beispielen
von geometrischen Objekten und von
Tabellenstrukturen erkennen wir eine
zentrale Eigenschaft objektorientierter
Systeme, eine Eigenschaft von Syste-
men also, die aus Objekten als Instan-
zen von in Hierarchien eingebundenen
Klassen bestehen: Eine Klassendefini-
tion wird sehr klein und iibersichtlich,
da sie auf einer bereits bestehenden
Klasse aufbaut und diese lediglich
leicht verdndert oder erginzt. Diese Si-
tuation ist uns bestens aus der indu-
striellen Fertigung bekannt, wo man
auch auf Halbfabrikaten aufbaut, die-
se u.U. leicht abédndert (z.B. in einem
Apparat einen Gleichstrommotor
durch einen Wechselstrommotor er-
setzt) oder erginzt (etwa durch eine
Halterung oder ein Anschluss-Zwi-
schenstiick).

Die Vorteile dieses Vorgehens sind
weitreichender, als man dies auf den
ersten Blick erahnt. In der Modultech-
nik und bei Verwendung von abstrak-
ten Datentypen haben wir entweder
bestehende Module bzw. Klassen
iibernommen und deren Quelltext ma-

tabellarisches Blld.E5 . S
Objekt Klassenhierarchie fiir
tabellarische Objekte
Matrix
Spreadsheet
Kontoblatt

Matrix

Spreadsheet

Kontoblatt

Bild 16 Matrizen, Spreadsheets und Kontoblitter

nuell modifiziert oder aber Funktio-
nen eines allgemeineren Moduls bzw.
ADT explizit, also auch unter Kennt-
nis dessen Parameterstruktur, aufgeru-
fen. Damit wird nicht nur die Pro-
grammierung ungebiihrlich belastet,
wichtiger ist der Verlust an Flexibilitat.
Weil wir im objektorientierten Ansatz
auf jeder Stufe der Klassenhierarchie
nur genau die Differenz zu der Ober-
klasse ausformulieren und alles andere
unbesehen iibernehmen, schlagen An-
derungen an einer Klasse automatisch
auf alle Unterklassen durch.

Stellen wir uns hierzu vor, man hitte
die Klasse Matrix so implementiert,
dass alle Matrixfelder als zweidimen-
sionales Feld im Hauptspeicher abge-
speichert sind. Folglich werden also
auch alle Felder des Spreadsheets und
des Kontoblatts hauptspeicherintern
gehalten, da diese beiden Klassen bei
korrektem objektorientiertem Aufbau
nicht selbst einen Code fiir die Verwal-
tung der Einzelfelder und den Zugriff
hierauf enthalten. Tritt nun das Be-
diirfnis nach grosseren Tabellen auf,
was gerade fiir Konten mit moglicher-
weise Tausenden von Einzelbuchun-
gen typisch ist, so wird in der Klasse
Matrix die Organisation der Felder
und der Zugriff hierauf verdndert: Es
wird nicht mehr die ganze Matrix im
Hauptspeicher gehalten, sondern nur
gerade derjenige Teil, der benotigt
wird; der Rest wird auf Sekundarspei-
cher ausgelagert, wie wir das von Sei-
tenaustauschverfahren in Betriebssy-
stemen kennen. Diese Anderung der
Klasse Matrix schldgt auf alle Unter-
klassen durch. Beliebig grosse Spread-
sheets und Konten mit beliebig vielen
Einzelbuchungen sind ohne auch nur
die kleinste Korrektur an deren Klas-
sendefinition Wirklichkeit geworden.

Bei kluger objektorientierter Pro-
grammierung ist auch das Anzeigen
von Tabellenteilen in der Klasse Ma-
trix (oder sogar noch hoher in der
Klassenhierarchie) auscodiert worden.
Spreadsheet und Kontoblatt basieren
auf den Anzeigemethoden der Ober-

klasse Matrix. Werden nun, wie vor-
gingig umschrieben, beliebig grosse
Matrizen eingefiihrt, so wird innerhalb
der Klasse Matrix auch die Anzeige-
methode so umprogrammiert, dass Ta-
bellenteile, die nicht gesamtheitlich
auf einem Bildschirm Platz finden, ho-
rizontal und vertikal «gerollt» werden
konnen. Auch diese Neuerung steht al-
len Unterklassen zur Verfiigung; ein
Kontoblatt wird plotzlich mit einem
Rollbalken fiir den Buchungsteil ange-
zeigt, ohne dass auch nur das Gering-
ste an der Klasse Kontoblatt gedndert
worden wire.

Damit haben wir auf der Ebene der
Programmstruktur einen Grad an
Wiederverwendbarkeit erreicht, wie er
in der Softwareentwicklung mit allen
bisher bekannten Methoden klassi-
scher Programmierung nicht erreich-
bar war. Softwaresysteme entstehen
als Hierarchie von Klassen, wobei von
Hierarchiestufe zu Hierarchiestufe ty-
pischerweise nur sehr kleine Anderun-
gen und Erweiterungen an den Klas-
sen vorgenommen werden. Eine ein-
zelne Klassendefinition und insbeson-
dere die Definition einer Methode
wird recht klein. Methoden mit zwei
bis fiinf Zeilen Code sind keine Selten-
heit. Die Kunst der objektorientierten
Programmierung besteht darin, kluge
Klassenhierarchien aufzubauen, das
heisst insbesondere, in Unterklassen
entstehende Gemeinsamkeiten und
Doppelspurigkeiten zu erkennen, aus
diesen Gemeinsamkeiten ein allgemei-
nes, hoheres Schema abzuleiten und
dieses sodann in der richtigen Ober-
klasse zu implementieren. Damit ent-
steht fiir alle Unterklassen dieser
Oberklasse (nicht nur fiir diejenigen,
aus der die Gemeinsamkeiten heraus-
faktorisiert wurden) eine zusitzliche
Funktionalitat.

Dynamische Bindung

Es wurde aus den vorangehenden
Ausfiithrungen zu der objektorientier-
ten Programmierung klar, dass diesel-

Bulletin SEV/VSE 81(1990)21, 10. November

25

Informatik

Bild 17
Dreieck *Dreieckl, *Dreieck2, *Dreieck3; Objektl: eferenzen
Viereck *Viereckl, *Viereck2, *Viereck3; und Objekttabelle
Quadrat *Quadratl, *Quadrat2;
Polygon *Polygonl, *Polygon2;
RechteckRund *RRundl, *RRund2, *RRund3, *RRund4;
GeomObjekt *ObjTab[20];

In C** wird durch einen Stern * vor einer Variablendeklaration der angege-
bene Name als Zeiger (Pointer) vereinbart. Mit der untersten Deklaration
wird beispielsweise eine Tabelle mit 20 Zeigern auf Objekte des Typs

GeomObjekt angelegt.

be Methode sehr oft auf verschiedenen
Stufen der Klassenhierarchie verwen-
det wird (beispielsweise die Methode
Flaeche fiir geometrische Objekte). In
den bisherigen Beispielen war aus der
syntaktischen Form des Methodenauf-
rufs stets die angesprochene Klasse er-
sichtlich: In Bild 13 resultiert z.B. die
Ausfiithrung des Ausdrucks

r1.Flaeche() + ru1.Flaeche()

im Aufruf der Methode Flaeche der
Klasse Rechteck fiir r1 (das ja eine In-
stanz dieser Klasse ist) und im Aufruf
der Methode Flaeche der Klasse Recht-
eckRund fiir das Objekt rui. Die Klas-
se dieser Objekte ist aus deren Dekla-
ration ersichtlich; die Methodenaufru-
fe kdnnen also zur Ubersetzungszeit
an eine Klasse gebunden werden.

Begniigten wir uns mit der Bindung
zur Ubersetzungszeit, auch statische
Bindung genannt, so wiirden wir
enorm viel an Flexibilitidt und Wieder-
verwendbarkeit von Klassen verlieren.
Betrachten wir zur Begriindung der dy-
namischen Bindung ein paar Pro-
grammfragmente, die auf der Klassen-
hierarchie von geometrischen Objek-
ten basieren, wie sie in Bild 11 darge-
stellt ist. In C** wird durch einen Stern
* vor einer Variablendeklaration der
angegebene Name als Zeiger (Pointer)
vereinbart. In Bild 17 werden also aus-
schliesslich Zeiger auf Objekte der an-
gegebenen Klasse deklariert. Mit der
untersten Deklaration wird beispiels-
weise eine Tabelle mit 20 Zeigern auf
Objekte des Typs GeomObjekt ange-
legt. GeomObjekt ist die Wurzel der
Klassenhierarchie gemdss Bild 11.
ObjTab kann somit Zeiger auf Objekte
aller GeomObjekt untergeordneten
Klassen aufnehmen.

Betrachten wir die vier Abschnitte
aus Bild 18:

1. Im ersten Abschnitt werden (dy-
namisch) drei Objekte angelegt. In
C** kann, wie bereits frither bemerkt,
fiir jede Klasse eine Initialisierungs-
funktion angegeben werden. Diese

wird bei dynamischen Objekten un-
mittelbar nach Anlegen des Objektes,
das heisst als Teil der durch new ausge-
l6sten Aktionen ausgefiihrt.

2. Im zweiten Abschnitt erscheinen
einige Zuweisungen von Objektzei-
gern. Die Zuweisung eines Objektzei-
gers an einen Zeiger, der auf ein in der
Klassenhierarchie héher gelegenes Ob-
jekt verweist, ist zuldssig. Diese Regel
ist durchaus einsichtig: Eine Klasse
umfasst wie besprochen alle Instanz-
variablen ihrer Oberklasse. Wird ein
Objektzeiger einem klassenhierar-
chisch iibergeordneten Objektzeiger
zugewiesen, so verweist dieser nach
der Zuweisung vermeintlich auf ein
Objekt seiner Klasse und damit auch
auf die in seiner Klasse bekannten In-
stanzvariablen. In der Tat besteht die
Referenz jedoch auf ein Objekt tieferer
Klasse, das meist weitere Instanzva-
riablen kennt. Dies schadet jedoch
nichts, denn die zusitzlichen Instanz-
variablen werden strukturell an die be-
stehenden angehingt, so dass auf ho-
herer Stufe automatisch die dieser
Klassenstufe zugehorenden Instanzva-
riablen referenziert werden, ob das
referenzierte Objekt von dieser oder
einer beliebigen Unterklasse ist.

Ungiiltig ist die zweitletzte Zuwei-
sung, da Viereck nicht eine Oberklasse
von Dreieck ist. Auch Zuweisungen
hierarchieabwirts sind nicht gestattet,
da damit beispielsweise ein Zeiger auf

ein Objekt der Klasse RechteckRund
auf eines der Klasse Rechteck zeigen
kénnte, in dem die in der Klasse Recht-
eckRund definierte Instanzvariable
Eckradius fehlen wiirde (cf. Bild 12).

3. Aus dem dritten Abschnitt in
Bild 18 wird ersichtlich, dass Referen-
zen auf Instanzvariablen und Metho-
den dynamisch angelegter Objekte mit
dem Zeiger-Dereferenzierungssymbol
«—-» codiert werden. RRund2--Eckra-
dius bezeichnet die Instanzvariable
Eckradius des Objektes, auf welches
der Zeiger RRund2 zeigt; Vier-
eck2->Verschiebe(10,—-5) ruft die Me-
thode Verschiebe des mit Viereck2
referenzierten Objektes auf.

Die Frage entsteht nun sofort, wel-
che Methode Verschiebe in der Kon-
struktion ObjTab[j]->Verschie-
be(dx,dy) angesprochen wird. Offen-
sichtlich diejenige des Objektes, auf
welches der an Stelle j im Array
ObjTab liegende Zeiger verweist. Je
nach vorangegangener Zuweisung an
ObjTab[j] kann dies ein Objekt einer
beliebigen Unterklasse von GeomOb-
jekt sein. Folglich kann der Methoden-
aufruf Verschiebe nicht zur Uberset-
zungszeit an eine Klasse gebunden
werden; erst zur Laufzeit wird auf-
grund des referenzierten Objektes ent-
schieden, welche Klasse angesprochen
werden muss. Dies nennt man dynami-
sche Bindung (Dynamic Binding).

4. Im letzten Abschnitt von Bild 18
wird mit einer Schleife die Gesamtfla-
che aller durch ObjTab referenzierten
geometrischen Objekte errechnet. Wie-
derum gelangt dynamische Bindung
zum Einsatz, da zur Ubersetzungszeit
nicht entschieden werden kann, an
welche Klasse der Methodenaufruf
Flaeche gebunden werden muss.

Die dynamische Bindung bringt
ausserordentlich viel an Zusatzflexibi-
litdit und Wiederverwendbarkeit. Es
konnen auf hierarchisch hoherer Stufe
allgemeingiiltige Algorithmen ausco-

Bild 18

Objektverwendungen Dreieckl = new Dreieck;

mit dynamischer Polygon3 = new Polygon;

Bindung Quadrat2 = new Quadrat;
Viereckl = Quadratl;
Viereck2 = RRund4;

Viereck3 = Dreieck2;
ObjTab([12] = Polygon2;

“ee

ungiltig!

r = RRund2->Eckradius;
Viereck2->Verschiebe(10,-5);
ObjTab[j]->Verschiebe (dx,dy) ;

Gesamtflaeche = 0;
for (i = 0; i < AnzahlObjekte; ++i)

Gesamtflaeche += ObjTab([i]=->Flaeche():

26

Bulletin ASE/UCS 81(1990)21, 10 novembre

Objektorientierte Programmierung

class GeomObjekt :
public:

virtual float
):

float GeomObjekt::Flaeche ()

}

public Object {

Flaeche ():

Fehler ("Flaeche nicht definiert");

Bild 19

Dynamisch
gebundene Methode
inC++

In C** wird durch den Zusatz des Schliisselwortes virtual zu einer Metho-
dendefinition angeben, dass deren Aufrufe in dieser und allen untergeordne-

ten Klassen dynamisch gebunden werden sollen.

diert werden, ohne die Struktur der
durch sie behandelten Objekte zu ken-
nen. Die Gesamtflichen-Berechnung,
wie sie in Bild 18 dargestellt ist, bleibt
unverdndert, auch bei Definition von
neuen Unterklassen von GeomObjekt,
solange jede Klasse eine Methode zur
Berechnung ihrer Fliche kennt. Bei
Anwendung statischer Bindung miiss-
te zwecks Aufruf der korrekten Metho-
de eine Fallunterscheidung mit einer
Switch-Anweisung (entspricht case in
Modula-2) codiert werden. Ausserdem
wiren die Instanzvariablen in einen
Variantenrecord einzugliedern. Damit
wird nicht nur der Code erheblich ver-
lingert und unlesbarer gemacht, gra-
vierender ist die Tatsache, dass bei
Einfiihrung einer neuen Klasse an al-
len betroffenen Stellen die Fallunter-
scheidungen und der Variantenrecord
nachgetragen werden miissen.

In C** wird durch den Zusatz des
Schlisselwortes virtual zu einer Metho-
dendefinition angegeben, dass deren
Aufrufe in dieser und allen unter-
geordneten Klassen dynamisch gebun-
den werden sollen. Die Definition der
Klasse GeomObjekt konnte beispiels-
weise, wie in Bild 19 gezeigt, codiert
werden.

Die Funktion Flaeche der Klasse
GeomObjekt kann selbstverstindlich
keine Flachenberechnung vornehmen,
da die konkrete geometrische Gestalt
der Figur nicht bekannt ist. Erst in Un-
terklassen kann die Fliachenberech-
nung auscodiert werden. Die in Bild 19
deklarierte Funktion Flaeche ist gewis-
sermassen ein «Fangnetz»: Wird in
einer Unterklasse von GeomObjekt die
Methode Flaeche nicht redefiniert, so
wird bei deren Aufruf die geerbte Me-
thode Flaeche von GeomObjekt ausge-
fuhrt, die lediglich eine Fehlermel-
dung produziert. Dies wire beispiels-
weise dann der Fall, wenn der Klas-
senhierarchie von Bild 11 eine Unter-
klasse Kreis zugefiigt wiirde, die die
Methode Flaeche nicht explizit bein-
haltet.

In der Praxis der objektorientierten
Programmierung fiihrt eine kluge An-
wendung dynamischer Bindung dazu,
dass algorithmische Gemeinsamkeiten
moglichst hoch in die Klassenhierar-
chie «herausfaktorisiert» werden. Es
entstehen algorithmische Grundmu-
ster, die vollig unabhéngig von den be-
handelten Objekten funktionieren.
Diese Unabhéngigkeit ist dabei nicht
nur so zu verstehen, dass ein generi-
scher Algorithmus beschrieben wird,
der fiir verschiedenste Objekttypen in-
stantiiert werden kann (wie wir das
z.B. von generischen Modulen oder ge-
nerischen ADT kennen), sondern dass
der Algorithmus iiberhaupt unabhén-
gig von den Objekttypen (bzw. Objekt-
klassen) wird. Erst zur Laufzeit wird
unmittelbar bei Anwendung einer Me-
thode auf ein Objekt entschieden, wel-
che konkrete Methode auszufiihren ist.

Natiirlich kostet die dynamische
Bindung etwas: In C** wird fiir jede
Klasse eine Referenztabelle ihrer dy-
namisch gebundenen Methoden ange-
legt; bei einem dynamisch gebundenen
Methodenaufruf wird dann iiber einen
Verweis aus dem Objektdeskriptor die
der Methode zugeordnete Prozedur-
adresse aus der Referenztabelle gela-
den und auf diese verzweigt. Die
Mehrkosten bestehen also hauptsidch-
lich aus einem gesteigerten Haupt-
speicherbedarf. Die Laufzeitmehrko-
sten sind fast vernachldssigbar und
werden durch eine iiblicherweise ge-
steigerte Qualitdt der herausfaktori-
sierten Algorithmen mehr als wettge-
macht.

7. Schlussbemerkungen

Zweifellos ist es ausserordentlich
schwierig, aus dieser kurzen Einfiih-
rung soviel an Einsicht und Verstdand-
nis zu gewinnen, um die technischen
Moglichkeiten objektorientierter Pro-
grammierung umfassend erkennen
und deren Auswirkungen auf Struktur,
Flexibilitat, Wartbarkeit und Wieder-

verwendbarkeit ganzer Softwaresyste-
me beurteilen zu konnen. Nur durch
Auseinandersetzung mit objektorien-
tierter Programmierung wird diese Er-
fahrung geschaffen und gefestigt.
Wichtig ist dabei, dass man nicht auf
dem absoluten Nullpunkt beginnt. Es
sollte wenn maoglich bereits eine ver-
niinftige Klassenhierarchie bestehen.
Andernfalls beschriankt sich die Erfah-
rung aufdie « Mikro»-Ebene objektori-
entierter Programmierung: auf die
Konstrukte der Programmierspra-
chen. Der Einsatz einer Klassenhierar-
chie in Entwurf und Implementation
von Software ist aber ebenso wichtig
wie das Beherrschen einer objektorien-
tierten Programmiersprache allein.
Eine umfassende und konzeptionell
reine, jedoch recht umfangreiche Um-
gebung fiir einen Einstieg in die Welt
der objektorientierten Softwareent-
wicklung bietet z.B. ein Smalltalk-Sy-
stem, wie es heute auf vielen PC ver-

fiigbar ist.
Nach einer Einfiihrung in die Welt
objektorientierter =~ Programmierung

hort man oft den Kommentar: «Das
kann man ja alles auch mit Modula-2,
Pascal, C, PL/I...». Selbstverstind-
lichkann eine objektorientierte Softwa-
restruktur auch in anderen Sprachen
nachgebildet werden, selbst in Assem-
bler. Letztlich sind es ja auch nur «ge-
wohnliche Maschineninstruktionen»,
die ausgefiihrt werden. Man kann
auch Module mit C, strukturierte Pro-
grammierung mit Assembler, Klassen
mit Modula-2 nachbilden. Das Pro-
blem dabei ist nur, dass der Software-
entwickler in zwei Welten denkt: in der
Entwurfswelt und in der Implementie-
rungswelt. Seit geraumer Zeit hat sich
die Erkenntnis durchgesetzt, dass die
Programmstruktur moglichst kongru-
ent mit dem abstrakten Denkmodell
sein soll. Diese Suche nach Uberein-
stimmung von Denkmodell mit Be-
schreibungsmodell hat denn auch zur
Entwicklung von Sprachen wie Pascal
(das auf sauber strukturierte Program-
mierung ausgerichtet ist) und Modu-
la-2 (wo das Modulkonzept als
Sprachbestandteil iibernommen wur-
de) gefiihrt. Genauso verhélt es sich in
der objektorientierten Systementwick-
lung. Erst durch eine geeignete Pro-
grammiersprache wird es gelingen, die
herausragenden Vorteile objektorien-
tierter Programmierung zu nutzen. Bei
Verwendung eines nichtobjektorien-
tierten Entwicklungswerkzeuges er-
scheint die Systemstruktur auf Ebene
des Quellcodes als uniibersichtliches
«Flickwerk».

Bulletin SEV/VSE 81(1990)21, 10. November

27

Geographisches

Informationssystem
der Zukunft

GRADIS-UX, Software-Liosung

der Firma Stréssle, ist ein modulares,
Workstation-basierendes, Geo-
graphisches Informations-System
mit integrierter relationaler Datenbank
ORACLE.

Die konzeptionelle Neuentwicklung
GRADIS-UX vereint modernste Hard-
waretechnologie auf der Basis der
Computersysteme HP 9000/xxx unter
dem Betriebssystem UNIX.

Mit GRADIS-UX steht [hnen eine
leistungsfihige Software fiir folgende
Bereiche zur Verfiigung:

® Energiewirtschaft

® Ver- und Entsorgung
® Vermessungswesen
® Planung und Umwelt

GIS-Seminar

Zusammen mit der Firma Stréssle
fuhren wir zu diesem Thema ein
Seminar durch:

Datum/Ort 11. Dezember 1990
im Hotel Hilton,
Glattbrugg/Ziirich

09.00 Uhr zum Thema:
Vermessung und Energie-
versorgung

14.00 Uhr zum Thema:
Planung und Umwelt

Zeit

Kosten Die Teilnahme ist kostenlos

Weitere Auskunft und Anmeldung bei:
Hewlett-Packard (Schweiz) AG, Ziirich,
Frau Lucia Frei, Telefon 01-315 81 81

[/} Fackarc

strassle

Technische Informationssysterme

28

7 L 7 7

i Elektro - Zeichnungs - Service

f
Il Haben Sie einen Engpass -
il oder suchen Sie eine langfristige Entlastung?

|
|
I
Wir erstellen Fabrikations-, Installations- und ||
ot |
Il """""" Service-Unterlagen nach lhren |
| ”‘ Entwirfen und Angaben. ||
|} Auch Andern und Nachfihren von bestehenden ||
Zeichnungen
,| Technisches Biiro Ulrich Bircher II
| 5000 Aarau Tel. 064 24 60 06 |

7/ 5

01/207 86 32

Direktwahl zu lhrem Zielpublikum.

Elektroingenieure ETH/HTL
Leser des Bulletin SEV/VSE
mit Einkaufsentscheiden

CH 3072 Oste
Kabelwerk

el 031 511777

LV
TEIEED

Senden Sie uns gratis die angekreuzten Kataloge

[Gesamtkatalog

[] Katalog Nr. 1 Installationskabel, Telefonkabel und Zubehor

[] Katalog Nr.2 Netzzuleitungen, Verlangerungen, Spiralkabel, Konfektionen
[] Katalog Nr.3 Steuerleitungen- und Dateniibertragungs-Kabel

[C] Katalog Nr.4 Computerkabel und Zubehér BNCTNC,N, Twinax

[KatalogNr.5 1CS Verkabelungssystem und Zubehér BNC, Twinax

[] KatalogNr.6 Ethernet

[KatalogNr.7 LWL

Absender

Einsenden an: Heiniger & Co AG Blankweg4 3072 Ostermundigen

	Von der Subroutinentechnik zur objektorientierten Programmierung : Teil 3 : das Prinzip der objektorientierten Programmierung

