Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 81 (1990)

Heft: 17

Artikel: Von der Subroutinentechnik zur objektorientierten Programmierung :
Teil 2 : module und abstrakte Datentypen

Autor: Marty, Rudolf

DOl: https://doi.org/10.5169/seals-903153

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903153
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Objektorientierte Programmierung

Von der Subroutinentechnik zur
objektorientierten Programmierung

Teil2 Module und Abstrakte Datentypen

Rudolf Marty

Nachdem der Autor im ersten
Teil den geschichtlichen Weg
der Software-Entwicklung von
der frihen Subroutinentechnik
bis zu den Prozeduren- und
Funktionskonzepten, wie sie bei-
spielsweise in C und Modula-2
realisiert sind, nachgezeichnet
hat, behandelt er im zweiten Teil
die Technik der Module und
Abstrakten Datentypen. Ein
dritter und letzter Teil wird den
vorlaufigen Endpunkt dieser
Entwicklung, die objektorien-
tierte Programmierung zum
Inhalt haben.

Apreés avoir tracé I’historique du
développement des logiciels en
partant de la technique des sub-
routines précoces jusqu’au
concepts des fonctions et des
procédures, comme ils sont réa-
lisés par exemple dans C et
Modula-2, I'auteur traite dans la
deuxieme partie la technique
des modules et des types de
données abstraites. Un point
final provisoire sera constitué
par la programmation orientée
objet qui fera I’objet d’un troi-
sieme et dernier article.

Adresse des Autors

Prof. Dr. Rudolf Marty , Schweiz.
Bankgesellschaft, Ubilab (UBS Informatics

Laboratory), 8021 Ziirich

4. Ein dritter
Abstraktionsschritt : Module

Eines sei zu Modulen gleich vorweg
gesagt: Der Begriff Modul ist in der
Praxis der Softwareentwicklung fiir
sehr viele unterschiedliche Konzepte
verwendet worden. Leider fiihrt dies
immer wieder zu erheblichen Begriffs-
verwirrungen bei der Besprechung der
Module in unserem Sinn, wo wir die-
sen Fachbegriff recht eng fassen und
fiir ein ganz bestimmtes Gliederungs-
konzept verwenden. Wir befinden uns
damit aber im Einklang mit der mo-
dernen Software-Engineering-Termi-
nologie.

Und noch eine kleine Vorbemer-
kung: Nach neuestem Duden wird fiir
ein Modul im technischen Sinn, fiir
eine Art Bauteil in Materie oder Soft-
ware, das sdchliche Substantiv das
Modul (die Module) verwendet; der
Modul (die Modulen) steht fiir eine
Verhiltniszahl.

sichtbar
\

S
Modul-Schnittstelle

unsichtbar

Bild3 Ein Modul

Ein Modul besteht aus einer Schnittstelle und der
Implementation. Die Schnittstelle ist vergleichbar
mit der Steckerleiste der PC-Steckkarte, iiber die
die Steuerung und der Datentransfer zwischen
Prozessor und Steckkarte abgewickelt wird. Die
Implementation entspricht der auf der Steckkarte
installierten elektronischen Schaltung.

Ein Software-Modul kann struktu-
rell mit einem elektronischen Bauteil
wie etwa einer Steckkarte fiir einen PC
verglichen werden (Bild 3). Ein Modul
besteht aus einer Schnittstelle und der
Implementation. Die Schnittstelle ist
vergleichbar mit der Steckerleiste der
PC-Steckkarte, iiber die die Steuerung
und der Datentransfer zwischen Pro-
zessor und Steckkarte abgewickelt
wird. Die Implementation entspricht
der auf der Steckkarte installierten
elektronischen Schaltung. Fiir den Ge-
brauch der PC-Steckkarte geniigt es
vollauf, wenn die Definition der
Schnittstelle bekannt ist. IThr innerer
Aufbau bleibt verborgen und kann im
Normalbetrieb auch in keiner Art und
Weise verdndert werden.

Genauso verhilt es sich mit Softwa-
re-Modulen. Auch hier kann auf die
(von aussen unsichtbare) Implementa-
tion nicht zugegriffen werden. Alle
Deklarationen und Definitionen von
Daten und Aktionen innerhalb eines
Moduls sind demnach von der «Aus-
senwelt» vollstindig abgekapselt, so-
lange sie nicht in der Schnittstellenbe-
schreibung auftreten. Dadurch wird
ein grosser konstruktiver Schritt ge-
macht: Durch eine saubere Modular-
struktur im besprochenen Sinn entste-
hen Softwaresysteme, die weit besser
in relativ autonome Komponenten ge-
gliedert sind, als dies durch eine proze-
durale Zergliederung moglich wire.
Diese relativ autonomen Komponen-
ten in Form von Modulen kommuni-
zieren miteinander ausschliesslich
iiber definierte Schnittstellen. Es ist
also stets aus dem Programmtext selbst
ersichtlich, welche Kommunikations-
strukturen zwischen den einzelnen
Komponenten bestehen. Implizite und
versteckte Datenfliisse und Steue-
rungsstrukturen iiber Globalvariablen
gibt es nicht mehr.

Fassen wir die zentralen Eigenschaf-
ten eines Moduls zusammen, bevor

Bulletin SEV/VSE 81(1990)17, 30. August

43

Informatik

END Verzeichnis;

DEFINITION MODULE Verzeichnis;

TYPE Verz;

PROCEDURE NewVerz (VAR Vv :.Verz);

PROCEDURE PutVerz (v : Verz;
Schluessel : ARRAY OF CHAR;
Index : INTEGER) ;

PROCEDURE GetVerz (v : Verz;

Schluessel
: INTEGER:;

: ARRAY OF CHAR)

Bild 4 Schnittstellenteil eines Moduls

wir im nichsten Abschnitt konkrete
Module in der Sprache Modula-2 be-
trachten:

- Jedes Modul besteht aus einer von
aussen «sichtbaren», das heisst ver-
wendbaren Schnittstelle (Interface) so-
wie aus einer ausserhalb des Moduls
selbst «unsichtbaren», das heisst un-
antastbaren Implementation.

- Die Modul-Schnittstelle enthélt De-
klarationen von Typen, Konstanten,
Variablen und von Prozeduren. Im
Sinne des Information Hiding wird
nur gerade soviel explizit deklariert,
wie fiir die Verwendung des Moduls
notig ist. Beispielsweise wird nur ein
Typenname in der Schnittstelle dekla-
riert, wobei die interne Struktur des
Datentyps im Implementationsteil er-
scheint und damit gegen aussen ver-
steckt bleibt. Entsprechend erscheint
von einer Prozedur im Schnittstellen-
teil nur der Name, die Parametertypen
und der Typ eines allfédlligen Riickga-
bewertes.

- Die Modul-Implementation besteht
im wesentlichen aus Deklarationen
von Typen, Konstanten und Variablen
sowie aus Prozeduren und Initialisie-
rungscode fiir das Modul.

- In der Schnittstelle werden sdmtli-
che Aussenbeziehungen eines Moduls
deklariert. Die Importe und Exporte
eines Moduls sind folglich im Pro-
grammcode selbst beschrieben und
konnen somit vom Compiler auch auf
korrekte Verwendung gepriift werden.
Dies ist selbst dann moglich, wenn das
Modul getrennt vom Klienten iiber-
setzt wird. (Wir bezeichnen die Pro-
grammeinheiten, welche ein bestimm-
tes Modul verwenden, als Klienten
dieses Moduls; damit vermeiden wir
Verwirrungen mit dem Begriff Benut-
zer, der fiir ein menschliches Wesen
Anwendung findet.)

- Alle in der Schnittstelle eines Mo-
duls vorkommenden Variablen haben
permanenten Charakter, sie behalten
den aktuellen Wert auch nach Verlas-

sen des Moduls. Dasselbe gilt fiir die
innerhalb des Moduls global, das
heisst nicht innerhalb Modulprozedu-
ren deklarierten Variablen. Ein Modul

ist also in seiner Struktur einem
Hauptprogramm mit globalen Dekla-
rationen und verschachtelten Prozedu-
ren gleichgestellt.

Module in Modula-2

Das in Bild 4 und 5 dargestellte Mo-
dul implementiert einfache Verzeich-
nisse, die maximal 100 Paare, beste-
hend aus Schliisselwert (eine Zeichen-
kette) und zugehorigem Indexwert,
enthilt. Ein solches Verzeichnis kénn-
te beispielsweise zum assoziativen Zu-
griff auf eine Tabelle verwendet wer-
den.

Man sieht, dass im Implementa-
tionsteil, versteckt von der Aussen-
welt, «Buchhaltung» iliber die maxi-
mal 20 allozierten Verzeichnistabellen

Tabelle

BEGIN

END

v~ .Besetzt:= 0;

: INTEGER;
BEGIN

ELSE RETURN -1
END
END GetVerz;

BEGIN

AnzTabellen := 0
END Verzeichnis;

IMPLEMENTATION MODULE Verzeichnis;

TYPE Verz = POINTER TO VerzTabelle;
VerzTabelle =
RECORD
Besetzt : INTEGER;
Tab ¢ ARRAY [1..100] OF RECORD;
Schl : ARRAY [1..20] OF CHAR;
Ind : INTEGER
END
END;
VAR AnzTabellen : INTEGER;

: ARRAY [1..20] OF Verz;

PROCEDURE NewVerz (VAR Vv :

IF AnzTabellen >= 20 THEN
Fehler ("Mehr als 20 Verzeichnisse")

Allokation einer Verzeichnistabelle
v := Adresse der Tabelle ;

AnzTabellen := AnzTabellen + 1;
Tabelle[AnzTabellen] := v;
END NewVerz;
PROCEDURE GetVerz (v : Verz;
Schluessel : ARRAY OF CHAR)

suchen Schluessel in v~.Tab
IF gefunden THEN RETURN v~.Index

(* Initialisierung des Moduls *)

Verz) ;

Bild5 Implementationsteil eines Moduls

44

Bulletin ASE/UCS 81(1990)17, 30 aott

Objektorientierte Programmierung

gefiihrt wird. Der Array Tabelle, der
auf die Verzeichnistabellen zeigt,
kénnte beispielsweise dazu verwendet
werden, auf Wunsch des Klienten alle
Verzeichnisse wieder zu deallozieren.
Hierzu miisste natiirlich eine neue Mo-
dulfunktion eingefiihrt werden. Von
dieser Anderung blieben aber, und
dies ist im Sinne des Information Hi-
ding ausserordentlich wichtig, alle
Klienten unbetroffen, die die neue
Funktion nicht bendtigen.

Das Programmfragment (Bild 6)
zeigt die Eroffnung von zwei Verzeich-
nissen Vz1 und Vz2, das Zufiigen von
Eintridgen sowie die Suche nach Ein-
trigen und die Verwendung des erhal-
tenen Index.

Ausprigungen von Modulen

Ein Modul kann sehr verschieden-
artige Ausprigungen annehmen. Die
folgenden fiinf typischen Modularten
werden in der Praxis moderner Soft-
wareentwicklung besonders hédufig an-
getroffen:

- Ein typisches Bibliotheksmodul ent-
hélt eine Sammlung von Prozeduren,
die oft benoétigte Funktionen imple-
mentieren und thematisch zusammen-
gehoren. Beispiele fiir Bibliotheksmo-
dule sind ein Datum-Modul (Opera-
tionen auf Kalenderdaten), ein Trigo-
nometrie-Modul (Winkelfunktionen),
ein Systemschnittstellen-Modul (ver-
einfacht die Kommunikation mit Sy-
stemsoftware) usw.

- Ein abstrakter Datentyp wird durch
ein Modul implementiert, das dem
Klienten einen neuen Datentyp und
die darauf definierten Operationen zur
Verfiigung stellt. Das Beispiel in Bild 4
und 5 ist ein solches Modul. Weitere
Beispiele fiir oft bendtigte abstrakte
Datentypen sind unter anderem Stacks
(LIFO-Struktur, Keller), Queues
(FIFO-Struktur, Warteschlange),
diinn besetzte Matrizen, Biume, mehr-
dimensionale Tabellen, komplexe
Zahlen und Koordinaten.

- Module werden oft zur Kapselung
applikatorischer Objekte wie etwa
eines Personalstamms, einer Stiickliste
oder eines Debitorenkontokorrentes
verwendet. Damit wird das applikato-
rische Objekt, das physisch als ein
oder mehrere Files organisiert ist, ge-
gen aussen abgekapselt und alle Ope-
rationen durch ein einziges Modul ge-
schleust.

- Der Modellierung physischer Syste-
me durch ein Modul kommt insbeson-
dere in technischen Anwendungen der
Informatik grosse Bedeutung zu. Bei-

spiele fir solche Module, die eine
Mittlerrolle zwischen Hardwarekom-
ponenten und dem Rest des Software-
systems iibernehmen, sind: Sensorsy-
stem-Module, Geritetreiber-Module,
Kommunikations-Module, Anzeigeta-
fel-Module usw.

- Neben physischen Systemen werden
durch Module selbstverstdndlich auch
logisch-konzeptionelle Systeme model-
liert, das heisst fiir andere Software-
komponenten auf hoher Abstraktions-

Fragen, die mithelfen, eine verniinf-
tige Modulstruktur (und ansatzweise
spiter auch eine gute Objektstruktur)
zu finden, sind unter anderem:

- Welche Funktionsbereiche und wel-
che Datenobjekte gehdren zusammen,
und welche Dienste leisten sie dem
Rest des Systems? Beispiel: Alle Dia-
logfunktionen werden in ein Modul
zusammengefasst.

- Welches sind die physischen und lo-
gischen Systeme, die durch ein Soft-

Bild 6
Verwendung eines
Moduls

VAR Vzl
vz2
TelefonTab
i

TelefonTab[32]

IF i = -1 THEN
ELSE

END

IMPORT Verzeichnis:

NewVerz (Vzl):; NewVerz(Vz2);

TelefonTab (53] :
PutVerz(Vz1l, "Kunz",53);
PutVerz (Vz2,"34-F-12",53);
:= 8263450;
PutVerz(Vzl,"Maller",32);
PutVerz(Vz2,"05-G-18",32);

i := GetVerz(Vzl, '"Suter");
kein Eintrag far "Suter"

TelNr := TelefonTab[i]

: Verz; (* Name -> Index *)

: Verz; (* RaumNr -> Index *)
: ARRAY [1..500] OF TelefonNr;

: INTEGER;

752839;

stufe nutzbar gemacht: Grafik-Modu-
le, Datenbank-Module, Meldungsver-
mittlungs-Module und Dialog-Modu-
le sind ein paar wenige Beispiele dafiir.

Modularer Entwurf

Dem modulorientierten Entwurf
liegt nicht mehr die bei rein prozedura-
len Softwaresystemen weitverbreitete
Methode der schrittweisen Verfeine-
rung, des Top-Down-Entwurfes, zu-
grunde. Es wird vielmehr versucht,
durch geeignete Strukturierungsfor-
men zu einer Familie von Modulen zu
kommen, die Gewihr fiir moglichst
hohe strukturelle Einfachheit, Aus-
baubarkeit und Wiederverwendbar-
keit der Module bietet. Dies wird
durch Mischformen von Top-down-
und Bottom-up-Entwiirfen erreicht.

waresystem betroffen werden? Wie
sieht deren Funktionsschnittstelle aus?
Beispiel: Ein zentrales, durch ein Mo-
dul gekapseltes Adressregister ist einer
verteilten Verwaltung von Adressbe-
stinden vorzuziehen.

- Bei welchen Softwarekomponenten
sind in Zukunft Anderungen wahr-
scheinlich? Was muss der Rest der
Software von deren interner Struktur
kennen? Wie konnte eine dnderungs-
unempfindliche Schnittstelle gestaltet
sein? Beispiel: Uber die Datenbank-
Schnittstelle, welche die Datenbank-
software zu Verfiigung stellt, wird ein
Zugriffsmodul gelegt, das die Anwen-
dungssoftware unabhdngig von der
unterliegenden Datenbank macht.

- Welche Basisdienste werden in glei-
cher oder dhnlicher Art immer wieder
benotigt? Beispiel: Ein flexibles Tabel-

Bulletin SEV/VSE 81(1990)17, 30. August

Informatik

lenmodul enthebt den Programmierer
von der Codierung immer wieder in
ahnlicher Form auftretender Tabellen-
strukturen.

- Welche bekannten Schnittstellen zu
Modul- und Funktionssammlungen
im betrachteten Anwendungsbereich
existieren zurzeit und konnten als
Grundlage dienen? Beispiel: Wird ein
Dialogmodul entworfen, so sollten zu-
ndchst andere Dialogschnittstellen
(z.B. X-Windows [11], News [12], Mac-
intosh Toolbox [10] o.a.) betrachtet
werden, um Anhaltspunkte fiir Stér-
ken und Schwichen bestimmter modu-
larer Gliederungen zu erhalten.

Schwachstellen des Modulkonzeptes

Trotz der enormen Fortschritte
einer gut modularisierten Software im
Vergleich zu einem bloss in prozedura-
ler Hinsicht klug gegliederten Pro-
grammsystem verbleiben bei der Ver-
wendung von Modulen immer noch
zwei gravierende Méngel:

- Module sind in vielen Programmier-
sprachen (so auch in Modula-2) als
statisches Objekt und nicht als Objekt-
typ definiert. Ein Modul kann deshalb
nicht einmal definiert und mehrmals
instantiiert, das heisst ins Leben geru-
fen werden. Dies wirkt sich insbeson-
dere bei der Modellierung von ab-
strakten Datentypen sehr hinderlich
aus, da sie mit Modulen nicht vollig
transparent nachgebildet werden kon-
nen. Das Beispiel in Bild 4 bis 6 zeigt
den iiblichen «Trick» bei der Nachbil-
dung abstrakter Datentypen mit Mo-
dulen: Ein Datenobjekt muss explizit
durch Aufruf einer Modulprozedur al-
loziert werden, das Datenobjekt wird
durch einen sogenannten Opaque
Pointer, einen «undurchsichtigen Zei-
ger» referenziert. Somit konnen auf
diese Art nachgebildete abstrakte Da-
tentypen nicht direkt in anderen Da-
tenstrukturen erscheinen, nicht direkt
in andere Prozesse transferiert und
auch nicht direkt auf Dateien ausge-
schrieben werden (man besitzt ja ledig-
lich einen undurchsichtigen Zeiger als
Referenz auf einen abstrakten Daten-
typ). Fiir solche Operationen miissten
fir jedes Datenobjekt spezielle Proze-
duren mitdefiniert werden, die vom
Klienten zum richtigen Zeitpunkt auf-
zurufen wéren. Der Klient hat folglich
abstrakte Datentypen unterschiedlich
zu realen Datentypen zu behandeln.
Der abstrakte Datentyp ist also nicht
vollig transparent.

- Das Prinzip des Information Hiding
bzw. der Kapselung von Informatio-

nen gilt nur, solange ein Modul unver-
dndert benutzt wird. In der Praxis der
Softwareentwicklung tritt jedoch oft
die Situation auf, dass ein bestehendes
Modul (bzw. ein vorhandener Pro-
grammteil) fiir eine neue Verwendung
zwar beinahe, aber eben nicht perfekt
passt. Man ist also zu einer Abénde-
rung gezwungen. Diese Abédnderung
kann aber nur dadurch vorgenommen
werden, dass man das urspriingliche
Modul kopiert und in dessen Kopie
den Implementations- und eventuell
den Schnittstellenteil verdndert. Dies
fiihrt dazu, dass mit der Zeit eine gan-
ze Familie von separaten, jedoch in ih-
rer Grundstruktur stark verwandten
Modulen erzeugt wird. Andert sich
eine «Grundfeste» dieser Modulfami-
lie, eine Komponente, die in allen ab-
geleiteten Modulen identisch blieb, so
muss die ganze Modulfamilie, die
meist iber sehr viele Programme ver-
streut ist, gedndert werden.

Durch die beiden verbleibenden
Schritte, die abstrakten Datentypen
und die objektorientierte Programmie-
rung, werden diese beiden Mingel
iberwunden. Insbesondere wird es
moglich, saubere und transparente ab-
strakte Datentypen zu modellieren
und, um vorerst in der Modultermino-
logie zu bleiben, Implementationsteile
von Modulen abzuidndern, ohne das
Prinzip der Kapselung zu verletzen.

5. Ein vierter
Abstraktionsschritt:
Abstrakte Datentypen

Ein abstrakter Datentyp (im folgen-
den ADT genannt) umfasst die Defini-
tion eines Datentyps zusammen mit
den auf diesen Datentyp zugelassenen
Operationen. Dabei wird es, falls vom
Entwerfer eines ADT so gewiinscht
und spezifiziert, unmoglich, auf die
Elemente eines Datentyps zuzugrei-
fen, es sei denn durch Anwendung der
zusammen mit dem Datentyp definier-

ten Prozeduren. Es entsteht somit ein
reiner ADT, ein ADT also, dem nicht
mehr die vorgéngig bei der Bespre-
chung der Module aufgefiihrten Nach-
teile anhaften.

Betrachten wir zur Illustration der
grundsétzlichen Wesensziige eines
ADT das Beispiel in Bild 7, codiert in
C** [8], wo ein (abstrakter) Datentyp
Rechteck definiert wird, der z.B. in
einer graphischen Applikation ver-
wendet werden kann. Was besagt in
diesem Beispiel die sogenannte Klas-
senbeschreibung oder kurz Klasse? Sie
besagt:

- Es soll ein ADT Rechteck gebildet
werden. Ein Rechteck wird dabei be-
schrieben durch die zwei sogenannten
Instanzvariablen p1 und p2, die zwei
diagonal gegeniiberliegende Eckpunk-
te des Rechtecks definieren. Wir neh-
men an, der Punkt sei bereits als Koor-
dinatenpaar (x,y) definiert worden.

- Die Klassenbeschreibung bzw. die
Definition des ADT ist zergliedert in
einen privaten und einen dffentlichen
Teil, voneinander getrennt durch das
Schliisselwort public. In der Definition
von Rechteck sind deshalb die In-
stanzvariablen privat, sie konnen also
nur durch die zum ADT gehdrenden
Prozeduren verdndert werden, nicht
direkt «von aussen».

- Im offentlichen Teil der Klasse wer-
den finf Prozeduren bzw. Funktionen
definiert. Es erscheint jedoch nur der
Funktionskopf, genau wie im Defini-
tionsteil eines Moduls. Die Definitio-
nen spezifizieren z.B., dass die Funk-
tion Setze zwei Punkte als Argumente
iibernimmt und kein Funktionsresul-
tat liefert (Void) oder dass die Funk-
tion Flaeche keine Argumente hat und
einen Float-Wert als Resultat zuriick-
gibt.

Bevor ein ADT verwendet werden
kann, missen natiirlich die Funktio-
nen des ADT ausprogrammiert wer-
den, dhnlich wie zum Gebrauch eines
Moduls ja auch nicht dessen Schnitt-
stellenbeschreibung allein ausreicht.
In C** geschieht die Beschreibung der

Bild 7
Eine
Klassenbeschreibung class Rechteck (
in C++ Punkt pl,p2;

o public:
Es wird ein (abstrakter) void Setze (Punkt Pa, Punkt Pb):
Date:_1typ «Rechtgck» void Eckpunkte (Punkt *Pa, Punkt *Pb);
definiert, der z.B.in void Verschiebe (int DeltaX, int Deltay);
einer graphischen void Schrumpfe (int DeltaX, int DeltaY);
Applikation verwendet float Flaeche ()
werden kann. }i

46

Bulletin ASE/UCS 81(1990)17, 30 aoiit

Objektorientierte Programmierung

void Rechteck::Setze (Punkt Pa,
(

)

pl = Pa; p2 = Pb;

)

float Rechteck::Flaeche ()
{

)

return abs(pl.Xx - p2.X)

Punkt Pb)

void Rechteck::Verschiebe (int DeltaX, int Deltay)

* abs(pl.y - p2.Y):

Bild 8
Klassenfunktionen
In C*+ geschieht die
Beschreibung der
ADT-Funktionen in
Form einer iiblichen
Funktionsdefinition,
wobei die Verbindung

(zum ADT durch
pl.x += DeltaX; pl.y += Delta¥:; X(g%ngellen des
p2.x += DeltaX; p2.y += DeltaY; -Namens

geschaffen wird.

ADT-Funktionen in Form einer tibli-
chen Funktionsdefinition, wobei die
Verbindung zum ADT durch Voran-
stellen des ADT-Namens geschaffen
wird. In unserem Fall wird also vor je-
der ADT-Funktion Rechteck das Zei-
chen :: stehen. Betrachten wir in Bild 8
drei der fiinf Funktionsdefinitionen.
Es ist wichtig zu erkennen, dass die
Klassendefinition allein noch keiner-
lei Datenobjekte erzeugt. Sie kann mit
einer normalen Typendefinition von
Modula-2, Pascal oder C verglichen
werden, wo ja auch erst eine Varia-
blendeklaration in der Erzeugung
eines Datenobjektes resultiert. Wie
eine Typendefinition zur Erzeugung
einer beliebigen Anzahl von Variablen
verwendet werden kann, ist es mog-
lich, aus einer Klassendefinition belie-
big viele ADT-Instanzen zu erzeugen,
auch auf dynamische Art mit new.
Eine ADT-Instanz ist also gewisser-
massen eine Variable, an die untrenn-
bar Funktionen zur Manipulation die-
ser Variablen gebunden sind. Im Pro-
grammsegment von Bild 9 erzeugen
wir durch die Deklaration «Rechteck
r1,r2» zwei Instanzen (d.h. Vorkom-
men) des ADT Rechteck. Jede Instanz
enthélt ihre eigenen Instanzvariablen

p1 und p2 (Bild7). Nun wird auch
klar, welche Instanzvariablen p1 bzw.
p2 bei Aufruf einer ADT-Funktion an-
gesprochen werden: Es sind diejenigen
der ADT-Instanz, deren Name dem
Funktionsaufruf vorangesetzt wird:
Beim Aufruf ri.Verschiebe beispiels-
weise also diejenigen, die der Instanz
r1 gehoren.

Verglichen mit durch Module nach-
gebildeten abstrakten Datentypen bie-
ten ADT doch einiges mehr an Klar-
heit, Sicherheit und erhohtem Abstrak-
tionsgrad in Beschreibung und Ver-
wendung. Die Anwendung von ADT
unterscheidet sich nicht von der An-
wendung der durch die Programmier-
sprache vorgegebenen Typen. Damit
wird ein hoher Grad an Transparenz
erreicht und eine der grossen Schwach-
stellen von Modulen eliminiert, ohne
auf der syntaktischen Ebene die Pro-
grammiersprache allzu stark zu bela-
sten.

C** bietet tiber die besprochene
Class-Definition hinaus einige niitzli-
che weitere Moglichkeiten, auf die hier
nicht ndher eingegangen wird: Fiir
eine Class konnen gesondert Initiali-
sierungs- und Terminierungsfunktio-
nen angegeben werden. Diese werden

Rechteck
Punkt

rl, r2;
ptl, pt2, pt3,

;1.Setze(ptl,pt2):
rl.Verschiebe(-12,10) ;
r2.Setze(pt3,pt4):

printf ("Flache von rl: %8.3f",

Bild 9

Instantiierung und

Verwendung von
pt4; ADT
rl.Flaeche()):

automatisch fiir jede Class-Instanz
dann aufgerufen, wenn diese ins Le-
ben gerufen bzw. eliminiert wird: fiir
automatische Klasseninstanzen bei
Eintritt bzw. Verlassen des Giiltig-
keitsbereiches der Klasseninstanz, fiir
globale Klasseninstanzen bei Pro-
grammstart bzw. Programmende. Aus-
serdem bietet C** die Moglichkeit,
Operatoren wie +, —, *, <, >, =, ==,
ja selbst Indexklammern [] auch als
Funktionsbezeichner fir ADT zu ver-
wenden. Damit wird die Verwendung
von ADT vollstindig transparent, bei-
spielsweise etwa bei der Anwendung
eines ADT fiir rationale oder komple-
xe Zahlen, die auf diese Art und Weise
wie die vordefinierten ganzen oder
reellen Zahlen verwendet werden kon-
nen.

Schwachstellen abstrakter Datentypen

ADT koénnen wohl zur Definition
beliebiger Datenstrukturen angewen-
det werden. Es ist jedoch nicht mog-
lich, einen bestehenden ADT auf ein-
fache und flexible Art und Weise zu er-
ginzen, ohne das Prinzip des Informa-
tion Hiding zu verletzen.

Verdeutlichen wir uns dies an einem
Beispiel: Nehmen wir an, wir hétten
einen ADT Rechteck wie er in den Bil-
dern 7 ff. dargestellt wurde. Nun ergibt
sich der Bedarf nach einem neuen
ADT, der Rechtecke mit abgerundeten
Ecken implementieren soll.

Zu den zwei Eckpunkten, die ein
Rechteck definieren, kommt der Radi-
us der Eckbogen als dritte Instanzva-
riable hinzu. Wie wiirden wir diesen
neuen ADT realisieren? Wir definie-
ren einen ADT RechteckRund, der als
Instanzvariable ein (privates) Recht-
eck und eine (6ffentliche) int Variable
zur Definition des Eckradius hat. Die
Funktionen von RechteckRund beste-
hen in den meisten Fillen lediglich aus
einem Aufruf der entsprechenden
Funktion des ADT Rechteck. Nur die
Funktionen Setze und Flaeche enthal-
ten verdnderten Code. Trotzdem muss
jede Funktion des ADT Rechteck in
der Definition des ADT Rechteck-
Rund wiederholt werden, selbst wenn
sie nur die gleichnamige Funktion des
ADT Rechteck aufruft (siche z.B. Ver-
schiebe in Bild 10).

Strukturell ist der ADT Rechteck-
Rund nichts anderes als eine kleine Er-
weiterung seines «Ahnen-ADT»
Rechteck. In der Praxis der Software-
entwicklung entstehen ganze Ahnen-
hierarchien von ADT oder ADT-#hn-
lichen Softwarekomponenten. Sehr oft

Bulletin SEV/VSE 81(1990)17, 30. August

47

Informatik

class RechteckRund (

Eckradius = Radius;
}

)

{

Rechteck Huellrechteck;
public:
int Eckradius;

void Setze

void Eckpunkte

void Verschiebe

void Schrumpfe

float Flaeche ():

(Punkt Pa, Punkt Pb, int Radius):
(Punkt *Pa,
(int DeltaX, int DeltayY);

Punkt *Pb) ;

(int DeltaX, int DeltaY);

void RechteckRund::Setze (Punkt Pa, Punkt Pb, int Radius)

Huellrechteck.Setze(Pa,Pb) ;

void RechteckRund::Verschiebe (int DeltaX, int DeltaY)

Huellrechteck.Verschiebe(DeltaX,DeltayY):

float RechteckRund::Flaeche ()

return Huellrechteck.Flaeche() -
Eckradius * Eckradius * (4 - pi);

Bild 10 Abgeleiteter ADT

Strukturell ist der ADT RechteckRund nichts anderes als eine kleine Erweiterung seines « Ahnen-ADT» -

Rechteck.

geschieht dies sogar in weit unhomo-
generer Form, indem von einem Ah-
nen-ADT der ganze Quellcode iiber-
nommen und die Kopie sodann direkt
modifiziert wird. Gemeinsamkeiten
von ADT werden dadurch repliziert
und diffundieren allméhlich; man er-
kennt die zugrundeliegenden Basis-
strukturen nicht mehr. Dies fithrt zu
Problemen im Zuge der Software er-
weiterung und -wartung.

Betrachten wir hierzu eine zwar hy-
pothetische, in dieser Art im Praxisle-
ben jedoch recht oft anzutreffende Si-
tuation: Fir ein neues Software-Pro-
jekt sei unser ADT Rechteck samt al-
ler davon abgeleiteten ADT, also auch
der ADT RechteckRund, zu verwen-

den. Statt kartesischer Koordinaten
sollen jedoch Polarkoordinaten be-
nutzt werden. Die Funktion Verschie-
be iibernimmt natiirlich neu nicht
mehr eine Verschiebungsdistanz in
kartesischen Grossen (dx und dy), son-
dern in polaren Grossen (Verschie-
bungsrichtung und -distanz). Nehmen
wir weiter an, der Verschiebungswin-
kel sei ein reeller (Float-)Wert.

Das neue Koordinatensystem indu-
ziert Modifikationen nicht nur am
ADT Rechteck, sondern auch an allen
hievon abgeleiteten ADT, obschon in
den abgeleiteten ADT nicht mehr di-
rekt auf Koordinaten zugegriffen
wird. Wegen der expliziten Weiterver-
wendung von ADT-Funktionen in ab-

geleiteten ADT wird eine ganze Lawi-
ne von Anderungen nétig. In jeder ab-
geleiteten Klasse muss z.B. die Funk-
tion Verschiebe nachgetragen werden,
da sich ein Parameter dndert. Eine
dhnliche Situation ergibt sich, wenn
ein ADT eine neue Funktion zugeteilt
erhilt, beispielsweise fiir unsere Recht-
ecke eine Funktion Skaliere, die ein
Rechteck um einen gegebenen Faktor
vergrossert bzw. verkleinert. Obschon
diese Funktion nur einen ADT be-
trifft, nimlich Rechteck, muss in allen
abgeleiteten ADT eine entsprechende
Funktion nachgetragen werden, ledig-
lich um jeweils die Funktion Skaliere
des Ahnen-ADT aufzurufen.

Die Notwendigkeit all dieser Ande-
rungen ist dadurch gegeben, dass die
Weiterverwendungs- bzw. Verer-
bungshierarchie von ADT nirgends
explizit festgehalten wurde. Statt einer
«Vererbungsdeklaration» im Pro-
gramm, der ADT RechteckRund sei
abgeleitet vom ADT Rechteck, rufen
wir aus den Funktionen von Rechteck-
Rund explizit die Funktionen von
Rechteck auf. Anders betrachtet liber-
nimmt es der Programmierer, durch
explizite Aufrufe von Funktionen
eines Ahnen-ADT die Vererbungshier-
archie im Programmcode auszuformu-
lieren, statt diese Aufgabe dem Compi-
ler zu tbertragen. Dieser konnte, ex-
plizite Vererbungsdeklarationen vor-
ausgesetzt, sehr wohl selbst den Aufruf
der gleichnamigen Funktion des Ah-
nen-ADT erzeugen, falls ein ADT die
Funktion selbst nicht explizit dekla-
riert. Diese Uberlegung fiihrt uns di-
rekt zum letzten Abstraktionsschritt,
der objektorientierten Programmie-
rung.

(Teil 3 folgt im Heft 21/90)

Literatur

[11] R.W. Scheiffer, J. Gettys: The X Window
System, ACM Transactions on Graphics 5
(1986) 2.

[12] Sun Microsystems Inc.: News Technical
Overview, 1987.

48

Bulletin ASE/UCS 81(1990)17, 30 aoit

Lagern:
Sie sagen
was, wir
sagen wie!

= <

z B Lagereinrichtungen sind
o @ unsere Spezialitit. Wir
planen und bauen Ihr Lagersystem - sei es fiir
Schrauben oder fir ganze Poletten. Branchenbe-
zogen und doch individuell, kundengerecht und
doch funktionell. Kompetente Planung und Be-

ratung praxisorientierter Lagersysteme, Produk-
tion und Montage - massgeschneidert fiir Sie.

Hollenstein & Prinz, Oberuzwil

Fragen Sie uns - unser System ist Ihre Losung.

Hilfe, schaffen Sie Ordnung in das
| COU PON = Lager - beraten Sie uns Gber Thre Lagersysteme |

| [] Senden Sie uns Prospekt- [] Senden Sie uns grafis und unverbindlich das |

| Unterlagen Biichlein "Lager-Tips" |
| Name: Firma: SEV 0
I Adresse:

PLZ: Orf: I

L----_—-----_-----J
Wilerstrasse
CH-9230 Flawil 2

SYSTEM ~—" "

Alles in Ordnung!

s

- 2 Za . R
Chemins de cables LANZ
Chemins de cables Echelles a cables
Chemins de cables a grilles Canaux G
Pour la pose de cables dans des bureaux et bati-
ments administratifs, halles de dépots, fabriques,
installations de protection civile, etc.
® 3 exécutions avec éléments de montage légers,
standard et lourds pour un rendement maximum
® zingué, avec en plus une projection de poudre
époxi ou entierement en polyester offrant une pro-
tection maximale contre la corrosion
@ production propre avec un service optimal
Téléphonez a lanz oensingen sa 062/78 21 21
ou a votre grossiste en électricité pour tout conseil,
offre, livraison rapide a prix avantageux
Fm‘ 7 1B

i

Canalisations électriques

LANZ BETOBAR

Pour la distribution de courant de 380 a 6000 A dans

les bureaux, locaux artisanaux et industriels. Degré

de protection IP 68.7

® compacts p.ex. 1940 A seulement 100X160 mm
mesures extérieures

® montage exact au centimétre prés dans les armoi-
res de commande, zones montantes, aux parois et
plafonds permettant une meilleure utilisation de
place

® protection maximum des personnes, haute résis-
tance aux courts-circuits — ne nécessitant pas
d’entretien

LANZ planifie, livre et installe les canalisations

électriques BETOBAR.

Les produits LANZ m’intéressent! Priére d’envoyer ladocumentation pour:

O Canalisations électri- [Faux=-planchers LANZ
ques d’éclairage pour bureaux

[0 Caniveaux a lampes [0 Faux=planchers LANZ

LANZ pour charges lourdes
O E‘I;ﬁr;ins de cables [0 Canaux d’alléeges LANZ

[0 Cable plat LANZ
0 LANZ Canaux G pour courant, données
0 LANZ MULTIFIX et téléphone

O Pourriez-vous me/nous rendre visite? Avec préavis!
Nom, adresse:

LNE

EEI-7

lanz oensingen sa
CH-4702 Oensingen - téléphone 06278 21 21

49

Neuer Klemmenbeschriftungs — Service

System RB-Script:

Markierung von kompletten Bezeichnungskarten zu
Woertz—Klemmen: Neu mit unserem eigens entwickel-
ten Computer—Beschriftungssystem RB-Script. Die
Beschriftungen kénnen nach Ihren Wiinschen an jede
Installation individuell angepasst werden.

Lieferung der nach Kundenwunsch beschrifteten Karten
innert 48 Stunden: Der Woertz—Schnellservice.

So sparen Sie noch mehr Zeit bei Ihren elektrischen
Installationen!

System RB-Script auch bei Ihnen!

Benétigen Sie haufig individuell beschriftete Woertz—
Klemmen?

Wir bieten lhnen die komplette, anwenderfreundliche
Software inklusive Plotter und Kartenhalterungsplatten
an. Das Programm ist auf jedem Personal-Computer
(AT oder kompatibel) lauffahig.

Fordern Sie noch heute detaillierte Unterlagen an!

, |
woertz @ NERTUS

Elektrotechnische Artikel . 6(
Installationssysteme Hofackerstrasse 47, 4132 Muttenz 1, Schweiz, Tel. 061 / 61 36 36

DIE LOESUNG:

MED Geréat

ERSTELLUNG UND AUSKUNFT:

LES VERNETS - CH 2035 CORCELLES /NE
TEL (038) 313434 - FAX (038) 31 69 62

=22 ; ADeIN¢ ;

ab Lager lieferbar

1]

Swisstech 90

Stand 751 - Halle 311

T mue
| R
s
T
,,?4
i

o1 kiR om

Bruno
Winterhalter AG

. e Industrieprodukte Tel. 01-830 50 30
. V e Birgistr. 10,8304 Wallisellen, Fax 01-830 79 52

= tauchfeuerverzinkt,
i oder plastifiziert

50

	Von der Subroutinentechnik zur objektorientierten Programmierung : Teil 2 : module und abstrakte Datentypen

