
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 81 (1990)

Heft: 17

Artikel: Von der Subroutinentechnik zur objektorientierten Programmierung :
Teil 2 : module und abstrakte Datentypen

Autor: Marty, Rudolf

DOI: https://doi.org/10.5169/seals-903153

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903153
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Objektorientierte Programmierung

Von der Subroutinentechnik zur
objektorientierten Programmierung
Teil 2 Module und Abstrakte Datentypen

Rudolf Marty

Nachdem der Autor im ersten
Teil den geschichtlichen Weg
der Software-Entwicklung von
der frühen Subroutinentechnik
bis zu den Prozeduren- und
Funktionskonzepten, wie sie
beispielsweise in C und Modula-2
realisiert sind, nachgezeichnet
hat, behandelt er im zweiten Teil
die Technik der Module und
Abstrakten Datentypen. Ein
dritter und letzter Teil wird den
vorläufigen Endpunkt dieser
Entwicklung, die objektorientierte

Programmierung zum
Inhalt haben.

Après avoir tracé l'historique du
développement des logiciels en
partant de la technique des
subroutines précoces jusqu'au
concepts des fonctions et des
procédures, comme ils sont
réalisés par exemple dans C et
Modula-2, l'auteur traite dans la
deuxième partie la technique
des modules et des types de
données abstraites. Un point
final provisoire sera constitué
par la programmation orientée
objet qui fera l'objet d'un
troisième et dernier article.

Adresse des Autors
Prof. Dr. RudolfMarty, Schweiz.
Bankgesellschaft, Ubilab (UBS Informatics
Laboratory), 8021 Zürich

4. Ein dritter
Abstraktionsschritt : Module

Eines sei zu Modulen gleich vorweg
gesagt: Der Begriff Modul ist in der
Praxis der Softwareentwicklung für
sehr viele unterschiedliche Konzepte
verwendet worden. Leider führt dies
immer wieder zu erheblichen
Begriffsverwirrungen bei der Besprechung der
Module in unserem Sinn, wo wir diesen

Fachbegriff recht eng fassen und
für ein ganz bestimmtes Gliederungskonzept

verwenden. Wir befinden uns
damit aber im Einklang mit der
modernen Software-Engineering-Termi-
nologie.

Und noch eine kleine Vorbemerkung:

Nach neuestem Duden wird für
ein Modul im technischen Sinn, für
eine Art Bauteil in Materie oder
Software, das sächliche Substantiv das
Modul (die Module) verwendet; der
Modul (die Modulen) steht für eine
Verhältniszahl.

sichtbar N

— Modul-Schnittsteile 11

Modul-Implementation

unsichtbar

Bild 3 Ein Modul
Ein Modul besteht aus einer Schnittstelle und der
Implementation. Die Schnittstelle ist vergleichbar
mit der Steckerleiste der PC-Steckkarte, über die
die Steuerung und der Datentransfer zwischen
Prozessor und Steckkarte abgewickelt wird. Die
Implementation entspricht der auf der Steckkarte
installierten elektronischen Schaltung.

Ein Software-Modul kann strukturell

mit einem elektronischen Bauteil
wie etwa einer Steckkarte für einen PC
verglichen werden (Bild 3). Ein Modul
besteht aus einer Schnittstelle und der
Implementation. Die Schnittstelle ist
vergleichbar mit der Steckerleiste der
PC-Steckkarte, über die die Steuerung
und der Datentransfer zwischen
Prozessor und Steckkarte abgewickelt
wird. Die Implementation entspricht
der auf der Steckkarte installierten
elektronischen Schaltung. Für den
Gebrauch der PC-Steckkarte genügt es

vollauf, wenn die Definition der
Schnittstelle bekannt ist. Ihr innerer
Aufbau bleibt verborgen und kann im
Normalbetrieb auch in keiner Art und
Weise verändert werden.

Genauso verhält es sich mit
Software-Modulen. Auch hier kann auf die
(von aussen unsichtbare) Implementation

nicht zugegriffen werden. Alle
Deklarationen und Definitionen von
Daten und Aktionen innerhalb eines
Moduls sind demnach von der «Aus-
senwelt» vollständig abgekapselt,
solange sie nicht in der Schnittstellenbeschreibung

auftreten. Dadurch wird
ein grosser konstruktiver Schritt
gemacht: Durch eine saubere Modular-
struktur im besprochenen Sinn entstehen

Softwaresysteme, die weit besser
in relativ autonome Komponenten
gegliedert sind, als dies durch eine proze-
durale Zergliederung möglich wäre.
Diese relativ autonomen Komponenten

in Form von Modulen kommunizieren

miteinander ausschliesslich
über definierte Schnittstellen. Es ist
also stets aus dem Programmtext selbst
ersichtlich, welche Kommunikationsstrukturen

zwischen den einzelnen
Komponenten bestehen. Implizite und
versteckte Datenflüsse und
Steuerungsstrukturen über Globalvariablen
gibt es nicht mehr.

Fassen wir die zentralen Eigenschaften
eines Moduls zusammen, bevor

Bulletin SEV/VSE 81(1990) 17,30. August 43



Informatik

DEFINITION MODULE Verzeichnis;
TYPE Verz;
PROCEDURE NewVerz VAR v ; Verz);
PROCEDURE PutVerz v : Verz;

Schluessel : ARRAY OF CHAR;
Index : INTEGER)

PROCEDURE GetVerz v : Verz;
Schluessel : ARRAY OF CHAR)

: INTEGER;
END Verzeichnis;

Bild 4 Schnittstellenteil eines Moduls

wir im nächsten Abschnitt konkrete
Module in der Sprache Modula-2
betrachten:

- Jedes Modul besteht aus einer von
aussen «sichtbaren», das heisst
verwendbaren Schnittstelle (Interface)
sowie aus einer ausserhalb des Moduls
selbst «unsichtbaren», das heisst
unantastbaren Implementation.
- Die Modul-Schnittstelle enthält
Deklarationen von Typen, Konstanten,
Variablen und von Prozeduren. Im
Sinne des Information Hiding wird
nur gerade soviel explizit deklariert,
wie für die Verwendung des Moduls
nötig ist. Beispielsweise wird nur ein
Typenname in der Schnittstelle deklariert,

wobei die interne Struktur des

Datentyps im Implementationsteil
erscheint und damit gegen aussen
versteckt bleibt. Entsprechend erscheint
von einer Prozedur im Schnittstellenteil

nur der Name, die Parametertypen
und der Typ eines allfälligen
Rückgabewertes.

- Die Modul-Implementation besteht
im wesentlichen aus Deklarationen
von Typen, Konstanten und Variablen
sowie aus Prozeduren und
Initialisierungscode für das Modul.
- In der Schnittstelle werden sämtliche

Aussenbeziehungen eines Moduls
deklariert. Die Importe und Exporte
eines Moduls sind folglich im
Programmcode selbst beschrieben und
können somit vom Compiler auch auf
korrekte Verwendung geprüft werden.
Dies ist selbst dann möglich, wenn das
Modul getrennt vom Klienten übersetzt

wird. (Wir bezeichnen die
Programmeinheiten, welche ein bestimmtes

Modul verwenden, als Klienten
dieses Moduls; damit vermeiden wir
Verwirrungen mit dem Begriff Benutzer,

der für ein menschliches Wesen
Anwendung findet.)
- Alle in der Schnittstelle eines
Moduls vorkommenden Variablen haben
permanenten Charakter, sie behalten
den aktuellen Wert auch nach Verlas¬

sen des Moduls. Dasselbe gilt für die
innerhalb des Moduls global, das
heisst nicht innerhalb Modulprozeduren

deklarierten Variablen. Ein Modul

ist also in seiner Struktur einem
Hauptprogramm mit globalen
Deklarationen und verschachtelten Prozeduren

gleichgestellt.

Module in Modula-2

Das in Bild 4 und 5 dargestellte Modul

implementiert einfache Verzeichnisse,

die maximal 100 Paare, bestehend

aus Schlüsselwert (eine Zeichenkette)

und zugehörigem Indexwert,
enthält. Ein solches Verzeichnis könnte

beispielsweise zum assoziativen
Zugriff auf eine Tabelle verwendet werden.

Man sieht, dass im Implementationsteil,

versteckt von der Aussen-
welt, «Buchhaltung» über die maximal

20 allozierten Verzeichnistabellen

IMPLEMENTATION MODULE Verzeichnis;
TYPE Verz POINTER TO VerzTabelle;

VerzTabelle
RECORD

Besetzt : INTEGER;
Tab : ARRAY [1..100] OF RECORD;

Sehl : ARRAY [1..20] OF CHAR;
Ind : INTEGER

END
END;

VAR AnzTabellen : INTEGER;
Tabelle : ARRAY [1..20] OF Verz;

PROCEDURE NewVerz VAR V : Verz) ;
BEGIN

IF AnzTabellen >= 20 THEN
Fehler("Mehr als 20 Verzeichnisse")

END
Allokation einer Verzeichnistabelle
v := Adresse der Tabelle ;
vA.Besetzt:= 0;
AnzTabellen := AnzTabellen + 1;
Tabelle[AnzTabellen] := v;

END NewVerz;

PROCEDURE GetVerz v : Verz;
Schluessel : ARRAY OF CHAR)

: INTEGER;
BEGIN

suchen Schluessel in v^.Tab
IF gefunden THEN RETURN vA.Index
ELSE RETURN -1
END

END GetVerz;

BEGIN
(* Initialisierung des Moduls *)
AnzTabellen := 0

END Verzeichnis;

Bild 5 Implementationsteil eines Moduls

44 Bulletin ASE/UCS 81(1990)17, 30 août



Objektorien tierte Programmierung

geführt wird. Der Array Tabelle, der
auf die Verzeichnistabellen zeigt,
könnte beispielsweise dazu verwendet
werden, auf Wunsch des Klienten alle
Verzeichnisse wieder zu deallozieren.
Hierzu müsste natürlich eine neue
Modulfunktion eingeführt werden. Von
dieser Änderung blieben aber, und
dies ist im Sinne des Information
Hiding ausserordentlich wichtig, alle
Klienten unbetroffen, die die neue
Funktion nicht benötigen.

Das Programmfragment (Bild 6)
zeigt die Eröffnung von zwei Verzeichnissen

Vz1 und Vz2, das Zufügen von
Einträgen sowie die Suche nach
Einträgen und die Verwendung des erhaltenen

Index.

Ausprägungen von Modulen

Ein Modul kann sehr verschiedenartige

Ausprägungen annehmen. Die
folgenden fünf typischen Modularten
werden in der Praxis moderner
Softwareentwicklung besonders häufig
angetroffen:

- Ein typisches Bibliotheksmodul
enthält eine Sammlung von Prozeduren,
die oft benötigte Funktionen
implementieren und thematisch zusammengehören.

Beispiele für Bibliotheksmodule

sind ein Datum-Modul (Operationen

auf Kalenderdaten), ein
Trigonometrie-Modul (Winkelfunktionen),
ein Systemschnittstellen-Modul
(vereinfacht die Kommunikation mit
Systemsoftware) usw.
- Ein abstrakter Datentyp wird durch
ein Modul implementiert, das dem
Klienten einen neuen Datentyp und
die darauf definierten Operationen zur
Verfügung stellt. Das Beispiel in Bild 4

und 5 ist ein solches Modul. Weitere
Beispiele für oft benötigte abstrakte
Datentypen sind unter anderem Stacks
(LIFO-Struktur, Keller), Queues
(FIFO-Struktur, Warteschlange),
dünn besetzte Matrizen, Bäume,
mehrdimensionale Tabellen, komplexe
Zahlen und Koordinaten.
- Module werden oft zur Kapselung
applikatorischer Objekte wie etwa
eines Personalstamms, einer Stückliste
oder eines Debitorenkontokorrentes
verwendet. Damit wird das applikatorische

Objekt, das physisch als ein
oder mehrere Files organisiert ist,
gegen aussen abgekapselt und alle
Operationen durch ein einziges Modul
geschleust.

- Der Modellierung physischer Systeme

durch ein Modul kommt insbesondere

in technischen Anwendungen der
Informatik grosse Bedeutung zu. Bei¬

spiele für solche Module, die eine
Mittlerrolle zwischen Hardwarekomponenten

und dem Rest des Softwaresystems

übernehmen, sind:
Sensorsystem-Module, Gerätetreiber-Module,
Kommunikations-Module,
Anzeigetafel-Module usw.

- Neben physischen Systemen werden
durch Module selbstverständlich auch
logisch-konzeptionelle Systeme modelliert,

das heisst für andere
Softwarekomponenten auf hoher Abstraktions-

Bild 6

Verwendung eines
Moduls

stufe nutzbar gemacht: Grafik-Module,
Datenbank-Module, Meldungsver-

mittlungs-Module und Dialog-Module
sind ein paar wenige Beispiele dafür.

Modularer Entwurf
Dem modulorientierten Entwurf

liegt nicht mehr die bei rein prozedura-
len Softwaresystemen weitverbreitete
Methode der schrittweisen Verfeinerung,

des Top-Down-Entwurfes,
zugrunde. Es wird vielmehr versucht,
durch geeignete Strukturierungsfor-
men zu einer Familie von Modulen zu
kommen, die Gewähr für möglichst
hohe strukturelle Einfachheit,
Abbaubarkeit und Wiederverwendbarkeit

der Module bietet. Dies wird
durch Mischformen von Top-down-
und Bottom-up-Entwürfen erreicht.

Fragen, die mithelfen, eine vernünftige

Modulstruktur (und ansatzweise
später auch eine gute Objektstruktur)
zu Finden, sind unter anderem:

- Welche Funktionsbereiche und welche

Datenobjekte gehören zusammen,
und welche Dienste leisten sie dem
Rest des Systems? Beispiel: Alle
Dialogfunktionen werden in ein Modul
zusammengefasst.
- Welches sind die physischen und
logischen Systeme, die durch ein Soft¬

waresystem betroffen werden? Wie
sieht deren Funktionsschnittstelle aus?

Beispiel: Ein zentrales, durch ein Modul

gekapseltes Adressregister ist einer
verteilten Verwaltung von Adressbeständen

vorzuziehen.
- Bei welchen Softwarekomponenten
sind in Zukunft Änderungen
wahrscheinlich? Was muss der Rest der
Software von deren interner Struktur
kennen? Wie könnte eine
änderungsunempfindliche Schnittstelle gestaltet
sein? Beispiel: Über die Datenbank-
Schnittstelle, welche die Datenbanksoftware

zu Verfügung stellt, wird ein
Zugriffsmodul gelegt, das die
Anwendungssoftware unabhängig von der
unterliegenden Datenbank macht.
- Welche Basisdienste werden in
gleicher oder ähnlicher Art immer wieder
benötigt? Beispiel: Ein flexibles Tabel-

IMPORT Verzeichnis;

VAR Vzl : Verz ; (* Name -> Index *)
VZ2 : Verz; (* RaumNr -> Index *)
TelefonTab : ARRAY [1..500] OF TelefonNr;
i : INTEGER ;

NewVerz(Vzl); NewVerz(Vz2);

TelefonTab[53] := 752839;
PutVerz(Vzl,"Kunz",53) ;
PutVerz(Vz2,"34—F—12",53);
TelefonTab[32] := 8263450;
PutVerz(Vzl,"Müller",32);
PutVerz(Vz2,"05-G-18",32);

i := GetVerz(Vzl,"Suter");
IF i -1 THEN

kein Eintrag für "Suter"
ELSE

TelNr := TelefonTab[i]
END

Bulletin SEV/VSE 81(1990)17, 30. August 45



Informatik

lenmodul enthebt den Programmierer
von der Codierung immer wieder in
ähnlicher Form auftretender
Tabellenstrukturen.

- Welche bekannten Schnittstellen zu
Modul- und Funktionssammlungen
im betrachteten Anwendungsbereich
existieren zurzeit und könnten als
Grundlage dienen? Beispiel: Wird ein
Dialogmodul entworfen, so sollten
zunächst andere Dialogschnittstellen
(z.B. X-Windows [11], News [12],
Macintosh Toolbox [10] o.a.) betrachtet
werden, um Anhaltspunkte für Stärken

und Schwächen bestimmter modu-
larer Gliederungen zu erhalten.

Schwachstellen des Modulkonzeptes

Trotz der enormen Fortschritte
einer gut modularisierten Software im
Vergleich zu einem bloss in prozedura-
ler Hinsicht klug gegliederten
Programmsystem verbleiben bei der
Verwendung von Modulen immer noch
zwei gravierende Mängel:
- Module sind in vielen Programmiersprachen

(so auch in Modula-2) als
statisches Objekt und nicht als Objekttyp

definiert. Ein Modul kann deshalb
nicht einmal definiert und mehrmals
instantiiert, das heisst ins Leben gerufen

werden. Dies wirkt sich insbesondere

bei der Modellierung von
abstrakten Datentypen sehr hinderlich
aus, da sie mit Modulen nicht völlig
transparent nachgebildet werden können.

Das Beispiel in Bild 4 bis 6 zeigt
den üblichen «Trick» bei der Nachbildung

abstrakter Datentypen mit
Modulen: Ein Datenobjekt muss explizit
durch Aufruf einer Modulprozedur al-
loziert werden, das Datenobjekt wird
durch einen sogenannten Opaque
Pointer, einen «undurchsichtigen
Zeiger» referenziert. Somit können auf
diese Art nachgebildete abstrakte
Datentypen nicht direkt in anderen
Datenstrukturen erscheinen, nicht direkt
in andere Prozesse transferiert und
auch nicht direkt auf Dateien
ausgeschrieben werden (man besitzt ja lediglich

einen undurchsichtigen Zeiger als
Referenz auf einen abstrakten Datentyp).

Für solche Operationen müssten
für jedes Datenobjekt spezielle Prozeduren

mitdefiniert werden, die vom
Klienten zum richtigen Zeitpunkt
aufzurufen wären. Der Klient hat folglich
abstrakte Datentypen unterschiedlich
zu realen Datentypen zu behandeln.
Der abstrakte Datentyp ist also nicht
völlig transparent.
- Das Prinzip des Information Hiding
bzw. der Kapselung von Informatio¬

nen gilt nur, solange ein Modul
unverändert benutzt wird. In der Praxis der
Softwareentwicklung tritt jedoch oft
die Situation auf, dass ein bestehendes
Modul (bzw. ein vorhandener
Programmteil) für eine neue Verwendung
zwar beinahe, aber eben nicht perfekt
passt. Man ist also zu einer Abänderung

gezwungen. Diese Abänderung
kann aber nur dadurch vorgenommen
werden, dass man das ursprüngliche
Modul kopiert und in dessen Kopie
den Implementations- und eventuell
den Schnittstellenteil verändert. Dies
führt dazu, dass mit der Zeit eine ganze

Familie von separaten, jedoch in
ihrer Grundstruktur stark verwandten
Modulen erzeugt wird. Ändert sich
eine «Grundfeste» dieser Modulfamilie,

eine Komponente, die in allen
abgeleiteten Modulen identisch blieb, so
muss die ganze Modulfamilie, die
meist über sehr viele Programme
verstreut ist, geändert werden.

Durch die beiden verbleibenden
Schritte, die abstrakten Datentypen
und die objektorientierte Programmierung,

werden diese beiden Mängel
überwunden. Insbesondere wird es

möglich, saubere und transparente
abstrakte Datentypen zu modellieren
und, um vorerst in der Modulterminologie

zu bleiben, Implementationsteile
von Modulen abzuändern, ohne das

Prinzip der Kapselung zu verletzen.

5. Ein vierter
Abstraktionsschritt :

Abstrakte Datentypen
Ein abstrakter Datentyp (im folgenden

ADT genannt) umfasst die Definition

eines Datentyps zusammen mit
den auf diesen Datentyp zugelassenen
Operationen. Dabei wird es, falls vom
Entwerfer eines ADT so gewünscht
und spezifiziert, unmöglich, auf die
Elemente eines Datentyps zuzugreifen,

es sei denn durch Anwendung der
zusammen mit dem Datentyp definier-

Bild 7

Eine
Klassenbeschreibung
in C+ +

Es wird ein (abstrakter)
Datentyp «Rechteck»
definiert, der z.B.in
einer graphischen
Applikation verwendet
werden kann.

ten Prozeduren. Es entsteht somit ein
reiner ADT, ein ADT also, dem nicht
mehr die vorgängig bei der Besprechung

der Module aufgeführten Nachteile

anhaften.
Betrachten wir zur Illustration der

grundsätzlichen Wesenszüge eines
ADT das Beispiel in Bild 7, codiert in
C++ [8], wo ein (abstrakter) Datentyp
Rechteck definiert wird, der z.B. in
einer graphischen Applikation
verwendet werden kann. Was besagt in
diesem Beispiel die sogenannte
Klassenbeschreibung oder kurz Klasse? Sie

besagt:
- Es soll ein ADT Rechteck gebildet
werden. Ein Rechteck wird dabei
beschrieben durch die zwei sogenannten
Instanzvariablen p1 und p2, die zwei
diagonal gegenüberliegende Eckpunkte

des Rechtecks definieren. Wir nehmen

an, der Punkt sei bereits als
Koordinatenpaar x,y) definiert worden.
- Die Klassenbeschreibung bzw. die
Definition des ADT ist zergliedert in
einen privaten und einen öffentlichen
Teil, voneinander getrennt durch das
Schlüsselwort public. In der Definition
von Rechteck sind deshalb die
Instanzvariablen privat, sie können also
nur durch die zum ADT gehörenden
Prozeduren verändert werden, nicht
direkt «von aussen».
- Im öffentlichen Teil der Klasse werden

fünf Prozeduren bzw. Funktionen
definiert. Es erscheint jedoch nur der
Funktionskopf, genau wie im
Definitionsteil eines Moduls. Die Definitionen

spezifizieren z.B., dass die Funktion

Setze zwei Punkte als Argumente
übernimmt und kein Funktionsresultat

liefert (Void) oder dass die Funktion

Flaeche keine Argumente hat und
einen Float-Wert als Resultat zurückgibt.

Bevor ein ADT verwendet werden
kann, müssen natürlich die Funktionen

des ADT ausprogrammiert werden,

ähnlich wie zum Gebrauch eines
Moduls ja auch nicht dessen
Schnittstellenbeschreibung allein ausreicht.
In C++ geschieht die Beschreibung der

class Rechteck {
Punkt pi,p2;

public:
void Setze (Punkt Pa, Punkt Pb);
void Eckpunkte (Punkt *Pa, Punkt *Pb);
void Verschiebe (int DeltaX, int DeltaY);
void Schrumpfe (int DeltaX, int DeltaY);
float

};
Flaeche ;

46 Bulletin ASE/UCS 81(1990)17, 30 août



Objektorien tierte Programmierung

void Rechteck:: Setze (Punkt Pa, Punkt Pb)

pl Pa; p2 Pb;
}

void Rechteck:: Verschiebe (int DeltaX, int DeltaY)
{

pl.x += DeltaX; pl.y += DeltaY;
p2.x += DeltaX; p2.y += DeltaY;

>

float Rechteck::Flaeche
{

return abs(pl.x - p2.x) * abs(pl.y - p2.y);
}

ADT-Funktionen in Form einer üblichen

Funktionsdefinition, wobei die
Verbindung zum ADT durch Voranstellen

des ADT-Namens geschaffen
wird. In unserem Fall wird also vor
jeder ADT-Funktion Rechteck das
Zeichen :: stehen. Betrachten wir in Bild 8

drei der fünf Funktionsdefinitionen.
Es ist wichtig zu erkennen, dass die

Klassendefinition allein noch keinerlei

Datenobjekte erzeugt. Sie kann mit
einer normalen Typendefinition von
Modula-2, Pascal oder C verglichen
werden, wo ja auch erst eine
Variablendeklaration in der Erzeugung
eines Datenobjektes resultiert. Wie
eine Typendefinition zur Erzeugung
einer beliebigen Anzahl von Variablen
verwendet werden kann, ist es möglich,

aus einer Klassendefinition beliebig

viele ADT-Instanzen zu erzeugen,
auch auf dynamische Art mit new.
Eine ADT-Instanz ist also gewisser-
massen eine Variable, an die untrennbar

Funktionen zur Manipulation dieser

Variablen gebunden sind. Im
Programmsegment von Bild 9 erzeugen
wir durch die Deklaration «Rechteck
r1,r2» zwei Instanzen (d.h. Vorkommen)

des ADT Rechteck. Jede Instanz
enthält ihre eigenen Instanzvariablen

Bild 8

Klassenfunktionen
In C++ geschieht die
Beschreibung der
ADT-Funktionen in
Form einer üblichen
Funktionsdefinition,
wobei die Verbindung
zum ADT durch
Voranstellen des

ADT-Namens
geschaffen wird.

p1 und p2 (Bild 7). Nun wird auch
klar, welche Instanzvariablen p1 bzw.
p2 bei Aufruf einer ADT-Funktion
angesprochen werden: Es sind diejenigen
der ADT-Instanz, deren Name dem
Funktionsaufruf vorangesetzt wird:
Beim Aufruf r1 .Verschiebe beispielsweise

also diejenigen, die der Instanz
r1 gehören.

Verglichen mit durch Module
nachgebildeten abstrakten Datentypen bieten

ADT doch einiges mehr an Klarheit,

Sicherheit und erhöhtem
Abstraktionsgrad in Beschreibung und
Verwendung. Die Anwendung von ADT
unterscheidet sich nicht von der
Anwendung der durch die Programmiersprache

vorgegebenen Typen. Damit
wird ein hoher Grad an Transparenz
erreicht und eine der grossen Schwach-
steilen von Modulen eliminiert, ohne
auf der syntaktischen Ebene die
Programmiersprache allzu stark zu belasten.

C++ bietet über die besprochene
Class-Definition hinaus einige nützliche

weitere Möglichkeiten, auf die hier
nicht näher eingegangen wird: Für
eine Class können gesondert Initiali-
sierungs- und Terminierungsfunktio-
nen angegeben werden. Diese werden

Bild 9

Instantiierung und
Verwendung von
ADT

automatisch für jede Class-Instanz
dann aufgerufen, wenn diese ins
Leben gerufen bzw. eliminiert wird: für
automatische Klasseninstanzen bei
Eintritt bzw. Verlassen des
Gültigkeitsbereiches der Klasseninstanz, für
globale Klasseninstanzen bei
Programmstart bzw. Programmende.
Ausserdem bietet C++ die Möglichkeit,
Operatoren wie + —, *, <, >,
ja selbst Indexklammern [] auch als
Funktionsbezeichner für ADT zu
verwenden. Damit wird die Verwendung
von ADT vollständig transparent,
beispielsweise etwa bei der Anwendung
eines ADT für rationale oder komplexe

Zahlen, die auf diese Art und Weise
wie die vordefinierten ganzen oder
reellen Zahlen verwendet werden können.

Schwachstellen abstrakter Datentypen

ADT können wohl zur Definition
beliebiger Datenstrukturen angewendet

werden. Es ist jedoch nicht möglich,

einen bestehenden ADT auf
einfache und flexible Art und Weise zu
ergänzen, ohne das Prinzip des Information

Hiding zu verletzen.
Verdeutlichen wir uns dies an einem

Beispiel: Nehmen wir an, wir hätten
einen ADT Rechteck wie er in den
Bildern 7 ff. dargestellt wurde. Nun ergibt
sich der Bedarf nach einem neuen
ADT, der Rechtecke mit abgerundeten
Ecken implementieren soll.

Zu den zwei Eckpunkten, die ein
Rechteck definieren, kommt der Radius

der Eckbogen als dritte Instanzvariable

hinzu. Wie würden wir diesen
neuen ADT realisieren? Wir definieren

einen ADT RechteckRund, der als
Instanzvariable ein (privates) Rechteck

und eine (öffentliche) int Variable
zur Definition des Eckradius hat. Die
Funktionen von RechteckRund bestehen

in den meisten Fällen lediglich aus
einem Aufruf der entsprechenden
Funktion des ADT Rechteck. Nur die
Funktionen Setze und Flaeche enthalten

veränderten Code. Trotzdem muss
jede Funktion des ADT Rechteck in
der Definition des ADT RechteckRund

wiederholt werden, selbst wenn
sie nur die gleichnamige Funktion des
ADT Rechteck aufruft (siehe z.B.
Verschiebe in Bild 10).

Strukturell ist der ADT RechteckRund

nichts anderes als eine kleine
Erweiterung seines «Ahnen-ADT»
Rechteck. In der Praxis der
Softwareentwicklung entstehen ganze
Ahnenhierarchien von ADT oder ADT-ähn-
lichen Softwarekomponenten. Sehr oft

Rechteck rl, r2;
Punkt ptl, pt2, pt3, pt4;

rl.Setze(ptl,pt2);
rl.Verschiebe(-12,10);
r2.Setze(pt3,pt4);
printf("Fläche von rl: %8.3f", rl.Flaeche() );

Bulletin SEV/VSE 81(1990)17,30. August 47



Informatik

class RechteckRund {

Rechteck Huellrechteck
public:

Eckradius ;
Setze
Eckpunkte
Verschiebe
Schrumpfe
Flaeche

int
void
void
void
void
float

(Punkt Pa, Punkt Pb, int Radius);
(Punkt *Pa, Punkt *Pb);
(int Deltax, int DeltaY);
(int DeltaX, int DeltaY);

);

void RechteckRund:: Setze (Punkt Pa, Punkt Pb, int Radius)

Huellrechteck.Setze(Pa,Pb) ;

Eckradius Radius;

void RechteckRund:: Verschiebe (int DeltaX, int DeltaY)

Huellrechteck.Verschiebe(DeltaX,DeltaY);

float RechteckRund::Flaeche
{

return Huellrechteck.Flaeche() -
Eckradius * Eckradius * (4 - pi);

Bild 10 Abgeleiteter ADT
Strukturell ist der ADT RechteckRund nichts anderes als eine kleine Erweiterung seines «Ahnen-ADT»
Rechteck.

geschieht dies sogar in weit unhomogenerer

Form, indem von einem Ah-
nen-ADT der ganze Quellcode
übernommen und die Kopie sodann direkt
modifiziert wird. Gemeinsamkeiten
von ADT werden dadurch repliziert
und diffundieren allmählich; man
erkennt die zugrundeliegenden
Basisstrukturen nicht mehr. Dies führt zu
Problemen im Zuge der Software er-
weiterung und -Wartung.

Betrachten wir hierzu eine zwar
hypothetische, in dieser Art im Praxisleben

jedoch recht oft anzutreffende
Situation: Für ein neues Software-Projekt

sei unser ADT Rechteck samt
aller davon abgeleiteten ADT, also auch
der ADT RechteckRund, zu verwen¬

den. Statt kartesischer Koordinaten
sollen jedoch Polarkoordinaten
benutzt werden. Die Funktion Verschiebe

übernimmt natürlich neu nicht
mehr eine Verschiebungsdistanz in
kartesischen Grössen (5x und 8y),
sondern in polaren Grössen
(Verschiebungsrichtung und -distanz). Nehmen
wir weiter an, der Verschiebungswinkel

sei ein reeller (Float-)Wert.
Das neue Koordinatensystem induziert

Modifikationen nicht nur am
ADT Rechteck, sondern auch an allen
hievon abgeleiteten ADT, obschon in
den abgeleiteten ADT nicht mehr
direkt auf Koordinaten zugegriffen
wird. Wegen der expliziten Weiterverwendung

von ADT-Funktionen in ab¬

geleiteten ADT wird eine ganze Lawine

von Änderungen nötig. In jeder
abgeleiteten Klasse muss z.B. die Funktion

Verschiebe nachgetragen werden,
da sich ein Parameter ändert. Eine
ähnliche Situation ergibt sich, wenn
ein ADT eine neue Funktion zugeteilt
erhält, beispielsweise für unsere Rechtecke

eine Funktion Skaliere, die ein
Rechteck um einen gegebenen Faktor
vergrössert bzw. verkleinert. Obschon
diese Funktion nur einen ADT
betrifft, nämlich Rechteck, muss in allen
abgeleiteten ADT eine entsprechende
Funktion nachgetragen werden, lediglich

um jeweils die Funktion Skaliere
des Ahnen-ADT aufzurufen.

Die Notwendigkeit all dieser
Änderungen ist dadurch gegeben, dass die
Weiterverwendungs- bzw.
Vererbungshierarchie von ADT nirgends
explizit festgehalten wurde. Statt einer
«Vererbungsdeklaration» im
Programm, der ADT RechteckRund sei

abgeleitet vom ADT Rechteck, rufen
wir aus den Funktionen von RechteckRund

explizit die Funktionen von
Rechteck auf. Anders betrachtet
übernimmt es der Programmierer, durch
explizite Aufrufe von Funktionen
eines Ahnen-ADT die Vererbungshierarchie

im Programmcode auszuformu-
lieren, statt diese Aufgabe dem Compiler

zu übertragen. Dieser könnte,
explizite Vererbungsdeklarationen
vorausgesetzt, sehr wohl selbst den Aufruf
der gleichnamigen Funktion des
Ahnen-ADT erzeugen, falls ein ADT die
Funktion selbst nicht explizit deklariert.

Diese Überlegung führt uns
direkt zum letzten Abstraktionsschritt,
der objektorientierten Programmierung.

(Teil 3folgt im Heft 21/90)

Literatur

[11] R.W. Scheiffer, J. Gettys: The X Window
System, ACM Transactions on Graphics 5

(1986) 2.

[12] Sun Microsystems Inc.: News Technical
Overview, 1987.

48 Bulletin ASE/UCS 81(1990)17,30 août



ZIC Lagereinrichtungen sind

#wJ% unsere Spezialität. Wir

planen und bauen Ihr Lagersystem sei es für

Schrauben oder für ganze Paletten. Branchenbezogen

und doch individuell, kundengerecht und

doch funktionell. Kompetente Planung und

Beratung praxisorientierter Lagersysteme, Produktion

und Montage - massgeschneidert für Sie.

Fragen Sie uns - unser System ist Ihre Lösung.

COUPON
]] Senden Sie uns Prospekt-

Unterlagen

Name:

— — — — — — — —^<§1
Hilfe, schaffen Sie Ordnung in das

Lager - beraten Sie uns über Ihre Lagersysteme

]] Senden Sie uns gratis und unverbindlich das

Büchlein "Lager-Tips"

\YJ=lï il=i
S'rsTiEM

Wilerstrasse
CH-9230 Flawil 2
Telefon 071 83 31 11

Telefax 071 83 30 04

Alles in Ordnung Dann lanz oensingen sa
—II—K II J CH-4702 Oensingen - téléphone 062 78 21 21

EEI-7

Chemins de câbles LANZ
Chemins de câbles Echelles à câbles
Chemins de câbles à grilles Canaux G
Pour la pose de câbles dans des bureaux et
bâtiments administratifs, halles de dépôts, fabriques,
installations de protection civile, etc.
• 3 exécutions avec éléments de montage légers,

standard et lourds pour un rendement maximum
• zingué, avec en plus une projection de poudre

époxi ou entièrement en polyester offrant une
protection maximale contre la corrosion

• production propre avec un service optimal
Téléphonez à lanz oensingen sa 062/78 21 21
ou à votre grossiste en électricité pour tout conseil,
offre, livraison rapide à prix avantageux

Canalisations électriques
LANZ BETOBAR
Pour la distribution de courant de 380 à 6000 A dans
les bureaux, locaux artisanaux et industriels. Degré
de protection IP 68.7
• compacts p.ex. 1940 A seulement 100X160 mm

mesures extérieures
• montage exact au centimètre près dans les armoires

de commande, zones montantes, aux parois et
plafonds permettant une meilleure utilisation de
place

• protection maximum des personnes, haute
résistance aux courts-circuits — ne nécessitant pas
d'entretien

LANZ planifie, livre et installe les canalisations
électriques BETOBAR.

M-
Les produits LANZ m'intéressent! Prière d'envoyer la documentation pour:

Canalisations électri- Faux-planchers LANZ
ques d'éclairage pour bureaux
Caniveaux à lampes Faux-planchers LANZ
LANZ pour charges lourdes
Chemins de câbles Canaux d'allèges LANZ
-ANZ Câble plat LANZ
LANZ Canaux G pour courant, données
LANZ MULTIFIX et téléphone
Pourriez-vous me/nous rendre visite? Avec préavis!

Nom, adresse:

49



Neuer Klemmenbeschriftungs - Service

System RB-Script:
Markierung von kompletten Bezeichnungskarten zu
Woertz-Klemmen: Neu mit unserem eigens entwickelten

Computer-Beschriftungssystem RB-Script. Die

Beschriftungen können nach Ihren Wünschen an jede
Installation individuell angepasst werden.
Lieferung der nach Kundenwunsch beschrifteten Karten
innert 48 Stunden: Der Woertz-Schnellservice.
So sparen Sie noch mehr Zeit bei Ihren elektrischen
Installationen!

System RB-Script auch bei Ihnen!
Benötigen Sie häufig individuell beschriftete Woertz-
Klemmen?
Wir bieten Ihnen die komplette, anwenderfreundliche
Software inklusive Plotter und Kartenhalterungsplatten
an. Das Programm ist auf jedem Personal-Computer
(AT oder kompatibel) lauffähig.
Fordern Sie noch heute detaillierte Unterlagen an!

woertz
Installationssysteme Hofackerstrasse 47, 4132 Muttenz 1, Schweiz, Tel. 061 / 61 36 36

ab Lager lieferbar
Swisstech 90
Stand 751 • Halle 311

Feuerverzinkt, IHM Bruno
tauchfeuerverzinkt,
oder plastifiziert EZZi Winterhalter AG

Industrieprodukte Tel. 01-830 50 30
Birgistr. 10,8304 Wallisellen, Fax 01-830 79 52

50


	Von der Subroutinentechnik zur objektorientierten Programmierung : Teil 2 : module und abstrakte Datentypen

