Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 81 (1990)

Heft: 17

Artikel: Lokale und verteilte Echtzeit-Applikationen : Entwurf und
Implementation

Autor: Vonlanthen, Claude

DOI: https://doi.org/10.5169/seals-903152

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903152
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Echtzeitsysteme

Lokale und verteilte Echtzeit-Applikationen

Entwurf und Implementation

Claude Vonlanthen

Die Entwicklung von Echtzeit-
Applikationen und deren Imple-
mentation ins vorgegebene
Betriebssystem ist eine kom-
plexe Aufgabe, die nur durch
den Einsatz effizienter Metho-
den zu erreichen ist. Bei der Ent-
wicklung des Betriebssystems
SB-RTDS wurde eine Methode
gefunden, die unabhiangig vom
Betriebssystem eingesetzt wer-
den kann. Der Beitrag gibt einen
Uberblick iiber das SB-RTDS-
Betriebssystem und die Soom-
Methode.

La mise en ceuvre d’une applica-
tion temps-réel locale ou distri-
buée est une tache délicate, qui
nécessite I'utilisation d’une
méthode de conception effi-
cace. Parallelement au dévelop-
pement du noyau temps-réel
SB-RTDS est née la méthode de
conception baptisée Soom.
Cette méthode fut congcue pour
étre utilisée de maniere indépen-
dente du noyau. L’article intro-
duit la méthode de conception
ainsi que le noyau temps-réel.

Adresse des Autors

Claude Vonlanthen, Dipl. El.-Ing. ETH,
Ingenieur-Biiro Vonlanthen, Burgweg 34,
4600 Olten, Tel. 062/32 34 42

Echtzeitanwendungen sind kom-
plex. Der Entwurf, die Implementa-
tion und der Test sind Aufgaben, die
nur dann mit Erfolg gelost werden
kénnen, wenn vom Projektbeginn bis
zur Abnahme des fertigen Produktes
eine konsequente Methodik verwendet
wird. Viele der heute bekannten Me-
thoden decken den Entwicklungspro-
zess nur bis zum Beginn der Realisie-
rungsphase ab. Diese Liicke wird
durch die Kombination der Entwurfs-
methode Soom (Service and Object
Oriented Method) mit dem Echtzeitbe-
triebssystem SB-RTDS (Service Based
Real Time Distributed System) ge-
schlossen. Soom und SB-RTDS sind
Produkte der Firma Hiware AG in Ba-
sel.

Im Laufe der Entwicklung des Be-
triebssystems SB-RTDS kam die Idee
auf, dem Kunden auch eine Anleitung
zur Entwicklung von Applikationen
mit diesem Betriebssystem mitzuge-
ben. Im Rahmen von Anwenderschu-
lungen bewdhrte sich diese Unterstiit-
zung, worauf die Anleitung zur Me-
thode weiterentwickelt wurde. Obwohl
ein enger Zusammenhang zwischen
Betriebssystem und Methode besteht,
kénnten beide unabhédngig voneinan-
der eingesetzt werden.

Ziele von Soom

Folgenden Punkten wurde bei der
Entwicklung von Soom besonderes
Augenmerk geschenkt:

- In Echtzeit-Anwendungen kommen
Datenfliisse wie Kontrollfliisse vor.
Fiir das Zusammenspiel der System-
teile ist jedoch der Kontrollfluss von
besonderer Bedeutung. Soom sollte
die Moglichkeit bieten, beide Fliisse
zu kombinieren.

- Die Beschreibung soll aus dem Ge-
fiihl kommen und einfach sein.

- Einfache Handbarkeit anhand einer
Checkliste (Automatisierung)

Die Methode

Das Design und die Realisierung
von Echtzeit-Anwendungen werden
erst moglich, wenn die Aufgabe eines
Gesamtsystems in Teilaufgaben und
Teilsysteme aufgeteilt wird. Dabei
wird die Aufgabe eines Systems so lan-
ge aufgegliedert, bis sie und die mit ihr
beschiftigten Subsysteme leicht liber-
schaubar und somit realisierbar sind
(Tab. I).

Der fundamentale Unterschied zwi-
schen der Top-Down-Methode Soom
und anderen Top-Down-Methoden
besteht in der Art und Weise der Auf-
gliederung. Sie erfolgt bei Soom unter
dem Gesichtpunkt der Dienstleistung
(Service).

Erste Schritte

Das Aussehen und Verhalten des
Systems wird vom Kunden durch ein
Pflichtenheft vorgegeben. Solche Sy-
steme sind zum Beispiel Produktions-
strassen, zu steuernde Maschinen und
Prozesse. Im Pflichtenheft ist festge-
legt, welche Aufgabe das System iiber-
nehmen muss. Ebenso sind die Rand-
bedingungen formuliert.

Die Gesamtaufgabe, die vom Sy-
stem erbracht werden muss, wird als
Dienstleistung betrachtet analysiert
und beschrieben (Bild 1). Die Dienst-
leistung wird nun in iiberschaubare,

4 A
o i
Bild1 Ein System und seine zu erbringende

Dienstleistung
E Dienstleistung
(] System, Subsystem

Bulletin SEV/VSE 81(1990)17, 30. August

37

Informatik

werden:

1. Analyse der Dienstleistung

Fragestellung:
Ergebnis:

Subsysteme
Fragestellung:

Fragestellung:

Ergebnis:

soll)

Fragestellung:

Ergebnis:

Fragestellung:

ter 3. leer war.)
Ergebnis:

Checkliste zur Systemzerlegung

Auf jeder Stufe in der Zerlegungshierarchie kann folgende Checkliste angewendet

Welche Dienstleistung muss erbracht werden?
(analysierte) Dienstleistung

2. Aufteilung des Subsystems in seine durch die Randbedingungen gegebenen

Welche nachgeordneten Subsysteme sind vorgegeben ?

3. Aufteilung der Dienstleistung in delegierbare Dienstleistungen

Welche einfacheren Dienstleistungen miissen bekannte und noch
festzulegende Subsysteme gesamthaft zur Verfiigung stellen, damit
die obige Dienstleistung erbracht werden kann?

Menge von Dienstleistungen (kann auch leere Menge sein, wenn
die zu erbringende Dienstleistung nicht weiter unterteilt werden

4. Festlegen der zusitzlich notigen Subsysteme

Welche Subsysteme miissen zusdtzlich zu den gegebenen (unter 2.
gefundenen) noch festgelegt werden?
Zweite Teilmenge von Subsystemen (kann auch leere Menge sein)

5. Zuordnung der gefundenen Dienstleistungen zu den Subsystemen

Welche Dienstleistungen werden welchen Subsystemen zugeord-
net? (Entfillt, falls die Menge der gefundenen Dienstleistungen un-

Menge von Subsystemen mit zugehdrigen Dienstleistungen. Mit
diesen kann bei 1. weitergefahren werden.

Tabelle I

einfachere Teiie aufgeteilt. Diese Teile
sind wiederum Dienstleistungen, die
an Subsysteme delegiert werden kon-
nen. Héaufig sind Subsysteme durch
das Pflichtenheft schon vorgegeben
(Sensoren, Maschinen mit eigenem
Rechner usw.). Sie miissen daher als
Randbedingungen bei der Zerlegung
der Dienstleistung beriicksichtigt wer-
den. Sind alle Dienstleistungen gefun-
den, so werden sie den schon vorgege-
benen oder moglicherweise noch fest-
zulegenden Subsystemen zugeteilt.
Ihre Ausfithrung kann von anderen
Subsystemen angefordert werden.

Abhéngig von der Betrachtungswei-
se konnen folgende Begriffe festgelegt
werden:

Aus der Sicht von oben:

- Ein System besteht aus einer Menge
kooperierender Subsysteme.

- Ein System implementiert
Menge von Dienstleistungen.

eine

Aus der Sicht von unten:

- Subsysteme sind kooperierende Tei-
le eines Systems.

- Subsysteme erbringen Dienstlei-
stungen und stellen sie anderen Sub-
systemen zur Verfiigung.

Bild 2 Erste Zerlegung der Dienstleistung und des Systems

a inuntergeordnete Dienstleistungen
b in Subsysteme

Im Beispiel der Produktionsstrasse
sind Maschinen, Computer, Software,
Menschen usw. Subsysteme. Gemein-
sam erbringen sie mit ihren individuel-
len Dienstleistungen die gesamte
Dienstleistung «Produkt produzie-
ren».

Durch die Verfeinerung ergibt sich
unter der urspriinglichen Dienstlei-
stung eine erste Schicht von Dienstlei-
stungen (Bild 2a) und unter dem Sy-
stem eine erste Schicht von Subsyste-
men (Bild 2b). Werden die zwei
Schichten iibereinandergelegt, kann
dargestellt werden, wie die Aufgaben-
teilung unter den Subsystemen erfolgt.
Durch die Zerlegung sind Verbindun-

Bild 3 Subsysteme kommunizieren mitein-
ander

gen entstanden, liber welche die Sub-
systeme ihre gegenseitigen Dienstlei-
stungsanforderungen stellen. Sie kon-
nen nun als Dienstleistungskanile ein-
gezeichnet werden (Bild 3).

Weitere Zerlegung

Nach jedem Zerlegungsschritt wer-
den die resultierenden Teile Dienstlei-
stungen, Dienstleistungskandle und
zugehorige Subsysteme analysiert, be-
schrieben und eventuell weiter zerlegt.
Das Resultat der Analyse ist eine Be-
schreibung aller Dienstleistungen,
welche die einzelnen Subsysteme zur
Verfugung stellen, der Anforderun-
gen, welche diese Dienstleistungen
auslosen, sowie der jeweils ndtigen
Dienstleistungskandle. Weiter miissen
noch diejenigen Dienstleistungen ver-
merkt werden, welche die Subsysteme
selbst von anderen Subsystemen bend-
tigen.

Dienstleistungen und Subsysteme
lassen sich also durch einen iterativen
Prozess in immer einfachere Elemente
zerlegen. Parallel und in enger Wech-
selwirkung zueinander entstehen so
ein Dienstleistungsbaum und ein Sub-
systembaum.

38

Bulletin ASE/UCS 81(1990)17, 30 aofit

Echtzeitsysteme

Wihrend dieses Vorgehens trifft
man schon bald auf Dienstleistungen
und Subsysteme, die unter den gegebe-
nen Randbedingungen nicht weiter
unterteilt werden kénnen. Im System
«Produktionsstrasse» sind dies die
Maschinen, die Hardware und die
Menschen, welche Dienstleistungen
anfordern konnen (Terminalbedie-
nung, Maschinenfiihrung, Eingabe
von Prozesswerten usw.).

Die weiteren Verfeinerungszyklen
befassen sich deshalb immer mehr mit
Dienstleistungen von Software-Subsy-
stemen. Erfolgte die Beschreibung
eines Subsystems in den oberen Zerle-
gungsschichten noch recht grob, so
wird diese nun immer feiner. Dienst-
leistungen werden zusehends genauer
durch die Beschreibung der damit ver-
bundenen Titigkeiten und der Dienst-
leistungskandle definiert. Diese kon-
nen neben der Dienstleistungsanforde-
rung implizit auch Daten beinhalten
und symbolisieren dann sowohl einen
Kontroll- als auch einen Datenfluss.

Am Ende der Zerlegung

Nach einer von der Komplexitit des
Projektes abhingigen Anzahl Schritte
werden Dienstleistungen und Subsy-
steme gefunden, die aus logischen oder
physikalischen Griinden nicht weiter
unterteilt werden konnen. Logische
Griinde liegen vor, wenn die mit der
Dienstleistung verbundene Aufgabe
iiberschaubar oder unteilbar ist. Physi-
kalische Griinde konnen durch die
Abhingigkeit von Ressourcen (Hard-
ware) oder durch Unteilbarkeit
(Mensch, CPU-Karte, Rechnerkno-
ten) gegeben sein. Die Analyse ist
beendet, wenn nur noch solche Basis-
Subsysteme bestehen. Moglicherweise
wird auch eine zu weit gehende Zerle-
gung erkannt und muss riickgingig ge-
macht werden. In diesem Fall war das
Subsystem der oberen Schicht schon
im logischen Sinn unteilbar. Zwischen
den Basissubsystemen bestehen
Schnittstellen, iber die Dienstleistun-
gen angefordert und Daten ausge-
tauscht werden konnen. Die Applika-
tion zeigt sich als Menge kooperieren-
der Basis-Subsysteme (Bild 4). Auf die-
ser Stufe erfolgt jetzt die konkrete Be-
schreibung der Dienstleistungskanile,
wobei die Datenstrukturen im Innern
der Kanile definiert werden. Je nach
der spiteren Implementationssprache
konnen bereits deren Moglichkeiten
genutzt werden (z.B. Datenstruktur).
Es konnen aber auch Pseudo-Daten-
Strukturen verwendet werden.

Detailanalyse und
Programmentwurf

Nun kann die Realisierung der Ba-
sis-Subsysteme in Angriff genommen
werden. Durch die bisherigen Schritte
sind ihr dusseres Verhalten, die ange-
botenen Dienstleistungen und ihre
Schnittstellen definiert. Dazu wird je-
des Basis-Subsystem einzeln betrach-
tet. Die Dienstleistungen miissen in
seinem Innern realisiert werden, die
Aussenwelt ist unwichtig. Die zugeho-
rigen Datenstrukturen definieren seine
Schnittstellen; es kann von verschiede-
nen Projektmitgliedern bearbeitet wer-
den.

Das Basis-Subsystem wird als Men-
ge kooperierender Prozesse (Tasks)
entworfen (Bild 5). Diese Prozesse rea-
gieren auf Anforderungen und fiithren
darauf im Team die Dienstleistungen
aus.

Die Beschreibung des Innern eines
Prozesses, der Prozess-Code, kann
nun prozedural mit einer der bekann-
ten Methoden wie Nassi-Shneider-
mann, Jackson oder in einer Pseudo-
sprache vorgenommen werden. Mog-
lich ist auch die Verwendung der
Hochsprache wie Modula 2 im Sinne
des Stepwise Refinement.

SB-RTDS und seine Ziele

Bevor die Abbildung der Design-
Resultate auf die Strukturen des Be-
triebssystems SB-RTDS betrachtet
wird, sollen dessen Kommunikations-
mechanismen kurz vorgestellt werden.

Bei der Entwicklung von SB-RTDS
(Service Based Real Time Distributed

Bild 4 Der letzte Schritt der Zerlegung ist
getan - es bestehen nur noch Dienstleistun-
gen, die von Basis-Subsystemen erbracht
werden

Zwischen den Subsystemen bestehen Dienstlei-
stungskanile, iiber welche die Dienstleistungsan-
forderungen gestellt werden.

(") Basis-Subsystem

Prozesse

A\
/\Y

Subsystem

v

NS

Dienstleistung

Bild 5 Kooperierende Prozesse bilden das
Innere eines Basis-Subsystems. Sie iiberneh-
men die Entgegennahme der Dienstleistungs-
anforderungen und erledigen die zugehori-
gen Titigkeiten

System) standen folgende Ziele im

Vordergrund:

- Zugriff aus der Hochsprache Modu-
la 2 heraus. (Ein C-Interface ist in
Kiirze erhiltlich).

- Unterstiitzung der Applikations-
Entwicklung durch Strukturierungs-
mittel.

—Unterstitzung fir die hardwarena-
hen Software-Teile wie Device Dri-
ver.

- Effizienter Kern, d.h. schnelle Pro-
zess-Umschaltzeiten.

SB-RTDS-Mechanismen

SB-RTDS stellt fiir die Kommuni-
kation zwischen Prozessen zwei ver-
schiedene Mechanismen, einen syn-
chronen und einen asynchronen, zur
Verfiigung. Beiden gemeinsam ist,
dass die Adressierung nicht durch eine
Prozess-Identifikation, sondern {iiber
Dienstleistungsnamen erfolgt.

Bei der synchronen Kommunikation
handelt es sich um ein Rendez-vous by
Name. Der Senderprozess, der die In-
itiative ergreift (Initiator) wird so lan-
ge blockiert, bis der Empfinger (Ser-
ver) ihn wieder freigibt. Der Sender
kann seinem Aufruf Daten beifiigen.
Die Dateniibergabe erfolgt dabei iiber
eine Region, die vom Initiator-Prozess
vorgingig kreiert wird. Der Server
seinerseits hat die Moglichkeit, eine
Antwort Response zuriickzugeben.
Wihrend des Rendez-vous hat nur der
Server Zugriff auf die Daten (Mutual
Exclusion). Auf diese Weise lisst sich
ein Verwalter eines Datenpools reali-
sieren (Administrator).

In einem Rendez-vous ist der Auf-
bau weiterer Rendez-vous mit anderen

Bulletin SEV/VSE 81(1990)17, 30. August

39

Informatik

REPLY
(service)

Prozess 1 Prozess 2
ACCEPT
REQUEST (Ozr;rySarvlcc) Prozess 1 Prozess 2
(service) RECEIVE
(specificService)
~ WAIT-
NAMEDEVENT HAMEDEVENT

oder
WAITANYEVENT

Bild 6 Synchrone und asynchrone Kommunikationsmechanismen des Betriebssystems
Die Petri-Netze zeigen die direkte Wechselwirkung zwischen den Prozessen bei Benutzung der System-

aufrufe.

Prozessen mdglich. Die Beendigung
der Rendez-vous kann in beliebiger
Reihenfolge geschehen. Damit kann
der Server den Ablauf anderer Prozes-
se steuern (Koordinator).

Die asynchrone Kommunikation
kann als Ereignismeldung betrachtet
werden. Mit ihr ist keine Dateniiberga-
be moglich. Zwischen den Prozessen
fliesst nur ein Kontrollfluss. Der In-
itiator-Prozess wird nicht blockiert,
auch nicht wenn der Server-Prozess im
Augenblick nicht in der Lage ist, die
Ereignismeldung entgegenzunehmen.
Die Meldung wird jedoch gespeichert.
Der Server-Prozess kann auf die Mel-
dung eines speziellen oder beliebigen
Ereignisses warten.

Die erlduterten Kommunikations-
Mechanismen lassen sich in einem Pe-
tri-Netz darstellen (Bild 6).

Strukturen und
Moglichkeiten mit SB-RTDS

Die in der Methode Soom gefunde-
nen Begriffe und Zusammenhinge
werden im folgenden auf die Ebene
des Betriebssystems SB-RTDS iiber-
tragen.

Soom-Objekte in SB-RTDS

Basis-Subsystem: In SB-RTDS-Ter-
minologie wird ein Basis-Subsystem
Team genannt. Ein Team ist eine Men-
ge kooperierender Prozesse. Prozesse
nehmen Dienstleistungsanforderun-
gen entgegen und verrichten die damit
verbundenen Titigkeiten im Team.
Als Basis-Subsystem ist ein Team un-

teilbar und wird deshalb auf einem
Rechnerknoten als Ganzes implemen-
tiert.

Prozess: Prozesse sind die ausfiih-
renden Elemente eines Teams. Sie ent-
halten den Code und laufen innerhalb
des Teams quasi-parallel ab, da ein
Team nicht auf verschiedene Rech-
nerknoten aufgeteilt werden kann.
Echte Parallelitit ist zwischen Prozes-
sen von Teams vorhanden, die sich auf
verschiedenen Knoten befinden.

In beiden Fillen sind die Prozesse
miteinander durch die beschriebenen
Betriebssystem-Mechanismen verbun-
den. Sie stellen Dienstleistungsanfor-

derungen (Request) oder nehmen sie
entgegen (Accept, Receive) ohne je-
doch den Empfianger bzw. den Sender
zu kennen. Die Verbindungen werden
iiber die Dienstleistungsnamen vom
Betriebssystem aufgebaut.

Dienstleistung: Die Dienstleistung
ist ein fundamentales Design-Element
von Soom. Mit SB-RTDS ist sie als
Service verfiigbar. Ihre Ausfiihrung
kann nur iiber ihren Servicenamen
verlangt werden (s. weiter unten). Mit
dem synchronen System-Call Request
(...,service,...) wird der Dienstlei-
stungskanal geo6ffnet und die Dienst-
leistungsanforderung gestellt. Der
asynchrone Aufruf Signalnamede-
vent(...service...) kann dazu verwen-
det werden, eine Ereignismeldung ab-
zusetzen und dadurch auch eine
Dienstleistung erbringen zu lassen.

Klasse: Mehrere Services, die vom
selben Team erbracht werden, lassen
sich zu einer Klasse zusammenfassen.
Die Class bildet so eine Menge von
Services. Die Anforderungen zur Er-
bringung dieser Services konnen dann
von demselben Prozess im Team ent-
gegengenommen werden. Dies ergibt
eine zusitzliche Strukturierungsmog-
lichkeit und vermindert zugleich die
Anzahl der Dienstleistungskanéle.
Bild 7 illustriert die Benutzung der
Servicenamen und Klassen.

Familie: Die Dienstleistungsfamilie
(Family) ist eine Menge von Klassen
(Class). Sie kann mehrere Mitglieder
(FamilyMember) besitzen. Diese Fa-
milienmitglieder bieten alle die gleiche
Menge von Dienstleistungen an; sind

Bild 7

Die Zusammen-
fassung von mehreren
Dienstleistungen
(Services) zu einer
Klasse (Class)
schematisch oben und
als Code in Prozessen
Die Teams sind hier
nicht eingezeichnet.

Process

LOOP LOOP
actionX actionQ
REQUEST (class, service) RECEIVE(class, service)
actionY actionR

END; (*LOOP™) END; (*LOOP™)

Class
Services

I |

Process

40

Bulletin ASE/UCS 81(1990)17, 30 aott

Echtzeitsysteme

Family Class Service
FileSystem SaveRestoreOps Save
Restore
ReadWriteOps Read
Write
Filemanagement Open
Close
Tabelle 11

also Inkarnationen derselben Dienst-
leistungsfamilie. Auf diese Weise las-
sen sich gleiche Dienstleistungen, die
an verschiedenen Orten von verschie-
denen Teams erbracht werden, unter-
scheiden (z.B. Filesystem auf verschie-
denen Knoten).

Eine einzelne Dienstleistung ist
durch Familienmitglied, Klasse und
ihren Namen eindeutig bestimmt. Fa-
mily und Class konnen als Strukturie-
rungsmittel betrachtet werden.

Als Beispiel zu den Begriffen Fami-
ly (Member), Class und Service diene
das Filesystem in Tabelle I1.

Ein solches Filesystem werde nun
auf zwei Knoten angeboten. Die
Dienstleistungen sind dann auf beiden
Knoten identisch und bilden zusam-
mengefasst jeweils ein Mitglied dersel-
ben Dienstleistungsfamilie. Das kon-
sumierende Team gibt an, von wel-
chem Familienmitglied die Dienstlei-
stung erbracht werden soll. Beispiels-
weise sind FileSysteml und FileSy-
stem2 zwei Mitglieder der Dienstlei-
stungsfamilie FileSystem.

Interaktionsnamen

Teams stellen sich gegenseitig
Dienstleistungen zur Verfiigung. Will
nun ein Team den Service eines ande-
ren Teams beanspruchen, muss es nur
den Servicenamen kennen. Uber die-
sen erfolgen alle Interaktionen zum
Team und seinen Prozessen, welche
selber alle anonym bleiben. Die Na-
men der Dienstleistungen und die in-
nere Form der Dienstleistungskanéle
(Datenstrukturen) miissen deshalb
vom erbringenden Team bekanntgege-
ben werden. Dies geschieht mittels
zweier Libraries in Form von Modula-
2-Modulen. Zusitzlich kann der Zu-
griff auf eine Dienstleistung in einer
Access-Library zur Verfiigung gestellt
werden (Bild 8). Mit diesen Libraries
ist eine saubere Schnittstelle zum In-
nern des Teams vorhanden. Damit ist

auch auf der Systemebene das Prinzip
der Verkapselung (Information Hi-
ding) angewendet.

Prozessunabhingigkeit

Fiir die Anforderung einer Dienst-
leistung muss also nur deren Name
(Interaktionsname) bekannt sein; es
werden kein Team oder gar dessen Tei-
le - die Prozesse - adressiert. Das auf-
fordernde Team muss keine Kenntnis
iiber Ort und Art der Dienstleistungs-
erbringung besitzen. SB-RTDS iiber-
nimmt den Verbindungsaufbau. Um-
gekehrt muss aus der Sicht des Teams
und seiner Prozesse nicht bekannt
sein, von wem und woher die Dienst-
leistungsanforderung stammt, nur
dass die Anforderung erfolgt ist und
die Dienstleistungen damit erbracht
werden miissen. Die Kommunikation
ist also prozessunabhingig.

Lokale und verteilte Applikationen

Dass keine Adressaten vorkommen,
bedeutet weiter, dass eine angeforderte
Dienstleistung auf einem anderen
Knoten erbracht werden kann als
demjenigen, auf dem sich das auffor-
dernde Team befindet. Auch dies muss
vom konsumierenden Team nicht be-
achtet werden (Bild 9). Mit SB-RTDS
ist auch bis zum letzten Moment offen,
wie die Verteilung auf die Knoten er-
folgt.

Werden auf einem Knoten die
Dienstleistungen eines anderen Kno-
tens konsumiert, miissen lediglich die
beschriebenen Team-Libraries kopiert
werden. Eine Applikation lédsst sich
damit knotenunabhdngig entwickeln.
Die Teams werden erst am Schluss auf
die einzelnen Rechnerknoten verteilt.

Prozess- und Knotenunabhingig-
keit haben zur Folge, dass beim Ent-
wurf der inneren Teamstruktur die
Umgebung des Teams nicht mehr zu
interessieren braucht. Der Entwickler
eines Teams muss sich keine Gedan-
ken dariiber machen, ob ein oder meh-
rere andere Teams die Dienstleistun-
gen anfordern und ob diese Teams sich
auf demselben Knoten befinden. Es
muss nur die Schnittstelle mit Be-
schreibung der Dienstleistungsnamen
und den zugehorigen Datenstrukturen
zur Verfiigung gestellt werden.

Die Entwicklung und Realisierung
der einzelnen Teams kann von mehre-
ren Projektmitgliedern iibernommen

Bild 8

Information Hiding: A

Vom Team sind nur e

die Dienst-

leistungsnamen und c

die zugehorigen

Strukturen bekannt; e

das Innere des Teams

bleibt verborgen. In s

der Access-Library =

konnen die Zugriffe

in Prozeduren

verpackt zur L

Verfiigung gestellt

werden. i
b
r
a
r
y

Library of public Names

Dienstleistungsnamen

Library of public Types

Datenstrukturen

Hidden Team

Prozesse

interne Datenstrukturen

Bulletin SEV/VSE 81(1990)17, 30. August

41

Informatik

werden. Das Verkapselungsprinzip
(Information Hiding) unterstiitzt die
getrennte Implementation einer kom-
plexen Applikation, da eine Auftei-
lung mit sauber definierten Schnittstel-
len moglich ist. Die Denkweise in ver-
teilten Systemen fiihrt auch bei kleinen
Applikationen, die nie auf verschiede-
nen Rechnerknoten zu laufen kom-
men, zum selben Resultat: Die Softwa-
re wird leichter wartbar.

Entwicklungsumgebung und
Software-Pakete

Zum Entwickeln von Applikationen
(auch ohne SB-RTDS) steht ein kom-
plettes Werkzeug fiir verschiedene
Entwicklungs- und Zielsysteme zur
Verfiigung (MCDS Modula 2 Cross
Development System). In der Testpha-
se kommt der Source Level Debugger
zum Einsatz. Mit dessen Hilfe konnen
die Daten von Teams, Dienstleistungs-
kandlen usw. manipuliert werden.
Wichtig ist auch die Moglichkeit, auf
die Prozesszustinde zugreifen zu kon-
nen.

Als Standard-Software unter SB-
RTDS sind verschiedene Pakete er-
héltlich:

- Filesystem
- Windowsystem

Bild 9
Knotenunabhingig-
keit. Zwei Teams
einmal auf dem-
selben Knoten (oben)
und auf zwei
verschiedenen Knoten
(unten).

KNOTEN|

KNOTEN M

O

KNOTENN

- Maskengenerator zum Windowsy-
stem

- Kommunikations-SW fiir ISO-OSI-
Protokolle auf Ethernet

- Verschiedene Treiber-Software zu
1/0-Hardware

Schlussfolgerung

Die vorgestellte Methode ermdg-
licht den effizienten Entwurf von
Real-Time-Applikationen. Insbeson-
dere eignet sie sich fiir den Entwurf
von verteilten Systemen. Das Prinzip

der Aufteilung in Dienstleistungen
und Basis-Subsysteme und des damit
verbundenen Information Hiding ver-
hilft schon in einer frithen Phase zu
einem effizienten Einsatz der Projekt-
mitglieder. Als Nebenprodukt entsteht
dabei leicht zu wartende Software.

Obwohl die Methode die Implemen-
tierung mit allen géngigen Echtzeit-
Betriebssystemen erlaubt, kdnnen bei
Verwendung von SB-RTDS die Objek-
te schon auf dem Niveau der Basis-
Subsysteme 1:1 auf das Betriebssystem
abgebildet werden.

42

Bulletin ASE/UCS 81(1990)17, 30 aofit

	Lokale und verteilte Echtzeit-Applikationen : Entwurf und Implementation

