
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 81 (1990)

Heft: 17

Artikel: Lokale und verteilte Echtzeit-Applikationen : Entwurf und
Implementation

Autor: Vonlanthen, Claude

DOI: https://doi.org/10.5169/seals-903152

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903152
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Echtzeitsysteme

Lokale und verteilte Echtzeit-Applikationen
Entwurf und Implementation

Claude Vonlanthen

Die Entwicklung von Echtzeit-
Applikationen und deren
Implementation ins vorgegebene
Betriebssystem ist eine
komplexe Aufgabe, die nur durch
den Einsatz effizienter Methoden

zu erreichen ist. Bei der
Entwicklung des Betriebssystems
SB-RTDS wurde eine Methode
gefunden, die unabhängig vom
Betriebssystem eingesetzt werden

kann. Der Beitrag gibt einen
Überblick über das SB-RTDS-
Betriebssystem und die Soom-
Methode.

La mise en œuvre d'une application

temps-réel locale ou distribuée

est une tâche délicate, qui
nécessite l'utilisation d'une
méthode de conception
efficace. Parallèlement au développement

du noyau temps-réel
SB-RTDS est née la méthode de
conception baptisée Soom.
Cette méthode fut conçue pour
être utilisée de manière indépen-
dente du noyau. L'article introduit

la méthode de conception
ainsi que le noyau temps-réel.

Adresse des Autors
Claude Vonlanthen, Dipl. El.-Ing. ETH,
Ingenieur-Büro Vonlanthen, Burgweg 34,
4600 Olten, Tel. 062/32 34 42

Echtzeitanwendungen sind komplex.

Der Entwurf, die Implementation
und der Test sind Aufgaben, die

nur dann mit Erfolg gelöst werden
können, wenn vom Projektbeginn bis
zur Abnahme des fertigen Produktes
eine konsequente Methodik verwendet
wird. Viele der heute bekannten
Methoden decken den Entwicklungspro-
zess nur bis zum Beginn der
Realisierungsphase ab. Diese Lücke wird
durch die Kombination der Entwurfsmethode

Soom (Service and Object
Oriented Method) mit dem
Echtzeitbetriebssystem SB-RTDS (Service Based
Real Time Distributed System)
geschlossen. Soom und SB-RTDS sind
Produkte der Firma Hiware AG in Basel.

Im Laufe der Entwicklung des
Betriebssystems SB-RTDS kam die Idee
auf, dem Kunden auch eine Anleitung
zur Entwicklung von Applikationen
mit diesem Betriebssystem mitzugeben.

Im Rahmen von Anwenderschulungen

bewährte sich diese Unterstützung,

worauf die Anleitung zur
Methode weiterentwickelt wurde. Obwohl
ein enger Zusammenhang zwischen
Betriebssystem und Methode besteht,
könnten beide unabhängig voneinander

eingesetzt werden.

Ziele von Soom
Folgenden Punkten wurde bei der

Entwicklung von Soom besonderes
Augenmerk geschenkt:
- In Echtzeit-Anwendungen kommen

Datenflüsse wie Kontrollflüsse vor.
Für das Zusammenspiel der Systemteile

ist jedoch der Kontrollfluss von
besonderer Bedeutung. Soom sollte
die Möglichkeit bieten, beide Flüsse
zu kombinieren.

- Die Beschreibung soll aus dem
Gefühl kommen und einfach sein.

- Einfache Handbarkeit anhand einer
Checkliste (Automatisierung)

Die Methode
Das Design und die Realisierung

von Echtzeit-Anwendungen werden
erst möglich, wenn die Aufgabe eines
Gesamtsystems in Teilaufgaben und
Teilsysteme aufgeteilt wird. Dabei
wird die Aufgabe eines Systems so lange

aufgegliedert, bis sie und die mit ihr
beschäftigten Subsysteme leicht
überschaubar und somit realisierbar sind
(Tab. I).

Der fundamentale Unterschied
zwischen der Top-Down-Methode Soom
und anderen Top-Down-Methoden
besteht in der Art und Weise der

Aufgliederung. Sie erfolgt bei Soom unter
dem Gesichtpunkt der Dienstleistung
(Service).

Erste Schritte
Das Aussehen und Verhalten des

Systems wird vom Kunden durch ein
Pflichtenheft vorgegeben. Solche
Systeme sind zum Beispiel Produktionsstrassen,

zu steuernde Maschinen und
Prozesse. Im Pflichtenheft ist festgelegt,

welche Aufgabe das System
übernehmen muss. Ebenso sind die
Randbedingungen formuliert.

Die Gesamtaufgabe, die vom
System erbracht werden muss, wird als

Dienstleistung betrachtet analysiert
und beschrieben (Bild 1). Die
Dienstleistung wird nun in überschaubare,

Bild 1 Ein System und seine zu erbringende
Dienstleistung

U Dienstleistung
[| System, Subsystem

Bulletin SEV/VSE 81(1990)17, 30. August 37

Informatik

Checkliste zur Systemzerlegung
Auf jeder Stufe in der Zerlegungshierarchie kann folgende Checkliste angewendet
werden:

1. Analyse der Dienstleistung
Fragestellung: Welche Dienstleistung muss erbracht werden
Ergebnis: (analysierte) Dienstleistung

2. Aufteilung des Subsystems in seine durch die Randbedingungen gegebenen
Subsysteme

Fragestellung: Welche nachgeordneten Subsysteme sind vorgegeben?

3. Aufteilung der Dienstleistung in delegierbare Dienstleistungen

Fragestellung: Welche einfacheren Dienstleistungen müssen bekannte und noch
festzulegende Subsysteme gesamthaft zur Verfügung stellen, damit
die obige Dienstleistung erbracht werden kann?

Ergebnis: Menge von Dienstleistungen (kann auch leere Menge sein, wenn
die zu erbringende Dienstleistung nicht weiter unterteilt werden
soll)

4. Festlegen der zusätzlich nötigen Subsysteme

Fragestellung: Welche Subsysteme müssen zusätzlich zu den gegebenen (unter 2.

gefundenen) noch festgelegt werden?
Ergebnis: Zweite Teilmenge von Subsystemen (kann auch leere Menge sein)

5. Zuordnung der gefundenen Dienstleistungen zu den Subsystemen

Fragestellung: Welche Dienstleistungen werden welchen Subsystemen zugeord¬
net? (Entfällt, falls die Menge der gefundenen Dienstleistungen unter

3. leer war.)
Ergebnis: Menge von Subsystemen mit zugehörigen Dienstleistungen. Mit

diesen kann bei 1. weitergefahren werden.

Tabelle I

einfachere Teile aufgeteilt. Diese Teile
sind wiederum Dienstleistungen, die
an Subsysteme delegiert werden können.

Häufig sind Subsysteme durch
das Pflichtenheft schon vorgegeben
(Sensoren, Maschinen mit eigenem
Rechner usw.). Sie müssen daher als
Randbedingungen bei der Zerlegung
der Dienstleistung berücksichtigt werden.

Sind alle Dienstleistungen gefunden,

so werden sie den schon vorgegebenen

oder möglicherweise noch
festzulegenden Subsystemen zugeteilt.
Ihre Ausführung kann von anderen
Subsystemen angefordert werden.

Abhängig von der Betrachtungsweise
können folgende Begriffe festgelegt

werden:

Aus der Sicht von oben:

- Ein System besteht aus einer Menge
kooperierender Subsysteme.

- Ein System implementiert eine
Menge von Dienstleistungen.

Aus der Sicht von unten:
- Subsysteme sind kooperierende Teile

eines Systems.
- Subsysteme erbringen Dienstleistungen

und stellen sie anderen
Subsystemen zur Verfügung.

Im Beispiel der Produktionsstrasse
sind Maschinen, Computer, Software,
Menschen usw. Subsysteme. Gemeinsam

erbringen sie mit ihren individuellen

Dienstleistungen die gesamte
Dienstleistung «Produkt produzieren».

Durch die Verfeinerung ergibt sich
unter der ursprünglichen Dienstleistung

eine erste Schicht von Dienstleistungen

(Bild 2a) und unter dem
System eine erste Schicht von Subsystemen

(Bild 2b). Werden die zwei
Schichten übereinandergelegt, kann
dargestellt werden, wie die Aufgabenteilung

unter den Subsystemen erfolgt.
Durch die Zerlegung sind Verbindun-

Bild 3 Subsysteme kommunizieren miteinander

gen entstanden, über welche die
Subsysteme ihre gegenseitigen
Dienstleistungsanforderungen stellen. Sie können

nun als Dienstleistungskanäle
eingezeichnet werden (Bild 3).

Weitere Zerlegung
Nach jedem Zerlegungsschritt werden

die resultierenden Teile Dienstleistungen,

Dienstleistungskanäle und
zugehörige Subsysteme analysiert,
beschrieben und eventuell weiter zerlegt.
Das Resultat der Analyse ist eine
Beschreibung aller Dienstleistungen,
welche die einzelnen Subsysteme zur
Verfügung stellen, der Anforderungen,

welche diese Dienstleistungen
auslösen, sowie der jeweils nötigen
Dienstleistungskanäle. Weiter müssen
noch diejenigen Dienstleistungen
vermerkt werden, welche die Subsysteme
selbst von anderen Subsystemen benötigen.

Dienstleistungen und Subsysteme
lassen sich also durch einen iterativen
Prozess in immer einfachere Elemente
zerlegen. Parallel und in enger
Wechselwirkung zueinander entstehen so
ein Dienstleistungsbaum und ein
Subsystembaum.

Bild 2 Erste Zerlegung der Dienstleistung und des Systems

a in untergeordnete Dienstleistungen
b in Subsysteme

38 Bulletin ASE/UCS 81(1990)17, 30 août

Echtzeitsysteme

Während dieses Vorgehens trifft
man schon bald auf Dienstleistungen
und Subsysteme, die unter den gegebenen

Randbedingungen nicht weiter
unterteilt werden können. Im System
«Produktionsstrasse» sind dies die
Maschinen, die Hardware und die
Menschen, welche Dienstleistungen
anfordern können (Terminalbedienung,

Maschinenführung, Eingabe
von Prozesswerten usw.).

Die weiteren Verfeinerungszyklen
befassen sich deshalb immer mehr mit
Dienstleistungen von Software-Subsystemen.

Erfolgte die Beschreibung
eines Subsystems in den oberen
Zerlegungsschichten noch recht grob, so
wird diese nun immer feiner.
Dienstleistungen werden zusehends genauer
durch die Beschreibung der damit
verbundenen Tätigkeiten und der
Dienstleistungskanäle definiert. Diese können

neben der Dienstleistungsanforderung
implizit auch Daten beinhalten

und symbolisieren dann sowohl einen
Kontroll- als auch einen Datenfluss.

Am Ende der Zerlegung
Nach einer von der Komplexität des

Projektes abhängigen Anzahl Schritte
werden Dienstleistungen und Subsysteme

gefunden, die aus logischen oder
physikalischen Gründen nicht weiter
unterteilt werden können. Logische
Gründe liegen vor, wenn die mit der
Dienstleistung verbundene Aufgabe
überschaubar oder unteilbar ist.
Physikalische Gründe können durch die
Abhängigkeit von Ressourcen (Hardware)

oder durch Unteilbarkeit
(Mensch, CPU-Karte, Rechnerknoten)

gegeben sein. Die Analyse ist
beendet, wenn nur noch solche Basis-
Subsysteme bestehen. Möglicherweise
wird auch eine zu weit gehende Zerlegung

erkannt und muss rückgängig
gemacht werden. In diesem Fall war das
Subsystem der oberen Schicht schon
im logischen Sinn unteilbar. Zwischen
den Basissubsystemen bestehen
Schnittstellen, über die Dienstleistungen

angefordert und Daten
ausgetauscht werden können. Die Applikation

zeigt sich als Menge kooperierender
Basis-Subsysteme (Bild 4). Auf dieser

Stufe erfolgt jetzt die konkrete
Beschreibung der Dienstleistungskanäle,
wobei die Datenstrukturen im Innern
der Kanäle definiert werden. Je nach
der späteren Implementationssprache
können bereits deren Möglichkeiten
genutzt werden (z.B. Datenstruktur).
Es können aber auch Pseudo-Daten-
Strukturen verwendet werden.

Detailanalyse und
Programmentwurf

Nun kann die Realisierung der
Basis-Subsysteme in Angriff genommen
werden. Durch die bisherigen Schritte
sind ihr äusseres Verhalten, die
angebotenen Dienstleistungen und ihre
Schnittstellen definiert. Dazu wird
jedes Basis-Subsystem einzeln betrachtet.

Die Dienstleistungen müssen in
seinem Innern realisiert werden, die
Aussenwelt ist unwichtig. Die zugehörigen

Datenstrukturen definieren seine
Schnittstellen; es kann von verschiedenen

Projektmitgliedern bearbeitet werden.

Das Basis-Subsystem wird als Menge

kooperierender Prozesse (Tasks)
entworfen (Bild 5). Diese Prozesse
reagieren auf Anforderungen und führen
darauf im Team die Dienstleistungen
aus.

Die Beschreibung des Innern eines
Prozesses, der Prozess-Code, kann
nun prozedural mit einer der bekannten

Methoden wie Nassi-Shneider-
mann, Jackson oder in einer Pseudo-
sprache vorgenommen werden. Möglich

ist auch die Verwendung der
Hochsprache wie Modula 2 im Sinne
des Stepwise Refinement.

SB-RTDS und seine Ziele
Bevor die Abbildung der Design-

Resultate auf die Strukturen des
Betriebssystems SB-RTDS betrachtet
wird, sollen dessen Kommunikationsmechanismen

kurz vorgestellt werden.
Bei der Entwicklung von SB-RTDS

(Service Based Real Time Distributed

Bild 4 Der letzte Schritt der Zerlegung ist
getan - es bestehen nur noch Dienstleistungen,

die von Basis-Subsystemen erbracht
werden

Zwischen den Subsystemen bestehen
Dienstleistungskanäle, über welche die Dienstleistungsanforderungen

gestellt werden.

[] Basis-Subsystem

Bild 5 Kooperierende Prozesse bilden das
Innere eines Basis-Subsystems. Sie übernehmen

die Entgegennahme der Dienstleistungsanforderungen

und erledigen die zugehörigen

Tätigkeiten

System) standen folgende Ziele im
Vordergrund:
- Zugriff aus der Hochsprache Modula

2 heraus. (Ein C-Interface ist in
Kürze erhältlich).

- Unterstützung der Applikations-
Entwicklung durch Strukturierungs-
mittel.

- Unterstützung für die hardwarenahen

Software-Teile wie Device Driver.

- Effizienter Kern, d.h. schnelle Pro-
zess-Umschaltzeiten.

SB-RTDS-Mechanismen
SB-RTDS stellt für die Kommunikation

zwischen Prozessen zwei
verschiedene Mechanismen, einen
synchronen und einen asynchronen, zur
Verfügung. Beiden gemeinsam ist,
dass die Adressierung nicht durch eine
Prozess-Identifikation, sondern über
Dienstleistungsnamen erfolgt.

Bei der synchronen Kommunikation
handelt es sich um ein Rendez-vous by
Name. Der Senderprozess, der die
Initiative ergreift (Initiator) wird so lange

blockiert, bis der Empfänger (Server)

ihn wieder freigibt. Der Sender
kann seinem Aufruf Daten beifügen.
Die Datenübergabe erfolgt dabei über
eine Region, die vom Initiator-Prozess
vorgängig kreiert wird. Der Server
seinerseits hat die Möglichkeit, eine
Antwort Response zurückzugeben.
Während des Rendez-vous hat nur der
Server Zugriff auf die Daten (Mutual
Exclusion). Auf diese Weise lässt sich
ein Verwalter eines Datenpools
realisieren (Administrator).

In einem Rendez-vous ist der Aufbau

weiterer Rendez-vous mit anderen

Bulletin SEV/VSE 81(1990)17, 30. August 39

Informatik

Prozess 1 Prozess 2

Bild 6 Synchrone und asynchrone Kommunikationsmechanismen des Betriebssystems
Die Petri-Netze zeigen die direkte Wechselwirkung zwischen den Prozessen bei Benutzung der
Systemaufrufe.

Prozessen möglich. Die Beendigung
der Rendez-vous kann in beliebiger
Reihenfolge geschehen. Damit kann
der Server den Ablauf anderer Prozesse

steuern (Koordinator).
Die asynchrone Kommunikation

kann als Ereignismeldung betrachtet
werden. Mit ihr ist keine Datenübergabe

möglich. Zwischen den Prozessen
fliesst nur ein Kontrollfluss. Der In-
itiator-Prozess wird nicht blockiert,
auch nicht wenn der Server-Prozess im
Augenblick nicht in der Lage ist, die
Ereignismeldung entgegenzunehmen.
Die Meldung wird jedoch gespeichert.
Der Server-Prozess kann auf die
Meldung eines speziellen oder beliebigen
Ereignisses warten.

Die erläuterten Kommunikations-
Mechanismen lassen sich in einem Pe-

tri-Netz darstellen (Bild 6).

Strukturen und
Möglichkeiten mit SB-RTDS

Die in der Methode Soom gefundenen

Begriffe und Zusammenhänge
werden im folgenden auf die Ebene
des Betriebssystems SB-RTDS
übertragen.

Soom-Objekte in SB-RTDS

Basis-Subsystem: In SB-RTDS-Ter-
minologie wird ein Basis-Subsystem
Team genannt. Ein Team ist eine Menge

kooperierender Prozesse. Prozesse
nehmen Dienstleistungsanforderungen

entgegen und verrichten die damit
verbundenen Tätigkeiten im Team.
Als Basis-Subsystem ist ein Team un¬

teilbar und wird deshalb auf einem
Rechnerknoten als Ganzes implementiert.

Prozess: Prozesse sind die ausführenden

Elemente eines Teams. Sie
enthalten den Code und laufen innerhalb
des Teams quasi-parallel ab, da ein
Team nicht auf verschiedene
Rechnerknoten aufgeteilt werden kann.
Echte Parallelität ist zwischen Prozessen

von Teams vorhanden, die sich auf
verschiedenen Knoten befinden.

In beiden Fällen sind die Prozesse
miteinander durch die beschriebenen
Betriebssystem-Mechanismen verbunden.

Sie stellen Dienstleistungsanfor-

Bild 7

Die Zusammenfassung

von mehreren
Dienstleistungen
(Services) zu einer
Klasse (Class)
schematisch oben und
als Code in Prozessen

Die Teams sind hier
nicht eingezeichnet.

derungen (Request) oder nehmen sie

entgegen (Accept, Receive) ohne
jedoch den Empfänger bzw. den Sender
zu kennen. Die Verbindungen werden
über die Dienstleistungsnamen vom
Betriebssystem aufgebaut.

Dienstleistung: Die Dienstleistung
ist ein fundamentales Design-Element
von Soom. Mit SB-RTDS ist sie als
Service verfügbar. Ihre Ausführung
kann nur über ihren Servicenamen
verlangt werden (s. weiter unten). Mit
dem synchronen System-Call Request
(...,service,...) wird der
Dienstleistungskanal geöffnet und die
Dienstleistungsanforderung gestellt. Der
asynchrone Aufruf Signalnamede-
vent(.. .service...) kann dazu verwendet

werden, eine Ereignismeldung
abzusetzen und dadurch auch eine
Dienstleistung erbringen zu lassen.

Klasse: Mehrere Services, die vom
selben Team erbracht werden, lassen
sich zu einer Klasse zusammenfassen.
Die Class bildet so eine Menge von
Services. Die Anforderungen zur
Erbringung dieser Services können dann
von demselben Prozess im Team
entgegengenommen werden. Dies ergibt
eine zusätzliche Strukturierungsmög-
lichkeit und vermindert zugleich die
Anzahl der Dienstleistungskanäle.
Bild 7 illustriert die Benutzung der
Servicenamen und Klassen.

Familie: Die Dienstleistungsfamilie
(Family) ist eine Menge von Klassen
(Class). Sie kann mehrere Mitglieder
(FamilyMember) besitzen. Diese
Familienmitglieder bieten alle die gleiche
Menge von Dienstleistungen an; sind

Class
\ Services\ //

Process
/ Process

\
/ / 1 \. / J

L 0 0 LOOP
actionX actionQ
REQUEST (class service) RECEIVE(class, service)
action Y actionR

END; (•LOOP*) END; * LO 0 P *

40 Bulletin ASE/UCS 81(1990)17, 30 août

Echtzeitsysteme

Family Class Service

FileSystem SaveRestoreOps Save
Restore

ReadWriteOps Read
Write

Filemanagement Open
Close

Tabelle II

also Inkarnationen derselben
Dienstleistungsfamilie. Auf diese Weise lassen

sich gleiche Dienstleistungen, die
an verschiedenen Orten von verschiedenen

Teams erbracht werden,
unterscheiden (z.B. Filesystem auf verschiedenen

Knoten).
Eine einzelne Dienstleistung ist

durch Familienmitglied, Klasse und
ihren Namen eindeutig bestimmt.
Family und Class können als Strukturie-
rungsmittel betrachtet werden.

Als Beispiel zu den Begriffen Family

(Member), Class und Service diene
das Filesystem in Tabelle II.

Ein solches Filesystem werde nun
auf zwei Knoten angeboten. Die
Dienstleistungen sind dann auf beiden
Knoten identisch und bilden zusam-
mengefasst jeweils ein Mitglied derselben

Dienstleistungsfamilie. Das
konsumierende Team gibt an, von
welchem Familienmitglied die Dienstleistung

erbracht werden soll. Beispielsweise

sind FileSysteml und FileSy-
stem2 zwei Mitglieder der
Dienstleistungsfamilie FileSystem.

Interaktionsnamen

Teams stellen sich gegenseitig
Dienstleistungen zur Verfügung. Will
nun ein Team den Service eines anderen

Teams beanspruchen, muss es nur
den Servicenamen kennen. Über diesen

erfolgen alle Interaktionen zum
Team und seinen Prozessen, welche
selber alle anonym bleiben. Die
Namen der Dienstleistungen und die
innere Form der Dienstleistungskanäle
(Datenstrukturen) müssen deshalb
vom erbringenden Team bekanntgegeben

werden. Dies geschieht mittels
zweier Fibraries in Form von Modula-
2-Modulen. Zusätzlich kann der
Zugriff auf eine Dienstleistung in einer
Access-Library zur Verfügung gestellt
werden (Bild 8). Mit diesen Libraries
ist eine saubere Schnittstelle zum
Innern des Teams vorhanden. Damit ist

auch auf der Systemebene das Prinzip
der Verkapselung (Information
Hiding) angewendet.

Prozessunabhängigkeit

Für die Anforderung einer
Dienstleistung muss also nur deren Name
(Interaktionsname) bekannt sein; es

werden kein Team oder gar dessen Teile

- die Prozesse - adressiert. Das
auffordernde Team muss keine Kenntnis
über Ort und Art der Dienstleistungserbringung

besitzen. SB-RTDS
übernimmt den Verbindungsaufbau.
Umgekehrt muss aus der Sicht des Teams
und seiner Prozesse nicht bekannt
sein, von wem und woher die
Dienstleistungsanforderung stammt, nur
dass die Anforderung erfolgt ist und
die Dienstleistungen damit erbracht
werden müssen. Die Kommunikation
ist also prozessunabhängig.

Bild 8

Information Hiding:
Vom Team sind nur
die
Dienstleistungsnamen und
die zugehörigen
Strukturen bekannt;
das Innere des Teams
bleibt verborgen. In
der Access-Library
können die Zugriffe
in Prozeduren
verpackt zur
Verfügung gestellt
werden.

A

c

c

e

s

s

r

a

r

y

Lokale und verteilte Applikationen
Dass keine Adressaten vorkommen,

bedeutet weiter, dass eine angeforderte
Dienstleistung auf einem anderen
Knoten erbracht werden kann als

demjenigen, auf dem sich das auffordernde

Team befindet. Auch dies muss
vom konsumierenden Team nicht
beachtet werden (Bild 9). Mit SB-RTDS
ist auch bis zum letzten Moment offen,
wie die Verteilung auf die Knoten
erfolgt.

Werden auf einem Knoten die
Dienstleistungen eines anderen Knotens

konsumiert, müssen lediglich die
beschriebenen Team-Libraries kopiert
werden. Eine Applikation lässt sich
damit knotenunabhängig entwickeln.
Die Teams werden erst am Schluss auf
die einzelnen Rechnerknoten verteilt.

Prozess- und Knotenunabhängigkeit
haben zur Folge, dass beim

Entwurf der inneren Teamstruktur die
Umgebung des Teams nicht mehr zu
interessieren braucht. Der Entwickler
eines Teams muss sich keine Gedanken

darüber machen, ob ein oder mehrere

andere Teams die Dienstleistungen
anfordern und ob diese Teams sich

auf demselben Knoten befinden. Es

muss nur die Schnittstelle mit
Beschreibung der Dienstleistungsnamen
und den zugehörigen Datenstrukturen
zur Verfügung gestellt werden.

Die Entwicklung und Realisierung
der einzelnen Teams kann von mehreren

Projektmitgliedern übernommen

Library of public Names

Dienstleistungsnamen

Library of public Types
Datenstrukturen

Hidden Team

Prozesse
interne Datenstrukturen

Bulletin SEV/VSE 81(1990)17, 30. August 41

Informatik

werden. Das Verkapselungsprinzip
(Information Hiding) unterstützt die
getrennte Implementation einer
komplexen Applikation, da eine Aufteilung

mit sauber definierten Schnittstellen

möglich ist. Die Denkweise in
verteilten Systemen führt auch bei kleinen
Applikationen, die nie auf verschiedenen

Rechnerknoten zu laufen kommen,

zum selben Resultat: Die Software
wird leichter wartbar.

Entwicklungsumgebung und
Software-Pakete

Zum Entwickeln von Applikationen
(auch ohne SB-RTDS) steht ein
komplettes Werkzeug für verschiedene
Entwicklungs- und Zielsysteme zur
Verfügung (MCDS Modula 2 Cross
Development System). In der Testphase

kommt der Source Level Debugger
zum Einsatz. Mit dessen Hilfe können
die Daten von Teams, Dienstleistungskanälen

usw. manipuliert werden.
Wichtig ist auch die Möglichkeit, auf
die Prozesszustände zugreifen zu können.

Als Standard-Software unter SB-
RTDS sind verschiedene Pakete
erhältlich:

- Filesystem
- Windowsystem

Bild 9

Knotenunabhängigkeit.
Zwei Teams

einmal auf
demselben Knoten (oben)
und auf zwei
verschiedenen Knoten
(unten).

KNOTEN U

f
J

- Maskengenerator zum Windowsystem

- Kommunikations-SW für ISO-OSI-
Protokolle auf Ethernet

- Verschiedene Treiber-Software zu
I/O-Hardware

Schlussfolgerung
Die vorgestellte Methode ermöglicht

den effizienten Entwurf von
Real-Time-Applikationen. Insbesondere

eignet sie sich für den Entwurf
von verteilten Systemen. Das Prinzip

der Aufteilung in Dienstleistungen
und Basis-Subsysteme und des damit
verbundenen Information Hiding
verhilft schon in einer frühen Phase zu
einem effizienten Einsatz der
Projektmitglieder. Als Nebenprodukt entsteht
dabei leicht zu wartende Software.

Obwohl die Methode die Implementierung

mit allen gängigen Echtzeit-
Betriebssystemen erlaubt, können bei
Verwendung von SB-RTDS die Objekte

schon auf dem Niveau der Basis-
Subsysteme 1:1 auf das Betriebssystem
abgebildet werden.

42 Bulletin ASE/UCS 81 1990) 17,30 août

	Lokale und verteilte Echtzeit-Applikationen : Entwurf und Implementation

