
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 81 (1990)

Heft: 17

Artikel: Ein Parallel-Computer mit verteiltem Speicher : das K2-Projekt

Autor: Annaratone, Marco / Bonsen, Georg zur / Fillo, Marco

DOI: https://doi.org/10.5169/seals-903149

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903149
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Compuîerarchitekturen

Ein Parallel-Computer mit verteiltem Speicher
Das K2-Projekt

Marco Annaratone, Georg zur Bonsen, Marco Fillo, Kiyoshi Nakabayashi, Claude Pommereil, Roland Rühl,
Peter Steiner und Marc Viredaz

Vor zwei Jahren wurde an der
ETH Zürich das K2-Projekt
gestartet mit dem Ziel, einen
parallelen Prozessor mit verteiltem

Speicher zu entwickeln. Die
K2-Architektur unterstützt einen
automatisch parallelisierenden
Fortran-Compiler und ein virtuelles

Timesharing-Multiuser
Multitasking-Betriebssystem. Der
vorliegende Bericht beschreibt vier
Hauptgesichtspunkte des
Projekts: den Aufbau der Maschine,
seinen parallelisierenden Compiler,

das Betriebssystem sowie
speziell für diese Architektur
entwickelte Finite-Elemente-
Algorithmen.
Le projet K2, commencé il y a
deux ans, a pour but la conception

et la réalisation d'un ordinateur

parallèle à mémoire distribuée,

dont l'architecture
supporte, de manière efficace, un
compilateur Fortran effectuant
automatiquement la parallélisa-
tion, et un système d'exploitation

multi-tâche, multi-utilisateur,

en temps partagé. Ce
papier présente les quatre
aspects, les plus importants, de
ce projet, c'est-à-dire, l'architecture

de la machine, son compilateur

parallélisant, son système
d'exploitation et les
algorithmes, utilisant la méthode des
éléments finis, développés pour
cette architecture.
Adresse der Autoren
Prof. Dr. Marco Annaratone, Georg zur Bonsen,
Marco Fillo, Claude Pommerell, Roland Rühl,
Peter Steiner, Marc Viredaz, Institut für
Integrierte Systeme, ETH Zürich, 8092 Zürich,
und Kiyoshi Nakabayashi, NTT
Communications and Information Processing
Laboratories, Tokyo 180, Japan

Die bisher entwickelten Prozessoren
mit verteiltem Speicher (Distributed
Memory Parallel Processors oder
DMPPS) basieren auf verschiedenen
Netzwerktopologien, wie z.B. Tori,
Hypercubes und Linear Arrays. Auch
unterscheiden sie sich im verfügbaren
Grad der Parallelität einerseits und der
Leistung eines Einzelprozessors
andererseits. Zum Beispiel verfügt der
MIMD iPSC/2 über 64 Vektorprozessoren

und die SIMD Connection
Machine CM-2 über 65,536 einfache
Prozessoren. Effiziente Netzwerktopologien

und Kommunikationsmechanismen
wurden in den vergangenen Jahren

untersucht. Im Vergleich dazu ist
die Entwicklung von Systemsoftware
im Rückstand. Wir halten dies für
einen der Gründe, dass DMPPs noch
keine kommerzielle Verbreitung
finden. Wir konzentrieren uns deshalb
auf die Entwicklung eines automatisch
parallelisierenden Compilers (APC),
eines virtuellen Timesharing-Betriebssystems

und eines interaktiven symbolischen

Debuggers. Die Berücksichtigung

dieser Software beeinflusst den
Hardware-Entwurf eines DMPP
wesentlich und führt zu einer neuen
Beurteilung der oben genannten
Architekturparameter.

Aus Platzgründen können wir auf
das Projekt nicht im Detail eingehen

und werden K2 und seine Systemsoftware

nur allgemein beschreiben. Die
Architektur wird genauer in [1; 2]
beschrieben. In [3] wird näher auf den
automatisch parallelisierenden Compiler

namens Oxygen eingegangen.

Übersicht über die
K2-Architektur

Der Entwurf von K2 unterstützt die
Ausführung von Anwendungsprogrammen

und Systemsoftware. Bisherige

Untersuchungen von Netzwerktopologien

für parallele Anwendungssoftware

sagen wenig über die
Eignung dieser Topologien für parallele
Systemsoftware aus. Wir haben uns
deshalb für eine Topologie entschieden,

deren Eignung für Anwendungssoftware

wohlbekannt ist, und diese

zur besseren Unterstützung von
Systemaktivitäten modifiziert.

In Bild 1 ist der für Benutzerprogramme

sichtbare Teil der K2-Architektur

abgebildet. In einem Torus sind
Computation Nodes (CN) bidirektional

durch Paare von 32-Bit-Leitungen
einschliesslich Fifos, den sogenannten
User Channels, verbunden. Der
Grundriss des K2 auf Systemebene ist
in Bild 2 dargestellt. Jede Reihe und
jede Spalte der CN ist mit je einem
Input-Output Node (ION) verbunden, an

ETHERNET^^^^^

|SUN SERVER]

ION H"—1
111 ^—J T

1 E

ION R

|i k J M
I I

ION ^ N
1

I 1 A
1

I

„ N L
ION H- 1 s

Bulletin SEV/VSE 81(1990)17, 30. August



Informatik

Parameter User
Channels

System
Channels

Verwendung
Austausch von
Routing
Medium
Typ

Benutzerkommunikation
Rohdaten

manuell (durch CPU)
Parallele Leitungen

blockierend und nicht blockierend

Systemkommunikation
Meldungen

automatisch (durch SNIK)
Koaxialkabel und Glaslaser

nicht blockierend
max. Datenrate pro Kanal iOOMb/s 100Mb/s
Latenzzeiten:
Register zu Register
SNIK zu SNIK

160ns
l.5fis (min)

Tabelle 1 Eigenschaften der User- und System Channels

Einheit Anzahl Chips Fläche (cm3) MAX. Leistungsverbiiaucii (W)
PE-CN 160 846 115

PE-ION 190 860 115

SNIK 85 754 30

User Channels 120 517 50

Disk Controller 48 308 35

CN 365 2117 195

ION 323 1922 180

Tabelle II Abmessungen und Leistungsverbrauch des K2-Prototyps

dem Terminals und Plattenlaufwerke
angeschlossen sind. Diese Verbindung
zwischen ION und Reihen bzw. Spalten

von CNs, der sogenannte System
Channel, ist als Token-Ring
implementiert. Ein identischer Token-Ring
verbindet alle IONs mit einem
Ethernet-Gateway.

Alle Knoten (CN und ION) sind für
die Ausführung von Benutzer- und
Systemprozessen vorgesehen. Die CNs
übernehmen die rechenintensiven
parallelen Aufgaben, die IONs die
Bearbeitung von interaktiven seriellen
Programmen, wie z.B. Editoren und
E-Mail. Obwohl die Aktivitäten des

Betriebssystems auf alle Knoten
verteilt werden, erfüllen die IONs
hauptsächlich die Funktion von File-Servern

und intelligenten Disk Caches.
Die Eigenschaften der User- und Sy¬

stem Channels sind in der Tabelle I zu-
sammengefasst.

Die Hardware
Der K2 besteht aus zwei verschiedenen

Bauelementen:
- Der Computation Node (CN) enthält

ein Prozessor-Element (PE), je vier
ausgehende und ankommende, 32
Bit breite User Channels und einen
Serial Network Interface Controller
oder SNIK, der die Kommunikation

durch die System Channels
steuert.

- Der I/O-Node (ION) enthält ein
Prozessor-Element, einen Disk-
Controller und Terminal-Schnittstellen,

aber keine User Channels.
Die Prozessor-Elemente des ION und
des CN unterscheiden sich nur bezüg¬

lich Speichergrösse. Der lokale Speicher

des ION ist viermal grösser, da
mit einem intelligenten Disk-Cache-
Mechanismus die Leistungsfähigkeit
des Seitenwechselverfahrens des virtuellen

Betriebssystems erhöht werden
soll. Insgesamt mussten demnach die
vier Grundeinheiten PE, User Channel,

Snik und Disk Controller entwik-
kelt werden. Beim hier vorgestellten
Rechner handelt es sich um den
K2-Prototyp, der einen vereinfachten
Aufbau aufweist. Erstens wird nur ein
4-mal-4-Torus realisiert, und zweitens
sind die PEs nicht mit zusätzlichen
Cache-Speichern ausgerüstet.

Die Bilder 3a und 3b zeigen
Blockdiagramme des. CN und des ION. Der
CN besteht aus einem Mikroprozessor
AMD Am29000 mit einem Fliesskom-
ma-Koprozessor AMD AM29027
(FPC), einem getrennten Instruktionsund

Datenspeicher (0,5 MByte bzw. 2

MByte) mit Fehlererkennung und
-korrektur, vier Paaren von 32 Bit breiten

User Channels und einem Serial
Network Interface Controller (SNIK).
Die Architektur des ION gleicht bis
auf zwei Ausnahmen jener des CN.
Erstens fehlen die User Channels, und
zweitens wurde die Kapazität der In-
struktions- und Datenspeicher auf 2

MByte beziehungsweise 8 MByte
erhöht. Ein intelligenter Mass Storage
Controller oder MSC ist einerseits mit
dem Prozessor-Element über einen
Dual-Port-Speicher verbunden und
verfügt andererseits über eine SCSI-
Schnittstelle (Small Computer System
Interface) mit einer Spitzen-Übertragungsrate

von 4 Mbyte/s.
Die Abmessungen und der

Energieverbrauch der verschiedenen Einheiten

sind in Tabelle II zusammenge-
fasst. Bild 4 zeigt eine bestückte CN-

Bild 3

Blockdiagramm des

CN (a) und ION (b)
Der K2-Prototyp
enthält keine
Cache-Speicher
CN Computation

Node
ION Input-Output

Node

©
z

Cache

Local

Memory
D —

/

Cache ' N

: <-
HORIZONTAL RING

Memory

ur
Mass

Storage
Controller

-<

EC

©
i

Cache
\ Local/\ Memory

D
—1

Cache

Memory

XT

: i
: o
: n

: r
.< i

N

* <-
HORIZONTAL RING

12 Bulletin ASE/UCS 81(1990)17, 30 août



Computerarchitekturen

Die Schnittstelle zu den User Channels

hat schliesslich zugunsten des
Am29000 den Ausschlag gegeben. Die
Architektur des Prozessors sollte nämlich

einen schnellen Zugriffsmechanismus
auf die User Channels (wobei die

Zugriffe vom Cache nicht zu behandeln

sind) und ihr rasches Blockieren
und Deblockieren ermöglichen.

Mit dem Am29000 verursacht die
Abbildung der User Channels auf den
virtuellen Adressraum keine
Leistungseinbusse, weil der in den Prozessor

integrierte Translation Lookaside
Buffer eine schnelle Adressübersetzung

in einer Pipelinestufe durchführt.
Beim MC88100 hingegen verlangsamt
die Abbildung der User Channels auf
virtuelle Adressen den Zugriff, da die
Adressierung durch eine auf einem
separaten Chip untergebrachte
Speicherverwaltungseinheit (CMMU)

Bild 4
Die CN-Leiterplatte

Platine. Die Platinen wurden ausserhalb

des Hauses hergestellt. Der
Entwurf, die grafische Definition der
Schaltungen und die Plazierung der
Chips und die Leitungsführung wurden

in unserem Labor durchgeführt.

Die Wahl des Prozessors
Die Wahl des Prozessors und der

Struktur des lokalen Speichersystems
waren die Hauptaufgaben beim
Entwurf des Prozessor-Elements (PE).
Wir haben uns entschieden, einen
kommerziell erhältlichen und nicht
einen kundenspezifischen Mikroprozessor

einzusetzen, weil der erstere
sowohl für den Hardware-Entwurf (es
existieren Chips für Unterstützungsfunktionen

und Entwicklungswerkzeuge)
als auch für die Software-Entwicklung

(Verfügbarkeit von Assembler,

Compiler und Debugger) klare
Vorteile aufweist.

Zum Zeitpunkt der Wahl des

Mikroprozessors (Mai 1988) waren vier
Hochleistungsprozessoren auf dem
Markt oder in Markteinführung
begriffen: der AMD Am29000, der
Motorola MC88100, der Spare und der
Mips R2000. Die letzten beiden wurden

aus nichttechnischen Gründen
nicht weiter in Betracht gezogen. Die
verbleibenden zwei Prozessoren, der
Am29000 und der MC88100, verfolgen

unterschiedliche Konzepte, deren
detailliertere Untersuchung ausserhalb
des Rahmens dieses Artikels liegt. Die
Tabelle III zeigt die
Prozessorarchitektur-Eigenschaften, welche die Evaluation

beeinflusst haben.

Abkürzungen
APC Automatically Parallelizing Compiler
CN Computation Nodes
CMMU Cache and Memory Management Unit
DMPP Distributed Memory Parallel Processor
DRAM Dynamic Random Access Memory
FIFO First in First out
FPU Floating Point Unit
ION Input-Output Node
MIMDS Multiple Instruction Multiple Data Stream
MIPS Million Instructions per Second
MMU Memory Management Unit
MSC Mass Storage Controller
PE Processor Element
SCSI Small Computer System Interface
SIMDS Single Instruction Multiple Data Stream
SNIK Serial Network Interface Controller
SRAM Static RAM
TAXI Transparent Asynchronous Receiver/Transmitter Interface

Parameter AM29000 MC88100

Taktfrequenz 25MHz 20MHz
Bus-Architektur 3 Busse 4 Busse

Bus-Protokoll einfach,
pipelined, Burst-Mode

synchron

On-chip Register 192 32

Instruktions-Cache 8 KByte,
2-Weg set-assoziativ"

16 -r- 64 KByte,
4-Weg set-assozia.tiv

Off-chip (88200)
Daten-Cache 8 KByte,

2-Weg set-assoziativ"'
16 4- 64 KByte,

4-Weg set-assoziativ, off-chip (88200)
Branch-Target Buffer 128 Adressen, on-chip nicht vorhanden
FPU off-Chip (29027) on-chip
MMU on-Chip off-chip (88200)

Tabelle III Vergleich der technischen Daten der Prozessoren AMD, Am29000 und Motorola

MC88100
1 Nach Einführung dieses Prozessors hat AMD die weitere Entwicklung separater Cache-Chips eingestellt

Bulletin SEV/VSE 81(1990)17, 30. August 13



Informatik

Speicher- Zugriffszyklen
Zugriff I&D I SPLIT-

Cache Cache VRAM MEMORY

Instr. b.i. 2 2 6 5

Instr. b.s. 1 1 1 2

Daten b.i. 2 6 4 6

Daten b.s. 1 1 1 2

Test Leistung (Am29000 MIPS)
PROGRAMM I&D I SPLIT-

Cache Cache VRAM MEMORY

B1 23.02 20.58 17.38 13.48

B2 23.92 21.48 19.94 13.48

B3 23.23 19.12 18.35 14.10

B4 20.15 14.12 14.73 12.08
B5 22.87 20.71 18.43 13.81

Tabelle IV
Leistungsvergleich
der vier
Speicheranordnungen

Instr. Burst Initialisation Anzahl der Zyklen, um die erste Instruktion eines
Instruktionsblockes zu laden.

Instr. Burst Steady-State Anzahl der Zyklen, um eine Instruktion im Burst-
Mode zu lesen.

Daten Burst Initialisation Anzahl der Zyklen, um das erste Wort eines Da¬
tenblockes zu laden.

Daten Burst Steady-State Anzahl der Zyklen, um auf ein Wort im Burst-
Mode zuzugreifen

hindurch erfolgen muss. Ausserdem
bewirkt das Bus-Protokoll zwischen
Prozessor und CMMU eine Verlangsamung

für nicht vom Cache zu behandelnde

Zugriffe um mindestens 5

Zyklen.

Ein weiterer Gesichtspunkt ergab
sich aus der Effizienz der Ausnahme-
Behandlung bei blockiertem User
Channel. Während der Am29000
einen Hardware-Mechanismus für die
Fortsetzung der Ausführung einer
abgebrochenen Instruktion aufweist,
muss beim MC88100 auf Software-
Emulation zurückgegriffen werden.

Der Entwurf des

Speichersystems
Vier verschiedene Möglichkeiten

standen beim Entwurf des Speichersystems

zur Diskussion:
- Ein System, basierend auf getrenntem

Instruktions- und Datencache
mit lokalem Zweiweg-Interleaved-
Dram

- Ein lokaler dynamischer Speicher
mit Instruktions-Cache (nachfolgend

I-Cache)
- Ein Video-Dram ohne Caches

- Getrennte Dram-Bänke für Instruktionen

und Daten, keine Caches
(nachfolgend Split Memory)
Die vier Speicherstrukturen wurden

unter Benutzung eines Am29000-In-
struktionssatz-Simulators verglichen.
Die Tabelle IV stellt die angenommenen

Speicherzugriffszeiten dar. Mit

diesen Eingangsdaten wurden auf dem
Simulator die in der gleichen Tabelle
(Am29000 MIPS) gezeigten Geschwindigkeiten

(in Mips) gemessen. Die fünf
Benchmark-Programme (B1 bis B5)
stammen ausschnittweise von auf dem
K2-Simulator entwickelten parallelen
Programmen [4]. Angaben für das
I&D-Cache-System sind eher optimistisch,

da der Simulator auf Caches
basierende Systeme nicht vollständig
modellieren kann. Die sich auf das

I-Cache-System beziehenden Angaben
sind realistischer. Tatsächlich konnten
wir zeigen, dass Trefferquoten nahe
100% selbst bei kleinen Cachegrössen
unabhängig von der Cache-Organisation

erzielt werden [5]. Um die Anzahl
Bausteine zu begrenzen und weil der
Cache-Chip Am29062 noch nicht ver-

Memory

Pbus

Boot

ROM

Prgm

Data

Memory

j ril'O —;

TaxiF
S

M Taxi

J^v

HE TaxiF

S

M Taxi

aJh

Bild 5 Blockdiagramm des Serial Network
Interface Controllers

fügbar ist, wurden die ersten beiden
Entwurfsalternativen fallengelassen.
Eine Lösung, basierend auf VRAMs,
ist teuer und benötigt eine komplexe
Fehlerkorrekturschaltung. Deswegen
wurde die Entwurfsalternative Split
Memory ausgewählt.

Serial Network Interface
Controller

Bild 5 zeigt das Blockdiagramm des
Serial Network Interface Controllers
(SNIK). Der Snik besteht aus einem
Motorola-Mikroprozessor MC68030,
der mit eigenem Boot-ROM,
Programm- und Datenspeicher ausgerüstet

ist. Der Mikroprozessor bietet im
Vergleich zu einem Controller mehr
Spielraum beim Entwickeln und
Testen von Kommunikationsprotokollen.

Die physikalische Verbindung des
MC68030 zu den System Channels
wird mit zwei Paaren AMD- Taxi-
Bausteinen (Transparent Asynchronous

Transmitter/Receiver Interfaces)
hergestellt. Diese integrierten
Schaltungen wandeln von 8 Bit parallel zu
seriell beim Senden, und von seriell zu
parallel beim Empfangen. Die Sniks
werden mit Koaxial- oder Glasfaserkabeln

verbunden.
Der MC68030 leitet Pakete weiter,

vermittelt sie zwischen horizontalem
und vertikalem Ring (Corner Turn),
berechnet und prüft Paritätssummen
und sendet pro erhaltenes Paket eine
Empfangsbestätigung. Fifos zwischen
dem MC68030 und dem Taxi-Baustein
puffern den Paketfluss. Ein komplexer
Zustandsautomat zwischen Fifo und
Taxi-Bausteinen interpretiert ankommende

Pakete und puffert sie, falls sie
für den lokalen Prozessor bestimmt
sind (oder ein Corner Turn vollzogen
werden muss). Der sendende Knoten
sorgt für das Entfernen rücklaufender
Pakete. Im Zustandsautomaten sind
das Token-Ring-Protokoll und die
Fehlerdetektion implementiert.

Das Bild 6 zeigt quantitativ einen
einzelnen K2-Token-Ring. Bild 6a
zeigt Kurven für den effektiven
Durchsatz, während Bild (6b) die
Latenzzeit, die im schlechtesten Fall
auftritt, darstellt. Mit einer Paketgrösse
von 512 Byte wird bereits ein Durchsatz

nahe der Bandbreite des physikalischen

Mediums (12,5 Mbyte/s)
erreicht. Anderseits ist die Latenzzeit bei
dieser Paketgrösse untragbar, da sie

0,5 ms oder länger dauern kann. Diese
Angaben geben eine obere Schranke
der Leistung des Token-Rings. Der
Quotient aus effektivem Durchsatz

14 Bulletin ASE/UCS 81(1990)17, 30 août



Computerarchitekturen

Throughput (flfey t e/*>
Latency

500 1000 1500 2000 500

l©| Packet body ibyU>) II®!
1000, 1500. ZOOQ,

Packet haây < by te 5

Bild 6 Datenrate auf einem einzelnen Token Ring
Die effektive Datenrate (a) und Latenzzeiten im ungünstigsten Fall (b) werden gegenüber Paketgrössen für 3x3,4x4,8x8 und 16x 16 K2-Torus illustriert.
Jeder Ring enthält 4, 5,9 respektive 17 Prozessoren

und Latenzzeit erreicht bei einer Pa-
ketgrösse von etwa 92 Byte sein Maximum.

Der Oxygen Compiler
Die Forschung auf dem Gebiet der

automatisch parallelisierenden Compiler

(APC) konzentrierte sich bisher
auf Multiprozessoren mit gemeinsamem

Speicher. Die Prozessoren dieser
parallelen Rechner sind meistens mit
einem gemeinsamen Bus verbunden.
Da der Bus eine begrenzte Bandbreite
hat, wurden komplizierte Cache-Mechanismen

entwickelt, um Datenlokalität

auszunutzen. Das sich ergebende
Kohärenzproblem wird zur
Programmlaufzeit mit von der Hardware
unterstützten Cache-Protokollen
aufgelöst.

APCs (Automatically Parallelizing

Parallel Code

Uniprocessor Code

Compilers) für diese Maschinen
restrukturieren und parallelisieren Code
zur Compilierzeit. Der APC führt keine

prozessorbezogene Datenallo-
kation durch. Die Datenallokation
durch die lokalen Caches ist damit für
den Benutzer und für den Compiler
transparent. Es wird üblicherweise ein
Satz von Heuristiken benutzt, um das
serielle Programm zur Compilierzeit
zu parallelisieren. Beispielsweise können

Datenabhängigkeiten innerhalb
einer DO-Schleife zur Compilierzeit
ausgewertet werden, wenn in zwei
Ausdrücken innerhalb der Schleife ein
Fortran-Array mit verschiedenen
linearen Funktionen des Schleifenindex
indiziert wird [6]. Natürlich können
nicht alle Datenabhängigkeiten so
aufgelöst werden.

Ein DMPP (Distributed Memory
Parallel Processor) wie K2 unterschei-

PUBLIC BLOCK

Bild 7
Die Aufteilung eines
seriellen Programms
mit Oxygen

H
checkpoint, T=1

iijiji computation

checkpoint, T=3

I
computation

det sich von Multiprozessoren mit
gemeinsamem Speicher im Hinblick auf
einen zu entwickelnden automatisch
parallelisierenden Compiler in folgenden

beiden Punkten:
1.Ein APC für DMPPs muss
Datenstrukturen auf die verfügbaren lokalen
Speicher aufteilen (Domain
Decomposition).

2. Der Aufwand, eine von mehreren
Prozessoren benutzte Variable
anzusprechen, ist abhängig von der
Netzwerkposition des Prozessors, auf dem
die Variable alloziert wurde.

Da DMPPs keine Hardware aufweisen,

um Speicherkonflikte zu lösen,
analysiert Oxygen Datenabhängigkeiten

zum Teil zur Programmlaufzeit.
Die folgenden Abschnitte zeigen, wie
dadurch die Geschwindigkeit des
ausführbaren Codes beeinflusst wird.

Oxygen-Grundkonzept
Der Entwurf von Oxygen verläuft in

zwei Phasen. Erst wird ein Compiler
mit Direktiven implementiert, dann
wird ein Präprozessor entwickelt, der
diese Direktiven automatisch generiert.

Oxygen setzt voraus, dass jedes
Programm in Code-Blöcke zweier
verschiedener Klassen zerlegt werden
kann:
- die Klasse der lokalen Blöcke impliziert

keine Interprozessorkommuni-
kation.

- Die Benutzung bestimmter
Variablentypen in öffentlichen Blöcken
impliziert die Generierung von
Kommunikationsprimitiven zur
Laufzeit.
Das Bild 7 zeigt, wie ein serielles

Programm mit Oxygen zerlegt wird.
Die erste Spalte der Figur zeigt die Zer¬

Bulletin SEV/VSE 81(1990)17,30. August 15



Informatik

legung des Pprogramms mit Compilerdirektiven

in lokale und öffentliche
Blöcke. Die zweite Spalte zeigt den
C++-Code, der für alle Prozessoren
gemeinsam von Oxygen erzeugt wird.
Jedem öffentlichen Block wird ein
zusätzlicher Code - der sogenannte
Symbol-Handler - vorangestellt. Dieser
Symbol-Handler generiert zur Laufzeit

Datenstrukturen, die der übersetzte
Block zur Generierung und Ausführung

von Kommunikationsprimitiven
(SEND/RECEIVE) verwendet. Die
Kommunikationsprimitiven werden
nur zu bestimmten Communication
Checkpoints ausgeführt. Die Aufteilung

jedes öffentlichen Blocks durch
diese Checkpoints wird in der dritten
Spalte der Graphik dargestellt. Dieses
Modell zeigt, dass zur Laufzeit
Datenabhängigkeiten im Symbol-Handler
analysiert werden.

Beispielprogramme und
Benchmarks

Wir zeigen hier Ergebnisse von
sechs Testprogrammen: die allgemeine
FFT (ÄFFT), Gauss-Elimination mit
partiellem Pivoting, Orthes (Transformation

einer Matrix in Hessenbergform),

die Lanczos-Iteration für
unsymmetrische Matrizen, ein
Ausschnitt aus der Eispack-SVD()-Routi-
ne sowie die Lösung einer zweidimensionalen

Differentialgleichung, wie sie
bei der Berechnung der Dynamik
stationärer laminarer Strömungen
vorkommt.

Allgemeine FFT

In ihrer ersten Formulierung des

FFT-Algorithmus beschreiben Cooley
und Tukey die FFT für jede Problem-
grösse N. Wir haben diesen Algorithmus

auf Oxygen implementiert und
erhalten Speedups, wie in Tabelle V
gezeigt. Die Problemgrösse bezieht sich
auf die Länge des komplexen
Eingangsvektors der ÄFFT. In diesem
Programm werden Fortran-Arrays mit
komplexen Integer-Ausdrücken
indiziert. Die Auswertung dieser Ausdrük-
ke zur Compilierzeit durch konventionelle

Datenabhängigkeitsanalyse ist
unmöglich, da der Wert der Ausdrücke
von nur zur Laufzeit vorhandener
Information (nämlich der Primfaktorzerlegung

von N) abhängt. Dies gilt nicht
für die einfache FFT, bei welcher die
Länge des Datenvektors ein Vielfaches
von 2 ist. Deswegen können
Kommunikationsprimitive nur zur Laufzeit
generiert werden.

Tabelle V
Zusammenfassung
der Speedups für
Oxygen-
Implementationen
der allgemeinen FFT
und der Lösung der
Differentialgleichung

aus der
Strömungsdynamik

Algorithmus Problemgrösse Torusgrösse Speedup

ÄFFT 10000 16 12.31

ÄFFT 7776 36 13.10
ÄFFT 10000 64 12.47

Fluid 200 x 100 16 11.0

Fluid 200 x 100 36 15.1

Fluid 200 x 100 64 12.8

Lineare Algebra
Die Testprogramme für Gauss-Eli-

mination, Orthes, Lanczos-Iteration
und SVD()-Routine beziehen sich auf
die Implementation von Standardalgorithmen

der numerischen linearen
Algebra (diese Algorithmen werden
zum Beispiel von Wilkinson und
Reinsch [7] beschrieben). Speedup-Re-
sultate mit Oxygen zeigt das Bild 8.

Strömungsdynamik
Die Auswertung des Verhaltens

einer Tragfläche bei Unterschall-,
Schall- und Überschallgeschwindigkeit

wird nach der Methode von Mur-
man und Cole [8] durchgeführt. Dabei
wird eine zweidimensionale stationäre
laminare Strömungsgleichung gelöst.
Näheres zu dem Programm kann in [9]
gefunden werden. Speedup-Ergebnis-
se sind in Tabelle V zu finden. Die
Problemgrösse bezieht sich auf die Grösse
des Diskretisierungsgitters des auf
SOR (Successive Over-Relaxation)
basierenden Algorithmus.

Das Betriebssystem des K2
Unter dem Namen Chagori wird ein

virtuelles Mehrbenutzer-Betriebssystem
für den K2 entwickelt. Ein

solches ist auf Uniprozessoren und auf
Parallelrechnern mit gemeinsamem
Speicher inzwischen zur
Selbstverständlichkeit geworden. Für DMPPs
wird ein solches Betriebssystem ein
grösseres Anwendungsgebiet erschlies-
sen und ist damit eine Aufgabe, die
ebenfalls weiterer Forschung bedarf.

Die Benützung des K2 soll zukünftig
durch die Überwindung der

Auftrennung in einen Wirtsrechner und
einen daran angeschlossenen Parallelrechner

vereinfacht werden. Der
Benutzer beschränkt sich auf die vom
Betriebssystem angebotene Abstraktion
des Prozesses und, spezifisch für den
K2, der parallelen Prozessgruppe.
Einzelprozesse sowie Prozesse einer Gruppe

stellen die auf allen Prozessoren des
K2 gleichartige Umgebung zur
Ausführung von Programmen dar. Diese
Umgebung umfasst einen sehr grossen

Bild 8 Speedup-Ergebnisse für die Gauss-Elimination, Orthes, SVD1 und die Lanczos-Iteration

auf einem Torus mit 4x4,6x6 und 8x8 Prozessoren

16 Bulletin ASE/UCS 81(1990)17, 30 août



Computerarchitekturen

virtuellen Adressraum und die
prozessorunabhängige Verfügbarkeit aller
Systemdienste, einschliesslich der
interaktiven Ein- und Ausgabe sowie des

Zugriffes auf das verteilte Dateisystem.

Parallele Prozessgruppen belegen
den Torus nach einem Time-Sharing-
Schema. Charakteristisch für
Prozessgruppen ist, dass topologisch benachbarte

Prozesse direkt über die User
Channels miteinander kommunizieren
und dass auf verteilte Dateien parallel
zugegriffen werden kann. Mit der
Prozessgruppe erzeugt das Betriebssystem
gegenüber dem Benutzer die Illusion,
jederzeit über einen unabhängigen
Parallelrechner zu verfügen. Mit
diesem Konzept können bei vertretbaren
Kosten parallele Programme entwik-
kelt und unter einem Debugger interaktiv

getestet werden.
In mancher Hinsicht gleicht Chago-

ri verteilten Betriebssystemen wie
Amoeba [10] oder Mach [11], an die es

auch angelehnt ist. Die einzelnen
Prozessoren laufen unter der Kontrolle
eines einfachen Betriebssystemkerns,
dessen Funktion sich darauf
beschränkt, Prozesse und eine netzwerktaugliche

Methode der Interprozess-
Kommunikation zu unterstützen. Alle
übrigen Systemfunktionen können
von darauf spezialisierten, auf beliebigen

Prozessoren des Netzwerks
lokalisierten Server-Prozessen transparent
über das Netzwerk erbracht werden.

Im Gegensatz zu den für unregelmässige

und grossräumige Netzwerke
von unterschiedlichen Rechnern
ausgelegten Betriebssystemen muss Cha-
gori die besondere Architektur des K2
ausnützen können. So müssen z.B. alle
Prozesse einer Gruppe simultan
aktiviert und inaktiviert werden, um einerseits

Kommunikation über die User
Channels zu ermöglichen und anderseits

Prozessgruppen gegeneinander
vollständig zu isolieren.

Weiter soll das Dateisystem die
Aufteilung von Dateien auf mehrere Platten

und damit parallele Zugriffe auf
verstreute Dateielemente erlauben.
Dies ist einfach und effizient realisierbar

bei Dateien, die aus Blöcken fester
Länge bestehen, wie sie vom Betriebssystem

selbst als Seitenwechselbereiche

für die virtuellen Adressräume der
Prozesse verwendet werden.

Dateien von Blöcken vorgegebener
fester Länge stellen jedoch nicht ein
allgemein geeignetes Modell für parallel

zugreifbare Dateien dar. Verfahren
wie die direkte Abbildung von Dateien
in den virtuellen Adressraum der Pro¬

zesse durch das Betriebssystem führen
auf DMPPs leicht zu nicht effizient
lösbaren Kohärenzproblemen und
damit zu einem Verlust der Vorteile dieser

Rechnerarchitektur.
Diese Nachteile weist ein etwas

allgemeineres Verfahren nicht auf, bei
dem sogenannte Agenten Dateien in
die virtuellen Adressräume einer
parallelen Prozessgruppe abbilden. Dabei
schliesst diese Abbildung auch eine
Verteilung der Elemente jeder Datei
auf die beteiligten Prozesse ein, wie sie
die meisten parallelen Programme
erfordern. Eine allfällige Datenkonversion

kann damit auch durchgeführt
werden. Vom Betriebssystem aus gesehen,

sind Agenten von der Anwendung

bezeichnete Prozesse, welche die
Seitenfehlerbehandlung für die in
Dateien abzubildenden Datensegmente
vornehmen.

Lösen grosser linearer
Gleichungssysteme mit
schwach besetzten Matrizen

Die effiziente Lösung von grossen
linearen Gleichungssystemen mit
schwach besetzten Matrizen ist eine
wesentliche Aufgabe bei vielen
wissenschaftlichen Problemen und nimmt
dabei normalerweise den grössten Teil
der benötigten Rechenleistung und des

Speicherbedarfs in Anspruch. Die
Gleichungssysteme entstehen bei der
Diskretisierung für die numerische
Lösung von partiellen Differentialgleichungen

(zum Beispiel mit Finiten
Elementen) und weisen eine sehr
unregelmässige Struktur der Nichtnull-
Einträge auf.

Für Systeme mit einer sehr grossen
Zahl von Unbekannten, wie sie in
dreidimensionalen Problemen entstehen,

sind die klassischen, auf Gauss-
scher Elimination basierenden direkten

Lösungsmethoden wegen ihres
grossen Speicherbedarfs nicht mehr
anwendbar. Statt dessen werden iterative

Methoden verwendet, welche sich
mit aufeinanderfolgenden
Approximationen dem korrekten Lösungsvektor

nähern. Am erfolgreichsten sind
dabei die sogenannten präkonditionierten

konjugierten Gradientenmethoden.
Parallelisierung solcher iterativer

Methoden für urtregelmässig schwach
besetzte Systeme ist wesentlich schwieriger

als für Matrizen mit regelmässiger
Struktur. Insbesondere für Rechner

mit verteiltem Speicher (DMPP)
findet man bisher noch überhaupt keine

Ansätze dazu in der Literatur. In

unserer Arbeit hat sich gezeigt, dass
bei der Implementierung für DMPPs
neuartige Vorgehensweisen erforderlich

sind, welche bei den bisherigen
Realiserungen auf Vektorrechnern
und Multiprozessoren mit gemeinsamem

Speicher nicht notwendig waren.
Die oben erwähnten iterativen

Methoden bestehen aus der wiederholten
Anwendung einiger weniger Rechenschritte,

welche sich in die vier folgenden

Typen von Operationen einteilen
lassen:
1. Lineare Operationen (Addition und
Skalierung) auf Vektoren.
2. Skalare Multiplikation von Vektoren.

3. Multiplikation von schwach besetzten

Matrizen mit Vektoren.
4. Lösung von linearen Gleichungssystemen

mit schwach besetzten
Dreiecksmatrizen.

Bei der effizienten Implementierung
dieser Operationen auf DMPPs sind
die folgenden Punkte wichtig:

Verteilung der Daten

Zum Erreichen einer gleichmässigen
Verteilung der Rechenlast auf die
einzelnen Prozessoren müssen die benötigten

Daten, also die Unbekannten
und die Nichtnull-Einträge der Matrizen,

möglichst gleichmässig verteilt
werden. Eine optimale Effizienz bei
der Ausführung von linearen Operationen

auf Vektoren lässt sich dadurch
erreichen, dass alle Vektoren
gleichmässig und auf die gleiche Art und
Weise verteilt werden. Die für die
Berechnung eines Skalarproduktes von
Vektoren benötigte globale Synchronisation,

welche bei einigen
Parallelrechnern einen Flaschenhals darstellt,
erwies sich aufgrund der schnellen
Kommunikationskanäle auf K2 als
unproblematisch [2],

Abbildung des Problemgraphen auf die
Rechnertopologie : Mapping

Eine schwachbesetzte Matrix wird
üblicherweise mit einem Graphen
gleichgesetzt. Ein Nichtnull-Eintrag a,y
ausserhalb der Diagonale der Matrix
entspricht einer Kante zwischen dem
Knoten i und dem Knoten j des
Graphen. Bei der Anwendung von
schwach besetzten Matrizen bei der
Lösung von partiellen Differentialgleichungen

stellt dieser Graph das Dis-
kretisierungsgitter dar. Bei einer
Diskretisierung mit Finiten Elementen
entsprechen die Ecken und Kanten der
Elemente den Knoten und Kanten des

Graphen.

Bulletin SEV/VSE 81(1990)17, 30. August 17



Informatik

Bei der oben erwähnten Verteilung
der Vektoren werden die Knoten dieses

Graphen auf die Prozessoren
verteilt. Bei denjenigen Kanten des
Graphen, welche Knoten verbinden, die
nicht dem gleichen Prozessor zugeordnet

sind, muss bei der Berechnung
eines Matrix-Vektor-Produktes ein
Datenaustausch stattfinden. Das Mapping

hat zum Ziel, den Graphen so auf
die Topologie des Rechners abzubilden,

dass der Aufwand an Kommunikation

für diesen Datenaustausch
möglichst klein ist. Da die Aufgabe,
eine optimale Lösung für diese Abbildung

zu finden, NP-vollständig ist,
bedarf es Heuristiken zum Finden einer
möglichst guten Lösung.

Parallele Ausführung der Präkonditio-
nierung: Coloring

Präkonditionierung ist eine wesentliche

Voraussetzung für den effizienten
Einsatz von iterativen Methoden, da
sie die Konvergenz sehr stark
beschleunigt und oftmals sogar erst
ermöglicht. Für die besten der heute
bekannten Präkonditionierer müssen in
jeder Iteration zwei lineare
Gleichungssysteme mit schwach besetzten
Dreiecksmatrizen gelöst werden. Da
diese Operation im allgemeinen als
schlecht parallelisierbar gilt, wird bei
vielen Supercomputer-Implementierungen

auf schlechtere Präkonditionierer

zurückgegriffen.
In unserer Arbeit konnten wir

allerdings Kolorierungsmethoden entwik-
keln, mit Hilfe derer bei den besten
Präkonditionierern eine ähnlich gute
Effizienz wie bei den oben erwähnten
Matrix-Vektor-Multiplikationen
erreicht werden konnte. Das Prinzip der
Kolorierung ist, alle Knoten des
Graphen zu bestimmen, deren Teil der
Lösung im Dreieckssystem ohne weitere
Kommunikation berechnet werden
kann. Die Knoten des Graphen werden

dazu in eine Reihe von Untermengen

(Farben) eingeteilt. Datenaustausch

findet nur zwischen Knoten
verschiedener Farbe auf verschiedenen

Prozessoren statt. Dabei ist hier
eine gleichmässige Verteilung der
Rechenlast besonders kritisch.

Ergebnisse

Während die Implementierung von
iterativen Methoden für unregelmässi¬

ge Probleme auf einem Rechner mit
verteiltem Speicher an sich schon sehr
anspruchsvoll ist, liegt der wesentliche
wissenschaftliche Wert dieser Arbeit in
der Entwicklung von neuen Paralleli-
sierungsstrategien. Wir haben eine
Reihe von neuen Methoden für das
Mapping und das Coloring entwickelt
und in der konkreten Anwendung bei
der Simulation von Halbleiterstrukturen

mit echten grossen Gleichungssystemen

(mit bis zu 75 000 Unbekannten)

evaluiert. Bei allen untersuchten
Problemen hat sich dabei gezeigt, dass
die iterativen Methoden auf den 64
Prozessoren des K2-Torus zwischen
42- und 54mal schneller als auf
Einzelprozessoren ausgeführt werden konnten,

was einer für unregelmässige
Probleme ungewöhnlich hohen Ausbeute
von 65-85% entspricht. Die wenigen in
der Literatur erwähnten, aber nie auf
realistischen Problemen erprobten
Parallelisierungsstrategien waren
ausnahmslos unseren neuentwickelten
Strategien unterlegen. Eine detailliertere

Beschreibung der Problemstellung,

der Lösungstrategien und ihrer
Auswertung wurde kürzlich publiziert
[12].

Projektstatus
Die Hardware des Rechners ist

vollständig entworfen, und die einzelnen
Einheiten wurden bei voller
Geschwindigkeit getestet. Verschiedene
CN- und ION-Platinen werden in den
nächsten Monaten hergestellt und
getestet. Die System-Backplane, das
Chassis, Netzgeräte usw. werden
gegenwärtig integriert. Alle Platinen sind
so gross, dass sie Versteifungsstreben
benötigen. Die Verteilung von 500 A
bei 5 V innerhalb des Systems erfordert

Stromschienen.

Dank

Das bisher Erreichte wäre nicht
möglich gewesen ohne «a little help
from our friends». Wir danken Con-
stantine Polychronopoulos, CSRD,
University of Illinois at Urbana-
Champaign, und Thomas Gross,
School of Computer Science, Carnegie
Mellon University.

Am K2-Projekt mitgeholfen hat die
Gruppe der folgenden Studenten: Felix

Äbersold, Marc Brandis, Mirko

Bulinsky, Pascal Dornier, Olivier Ge-

moets, Michael Halbherr, Alain Kae-
gi, Roland Lüthi, Alexandres Pappas,
John Prior, Stefan Sieber, Markus
Tresch und Othmar Truninger. Last
but not least danken wir Norbert Fel-
ber von der VLSI-Gruppe.

Literatur
[1] M. Annaratonne a. o.: The K2 parallel pro¬

cessor: Architecture and hardware
implementation. Proceedings of the 17th Symposium

on Computer Architecture, Seattle,
28...31 May 1990.

[2] M. Annaratone, C. Pommerell and R. Riihl:
Interprocessor communication speed and
performance in distributed-memory parallel
processors. Proceedings of the 16th Annual
International Symposium on Computer
Architecture, Jerusalem/Israel, May 28.. .June
1, 1989. ACM Sigarch Computer Architecture

News 17(1989) 3, p. 315.. .324.
[3] M. Riihl and M. Annaratone: Parallelization

of Fortran code on distributed-memory
parallel processors. Proceedings of the ACM
Conference on SuperComputing, Amsterdam,

June 1990.

[4] P. Beadle, C. Pommerell and M. Annaratone:
K9: A simulator of distributed-memory
parallel processors. Proceedings of the Conference

on Supercomputing, Reno/Nevada,
13. November 1990.

[5] M. Annaratone and R. Riihl: Efficient cache
organizations for distributed-memory parallel

processors. Technical report. Zürich,
Swiss Federal Institute of Technology,
Integrated Systems Laboratory, 1989.

[6] U. Banerjee: Dependence analysis for super-
computing. Boston/Dordrecht/London,
Kluwer Academic Publishers, 1988.

[7] G.H. Golub and C. Reinisch: Singular value
decomposition and least-square solutions.
In: Handbook for Automatic Computation,
vol 2: J.H. Wilkinson and C. Reinsch: Linear
Algebra, Berlin a.o., Springer-Verlag, 1971;

p. 134...151.
[8] E M. Murman and J.D. Cole: Calculation of

plane steady transonic flows. Document
Dl-82-0943. Seattle, Boeing Scientific
Research Laboratories/Flight Sciences Laboratory,

January 1970.

[9] J. Moran: An introduction to theoretical and
computational aerodynamics. New York
a.o., John Wiley, 1984.

[10] S.J. Mullender: The Amoeba distributed op¬
erating system: Selected papers 1984. ..1987.
CWI Tract 41. Amsterdam, Centrum voor
Wiskundeen Informatica, 1987.

[11] M. Accetta a.o.: Mach: A new kernel founda¬
tion for unix development. Technical report.
Pittsburg, Carnegie Mellon University, 1986.

[12] C. Pommerell, M. Annaratone and W. Ficht-
ner: A set of new mapping and coloring heu-
ritics for distributed-memory parallel processors.

Copper Mountain Conference on Iterative

Methods. Philadelphia, Society for
Industrial and Applied Mathematics (SIAM),
April 1990.

18 Bulletin ASE/UCS 81(1990)17, 30 août


	Ein Parallel-Computer mit verteiltem Speicher : das K2-Projekt

