Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 81 (1990)

Heft: 17

Artikel: Ein Parallel-Computer mit verteiltem Speicher : das K2-Projekt

Autor: Annaratone, Marco / Bonsen, Georg zur / Fillo, Marco

DOl: https://doi.org/10.5169/seals-903149

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-903149
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Computerarchitekturen

Ein Parallel-Computer mit verteiltem Speicher

Das K2-Projekt

Marco Annaratone, Georg zur Bonsen, Marco Fillo, Kiyoshi Nakabayashi, Claude Pommerell, Roland Riihl,

Peter Steiner und Marc Viredaz

Vor zwei Jahren wurde an der
ETH Zurich das K2-Projekt
gestartet mit dem Ziel, einen
parallelen Prozessor mit verteil-
tem Speicher zu entwickeln. Die
K2-Architektur unterstitzt einen
automatisch parallelisierenden
Fortran-Compiler und ein virtuel-
les Timesharing-Multiuser Multi-
tasking-Betriebssystem. Der vor-
liegende Bericht beschreibt vier
Hauptgesichtspunkte des Pro-
jekts: den Aufbau der Maschine,
seinen parallelisierenden Compi-
ler, das Betriebssystem sowie
speziell fiir diese Architektur
entwickelte Finite-Elemente-
Algorithmen.

Le projet K2, commencéily a
deux ans, a pour but la concep-
tion et la réalisation d’un ordina-
teur paralléele a mémoire distri-
buée, dont I’architecture sup-
porte, de maniere efficace, un
compilateur Fortran effectuant
automatiquement la parallélisa-
tion, et un systeme d’exploita-
tion multi-tache, multi-utilisa-
teur, en temps partagé. Ce
papier présente les quatre
aspects, les plus importants, de
ce projet, c’est-a-dire, I’architec-
ture de la machine, son compila-
teur parallélisant, son systéme
d’exploitation et les algo-
rithmes, utilisant la méthode des
éléments finis, développés pour
cette architecture.

Adresse der Autoren

Prof. Dr. Marco Annaratone, Georg zur Bonsen,
Marco Fillo, Claude Pommerell, Roland Riihl,
Peter Steiner, Marc Viredaz, Institut fiir
Integrierte Systeme, ETH Ziirich, 8092 Ziirich,
und Kiyoshi Nakabayashi, NTT
Communications and Information Processing
Laboratories, Tokyo 180, Japan

Die bisher entwickelten Prozessoren
mit verteiltem Speicher (Distributed
Memory Parallel Processors oder
DMPPS) basieren auf verschiedenen
Netzwerktopologien, wie z.B. Tori,
Hypercubes und Linear Arrays. Auch
unterscheiden sie sich im ‘verfligbaren
Grad der Parallelitét einerseits und der
Leistung eines Einzelprozessors an-
dererseits. Zum Beispiel verfiigt der
MIMD iPSC/2 iiber 64 Vektorprozes-
soren und die SIMD Connection Ma-
chine CM-2 iiber 65,536 einfache Pro-
zessoren. Effiziente Netzwerktopolo-
gien und Kommunikationsmechanis-
men wurden in den vergangenen Jah-
ren untersucht. Im Vergleich dazu ist
die Entwicklung von Systemsoftware
im Riickstand. Wir halten dies fiir
einen der Griinde, dass DMPPs noch
keine kommerzielle Verbreitung fin-
den. Wir konzentrieren uns deshalb
auf die Entwicklung eines automatisch
parallelisierenden Compilers (APC),
eines virtuellen Timesharing-Betriebs-
systems und eines interaktiven symbo-
lischen Debuggers. Die Beriicksichti-
gung dieser Software-beeinflusst den
Hardware-Entwurf eines DMPP we-
sentlich und fiihrt zu einer neuen Beur-
teilung der oben genannten Architek-
turparameter.

Aus Platzgriinden koénnen wir auf
das Projekt nicht im Detail eingehen

Z
32
Z

CHEHET

o
GHEHEHEY
BloiHe

S
Benutzersicht des K2

ild 1

und werden K2 und seine Systemsoft-
ware nur allgemein beschreiben. Die
Architektur wird genauer in [1; 2] be-
schrieben. In [3] wird ndher auf den
automatisch parallelisierenden Com-
piler namens Oxygen eingegangen.

Ubersicht iiber die
K2-Architektur

Der Entwurf von K2 unterstiitzt die
Ausfiihrung von Anwendungspro-
grammen und Systemsoftware. Bishe-
rige Untersuchungen von Netzwerkto-
pologien fiir parallele Anwendungs-
software sagen wenig iliber die Eig-
nung dieser Topologien fiir parallele
Systemsoftware aus. Wir haben uns
deshalb fiir eine Topologie entschie-
den, deren Eignung fiir Anwendungs-
software wohlbekannt ist, und diese
zur besseren Unterstiitzung von Syste-
maktivitdten modifiziert.

In Bild 1 ist der fiir Benutzerpro-
gramme sichtbare Teil der K2-Archi-
tektur abgebildet. In einem Torus sind
Computation Nodes (CN) bidirektio-
nal durch Paare von 32-Bit-Leitungen
einschliesslich Fifos, den sogenannten
User Channels, verbunden. Der
Grundriss des K2 auf Systemebene ist
in Bild 2 dargestellt. Jede Reihe und
jede Spalte der CN ist mit je einem In-
put-Output Node (ION) verbunden, an

ETHERNET

o] —

HE &

o] [ [ =
=
=i

I wr>Z~Zﬂmaj

[=]
[=]

o
N

[ TERMINALS |

Bild 2 Systemsicht des K2

Bulletin SEV/VSE 81(1990)17, 30. August



Informatik

PARAMETER USER SYSTEM
CHANNELS CHANNELS
Verwendung Benutzerkommunikation Systemkommunikation
Austausch von Rohdaten Meldungen
Routing manuell (durch CPU) automatisch (durch SNIK)
Medium Parallele Leitungen Koaxialkabel und Glaslaser
Typ blockierend und nicht blockierend nicht blockierend
max. Datenrate pro Kanal 400Mb/s 100Mb/s
Latenzzeiten:
Register zu Register 160ns
SNIK zu SNIK 1.5ps (min)

TabelleI Eigenschaften der User- und System Channels
EINHEIT [ AnzauL Cuips [ FLACHE (cm?) [ MAX. LEISTUNGSVERBRAUCH (W) |
PE-CN 160 846 115
PE-ION 190 860 115
SNIK 85 754 30
User Channels 120 517 50
Disk Controller 48 308 35
CN 365 2117 195
ION 323 1922 180
Tabelle II Abmessungen und Leistungsverbrauch des K2-Prototyps

dem Terminals und Plattenlaufwerke
angeschlossen sind. Diese Verbindung
zwischen ION und Reihen bzw. Spal-
ten von CNs, der sogenannte System
Channel, ist als Token-Ring imple-
mentiert. Ein identischer Token-Ring
verbindet alle IONs mit einem Ether-
net-Gateway.

Alle Knoten (CN und ION) sind fiir
die Ausfithrung von Benutzer- und Sy-
stemprozessen vorgesehen. Die CNs
iibernehmen die rechenintensiven par-
allelen Aufgaben, die IONs die Bear-
beitung von interaktiven seriellen Pro-
grammen, wie z.B. Editoren und
E-Mail. Obwohl die Aktivititen des
Betriebssystems auf alle Knoten ver-
teilt werden, erfiillen die IONs haupt-
sichlich die Funktion von File-Ser-
vern und intelligenten Disk Caches.
Die Eigenschaften der User- und Sy-

stem Channels sind in der Tabelle I zu-
sammengefasst.

Die Hardware

Der K2 besteht aus zwei verschiede-
nen Bauelementen:

- Der Computation Node (CN) enthilt
ein Prozessor-Element (PE), je vier
ausgehende und ankommende, 32
Bit breite User Channels und einen
Serial Network Interface Controller
oder SNIK, der die Kommunika-
tion durch die System Channels
steuert.

- Der 1/0-Node (ION) enthilt ein
Prozessor-Element, einen Disk-
Controller und Terminal-Schnitt-
stellen, aber keine User Channels.

Die Prozessor-Elemente des ION und

des CN unterscheiden sich nur beziig-

lich Speichergrosse. Der lokale Spei-
cher des ION ist viermal grosser, da
mit einem intelligenten Disk-Cache-
Mechanismus die Leistungsfiahigkeit
des Seitenwechselverfahrens des virtu-
ellen Betriebssystems erhoht werden
soll. Insgesamt mussten demnach die
vier Grundeinheiten PE, User Chan-
nel, Snik und Disk Controller entwik-
kelt werden. Beim hier vorgestellten
Rechner handelt es sich um den
K2-Prototyp, der einen vereinfachten
Aufbau aufweist. Erstens wird nur ein
4-mal-4-Torus realisiert, und zweitens
sind die PEs nicht mit zusétzlichen
Cache-Speichern ausgeriistet.

Die Bilder 3a und 3b zeigen Block-
diagramme des CN und des ION. Der
CN besteht aus einem Mikroprozessor
AMD Am29000 mit einem Fliesskom-
ma-Koprozessor AMD AM29027
(FPC), einem getrennten Instruktions-
und Datenspeicher (0,5 MByte bzw. 2
MByte) mit Fehlererkennung und
-korrektur, vier Paaren von 32 Bit brei-
ten User Channels und einem Serial
Network Interface Controller (SNIK).
Die Architektur des ION gleicht bis
auf zwei Ausnahmen jener des CN. Er-
stens fehlen die User Channels, und
zweitens wurde die Kapazitdt der In-
struktions- und Datenspeicher auf 2
MByte beziehungsweise 8 MByte er-
hoht. Ein intelligenter Mass Storage
Controller oder MSC ist einerseits mit
dem Prozessor-Element {iber einen
Dual-Port-Speicher verbunden und
verfiigt andererseits iiber eine SCSI-
Schnittstelle (Small Computer System
Interface) mit einer Spitzen-Ubertra-
gungsrate von 4 Mbyte/s.

Die Abmessungen und der Energie-
verbrauch der verschiedenen Einhei-
ten sind in Tabelle II zusammenge-
fasst. Bild 4 zeigt eine bestiickte CN-

Bild 3
Blockdiagramm des
: : N
. @ i e (b : CN (a) und ION (b)
2 J - & Der K2-Prototyp
Y : enthalt keine
1 s r I Cache-Speicher
Ibus Cache : L] Cache : CN Computation
20k Abus P Local : 2k Abus [% Local : Node
— Memory : z Dbus l_ Mermory s ION Input-Output
D 'R N : Node
LaCldt NSEW o T L%Clcl: :
IR :
] T T T l \xl, T4~ i cC T I il
! LA L )
£ e X
Q Q Q H :
* R t R
.......... H | R |
SNIK N e sNik 777 N
N s B b N ey ; G Controller : ? G
...(..........................E HETT Cooeme e Qrrmmmmmemmeemmremeeeena ! PRI (e
HORIZONTAL RING HORIZONTAL RING
12 Bulletin ASE/UCS 81(1990)17, 30 aott



Computerarchitekturen

Platine. Die Platinen wurden ausser-
halb des Hauses hergestellt. Der Ent-
wurf, die grafische Definition der
Schaltungen und die Plazierung der
Chips und die Leitungsfithrung wur-
den in unserem Labor durchgefiihrt.

Die Wahl des Prozessors

Die Wahl des Prozessors und der
Struktur des lokalen Speichersystems
waren die Hauptaufgaben beim Ent-
wurf des Prozessor-Elements (PE).
Wir haben uns entschieden, einen
kommerziell erhéltlichen und nicht
einen kundenspezifischen Mikropro-
zessor einzusetzen, weil der erstere so-
wohl fiir den Hardware-Entwurf (es
existieren Chips fiir Unterstiitzungs-
funktionen und Entwicklungswerk-
zeuge) als auch fiir die Software-Ent-
wicklung (Verfiigbarkeit von Assem-
bler, Compiler und Debugger) klare
Vorteile aufweist.

Zum Zeitpunkt der Wahl des Mi-
kroprozessors (Mai 1988) waren vier
Hochleistungsprozessoren auf dem
Markt oder in Markteinfithrung be-
griffen: der AMD Am29000, der Mo-
torola MC88100, der Sparc und der
Mips R2000. Die letzten beiden wur-
den aus nichttechnischen Griinden
nicht weiter in Betracht gezogen. Die
verbleibenden zwei Prozessoren, der
Am?29000 und der MC88100, verfol-
gen unterschiedliche Konzepte, deren
detailliertere Untersuchung ausserhalb
des Rahmens dieses Artikels liegt. Die
Tabelle I11 zeigt die Prozessorarchitek-
tur-Eigenschaften, welche die Evalua-
tion beeinflusst haben.

Die Schnittstelle zu den User Chan-
nels hat schliesslich zugunsten des
Am?29000 den Ausschlag gegeben. Die
Architektur des Prozessors sollte nim-
lich einen schnellen Zugriffsmechanis-
mus auf die User Channels (wobei die
Zugriffe vom Cache nicht zu behan-
deln sind) und ihr rasches Blockieren
und Deblockieren ermdglichen.

Mit dem Am29000 verursacht die
Abbildung der User Channels auf den
virtuellen Adressraum keine Lei-
stungseinbusse, weil der in den Prozes-
sor integrierte Translation Lookaside
Buffer eine schnelle Adressiiberset-
zung in einer Pipelinestufe durchfiihrt.
Beim MC88100 hingegen verlangsamt
die Abbildung der User Channels auf
virtuelle Adressen den Zugriff, da die
Adressierung durch eine auf einem se-
paraten Chip untergebrachte
Speicherverwaltungseinheit (CMMU)

Bild 4
Die CN-Leiterplatte

APC
CN
CMMU
DMPP
DRAM
FIFO
FPU
ION
MIMDS
MIPS
MMU
MSC
PE
SCSI
SIMDS
SNIK
SRAM
TAXI

Abkiirzungen

Automatically Parallelizing Compiler
Computation Nodes

Cache and Memory Management Unit
Distributed Memory Parallel Processor
Dynamic Random Access Memory

First in First out

Floating Point Unit

Input-Output Node

Multiple Instruction Multiple Data Stream
Million Instructions per Second

Memory Management Unit

Mass Storage Controller

Processor Element

Small Computer System Interface

Single Instruction Multiple Data Stream
Serial Network Interface Controller

Static RAM

Transparent Asynchronous Receiver/ Transmitter Interface

[ PARAMETER I AM29000 [ MC88100 I
Taktfrequenz 25MHz 20MHz
Bus-Architektur 3 Busse 4 Busse
Bus-Protokoll einfach, synchron

pipelined, Burst-Mode
On-chip Register 192 32
Instruktions-Cache 8 KByte, 16 = 64 KByte,

4-Weg set-assoziativ

Off-chip (88200)

2-Weg set-assoziativ"

Daten-Cache

8 KByte,

Q)
2-Weg set-assoziativ

16 = 64 KByte,
4-Weg set-assoziativ, off-chip (88200)

Branch-Target Buffer

128 Adressen, on-chip nicht vorhanden

FPU

off-Chip (29027)

on-chip

MMU

on-Chip off-chip (88200)

Tabelle 111
rola MC88100

Vergleich der technischen Daten der Prozessoren AMD, Am29000 und Moto-

! Nach Einfiihrung dieses Prozessors hat AMD die weitere Entwicklung separater Cache-Chips einge-

stellt

Bulletin SEV/VSE 81(1990)17, 30. August



Informatik

SPEICHER- AU GRIFF S KLEN I:il;::::;s‘:ergleich
ZUGRIFF 1&D I SPLIT- der vier
CACHE | CACHE | VRAM | MEMORY Speicheranordnungen
Instr. b.i. 2 2 6 5
Instr. b.s. 1 1 1 2
Daten b.i. 2 6 4 6
Daten b.s. 1 1 1 2
TPogy LEISTUNG (AM29000 MIPS)
PROGRAMM I1&D I SPLIT-
CACHE | CACHE | VRAM | MEMORY
B1 23.02 20.58 17.38 13.48
B2 23.92 21.48 19.94 13.48
B3 23.23 19.12 18.35 14.10
B4 20.15 14.12 14.73 12.08
B5 22.87 20.71 18.43 13.81

Instr. Burst Initialisation Anzahl der Zyklen, um die erste Instruktion eines
Instruktionsblockes zu laden.

Instr. Burst Steady-State
Mode zu lesen.

Anzahl der Zyklen, um eine Instruktion im Burst-

Daten Burst Initialisation Anzahl der Zyklen, um das erste Wort eines Da-

tenblockes zu laden.

Daten Burst Steady-State Anzahl der Zyklen, um auf ein Wort im Burst-

Mode zuzugreifen

hindurch erfolgen muss. Ausserdem
bewirkt das Bus-Protokoll zwischen
Prozessor und CMMU eine Verlangsa-
mung fiir nicht vom Cache zu behan-
delnde Zugriffe um mindestens 5 Zy-
klen.

Ein weiterer Gesichtspunkt ergab
sich aus der Effizienz der Ausnahme-
Behandlung bei blockiertem User
Channel. Wiéhrend der Am29000
einen Hardware-Mechanismus fiir die
Fortsetzung der Ausfiihrung einer ab-
gebrochenen Instruktion aufweist,
muss beim MC88100 auf Software-
Emulation zuriickgegriffen werden.

Der Entwurf des
Speichersystems

Vier verschiedene Maoglichkeiten
standen beim Entwurf des Speichersy-
stems zur Diskussion:

- Ein System, basierend auf getrenn-
tem Instruktions- und Datencache
mit lokalem Zweiweg-Interleaved-
Dram

- Ein lokaler dynamischer Speicher
mit Instruktions-Cache (nachfol-
gend I-Cache)

- Ein Video-Dram ohne Caches

- Getrennte Dram-Bénke fiir Instruk-
tionen und Daten, keine Caches
(nachfolgend Split Memory)

Die vier Speicherstrukturen wurden
unter Benutzung eines Am29000-In-
struktionssatz-Simulators verglichen.
Die Tabelle 1V stellt die angenomme-
nen Speicherzugriffszeiten dar. Mit

diesen Eingangsdaten wurden auf dem
Simulator die in der gleichen Tabelle
(Am29000 MIPS) gezeigten Geschwin-
digkeiten (in Mips) gemessen. Die fiinf
Benchmark-Programme (Bl bis BS)
stammen ausschnittweise von auf dem
K2-Simulator entwickelten parallelen
Programmen [4]. Angaben fiir das
[1&D-Cache-System sind eher optimi-
stisch, da der Simulator auf Caches ba-
sierende Systeme nicht vollstindig
modellieren kann. Die sich auf das
[-Cache-System beziehenden Angaben
sind realistischer. Tatsdchlich konnten
wir zeigen, dass Trefferquoten nahe
100% selbst bei kleinen Cachegrdssen
unabhingig von der Cache-Organisa-
tion erzielt werden [5]. Um die Anzahl
Bausteine zu begrenzen und weil der
Cache-Chip Am29062 noch nicht ver-

To/from PE
E Memory S
Legreeepes
v
Abid FIFO :‘ Taxi
] s R
68030 i M 1
FIFO Taxi N
L
G
Boot f— |
M
ROM
5 1
FIFo | M Taxi N
Prgm || — G
Data

Bild 5 Blockdiagramm des Serial Network
Interface Controllers

fiigbar ist, wurden die ersten beiden
Entwurfsalternativen fallengelassen.
Eine Losung, basierend auf VRAMs,
ist teuer und bendétigt eine komplexe
Fehlerkorrekturschaltung. Deswegen
wurde die Entwurfsalternative Split
Memory ausgewihlt.

Serial Network Interface
Controller

Bild 5 zeigt das Blockdiagramm des
Serial Network Interface Controllers
(SNIK). Der Snik besteht aus einem
Motorola-Mikroprozessor MC68030,
der mit eigenem Boot-ROM, Pro-
gramm- und Datenspeicher ausgerii-
stet ist. Der Mikroprozessor bietet im
Vergleich zu einem Controller mehr
Spielraum beim Entwickeln und Te-
sten von Kommunikationsprotokol-
len. Die physikalische Verbindung des
MC68030 zu den System Channels
wird mit zwei Paaren AMD- Taxi-
Bausteinen (Transparent Asynchro-
nous Transmitter/Receiver Interfaces)
hergestellt. Diese integrierten Schal-
tungen wandeln von 8 Bit parallel zu
seriell beim Senden, und von seriell zu
parallel beim Empfangen. Die Sniks
werden mit Koaxial- oder Glasfaser-
kabeln verbunden.

Der MC68030 leitet Pakete weiter,
vermittelt sie zwischen horizontalem
und vertikalem Ring (Corner Turn),
berechnet und priift Parititssummen
und sendet pro erhaltenes Paket eine
Empfangsbestitigung. Fifos zwischen
dem MC68030 und dem Taxi-Baustein
puffern den Paketfluss. Ein komplexer
Zustandsautomat zwischen Fifo und
Taxi-Bausteinen interpretiert ankom-
mende Pakete und puffert sie, falls sie
fir den lokalen Prozessor bestimmt
sind (oder ein Corner Turn vollzogen
werden muss). Der sendende Knoten
sorgt fiir das Entfernen riicklaufender
Pakete. Im Zustandsautomaten sind
das Token-Ring-Protokoll und die
Fehlerdetektion implementiert.

Das Bild 6 zeigt quantitativ einen
einzelnen K2-Token-Ring. Bild 6a
zeigt Kurven fiir den effektiven
Durchsatz, wihrend Bild (6b) die La-
tenzzeit, die im schlechtesten Fall auf-
tritt, darstellt. Mit einer Paketgrosse
von 512 Byte wird bereits ein Durch-
satz nahe der Bandbreite des physika-
lischen Mediums (12,5 Mbyte/s) er-
reicht. Anderseits ist die Latenzzeit bei
dieser Paketgrosse untragbar, da sie
0,5 ms oder ldnger dauern kann. Diese
Angaben geben eine obere Schranke
der Leistung des Token-Rings. Der
Quotient aus effektivem Durchsatz

14

Bulletin ASE/UCS 81(1990)17, 30 aout



Computerarchitekturen

Bild 6 Datenrate auf einem einzelnen Token Ring
Die effektive Datenrate (a) und Latenzzeiten im ungiinstigsten Fall (b) werden gegeniiber Paketgrossen fiir 3x3, 4x4, 8x8 und 16x16 K2-Torus illustriert.

Jeder Ring enthalt 4, 5, 9 respektive 17 Prozessoren

und Latenzzeit erreicht bei einer Pa-
ketgrosse von etwa 92 Byte sein Maxi-
mum.

Der Oxygen Compiler

Die Forschung auf dem Gebiet der
automatisch parallelisierenden Com-
piler (APC) konzentrierte sich bisher
auf Multiprozessoren mit gemeinsa-
mem Speicher. Die Prozessoren dieser
parallelen Rechner sind meistens mit
einem gemeinsamen Bus verbunden.
Da der Bus eine begrenzte Bandbreite
hat, wurden komplizierte Cache-Me-
chanismen entwickelt, um Datenloka-
litdt auszunutzen. Das sich ergebende
Kohirenzproblem wird zur Pro-
grammlaufzeit mit von der Hardware
unterstiitzten Cache-Protokollen auf-
gelost.

APCs (Automatically Parallelizing

Parallel Code

LOCAL BLOCK
symbol handler

PUBLIC BLOCK

Uniprocessor Code

LOCAL BLOCK

i

PUBLIC BLOCK —
LOGAL BLOCK | = [LOCAL BLOCK
PUBLIC BLOCK

symbol handler
PUBLIC BLOCK

LOCAL BLOCK

L

PUBLIC BLOCK

1)

LOCAL BLOCK

Compilers) fiir diese Maschinen re-
strukturieren und parallelisieren Code
zur Compilierzeit. Der APC fiihrt kei-
ne prozessorbezogene Datenallo-
kation durch. Die Datenallokation
durch die lokalen Caches ist damit fiir
den Benutzer und fiir den Compiler
transparent. Es wird {iblicherweise ein
Satz von Heuristiken benutzt, um das
serielle Programm zur Compilierzeit
zu parallelisieren. Beispielsweise kon-
nen Datenabhingigkeiten innerhalb
einer DO-Schleife zur Compilierzeit
ausgewertet werden, wenn in zwei
Ausdriicken innerhalb der Schleife ein
Fortran-Array mit verschiedenen li-
nearen Funktionen des Schleifenindex
indiziert wird [6]. Natirlich kénnen
nicht alle Datenabhingigkeiten so auf-
gelost werden.

Ein DMPP (Distributed Memory
Parallel Processor) wie K2 unterschei-

Bild 7

Die Aufteilung eines
seriellen Programms
mit Oxygen

PUBLIC BLOCK

computation

checkpoint, T=2

computation

computation

det sich von Multiprozessoren mit ge-
meinsamem Speicher im Hinblick auf
einen zu entwickelnden automatisch
parallelisierenden Compiler in folgen-
den beiden Punkten:

1. Ein APC fiir DMPPs muss Daten-
strukturen auf die verfiigbaren lokalen
Speicher aufteilen (Domain Decom-
position).

2. Der Aufwand, eine von mehreren
Prozessoren benutzte Variable anzu-
sprechen, ist abhingig von der Netz-
werkposition des Prozessors, auf dem
die Variable alloziert wurde.

Da DMPPs keine Hardware aufwei-
sen, um Speicherkonflikte zu 1dsen,
analysiert Oxygen Datenabhingigkei-
ten zum Teil zur Programmlaufzeit.
Die folgenden Abschnitte zeigen, wie
dadurch die Geschwindigkeit des aus-
fiihrbaren Codes beeinflusst wird.

Oxygen-Grundkonzept

Der Entwurf von Oxygen verlduft in
zwei Phasen. Erst wird ein Compiler
mit Direktiven implementiert, dann
wird ein Prdprozessor entwickelt, der
diese Direktiven automatisch gene-
riert.

Oxygen setzt voraus, dass jedes Pro-
gramm in Code-Blocke zweier ver-
schiedener Klassen zerlegt werden
kann:

- die Klasse der lokalen Blocke impli-
ziert keine Interprozessorkommuni-
kation.

- Die Benutzung bestimmter Varia-
blentypen in offentlichen Blocken
impliziert die Generierung von
Kommunikationsprimitiven zur
Laufzeit.

Das Bild 7 zeigt, wie ein serielles
Programm mit Oxygen zerlegt wird.
Die erste Spalte der Figur zeigt die Zer-

Bulletin SEV/VSE 81(1990)17, 30. August

15



Informatik

legung des Pprogramms mit Compiler-
direktiven in lokale und offentliche
Blocke. Die zweite Spalte zeigt den
C.+-Code, der fiir alle Prozessoren ge-
meinsam von Oxygen erzeugt wird. Je-
dem o6ffentlichen Block wird ein zu-
sdtzlicher Code - der sogenannte Sym-
bol-Handler - vorangestellt. Dieser
Symbol-Handler generiert zur Lauf-
zeit Datenstrukturen, die der iibersetz-
te Block zur Generierung und Ausfiih-
rung von Kommunikationsprimitiven
(SEND/RECEIVE) verwendet. Die
Kommunikationsprimitiven werden
nur zu bestimmten Communication
Checkpoints ausgefiihrt. Die Auftei-
lung jedes offentlichen Blocks durch
diese Checkpoints wird in der dritten
Spalte der Graphik dargestellt. Dieses
Modell zeigt, dass zur Laufzeit Daten-
abhingigkeiten im Symbol-Handler
analysiert werden.

Beispielprogramme und
Benchmarks

Wir zeigen hier Ergebnisse von
sechs Testprogrammen: die allgemeine
FFT (AFFT), Gauss-Elimination mit
partiellem Pivoting, Orthes (Transfor-
mation einer Matrix in Hessenberg-
form), die Lanczos-Iteration fiir un-
symmetrische Matrizen, ein Aus-
schnitt aus der Eispack-SVD()-Routi-
ne sowie die Losung einer zweidimen-
sionalen Differentialgleichung, wie sie
bei der Berechnung der Dynamik sta-
tiondrer laminarer Strdmungen vor-
kommt.

Allgemeine FFT

In ihrer ersten Formulierung des
FFT-Algorithmus beschreiben Cooley
und Tukey die FFT fiir jede Problem-
grosse N. Wir haben diesen Algorith-
mus auf Oxygen implementiert und er-
halten Speedups, wie in Tabelle V ge-
zeigt. Die Problemgrosse bezieht sich
auf die Linge des komplexen Ein-
gangsvektors der AFFT. In diesem
Programm werden Fortran-Arrays mit
komplexen Integer-Ausdriicken indi-
ziert. Die Auswertung dieser Ausdriik-
ke zur Compilierzeit durch konventio-
nelle Datenabhéngigkeitsanalyse ist
unmdoglich, da der Wert der Ausdriicke
von nur zur Laufzeit vorhandener In-
formation (ndmlich der Primfaktorzer-
legung von N) abhingt. Dies gilt nicht
fiir die einfache FFT, bei welcher die
Linge des Datenvektors ein Vielfaches
von 2 ist. Deswegen koénnen Kommu-
nikationsprimitive nurzur Laufzeit ge-
neriert werden.

;‘:I;z::lem‘;nfassung ” Algorithmus ] Problemgrésse l Torusgrosse | Speedup ﬂ
der Speedups fiir AFFT 10000 16 12.31
?Xylge“' - AFFT 7776 36 13.10
mplementationen

der allgemeinen FFT AFFT 10000 64 12.47
und der Losung der Fluid 200 x 100 16 11.0
Differentialglei- Fluid 200 x 100 36 15.1
chung ausder Fluid 200 x 100 64 12.8
Stromungsdynamik

Lineare Algebra Das Betriebssystem des K2

Die Testprogramme fiir Gauss-Eli-
mination, Orthes, Lanczos-Iteration
und SVD()-Routine beziehen sich auf
die Implementation von Standardal-
gorithmen der numerischen linearen
Algebra (diese Algorithmen werden
zum Beispiel von Wilkinson und
Reinsch [7] beschrieben). Speedup-Re-
sultate mit Oxygen zeigt das Bild 8.

Stromungsdynamik

Die Auswertung des Verhaltens
einer Tragfliche bei Unterschall-,
Schall- und Uberschallgeschwindig-
keit wird nach der Methode von Mur-
man und Cole [8] durchgefiihrt. Dabei
wird eine zweidimensionale stationére
laminare Stromungsgleichung gelost.
Néheres zu dem Programm kann in [9]
gefunden werden. Speedup-Ergebnis-
se sind in Tabelle V zu finden. Die Pro-
blemgrosse bezieht sich auf die Grosse
des Diskretisierungsgitters des auf
SOR (Successive Over-Relaxation) ba-
sierenden Algorithmus.

Unter dem Namen Chagori wird ein
virtuelles ~ Mehrbenutzer-Betriebssy-
stem fiir den K2 entwickelt. Ein sol-
ches ist auf Uniprozessoren und auf
Parallelrechnern mit gemeinsamem
Speicher inzwischen zur Selbstver-
stindlichkeit geworden. Fir DMPPs
wird ein solches Betriebssystem ein
grosseres Anwendungsgebiet erschlies-
sen und ist damit eine Aufgabe, die
ebenfalls weiterer Forschung bedarf.

Die Beniitzung des K2 soll zukiinf-
tig durch die Uberwindung der Auf-
trennung in einen Wirtsrechner und
einen daran angeschlossenen Parallel-
rechner vereinfacht werden. Der Be-
nutzer beschrinkt sich auf die vom Be-
triebssystem angebotene Abstraktion
des Prozesses und, spezifisch fiir den
K2, der parallelen Prozessgruppe. Ein-
zelprozesse sowie Prozesse einer Grup-
pe stellen die auf allen Prozessoren des
K2 gleichartige Umgebung zur Aus-
fiihrung von Programmen dar. Diese
Umgebung umfasst einen sehr grossen

ORTHES
SEEERSmE TRLANGZOS,

0 T T T
100 200 300 400

500 600 Problem Size

Bild 8 Speedup-Ergebnisse fiir die Gauss-Elimination, Orthes, SYD1 und die Lanczos - Ite-
ration auf einem Torus mit 4xX4, 6xX6 und 8 X8 Prozessoren

16

Bulletin ASE/UCS 81(1990)17, 30 aotit



Computerarchitekturen

virtuellen Adressraum und die prozes-
sorunabhingige Verfiigbarkeit aller
Systemdienste, einschliesslich der in-
teraktiven Ein- und Ausgabe sowie des
Zugriffes auf das verteilte Dateisy-
stem.

Parallele Prozessgruppen belegen
den Torus nach einem Time-Sharing-
Schema. Charakteristisch fiir Prozess-
gruppen ist, dass topologisch benach-
barte Prozesse direkt iiber die User
Channels miteinander kommunizieren
und dass auf verteilte Dateien parallel
zugegriffen werden kann. Mit der Pro-
zessgruppe erzeugt das Betriebssystem
gegeniiber dem Benutzer die Illusion,
jederzeit tber einen unabhédngigen
Parallelrechner zu verfiigen. Mit die-
sem Konzept kdnnen bei vertretbaren
Kosten parallele Programme entwik-
kelt und unter einem Debugger inter-
aktiv getestet werden.

In mancher Hinsicht gleicht Chago-
ri verteilten Betriebssystemen wie
Amoeba [10] oder Mach [11], an die es
auch angelehnt ist. Die einzelnen Pro-
zessoren laufen unter der Kontrolle
eines einfachen Betriebssystemkerns,
dessen Funktion sich darauf be-
schrankt, Prozesse und eine netzwerk-
taugliche Methode der Interprozess-
Kommunikation zu unterstiitzen. Alle
ibrigen Systemfunktionen konnen
von darauf spezialisierten, auf beliebi-
gen Prozessoren des Netzwerks lokali-
sierten Server-Prozessen transparent
iiber das Netzwerk erbracht werden.

Im Gegensatz zu den fiir unregel-
massige und grossrdumige Netzwerke
von unterschiedlichen Rechnern aus-
gelegten Betriebssystemen muss Cha-
gori die besondere Architektur des K2
ausniitzen konnen. So miissen z.B. alle
Prozesse einer Gruppe simultan akti-
viert und inaktiviert werden, um einer-
seits Kommunikation tiber die User
Channels zu ermoglichen und ander-
seits Prozessgruppen gegeneinander
vollstdndig zu isolieren.

Weiter soll das Dateisystem die Auf-
teilung von Dateien auf mehrere Plat-
ten und damit parallele Zugriffe auf
verstreute Dateielemente erlauben.
Dies ist einfach und effizient realisier-
bar bei Dateien, die aus Blocken fester
Linge bestehen, wie sie vom Betriebs-
system selbst als Seitenwechselberei-
che fiir die virtuellen Adressraume der
Prozesse verwendet werden.

Dateien von Blocken vorgegebener
fester Linge stellen jedoch nicht ein
allgemein geeignetes Modell fiir paral-
lel zugreifbare Dateien dar. Verfahren
wie die direkte Abbildung von Dateien
in den virtuellen Adressraum der Pro-

zesse durch das Betriebssystem fiithren
auf DMPPs leicht zu nicht effizient
lésbaren Kohidrenzproblemen und da-
mit zu einem Verlust der Vorteile die-
ser Rechnerarchitektur.

Diese Nachteile weist ein etwas all-
gemeineres Verfahren nicht auf, bei
dem sogenannte Agenten Dateien in
die virtuellen Adressrdume einer par-
allelen Prozessgruppe abbilden. Dabei
schliesst diese Abbildung auch eine
Verteilung der Elemente jeder Datei
auf die beteiligten Prozesse ein, wie sie
die meisten parallelen Programme er-
fordern. Eine allfdllige Datenkonver-
sion kann damit auch durchgefiihrt
werden. Vom Betriebssystem aus gese-
hen, sind Agenten von der Anwen-
dung bezeichnete Prozesse, welche die
Seitenfehlerbehandlung fiir die in Da-
teien abzubildenden Datensegmente
vornehmen.

Losen grosser linearer
Gleichungssysteme mit
schwach besetzten Matrizen

Die effiziente Losung von grossen
linearen  Gleichungssystemen  mit
schwach besetzten Matrizen ist eine
wesentliche Aufgabe bei vielen wissen-
schaftlichen Problemen und nimmt
dabei normalerweise den grossten Teil
der bendtigten Rechenleistung und des
Speicherbedarfs in Anspruch. Die
Gleichungssysteme entstehen bei der
Diskretisierung fiir die numerische Lo-
sung von partiellen Differentialglei-
chungen (zum Beispiel mit Finiten
Elementen) und weisen eine sehr unre-
gelméssige Struktur der Nichtnull-
Eintrage auf.

Fiir Systeme mit einer sehr grossen
Zahl von Unbekannten, wie sie in
dreidimensionalen Problemen entste-
hen, sind die klassischen, auf Gauss-
scher Elimination basierenden direk-
ten Losungsmethoden wegen ihres
grossen Speicherbedarfs nicht mehr
anwendbar. Statt dessen werden itera-
tive Methoden verwendet, welche sich
mit aufeinanderfolgenden Approxi-
mationen dem korrekten Losungsvek-
tor ndhern. Am erfolgreichsten sind
dabei die sogenannten prdkonditionier-
ten konjugierten Gradientenmethoden.

Parallelisierung solcher iterativer
Methoden fiir unregelmassig schwach
besetzte Systeme ist wesentlich schwie-
riger als fiir Matrizen mit regelmassi-
ger Struktur. Insbesondere fiir Rech-
ner mit verteiltem Speicher (DMPP)
findet man bisher noch iiberhaupt kei-
ne Ansidtze dazu in der Literatur. In

unserer Arbeit hat sich gezeigt, dass
bei der Implementierung fiir DMPPs
neuartige Vorgehensweisen erforder-
lich sind, welche bei den bisherigen
Realiserungen auf Vektorrechnern
und Multiprozessoren mit gemeinsa-
mem Speicher nicht notwendig waren.
Die oben erwidhnten iterativen Me-
thoden bestehen aus der wiederholten
Anwendung einiger weniger Rechen-
schritte, welche sich in die vier folgen-
den Typen von Operationen einteilen
lassen:
1. Lineare Operationen (Addition und
Skalierung) auf Vektoren.
2. Skalare Multiplikation von Vekto-
ren.
3. Multiplikation von schwach besetz-
ten Matrizen mit Vektoren.
4. Losung von linearen Gleichungssy-
stemen mit schwach besetzten
Dreiecksmatrizen.
Bei der effizienten Implementierung
dieser Operationen auf DMPPs sind
die folgenden Punkte wichtig:

Verteilung der Daten

Zum Erreichen einer gleichmassigen
Verteilung der Rechenlast auf die ein-
zelnen Prozessoren miissen die beno-
tigten Daten, also die Unbekannten
und die Nichtnull-Eintrdge der Matri-
zen, moglichst gleichmissig verteilt
werden. Eine optimale Effizienz bei
der Ausfithrung von linearen Opera-
tionen auf Vektoren lasst sich dadurch
erreichen, dass alle Vektoren gleich-
madssig und auf die gleiche Art und
Weise verteilt werden. Die fiir die Be-
rechnung eines Skalarproduktes von
Vektoren benétigte globale Synchroni-
sation, welche bei einigen Parallel-
rechnern einen Flaschenhals darstellt,
erwies sich aufgrund der schnellen
Kommunikationskanile auf K2 als
unproblematisch [2].

Abbildung des Problemgraphen auf die
Rechnertopologie : Mapping

Eine schwachbesetzte Matrix wird
iiblicherweise mit einem Graphen
gleichgesetzt. Ein Nichtnull-Eintrag aj;
ausserhalb der Diagonale der Matrix
entspricht einer Kante zwischen dem
Knoten i und dem Knoten j des Gra-
phen. Bei der Anwendung von
schwach besetzten Matrizen bei der
Losung von partiellen Differentialglei-
chungen stellt dieser Graph das Dis-
kretisierungsgitter dar. Bei einer Dis-
kretisierung mit Finiten Elementen
entsprechen die Ecken und Kanten der
Elemente den Knoten und Kanten des
Graphen.

Bulletin SEV/VSE 81(1990)17, 30. August

17



Informatik

Bei der oben erwihnten Verteilung
der Vektoren werden die Knoten die-
ses Graphen auf die Prozessoren ver-
teilt. Bei denjenigen Kanten des Gra-
phen, welche Knoten verbinden, die
nicht dem gleichen Prozessor zugeord-
net sind, muss bei der Berechnung
eines Matrix-Vektor-Produktes ein
Datenaustausch stattfinden. Das Map-
ping hat zum Ziel, den Graphen so auf
die Topologie des Rechners abzubil-
den, dass der Aufwand an Kommuni-
kation fiir diesen Datenaustausch
moglichst klein ist. Da die Aufgabe,
eine optimale Losung fiir diese Abbil-
dung zu finden, NP-vollstandig ist, be-
darf es Heuristiken zum Finden einer
moglichst guten Losung.

Parallele Ausfiihrung der Prikonditio-
nierung: Coloring

Prikonditionierung ist eine wesentli-
che Voraussetzung fiir den effizienten
Einsatz von iterativen Methoden, da
sie die Konvergenz sehr stark be-
schleunigt und oftmals sogar erst er-
moglicht. Fir die besten der heute be-
kannten Priakonditionierer miissen in
jeder Iteration zwei lineare Glei-
chungssysteme mit schwach besetzten
Dreiecksmatrizen gelost werden. Da
diese Operation im allgemeinen als
schlecht parallelisierbar gilt, wird bei
vielen Supercomputer-Implementie-
rungen auf schlechtere Prikonditio-
nierer zuriickgegriffen.

In unserer Arbeit konnten wir aller-
dings Kolorierungsmethoden entwik-
keln, mit Hilfe derer bei den besten
Prikonditionierern eine dhnlich gute
Effizienz wie bei den oben erwédhnten
Matrix-Vektor-Multiplikationen  er-
reicht werden konnte. Das Prinzip der
Kolorierung ist, alle Knoten des Gra-
phen zu bestimmen, deren Teil der Lo-
sung im Dreieckssystem ohne weitere
Kommunikation berechnet werden
kann. Die Knoten des Graphen wer-
den dazu in eine Reihe von Untermen-
gen (Farben) eingeteilt. Datenaus-
tausch findet nur zwischen Knoten
verschiedener Farbe auf verschiede-
nen Prozessoren statt. Dabei ist hier
eine gleichmaissige Verteilung der Re-
chenlast besonders kritisch.

Ergebnisse

Wihrend die Implementierung von
iterativen Methoden fiir unregelmassi-

ge Probleme auf einem Rechner mit
verteiltem Speicher an sich schon sehr
anspruchsvoll ist, liegt der wesentliche
wissenschaftliche Wert dieser Arbeit in
der Entwicklung von neuen Paralleli-
sierungsstrategien. Wir haben eine
Reihe von neuen Methoden fiir das
Mapping und das Coloring entwickelt
und in der konkreten Anwendung bei
der Simulation von Halbleiterstruktu-
ren mit echten grossen Gleichungssy-
stemen (mit bis zu 75000 Unbekann-
ten) evaluiert. Bei allen untersuchten
Problemen hat sich dabei gezeigt, dass
die iterativen Methoden auf den 64
Prozessoren des K2-Torus zwischen
42- und 54mal schneller als auf Einzel-
prozessoren ausgefithrt werden konn-
ten, was einer fiir unregelmaissige Pro-
bleme ungewdhnlich hohen Ausbeute
von 65-85% entspricht. Die wenigen in
der Literatur erwdhnten, aber nie auf
realistischen Problemen erprobten
Parallelisierungsstrategien waren aus-
nahmslos unseren neuentwickelten
Strategien unterlegen. Eine detaillier-
tere Beschreibung der Problemstel-
lung, der Losungstrategien und ihrer
Auswertung wurde kiirzlich publiziert
[12].

Projektstatus

Die Hardware des Rechners ist voll-
stindig entworfen, und die einzelnen
Einheiten wurden bei voller Ge-
schwindigkeit getestet. Verschiedene
CN- und ION-Platinen werden in den
niachsten Monaten hergestellt und ge-
testet. Die System-Backplane, das
Chassis, Netzgerdte usw. werden ge-
genwirtig integriert. Alle Platinen sind
so gross, dass sie Versteifungsstreben
benotigen. Die Verteilung von 500 A
bei 5 V innerhalb des Systems erfor-
dert Stromschienen.

Dank

Das bisher Erreichte wéire nicht
moglich gewesen ohne «a little help
from our friends». Wir danken Con-

stantine Polychronopoulos, CSRD,
University of Illinois at Urbana-
Champaign, und Thomas Gross,

School of Computer Science, Carnegie
Mellon University.

Am K2-Projekt mitgeholfen hat die
Gruppe der folgenden Studenten: Fe-
lix Abersold, Marc Brandis, Mirko

Bulinsky, Pascal Dornier, Olivier Ge-
moets, Michael Halbherr, Alain Kae-
gi, Roland Liithi, Alexandros Pappas,
John Prior, Stefan Sieber, Markus
Tresch und Othmar Truninger. Last
but not least danken wir Norbert Fel-
ber von der VLSI-Gruppe.

Literatur

[1] M. Annaratonne a. o.: The K2 parallel pro-
cessor: Architecture and hardware imple-
mentation. Proceedings of the 17th Symposi-
um on Computer Architecture, Seattle,
28...31 May 1990.

[2] M. Annaratone, C. Pommerell and R. Riihl:

Interprocessor communication speed and

performance in distributed-memory parallel

processors. Proceedings of the 16th Annual

International Symposium on Computer Ar-

chitecture, Jerusalem/Israel, May 28.. .June

1, 1989. ACM Sigarch Computer Architec-

ture News 17 (1989) 3, p. 315...324.

M. Riihl and M. Annaratone: Parallelization

of Fortran code on distributed-memory par-

allel processors. Proceedings of the ACM

Conference on Supercomputing, Amster-

dam, June 1990.

P. Beadle, C. Pommerell and M. Annaratone:

K9: A simulator of distributed-memory par-

allel processors. Proceedings of the Confe-

rence on Supercomputing, Reno/Nevada,

13. November 1990.

[5] M. Annaratone and R. Riihl: Efficient cache
organizations for distributed-memory paral-
lel processors. Technical report. Ziirich,
Swiss Federal Institute of Technology, Inte-
grated Systems Laboratory, 1989.

[6] U. Banerjee: Dependence analysis for super-
computing. Boston/Dordrecht/London,
Kluwer Academic Publishers, 1988.

[71 G.H. Golub and C. Reinisch: Singular value
decomposition and least-square solutions.
In: Handbook for Automatic Computation.
vol 2: J.H. Wilkinson and C. Reinsch: Linear
Algebra, Berlin a.o., Springer-Verlag, 1971;
p. 134...151.

[8] E.M. Murman and J.D. Cole: Calculation of
plane steady transonic flows. Document
D1-82-0943. Seattle, Boeing Scientific Re-
search Laboratories/Flight Sciences Labora-
tory, January 1970.

[9] J. Moran: An introduction to theoretical and
computational aerodynamics. New York
a.o., John Wiley, 1984.

[10] S.J. Mullender: The Amoeba distributed op-
erating system: Selected papers 1984...1987.
CWI Tract 41. Amsterdam, Centrum voor
Wiskunde en Informatica, 1987.

[11] M. Accettaa.o.: Mach: A new kernel founda-
tion for unix development. Technical report.
Pittsburg, Carnegie Mellon University, 1986.

[12] C. Pommerell, M. Annaratone and W. Ficht-
ner: A set of new mapping and coloring heu-
ritics for distributed-memory parallel proces-
sors. Copper Mountain Conference on Itera-
tive Methods. Philadelphia, Society for In-
dustrial and Applied Mathematics (SIAM),
April 1990.

3

4

Bulletin ASE/UCS 81(1990)17, 30 aott



	Ein Parallel-Computer mit verteiltem Speicher : das K2-Projekt

