Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 81 (1990)

Heft: 16

Artikel: Rapport complémentaire dur les perspectives d'approvisionnement de

la Suisse en électricité jusqu'en 2005 : actualisation du septième

"Rapport des Dix" de septembre 1987

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-903146

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Rapport complémentaire sur les perspectives d'approvisionnement de la Suisse en électricité jusqu'en 2005

Actualisation du septième «Rapport des Dix» de septembre 1987

Remarques d'introduction du comité de l'UCS

Ouvrir à nouveau le champ d'action

Des prévisions sérieuses sur la consommation future d'électricité en Suisse indiquent une augmentation annuelle d'environ 2 pour cent pour les 15 ans à venir. Les résultats de la présente actualisation des perspectives d'approvisionnement se situent également dans cet ordre de grandeur, et ceci en tenant déjà compte d'efforts d'économies renforcés dans les prévisions.

La base de production dont la Suisse dispose, à savoir son propre parc de centrales et les droits de prélèvements d'électricité acquis à l'étranger, devrait permettre de couvrir cette augmentation modérée des besoins en électricité, et ceci selon toute vraisemblance jusqu'en l'an 2000, soit encore pendant dix ans. Au vu du déficit futur en électricité, qui atteindra environ 5 milliards de kilowattheures pour l'hiver 2004/05, d'importantes décisions devront être prises ces prochaines années pour assurer l'approvisionnement en électricité.

Politique énergétique réaliste

Alors que les efforts relatifs à l'utilisation rationnelle de l'électricité conservent toute leur importance, des mesures d'économies massives décrétées par l'Etat sont politiquement irréalistes. Il faut donc maintenir ouvertes toutes les voies et tirer parti de toutes les possibilités permettant d'obtenir les quantités d'électricité nécessaires, possibilités dont la contribution sera plus ou moins importante selon les cas. Nous ne devons, en particulier, pas nous laisser lier les mains par un moratoire ancré dans la Constitution, après avoir dû acquérir en France des droits de prélèvements d'électricité correspondant à la production de deux grandes centrales nucléaires, et ceci à la suite de la longue opposition à la construction de nouvelles centrales en Suisse. L'abandon du nucléaire supprimerait un des piliers de notre approvisionnement en électricité. Compte tenu de la très longue procédure d'autorisation de nouvelles centrales nucléai-

res satisfaisant pourtant aux critères de sécurité les plus modernes, le gel, fixé dans la Constitution, d'une extension modérée de l'énergie nucléaire pour une durée de 10 années est inacceptable. Nous n'avons pas besoin de délai de réflexion, mais de décisions découlant d'une politique énergétique réaliste. De nouvelles centrales nucléaires suisses ne pourront permettre de couvrir immédiatement le déficit qui se dessine après l'an 2000, car leur perspective de réalisation dépasse la fin du siècle. Un telle contribution ne peut donc être attendue à court terme.

Elargir, rénover, agrandir

A court et moyen termes, il s'agit, à côté des efforts d'économies mentionnés, de rénover et d'augmenter la puissance de centrales hydrauliques et nucléaires existantes et de construire, là où l'environnement le permet, de nouvelles centrales hydrauliques. Il s'agit en outre de déterminer l'importance des énergies d'appoint. L'économie

électrique est favorable à l'utilisation de ces énergies, même s'il n'est pas encore possible d'en espérer une grande contribution. Une contribution de quelques mégawatts est néanmoins prévue d'ici à la fin de la décennie, contribution qui atteindra ainsi l'ordre de grandeur des pour mille de la puissance totale du parc de centrales suisses. Cette modeste contribution demandera déjà de grands efforts. Toutes les contributions à l'approvisionnement en électricité mentionnées jusqu'à présent ne pourront, à elles seules, couvrir le déficit attendu, de sorte qu'il faudra, pour une période transitoire, soit construire de nouvelles centrales thermiques fonctionnant au pétrole ou au gaz ou des installations de couplage chaleur-force, soit conclure avec l'étranger des contrats d'achat supplémentaire d'électricité. Des problèmes avant tout écologiques apparaissent dans le premier cas alors qu'un accroissement de notre dépendance vis-à-vis de l'étranger ressort du deuxième cas, dépendance lourde de conséquences et géographiquement non diversifiée. Il est enfin actuellement difficile de dire si les récents bouleversements politiques en Europe de l'Est aggraveront encore cette situation ou s'il en résultera éventuellement une possibilité de diversification.

La qualité de l'air n'autorise aucun délai de réflexion

A plus long terme, d'importantes contributions provenant de nouvelles sources nucléaires sont nécessaires; il faut sans cela pouvoir construire de nouvelles centrales combinées sur la base de gaz et de pétrole, et ce en dépit de leur impact sur l'environnement.

Les perspectives de maintien de l'équilibre entre production et consommation d'électricité sont donc incertaines. De plus, les objectifs ambitieux de la législation sur la protection de l'air ainsi que la limitation nécessaire des émissions de CO2 ne permettent ni l'abandon du nucléaire ni

une pause de réflexion, mais exigent d'agir.

Qualité de vie et possibilités de développement

L'économie électrique suisse et ses spécialistes en matière de production, transport et utilisation de l'électricité mettent en garde contre les conséquences d'une restriction future de la production suisse d'énergie nucléaire. Nous aurions tous à en supporter les conséquences: non seulement l'industrie, l'artisanat, l'agriculture, les services du secteur tertiaire, mais chacun, consommateur d'électricité et employé, serait directement concerné dans sa qualité de vie et ses possibilités de développement.

Les entreprises suisses d'électricité veulent continuer à remplir leur tâche d'approvisionnement. L'emploi rationnel de l'électricité et la poursuite de l'utilisation de l'énergie nucléaire en sont toutefois des conditions indispensables.

Unités

Energie

1 kWh = 1 kilowattheure

1 MWh = 1 mégawattheure = 1 mille kilowattheures 1 GWh = 1 gigawattheure = 1 million de kilowattheures

1 TWh = 1 térawattheure = 1 milliard de kilowattheures

Puissance:

1 MW = 1 mégawatt = 1000 kilowatts (kW)

Facteurs de conversion:

1 kWh = 3,60 millions de joules

1 Joule (J) = $277.8 \cdot 10^{-9} \text{ kWh}$

Sécurité d'approvisionnement durant le semestre d'hiver:

Probabilité (en %) de couverture des besoins en électricité. (Une sécurité d'approvisionnement de 95% signifie que les besoins en électricité peuvent être couverts en moyenne 19 hivers sur 20; une sécurité d'approvisionnement de 50% implique un déficit d'un hiver sur deux).

Degré d'auto-approvisionnement:

Part (en %) des besoins en électricité du pays couverte par la production *indigène* en année moyenne.

1. Remarques préliminaires

Les entreprises suisses d'électricité ont pour tâche de satisfaire les besoins de la Suisse en électricité. Elles ont ainsi la responsabilité de mettre à la disposition du consommateur un approvisionnement suffisant, sûr et bon marché, tout en tenant compte équitablement des aspects écologiques. C'est la raison pour laquelle elles suivent attentivement les questions relatives à l'approvisionnement et aux besoins et étudient leur développement futur. Depuis 1963, dix entreprises d'électricité1), assurant environ 70% de l'approvisionnement de la Suisse, font périodiquement le point de la situation et donnent leur avis sur les développements probables et les solutions possibles. Ces analyses sont connues sous le nom de «Rapports des Dix».

Le dernier, le septième, a été publié en septembre 1987 sous le titre «Perspectives d'approvisionnement de la Suisse en électricité jusqu'en 2005» [1]. Les études ont montré que le semestre d'hiver reste la période critique pour l'approvisionnement et que, malgré le recours à d'importantes mesures d'économies, la production indigène est insuffisante pour faire face à la demande. On a constaté que même la mise en service de la centrale nucléaire de Kaiseraugst, prise alors encore en considération, ne comblerait pas le déficit d'approvisionnement. Il aurait été de l'ordre de 4,3 milliards de kilowattheures durant le semestre d'hiver 2004/05, la sécurité d'approvisionnement désirée de 95% étant prise en considération.

Depuis la publication de ce rapport, la situation de l'approvisionnement de la Suisse en électricité s'est encore durcie. Sur la base de motions au Conseil national et au Conseil des Etats, on a définitivement renoncé à réaliser la centrale nucléaire de Kaiseraugst qui aurait contribué pour environ 3 milliards de kWh à l'approvisionnement durant le semestre d'hiver. En outre, il faut tenir compte des récents dévelop-

pements de la politique énergétique qui rendent plus incertaines les chances de réalisation d'autres installations indigènes de production, essentiellement celles de nouvelles mises en valeur des forces hydrauliques. Par contre, reflet de la bonne situation conjoncturelle, on ne constate guère de ralentissement dans l'évolution des taux de croissance des besoins en électricité.

Les événements qui sont survenus ont incité à actualiser le rapport au vu des nouvelles prémisses et des contrats de fourniture qu'il a fallu conclure entre-temps avec l'étranger. Ce rapport complémentaire s'efforce de montrer la marge de manoeuvre restant aux entreprises d'électricité.

2. Perspectives d'évolution des besoins

2.1 Introduction

Lors de l'élaboration du 7e Rapport des Dix, les statistiques de consommation les plus récentes étaient celles du semestre d'hiver 1984/85. La vérification des perspectives de ce rapport se fonde sur les valeurs effectives des quatre dernières années. La concordance entre les prévisions du 7e Rapport des Dix et l'évolution réelle des besoins est excellente (Figure 1).

Malgré cette confirmation empirique des perspectives, il est nécessaire de vérifier les hypothèses de base adoptées lors de l'estimation des besoins jusqu'à l'hiver 2004/05. Ceci concerne essentiellement les facteurs macroéconomiques (PIB et prix du pétrole) et leur incidence sur l'évolution des besoins en électricité.

2.2 Comparaison entre les perspectives d'évolution et les valeurs réelles de 1985 à 1989

Les perspectives d'évolution des besoins en électricité du 7e Rapport des Dix supposent, suivant l'usage pour les perspectives à long terme, des conditions moyennes en ce qui concerne la température extérieure, l'évolution du PIB et des prix de l'énergie. Pour effectuer les comparaisons, il faut donc rapporter les valeurs effectives aux conditions moyennes, c'està-dire les normaliser sur la base des écarts enregistrés vis-à-vis des hypothèses de base (tableau I).

La correction de l'incidence de la température peut s'effectuer à l'aide du nombre de degrés-jours de chauffage et de sa corrélation avec la consommation de courant. Durant ces derniers hivers, on a constaté, pour l'ensemble de la Suisse, une augmentation moyenne de la consommation de cou-

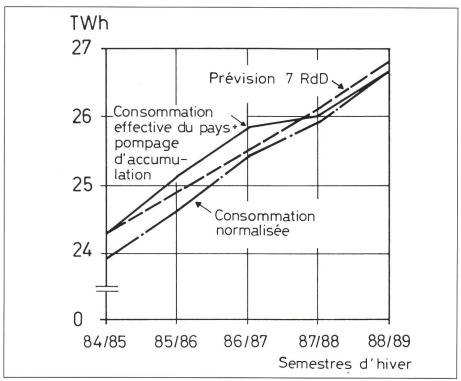


Figure 1 Comparaison entre la consommation effective, normalisée et prévue d'électricité en Suisse, semestres d'hiver 1984/85-1988/89

Les six entreprises d'électricité d'importance nationale: Aar et Tessin SA d'Electricité (Atel), Forces Motrices Bernoises SA (FMB), Forces Motrices de la Suisse Centrale (CKW), Electricité de Laufenbourg SA (EGL), SA l'Energie de l'Ouest-Suisse (EOS), Forces Motrices du Nord-Est de la Suisse SA (NOK), et les trois services municipaux: Services industriels de Bâle (IWB), Service électrique de la Ville de Berne (EWB) et Service électrique de la Ville de Zurich (EWZ), ainsi que les Chemins de fer fédéraux (CFF).

Tableau I Consommation normalisée d'électricité en Suisse 1984/85-1988/89 (en GWh)

Semestre d'hiver	1984/85	1985/86	1986/87	1987/88	1988/89
Consommation effective du pays + pompage d'accumulation	24 287	25 134	25 837	25 997	26 667
Corrections: - température - PIB	-231 -145	-287 -224	-165 -256	263 -359	432 -446
Consommation normalisée	23 911	24 623	25 416	25 901	26 653
Prévision 7e Rapport des Dix	24 300	24 900	25 500	26 100	26 800

rant d'environ 1,1% par degré Celsius de diminution de la température moyenne (voir [3] et annexe 1).

Des corrections semblables permettent de tenir compte des écarts enregistrés entre les valeurs réelles du produit intérieur brut et les moyennes adoptées pour le 7e Rapport des Dix. Du fait de la bonne évolution de la conjoncture au cours des années écoulées, les taux d'accroissement du PIB réel ont été supérieurs à la moyenne à long terme. La consommation de courant de ces dernières années doit donc être légèrement corrigée vers le bas pour permettre la comparaison entre les valeurs réelles et les prévisions (voir annexe 2). Par contre, la vérification des hypothèses admises pour l'évolution à long terme du PIB montre qu'elles restent valables.

Dans cette comparaison, on n'a pas tenu compte de l'évolution des prix du pétrole, car l'analyse de sensibilité effectuée pour le 7e Rapport des Dix [4] a montré que les prix du pétrole n'avaient que peu d'influence à court terme sur la consommation d'électricité. D'autre part, la baisse inattendue des prix du pétrole au cours des dernières années (voir annexe 3) a plutôt eu tendance à réduire les taux d'accroissement de la consommation de courant. La prise en compte de l'incidence des prix du pétrole ne serait toutefois pas une raison de corriger vers le bas les perspectives d'évolution de la consommation de courant.

2.3 Examen de l'évolution future des besoins

L'évolution effective des besoins en électricité, enregistrée depuis la publication du 7^e Rapport des Dix, de même que celle des besoins normalisés confirme de façon étonnante la prévision de l'époque; pour l'hiver 1988/89, l'écart entre cette dernière et la valeur

normalisée ou effective n'est que de 0,5% (figure 1). Cette excellente concordance justifie donc de conserver cette prévision pour le futur.

Les perspectives du 7e Rapport des Dix tiennent déjà compte d'importantes économies d'énergie par suite d'utilisations rationnelles, tout en soulignant la différence entre économies naturelles et économies renforcées. Le postulat de la substitution est également pris en considération dans la limite des disponibilités des réseaux et de la production d'énergie en ruban. Les économies et la substitution naturelles sont ainsi comprises dans la consommation finale non influencée des tableaux II et III.

Pour autant qu'on puisse le vérifier, l'évolution survenue depuis 1987 a largement confirmé les hypothèses émises en ce qui concerne les économies et la substitution. Il n'est donc pas nécessaire de les modifier. De même, le développement des facteurs macroéconomiques influençant les be-

soins futurs en électricité (notamment le PIB réel et les prix du pétrole) ne donne guère lieu à revision. Durant les dernières années, le produit intérieur brut s'est bien accru un peu plus vite que prévu, mais ses taux réels d'accroissement actuels sont à la baisse alors que la prévision s'appuyait sur une tendance constante à la hausse (de 1,8% en moyenne par an pour 1985 – 1995 à 2,2% pour 1995 – 2005). Les valeurs relativement élevées des dernières années se rapprochent ainsi de celles qui ont servi de base à la prévision.

La méthode adoptée pour l'établissement du 7e Rapport des Dix a fait ses preuves et, dans l'optique actuelle, rien n'incite à la modifier. Les perspectives du 7e Rapport des Dix qui font suite aux valeurs enregistrées peuvent ainsi être reprises sans changements. Elles sont récapitulées dans le tableau II pour l'année civile et dans le tableau III pour le semestre d'hiver.

3. Perspectives d'approvisionnement en Suisse et à l'étranger

3.1. Introduction

Depuis la publication du 7^e Rapport des Dix, plusieurs éléments de l'approvisionnement sont sensiblement modifiés:

- On a renoncé à la réalisation de la centrale nucléaire de Kaiseraugst.
- La mise en valeur des forces hydrauliques est devenue plus difficile et

Tableau II Demande d'électricité à couvrir en année civile (in GWh)

	19851	19881	1995	2005
Consommation finale non influencée ² Economies renforcées Substitution renforcée	41 321	44 327	53 800 -2 315 + 499	66 435 -3 858 +1 066
Consommation finale influencée Pertes (en % de la consommation finale influencée)	41 321 +3 444 8,3%	44 327 +3 571 8,1%	51 984 +4 159 8,0%	63 643 +5 091 8,0%
Consommation du pays Accroissement annuel Pompage d'accumulation	47 898 +2 +1 364	56 143 ,3% +2 +1 445	68 734 ,3% +2 +3 024	,0% +4 455
Demande d'électricité à couvrir Arrondie à Accroissement annuel	46 129 46 100 +2	49 343 49 300 ,3% +2	59 167 59 200 ,6% +2	73 189 73 200 ,1%

¹ Valeur effectives selon la statistique suisse de l'électricité

² Y compris les économies et la substitution naturelles

Tableau III Demande d'électricité à couvrir durant le semestre d'hiver en GWh)

	1985/861	1988/891	1994/95	2004/05
Consommation finale non influencée ² Economies renforcées Substitution renforcée	23 055	24 478	28 857 -1 205 + 260	35 794 -2 009 + 555
Consommation finale influencée Pertes	23 055 +1 874	24 478 +1 931	27 912 +2 233	34 340 +2 747
Consommation du pays Accroissement annuel Pompage d'accumulation	24 929 +1 + 205	,9% +2 + 258	30 145 ,2% +2 + 864	37 087 ,1% +1 404
Demande d'électricité à couvrir Arrondie à Accroissement annuel	25 134 25 100 +2	26 667 26 700 ,0% +2	31 009 31 000 5% +2	38 491 38 500 ,2%

¹ Valeurs effectives selon la statistique suisse de l'électricité

plusieurs projets subissent des re- Tableau tards.

- Les chances de réalisation des projets de prélèvement de chaleur d'origine nucléaire pour le chauffage à distance ont notablement diminué.
- De nouveaux contrats de fourniture d'électricité à partir du parc des centrales d'Electricité de France (EdF) ont été conclus.

3.2 Production indigène

Forces hydrauliques

Les remises en question de plus en plus vives depuis la publication du 7º Rapport des Dix, de même que les procédures d'autorisation toujours plus lourdes ont incité à retarder la mise en valeur des forces hydrauliques. Les perspectives correspondantes tiennent ainsi compte de mises en service différées (voir tableau IV).

Production thermique conventionnelle

On a admis que la centrale thermique au fuel de Vouvry pourrait être exploitée plus longtemps que prévu grâce à diverses mesures prolongeant sa durée de vie et rester disponible en réserve tout en produisant le minimum nécessaire à son maintien en service (jusqu'au semestre d'hiver 1999/2000).

Le 7^e Rapport des Dix tient compte d'une production des installations de couplage chaleur-force (CCF) relativement élevée. Il n'a pas été jugé nécessaire de la corriger (voir tableau IV).

Energies alternatives

La prévision fort optimiste du 7^e Rapport des Dix admet une production d'électricité à partir de sources énergétiques alternatives atteignant 25 GWh et 50 GWh pour les semestres d'hiver 1999/2000 et 2004/05. Bien qu'il soit réellement peu justifié d'augmenter ces chiffres, on peut, vu les décisions prises pour la réalisation de divers projets-pilotes, introduire un accroissement progressif de la production dans les années avant 1999/2000.

Centrales nucléaires indigènes

Le changement le plus important est la renonciation à la centrale nucléaire de Kaiseraugst. Les augmentations de puissance des centrales nucléaires existantes ont été conservées, mais quelque peu retardées. La réduction de production des centrales nucléaires indigènes par suite de prélèvements pour le chauffage à distance est beaucoup

Tableau IV Production indigène moyenne durant le semestre d'hiver (en GWh)

rableau IV I roduction mulgen	ie mojemie u	urant it sem	estre u mirer	(en G mi)	
	1985/86	1989/90	1994/95	1999/2000	2004/05
Petites centrales					
hydrauliques	70	70	70	70	70
Apports au fil de l'eau	7 676	7 676	7 676	7 676	7 676
Prélèvements sur les lacs	, 0,0	, 0,0	, 0,0	, 0,0	, 0,0
d'accumulation (73%)	6 050	6 050	6 050	6 050	6 050
Production par pompage	105	210	350	490	700
	105	210		170	, 00
Production des centrales					
hydrauliques existantes	13 901	14 006	14 146	14 286	14 496
Nouvelles centrales					
hydrauliques	30	94	716	1 496	1 701
	(30)	(225)	(1 015)	(1 565)	(1 800)
Obligations supplémentaires					
de dotation en eau	0	-30	-160	-240	-400
Total centrales hydrauliques	14 070	14 702	15 542	15 797	
		(14 201)	(15 001)	(15 611)	(15 896)
Centrale de Vouvry	120	120	120	120	0
	(120)	(270)	(120)	(0)	(0)
Couplage chaleur-force	450	510	650	825	1 050
Total production thermique					
conventionelle	570	630	770	945	1 050
Energies alternatives	0	<1	5	25	50
		(0)	(0)	(25)	(50)
Centrales nucléaires		(*)	(*)	(==)	(00)
indigènes	11 956	12 242	12 636	12 760	12 760
8		(12 366)	(12 760)	(16 760)	(16 910)
Réduction de production des		()	(12 / 55)	(10.00)	(10)10)
centrales nucléaires pour					
chaleur à distance	-42	-49	-52	-52	-52
		(-75)	(-205)	(-216)	(-216)
Due du etien in die kun					
Production indigène	26 415	26,002	20.071	20.220	20.605
moyenne	26 415	26 893	28 061	29 220	29 605
A mandia à	26 400	(27 272)	(28 326)	(33 005)	(33 690)
Arrondie à	26 400	26 900	28 100	29 200	29 600
Réserves indigènes ¹	1 781	1 780	1 804	1 836	836
		(1 637)	(1804)	(841)	(841)
			,		, , , ,

(Les valeurs entre parenthèses correspondent aux chiffres du 7e Rapport des Dix de septembre 1987)

² Y compris les économies et la substitution naturelles

¹ Prélèvements supplémentaires sur les lacs d'accumulation et production supplémentaire des centrales thermiques conventionnelles

moins forte, presque tous les projets ayant été suspendus (voir tableau IV).

Production indigène moyenne

Les modifications ci-dessus conduisent à une production indigène moyenne de 29,6 TWh pour le semestre d'hiver 2004/05, ce qui représente une diminution de 4,1 TWh par rapport au 7^e Rapport des Dix (voir tableau IV).

3.3 Approvisionnement à l'étranger

Les obligations d'exportation se réduisent de la quote-part étrangère de 15% à la centrale nucléaire de Kaiseraugst. Par contre, de nouveaux droits de prélèvement sur le parc de centrales d'Electricité de France ont été acquis (une puissance de 200 MW à partir du 1.1.1995, 200 MW à partir du 1.10.1996 et 200 MW à partir du 1.1.2000). Ces droits s'ajoutent à ceux déjà existants et conduisent à un total de 2 250 MW à partir de l'an 2000, ce qui correspond à plus de deux centrales nucléaires de la taille de Gösgen ou à 3/4 de la puissance de toutes les centrales nucléaires suisses.

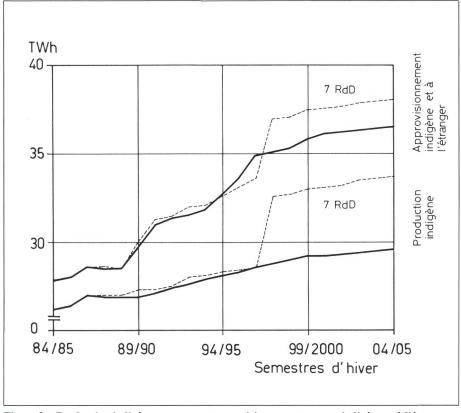


Figure 2 Production indigène moyenne et approvisionnement moyen indigène et à l'étranger (réserves exclues)

Tableau V Approvisionnement moyen en Suisse et à l'étranger durant le semestre d'hiver (en GWh)

	1985/86	1989/90	1994/95	1999/2000	2004/05
Production indigène moyenne	26 415	26 893	28 061	29 220	29 605
Obligations d'exportation: Centrale nucléaire de Leibstadt	-483	-514	-514	-514	-514
Total des obligations d'exportation	-483	-514	-514	-514 (-1113)	-514 (-1 135)
Droits de prélèvement: Centrales étrangères	2 069	3 288	5 156 (4 832)	7 106 (5 482)	7 431 (5 482)
Approvisionnement moyen en Suisse et à l'étranger					
(réserves exclues)	28 001	29 667 (30 046)	32 703 (32 644)	35 812 (37 374)	36 522 (38 037)
Arrondi à	28 000	29 700	32 700	35 800	36 500
Réserves indigènes ¹ Réserves à l'étranger ²	1 781 350	1 780 350	1 804 350	1 836 350	836 350
Approvisionnement moyen total en Suisse et à l'étranger	30 132	31 797	34 857	37 998	37 708
Arrondi à	30 100	(32 033) 31 800	(34 798) 34 900	(38 565) 38 000	(39 228) 37 700

(Les valeurs entre parenthèses correspondent aux chiffres du 7e Rapport des Dix de septembre 1987)

3.4 Approvisionnement en Suisse et à l'étranger

Compte tenu des obligations d'exportation et des droits de prélèvement, mais réserves exclues, on obtient un approvisionnement moyen en Suisse et à l'étranger de 36,5 TWh pour le semestre d'hiver 2004/05. Ceci correspond à une diminution de 1,5 TWh par rapport au 7^e Rapport des Dix (voir tableau V et annexe 4).

La figure 2 illustre l'évolution de la production indigène moyenne et de l'approvisionnement en Suisse et à l'étranger durant le semestre d'hiver jusqu'en 2004/05. La production indigène moyenne n'augmente que de 3,2 TWh entre 1985/86 et 2004/05 - 1,9 TWh du fait de la mise en valeur de forces hydrauliques (débits résiduels respectés), 0,8 TWh par suite d'augmentations de puissance des centrales nucléaires existantes et 0,6 TWh provenant d'installations de couplage chaleur-force - compte tenu de la mise hors service de Vouvry en l'an 2000. L'approvisionnement moyen total en Suisse et à l'étranger croît durant la même période de 8,5 TWh, des prélèvements supplémentaires de 5,4 TWh s'ajoutant à l'accroissement de la production indigène de 3,2 TWh.

¹ Prélèvements supplémentaires sur les lacs d'accumulation et production supplémentaire des centrales thermiques conventionnelles

² Droit de prélèvement sur une centrale allemande au charbon

Comparaison entre les besoins et l'approvisionnement; sécurité d'approvisionnement

4.1 Evolution des conditions d'approvisionnement

Le tableau VI et la figure 3 récapitulent les conditions d'approvisionnement compte tenu d'une probabilité de 95%. Il en résulte que la sécurité d'approvisionnement est pratiquement garantie jusqu'au semestre d'hiver 1999/2000 grâce aux contrats d'importation à long terme et aux réserves indigènes et à l'étranger. Durant le semestre d'hiver 2000/01, l'approvisionnement indigène diminue de 1 TWh environ du fait de la mise hors service de la centrale thermique au fuel de Vouvry (2000), centrale de réserve

dont la production pourrait être augmentée en cas de nécessité. Comme la production de Vouvry sera réduite au minimum nécessaire à son maintien en exploitation, le recul de l'approvisionnement moyen (réserves exclues) n'est que peu sensible au moment de la mise hors service.

Avec une sécurité d'approvisionnement de 95%, le déficit atteint 5,2 TWh durant le semestre d'hiver 2004/05, ce qui correspond à une production hivernale bien plus élevée que celle d'une centrale de base de 1000 MW.

Après l'hiver 1979/80, la Suisse n'a déjà plus la sécurité d'approvisionnement désirée de 95% avec sa seule production indigène (voir figure 4). Depuis la mise en service de Leibstadt durant le semestre d'hiver 1984/85, la sécurité d'approvisionnement à partir de la production indigène s'est tout

d'abord améliorée pour diminuer ensuite constamment et tomber bientôt à zéro. Cela signifie qu'il n'est plus possible de couvrir les besoins avec la seule production indigène. La sécurité d'approvisionnement désirée de 95% peut encore être garantie peu avant l'an 2000 grâce aux prélèvements sur les centrales (nucléaires) étrangères. Elle aussi diminue ensuite rapidement et s'approche de zéro pour le semestre d'hiver 2004/05.

4.2 Evolution du degré d'auto-approvisionnement

La sécurité d'approvisionnement est une grandeur correspondant à la probabilité de couvrir les besoins compte tenu de toutes les sources d'approvisionnement en Suisse et à l'étranger ainsi que de toutes les réserves. Par contre, la diminution du degré

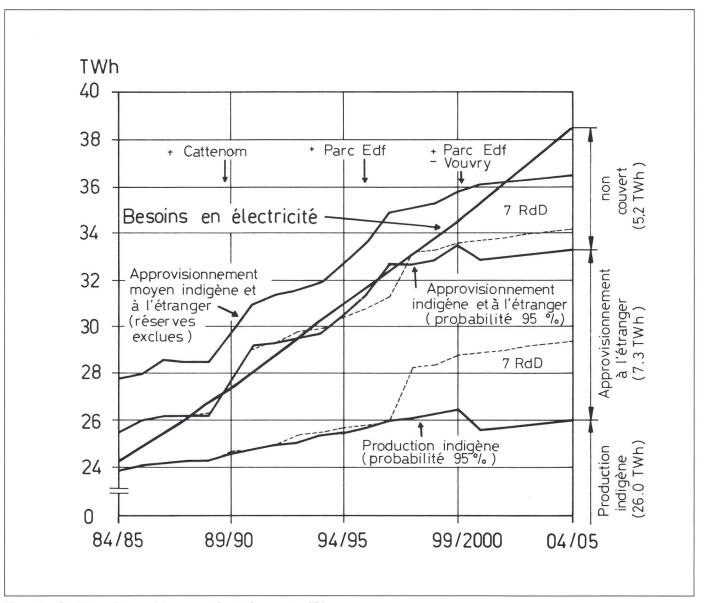


Figure 3 Conditions d'approvisionnement durant le semestre d'hiver

Tableau VI Bilan du semestre d'hiver, compte tenu de l'approvisionnement en Suisse et à l'étranger et d'une sécurité d'approvisionnement de 95% (en TWh)

Semestre d'hiver	Production indigène (réserves comprises); probabilité 95% (1)	Approvisionnement total en Suisse et à l'étranger; probabilité 95% (2)	Demande d'électricité à couvrir	Bilans indigène (1)-(3)	Bilans en Suisse et à l'étranger (2)-(3)
1984/85 1985/86 1986/87 1987/88 1988/89	23,9 ¹ 24,1 ¹ 24,2 ¹ 24,3 ¹ 24,3 ¹	25,5 ² 26,0 ² 26,2 ² 26,2 ² 26,2 ²	24,3 ³ 24,9 ³ 25,5 ³ 26,1 ³ 26,8 ³	- 0,4 - 0,8 - 1,3 - 1,8 - 2,5	1,2 1,1 0,7 0,1 -0,6
1989/90	24,6	27,7	27,4	- 3,1	0,3
1990/91	24,8	29,2	28,1	- 3,3	1,1
1991/92	25,0	29,3	28,8	- 3,8	0,5
1992/93	25,1	29,5	29,5	- 4,4	0,0
1993/94	25,4	29,7	30,3	- 4,9	-0,6
1994/95	25,5	30,5	31,0	- 5,5	-0,5
1995/96	25,7	31,4	31,7	- 6,0	-0,3
1996/97	26,0	32,7	32,4	- 6,4	0,3
1997/98	26,1	32,7	33,1	- 7,0	-0,4
1998/99	26,3	32,9	33,8	- 7,5	-0,9
1999/2000	26,5	33,5	34,5	- 8,0	-1,0
2000/01	25,6	32,9	35,3	- 9,7	-2,4
2001/02	25,7	33,0	36,1	-10,4	-3,1
2002/03	25,8	33,1	36,9	-11,1	-3,8
2003/04	25,9	33,2	37,7	-11,8	-4,5
2004/05	26,0	33,3	38,5	-12,5	-5,2

¹ Capacité de production théorique avec recours accru à tous les moyens de production

d'auto-approvisionnement est un indice de la dépendance croissante de l'étranger en ce qui concerne l'approvisionnement de la Suisse en électricité. Ce degré est défini comme le rapport entre la production indigène en année moyenne et la consommation du pays. Si la Suisse voulait recourir uniquement à la production indigène pour couvrir ses besoins avec une sécurité d'approvisionnement de 95%, le degré d'auto-approvisionnement devrait atteindre 113%. Cependant, la figure 6 montre qu'il est déjà inférieur à 100% pour le semestre d'hiver 1989/90 et qu'il tombe à 77% d'ici 2004/05. Les installations de production à l'étranger seront alors indispensables, même en année moyenne, pour satisfaire presque un quart des besoins et il faudra importer tous les hivers. Ces conditions d'approvisionnement sont d'autant plus préoccupantes que les importations se concentreront pratiquement sur un seul fournisseur, Electricité de France, et ne seront donc pas diversifiées.

La figure 6 illustre l'importance des importations nécessaires en année moyenne pour couvrir les besoins, soit des écarts entre la production indigène moyenne et les besoins prévus. Les mises en service des centrales nucléaires de Gösgen (1979/80) et de Leibstadt (1984/85) ont chaque fois eliminé la dépendance de l'étranger. Depuis 1989/90, celle-ci croît toutefois constamment et atteindra 8,9 TWh pour le semestre d'hiver 2004/05, soit une valeur supérieure à la production de deux centrales de base de la classe

des 1000 MW. L'évolution rapide du volume des importations reflète la dépendance croissante de l'étranger de notre approvisionnement en électricité. Elle va atteindre un niveau sans précédent dans les annales de l'approvisionnement de la Suisse.

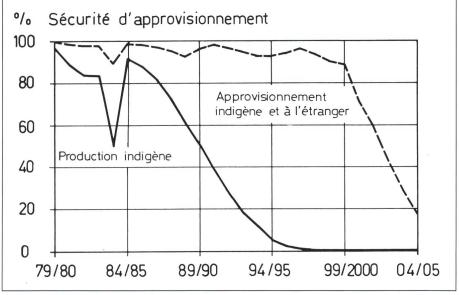


Figure 4 Sécurité d'approvisionnement en % durant le semestre d'hiver

² Aprovisionnement théorique avec recours accru à tous les moyens de production

³ Valeurs du modèle de prévision

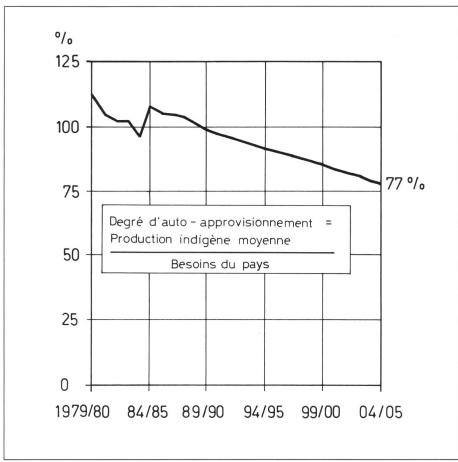


Figure 5 Degré d'auto-approvisionnement durant le semestre d'hiver

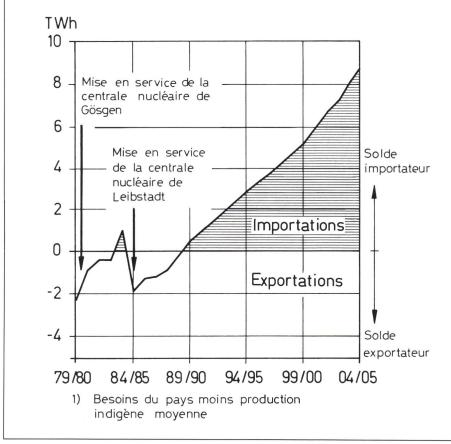


Figure 6 Importations nécessaires¹) durant le semestre d'hiver pour couvrir les besoins

5. Récapitulation et conclusions

La non-réalisation de la centrale nucléaire de Kaiseraugst et les nouveaux contrats de fourniture conclus entre des entreprises suisses d'électricité et Electricité de France sont les deux raisons principales de la presente actualisation du 7^e Rapport des Dix. Les incidences de ces deux faits ont semblé suffisantes pour justifier, moins de trois ans plus tard, un réexamen approfondi du rapport de 1987 et la publication du présent rapport complémentaire.

5.1 Prévision des besoins

On est frappé de voir à quel point les besoins effectifs concordent avec les chiffres de la prévision de 1987 (figure 1). C'est fort encourageant mais ce n'est pas encore suffisant pour justifier le choix des hypothèses et les résultats obtenus. La prise en compte de valeurs réelles des températures et du produit intérieur brut (figure 1) a encore réduit les écarts si bien qu'il n'est pas nécessaire de revoir la méthode de calcul. De plus, un réexamen des conditionslimites a montré qu'il n'existe pas de raisons valables pour corriger les hypothèses faites initialement. Les perspectives énoncées dans le 7^e Rapport des Dix, quant aux besoins en électricité à couvrir, peuvent donc être reprises sans changements. Ceci signifie que la consommation durant le semestre d'hiver croîtra à un taux moyen de 2,5% par an jusqu'en 1994/95 et de 2,2% par an jusqu'en 2004/05 (tableau

Il faut rappeler ici que cette prévision part de taux d'accroissement de la consommation nettement inférieurs à ceux qui avaient été admis dans de précédents Rapports des Dix qui s'étaient pourtant avérés très corrects. Elle repose essentiellement sur l'attente d'importantes économies naturelles, fruits du progrès technique, et aussi d'économies renforcées découlant de la motivation du public et des milieux politiques. Dans l'ensemble, ce potentiel d'économies atteint 15% de la consommation non influencée de 2005. L'ampleur de la substitution d'agents énergétiques fossiles par l'électricité a été réduite et ne provient que d'applications très sélectives. Ainsi, les substitutions naturelles et renforcées diminuent à 5% seulement des besoins non influencés de 2005.

En résumé, la prévision des besoins

du 7e Rapport des Dix peut être considérée, dans l'optique actuelle, comme une perspective réaliste, répondant aux exigences d'une utilisation rationnelle de l'électricité. Elle correspond au développement constaté depuis lors et peut, avec raison, être adoptée pour la présente actualisation.

5.2 Perspectives d'approvisionnement

Contrairement à la prévision des besoins, une série d'éléments de l'approvisionnement en électricité doit être réexaminée et adaptée.

- Pour les forces hydrauliques, il faut s'attendre à ce que divers projets subissent quelques retards. Pour le semestre d'hiver 2004/05, on escompte donc, dans l'ensemble, une très légère réduction de production de 15,9 à 15,8 TWh.
- Du fait de la non-réalisation de la centrale nucléaire de Kaiseraugst, la production des centrales nucléaires diminue de 4,1 TWh à partir du semestre d'hiver 1996/97. Compte tenu de la suppression de l'obligation d'exportation de 0,6 TWh et de l'abandon de projets de chauffage à distance d'origine nucléaire de 0,2 TWh environ, il en résulte une diminution effective de production des centrales nucléaires de 3,3 TWh.
- Pour compenser la non-réalisation de la centrale nucléaire de Kaiseraugst, diverses entreprises d'électricité ont conclu de nouveaux contrats à long terme avec Electricité de France:
- 200 MW à partir du 1er janvier 1995
- 200 MW à partir du 1er octobre 1996
- 200 MW à partir du 1er janvier 2000
 Ces droits supplémentaires de prélèvement, qui sont pour la plupart liés à la disponibilité du parc des centrales nucléaires françaises, fournissent 2 TWh pour le semestre d'hiver 2004/05. Cet approvisionnement à l'étranger ne compense donc qu'une partie du déficit dû à la suppression de Kaiseraugst.
 - La situation de la production thermique conventionnelle s'est modifiée en ce sens que la mise hors service de Vouvry est repoussée de 1997 à 2000. Pour le semestre d'hiver 2004/05, la production reste par contre inchangée.

5.3 Bilan de l'approvisionnement

En admettant une sécurité d'approvisionnement de 95%, le déficit de 4,3 TWh prévu dans le 7^e Rapport des Dix

pour le semestre d'hiver 2004/05, augmente de 0,9 TWh et passe à 5,2 TWh. Pour l'ensemble de la période, on constate que la sécurité d'approvisionnement désirée de 95% n'est déjà plus garantie peu avant l'an 2000. A partir de cette date, le déficit croît jusqu'aux 5,2 TWh précités (figure 3). Même si l'on considère une sécurité d'approvisionnement absolument insuffisante de 50% - soit les conditions d'approvisionnement de l'année moyenne -, les besoins prévisibles ne sont plus couverts à partir de 2002/03 et le déficit atteint 2 TWh en 2004/05. Cette exigence plus souple quant à la sécurité d'approvisionnement ne modifierait pas fondamentalement le problème; elle ne le repousserait que de quatre ans environ.

Ce bilan déficitaire d'approvisionnement met également en évidence une composante qualitative qui donne à réfléchir. Si les besoins peuvent être couverts ou presque avec la sécurité d'approvisionnement désirée de 95% jusqu'en l'an 2000, la structure de l'appprovisionnement se sera alors déjà fondamentalement modifiée. En effet, une part importante de l'approvisionnement proviendra des prélèvements à l'étranger. Alors que, dans le 7e Rapport des Dix, ceux-ci se chiffraient à 1650 MW, ils ont augmenté entre-temps de 600 MW. La totalité des droits de prélèvement à l'étranger atteint ainsi 2 250 MW et correspond à 75% de la capacité totale des centrales nucléaires installées en Suisse.

La puissance disponible est une autre composante qualitative qui se dégrade. L'accroissement de l'approvisionnement à l'étranger comporte essentiellement de l'énergie en ruban, dont une partie peut ne pas être livrée les jours de forte consommation. Ceci entrave l'augmentation de puissance disponible et les premières études montrent que des déficits pourraient apparaître aujourd'hui déjà dans certaines régions et dans toute la Suisse dès l'an 2000.

Les calculs relatifs à la sécurité d'approvisionnement indiquent que la probabilité de pouvoir couvrir les besoins du pays avec la production indigène s'élevait encore à 50 % pour l'hiver 1989/90. La sécheresse a en définitive provoqué un excédent d'importations d'environ 7% de la consommation du pays. La probabilité que les besoins puissent à nouveau être couverts par des moyens propres diminue rapidement et tend vers zéro à partir du milieu des années 90 (figure 4).

L'hiver 1989/90 marque également un tournant en ce qui concerne le degré d'auto-approvisionnement. Celuici donne la part de la consommation qui peut être couverte par la production indigène en année moyenne. Si cette valeur atteignait encore presque 100% en 1989/90 avec des conditions moyennes, elle diminue sans cesse à la suite du constant accroissement de la consommation et de la stagnation de la production indigène. En l'an 2005, elle n'atteint plus que 77% (figure 5). Cela signifie que, même lors d'un hiver normal, presque un quart de l'approvisionnement proviendra de sources situées à l'étranger, sans parler de ce qu'il adviendra par un hiver excessivement froid et sec. L'approvisionnement de la Suisse s'est ainsi fortement détérioré tant en ce qui concerne le déficit que la sécurité d'approvisionnement (dépendance de l'étranger).

5.4 Conclusions

Si l'on tire la conclusion de ce qui précède, on constate que ces perspectives reposent sur plusieurs hypothèses très optimistes en ce qui concerne le succès des économies d'énergie, la production hydroélectrique et les centrales thermiques conventionnelles. La prise en compte des contrats d'importation conclus avec Electricité de France, correspondant à plus de deux grosses centrales nucléaires, va dans le même sens.

Malgré ces hypothèses optimistes, l'approvisionnement de la Suisse en électricité sera particulièrement critique à partir de l'an 2000. Le semestre d'hiver verra apparaître un déficit croissant. En 2004/05, il atteindra 5,2 TWh, une quantité bien supérieure à la production d'une centrale nucléaire de 1000 MW. De plus, en année moyenne, les prélèvements à l'étranger couvriront presque un quart de la consommation en 2005.

Au vu de cette situation, il serait faux de spéculer sur l'avenir et de prétendre que les besoins n'atteindront peut-être pas les chiffres avancés ou que la production pourra éventuellement se développer de façon plus favorable. Ce ne serait que des excuses fallacieuses pour rester inactifs ou repousser le problème.

Pour le résoudre, il faut se demander si les besoins et l'approvisionnement sont suffisamment influençables pour éviter la menace de déficit. Une chose est absolument certaine: le déficit doit être comblé – soit par des négociations prévoyantes, soit par l'inexo-

rabilité des lois de la physique puisqu'on ne peut jamais consommer plus de courant que celui qui est produit au moment de la demande.

L'évolution de la consommation et de la production au cours du temps montre que la situation ne sera pas encore dramatique avant la fin des années 90. Mais à partir de l'an 2000, le déficit d'approvisionnement croîtra très rapidement.

Si l'on examine les mesures qui pourraient influencer le développement de la demande, il faut tout d'abord rappeler que, pour la prévision des besoins, on a admis le recours à tous les moyens légaux en vigueur ainsi qu'à un article énergétique semblable au projet actuel. Si l'on veut résoudre le problème du côté de la demande, il faut envisager des mesures beaucoup plus sévères qui ne correspondent pas aux vues actuelles sur la politique énergétique. Un autre scénario impliquerait le rationnement physique du courant par le biais de contingentements ou de coupures équilibrant le bilan. Cependant, le frein apporté par de telles mesures aurait des répercussions imprévisibles et lourdes de conséquences. Elles iraient des dissensions quant à la répartition des parts d'électricité encore disponibles jusqu'aux récessions économiques suite aux rationnements; l'économie et la société seraient confrontées alors à des conflits très épineux [5]. Cette situation ne peut donc ni faire partie d'un scénario sérieux ni même être envisagée. Il faut en tirer deux conclusions:

- Premièrement, les efforts en vue d'une utilisation rationnelle et économe de l'électricité ne doivent pas être relâchés afin d'éviter que les problèmes ne s'aggravent.
- Deuxièmement, il faut chercher des solutions du côté de l'approvisionnement afin de combler le déficit prévu.

A long terme, il faut s'efforcer d'arriver à une sécurité d'approvisionnement de 95%. Ceci signifie que des disponibilités durables doivent permettre de couvrir les besoins 19 semestres d'hiver sur 20. Toutefois, cette exigence devient discutable lorsque la sécurité d'approvisionnement ne peut être obtenue que par de nouveaux achats à l'étranger entraînant des impondérables dont on veut justement se protéger. Il faut donc considérer également le développement du degré d'autoapprovisionnement. Avec une valeur de 77% seulement en hiver 2004/05 et une tendance à la baisse, il tombe à un

niveau particulièrement inquiétant. En effet, la production indigène étant insuffisante pour couvrir les besoins, il faudra importer du courant tous les hivers.

Du point de vue de l'approvisionnement, les options pour de nouvelles installations indigènes de production doivent rester ouvertes en première priorité pour la période ultérieure à l'an 2000 et permettre des réalisations économiquement rentables et compatibles avec l'environnement. L'énergie nucléaire est au nombre de ces options comme le sont les forces hydrauliques, les centrales thermiques conventionnelles et, en complément, les sources énergétiques alternatives. Si ces mesures du côté de l'approvisionnement ne peuvent combler le déficit, il ne reste plus d'autre solution que des coupures de courant programmées ou non, ou un régime draconien d'économies. Pour progresser de façon constructive, les Dix préconisent des efforts dans les domaines ci-dessous sans pour autant préciser l'ordre des priorités:

- La réalisation de réservoirs saisonniers pour des aménagements hydroélectriques afin de stocker les excédents des forts mois d'été au profit du semestre d'hiver déficitaire;
- La prolongation de la durée de vie de la centrale thermique de Vouvry au-delà de l'an 2000. Dans l'optique actuelle, la prolongation de vie serait techniquement possible avec une dépense raisonnable pour une centrale de réserve et de charge moyenne. Suivant les prescriptions à respecter pour la protection de l'atmosphère, il ne faut toutefois pas exclure un arrêt de la production, même avant l'an 2000, si les dépenses nécessaires au maintien en service s'avèrent trop élevées;
- La réalisation de centrales thermiques conventionnelles supplémentaires de réserve ou de charge moyenne pour la période 2000/2005 si la construction d'une nouvelle centrale nucléaire n'est pas possible d'ici là. Bien entendu, cela se fera dans le respect des prescriptions de la protection de l'atmosphère et sans oublier d'examiner les possibilités de fourniture de chaleur pour du chauffage à distance;
- La réalisation de centrales nucléaires supplémentaires est nécessaire pour couvrir les besoins croissants d'électricité en ruban dans la période après 2005. Vu la menace de

- déficit d'approvisionnement et l'importance des prélèvements effectués à l'étranger, la preuve du besoin est de toute façon évidente;
- En complément, le développement de sources énergétiques alternatives pour autant qu'elles soient compatibles avec l'environnement et que leur rentabilité reste dans des limites acceptables. Il serait pourtant illusoire de croire que les sources énergétiques alternatives contribueront substantiellement à la couverture du déficit prévu d'ici à l'an 2005.

En plus de la construction de nouvelles capacités de production et du maintien des options pour des installations indigènes, de nouveaux contrats de prélèvement à l'étranger doivent, en dernier ressort, aussi être envisagés. L'économie électrique suisse n'a pourtant aucune influence pour que ces importations restent réalisables. Une prémisse indispensable est néanmoins le renforcement du réseau à très haute tension et son intégration dans le réseau européen interconnecté. C'est une condition qui n'est pas seulement nécessaire du fait des prélèvements à l'étranger déjà convenus par contrat, mais aussi parce que la mise en place du marché intérieur européen l'exige. Si la Suisse veut continuer à profiter des gros avantages de l'intégration dans le système interconnecté de l'Europe occidentale et demeurer au niveau européen, elle se doit d'apporter activement sa contribution dans ce domaine.

Références

- [1] Perspectives d'approvisionnement de la Suisse en électricité jusqu'en 2005; 7e Rapport des Dix, UCS, rapport 5.73f, septembre 1987
- [2] Statistique suisse de l'électricité 1989; OFEN, avril 1990, tirage à part du Bulletin ASE/UCS 8/1990
- [3] J. Mutzner: Temperatur- und Preisabhängigkeit des Stromverbrauches (Corrélations entre la consommation d'électricité, la température et les prix); Bulletin ASE/UCS 20/1989
- [4] 7e Rapport des Dix, Rapport de travail «Perspectives de la demande d'électricité en Suisse 1986 2005», UCS, rapport 5.76, août 1987 [5] Ernst Widrig: Probleme und Konsequenzen einer Stromrationierung (Problèmes et conséquences d'un rationnement du courant), publication SIASR-Schriftenreihe 18, Grüsch 1988 (Institut suisse de recherche sur les relations économiques internationales, structures et régions, Université de St. Gall)

Annexe 1

Consommation d'électricité en Suisse de 1984/85 à 1988/89 Ecart dû à la température

La série, degrés-jours de chauffage des semestres d'hiver, permet de calculer une moyenne et, pour chaque hiver, un écart par rapport à celle-ci. En divisant cet écart par le nombre de jours, on obtient un écart de température que l'on peut approximativement qualifier d'écart moyen de température journalière. Selon la source mentionnée à la remarque 4), la consommation d'électricité a augmenté, ces derniers hivers en Suisse, d'environ 1,1% par degré Celsius de diminution de température journalière moyenne. Les écarts précédemment calculés et cette «élasticité température – consommation de courant» permettent d'estimer pour chaque semestre d'hiver la consommation normalisée, par le biais de l'écart de consommation rapporté à un hiver

comportant un nombre de degrésjours moyen. Les prévisions des besoins à long terme se référant à des hivers normaux, il est nécessaire de normaliser les chiffres effectifs, c'est-àdire de les corriger sur la base des écarts de température avant de les comparer aux prévisions.

Tableau A 1 Consommation d'électricité en Suisse de 1984/85 à 1988/89 Ecart dû à la température

Semestre d'hiver	1984/85	1985/86	1986/87	1987/88	1988/89
A) Consommation du pays + pompage d'accumulation (en GWh) ¹	24 287	25 134	25 837	25 997	26 667
B) Degrés-jours ²	3 123,1	3 154,4	3 071,9	2 781,1	2 698,5
C) Degrés-jours, écart par rapport à la moyenne quinquennale: 2 965,8	+ 157,3	+ 188,6	+ 106,1	- 184,7	- 267,3
D) Ecart de température journalière moyenne rapporté à la moyenne quinquennale ³ (en °C)	- 0,86	- 1,04	- 0,58	+ 1,01	+ 1,47
E) Facteur de correction de la consommation du pays + pompage d'accumulation 4	0,9905	0,9886	0,9936	1,0101	1,0162
F) Ecart probable rapporté à la consommation du pays et du pompage d'accumulation, dû à la température	+ 231	+ 287	+ 165	- 263	- 432

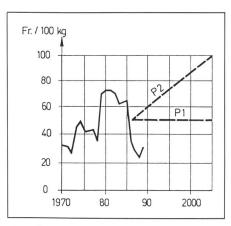
Sources et remarques:

- Office fédéral de l'énergie: Statistique suisse de l'électricité 1989.
- ² Données de l'Office fédéral de l'énergie; pour la définition voir OFEN «Statistique globale suisse de l'énergie 1988», chap. 6.5: «Les degrés-jours de chauffage s'obtiennent en faisant l'addition des écarts journaliers existant entre la température extérieure et la température intérieure (20 °C), et ceci uniquement pour les jours durant lesquels la température moyenne extérieure se situe ou est inférieure à 12 °C».
- ³ Calculé à partir de B) divisé par 182 jours (par semestre d'hiver normal). Ne correspond pas forcément à l'écart effectif de température par rapport à la moyenne.
- ⁴ Calculé à partir de D) × 1,1; selon J. Mutzner «Temperatur- und Preisabhängigkeit des Stromverbrauchs», (Corrélations entre la consommation d'électricité, la température et les prix)», Bulletin ASE/UCS 80 (1989) 20, 21 octobre p. 1332/1333 («Ces dernières années, on constate pour l'ensemble de la Suisse une augmentation de consommation de courant en hiver de 1,1% environ lorsque la température extérieure diminue de 1 °C»).
- 5 A)-A) \times E).

Consommation d'électricité en Suisse de 1984/85 à 1988/89

Ecart dû au produit intérieur brut (PIB)

Le 7^e Rapport des Dix (Rapport succinct, Tableau 11) estime les besoins en électricité des semestres d'hiver en supposant un accroissement moyen du produit intérieur brut réel (PIB) de 1,65% par an entre 1985 et 1990 (7e Rapport des Dix, Rapport de travail «Perspectives de la demande d'électricité en Suisse 1986 - 2005», page 16). A titre d'analyse de sensibilité, ce même rapport de travail (pages 171 et ss.) a aussi examiné, dans un scénario 3, la manière dont les besoins en électricité évolueraient si l'on admettait un accroisement plus optimiste du PIB réel de 2,60% en moyenne par an pour la période 1985 - 1990 (page 18). Il s'en est suivi pour 1990 une augmentation des besoins en électricité de


Annexe 2

1,2 % par rapport à la variante de base (Tableau 3.3-3). Ce résultat permet de déduire une pseudo-élasticité entre les besoins en électricité et l'évolution du PIB: une croissance du PIB réel de 0,95% par an supérieure à celle de la variante de base entraîne une augmentation des besoins en électricité de 1,2% en cinq ans, soit un taux d'accroissement des besoins en électricité de 0,24% par an plus élevé.

Ce facteur de pseudo-élasticité permet d'estimer grossièrement la manière dont les besoins en électricité auraient évolué depuis 1985 si le PIB réel avait augmenté de 1,65% par an comme dans la variante de base et non pas selon les taux effectifs plus élevés (voir Tableau A 2).

e 2 Annexe 3

Evolution des prix réels du mazout

Evolution des prix réels du mazout (port de Bâle) 1986-1989: évolution dès la publication du 7e Rapport des Dix

P1; P2: hypothèses de base du 7e Rapport des Dix pour l'analyse de sensibilité

Tableau A 2 Consommation d'électricité en Suisse de 1984/85 à 1988/89

Année	1985	1986	1987	1988 (est.)	1989
Taux de croissance du BIP réel (en % p.a.): - effectif ¹ - prévision ² - différence (effect/. prévis.)	+4,1	+2,8	+2,0	+3,2	+3,0
	+1,65	+1,65	+1,65	+1,65	+1,65
	+2,4	+1,2	+0,4	+1,5	+1,3
Taux de croissance de la consommation de courant (en % p.a.): (facteur correctif = 0,25 sur la base de la dif. ci-dessus et de la pseudo-élasticité de $\frac{0,24}{0,95}$) - écart annuel (en % p.a.) - écarts cumulés (en %)	+0,6	+0,3	+0,1	+0,4	+0,3
	+0,6	+0,9	+1,0	+1,4	+1,7

Semestre d'hiver	1984/85	1985/86	1986/87	1987/88	1988/89
Consommation du pays + pompage d'accumulation (en GWh) ³	24 287	25 134	25 837	25 997	26 667
Ecart probable de la consommation du pays et du pompage d'accumulation, du PIB (en GWh)	+145	+224	+256	+359	+446

Sources:

Office fédéral de la statistique: Annuaire statistique de la Suisse 1989, p. 93 (1985, 1986); Wirtschaftsspiegel 12/89, p. 5 (1987, 1988, 1989 extrapolation).

² 7. Rapport des Dix, Rapport de travail «Perspectives de la demande d'électricité en Suisse 1986–2005», p. 16.

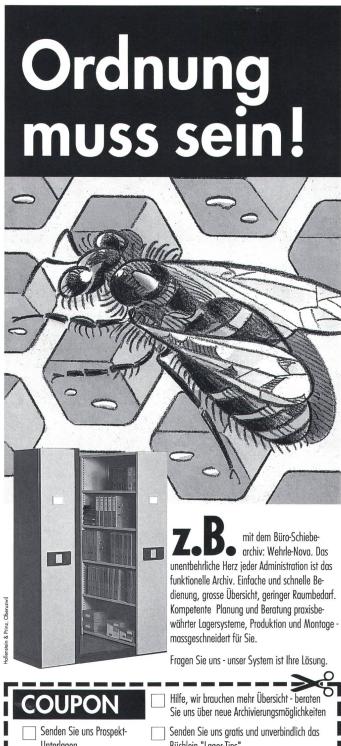
³ Office fédéral de l'énergie: Statistique suisse de l'électricité 1989, Tableau 2A.

Annexe 4

Approvisionnement moyen en Suisse et à l'étranger durant les semestres d'hiver 1979/80 - 2004/05 (en GWh) Valeurs effectives (1979/80 - 1989/90) et prévisions (1990/91 - 2004/05)

	1979/80	1980/81	1981/82	1982/83	1983/84	1984/85	1985/86	1986/87	1987/88	1988/89	1989/90	1990/91	1991/92
Production indigène													
Centrales hydrauliques													
Petites centrales	70	70	70	70	70	70	70	70	70	70	70	70	70
Apports au fil de l'eau	7676	7676	7676	7676	7676	7676	7676	7676	7676	7676	7676	7676	7676
Prélèvements sur les accumulations	6050	6050	6050	6050	6050	6050	6050	6050	6050	6050	6050	6050	6050
Production par pompage	80	80	80	80	80	80	105	130	160	180	210	240	265
Nouvelles installations:									000000				
Fil de l'eau	0	0	0	0	0	0	19	38	56	75	94	169	244
Accumulation	0	0	0	0	0	0	0	0	0	0	0	50	99
Débits résiduels supplémentaires	0	0	0	0	0	0	0	0	-10	-20	-30	-50	-80
Total centrales hydrauliques	13 876	13 876	13 876	13 876	13 876	13 876	13 920	13 964	14 002	14 031	14 070	14 205	14 324
Centrales thermiques													
conventionnelles													
Centrale de Vouvry	632	300	259	267	252	149	120	500	420	350	120	120	120
Couplage chaleur-force:													
STIO, STEP et BGD ¹	75	76	92	86	96	230	230	240	240	245	250	255	260
Industries	386	325	335	334	330	210	215	220	225	230	235	240	245
Charbon, gaz et fuel	0	0	0	0	0	0	5	10	15	20	25	40	55
Total centrales thermiques			¥										
conventionnelles	1093	701	686	687	678	589	570	970	900	845	630	655	680
Energies alternatives	0	0	0	0	0	0	0	0	0	0	< 1	< 1	1
Centrales nucléaires indigènes													
Mühleberg (320/360 MW)	1328	1328	1328	1328	1328	1328	1328	1328	1328	1328	1328	1328	1370
Beznau 1+2 (700/760 MW)	2905	2905	2905	2905	2905	2905	2905	2905	2905	2905	2905	2905	2905
Gösgen (920/975 MW)	3640	3640	3640	3640	3640	3776	3860	3901	3901	3901	3901	3901	4046
Leibstadt (942/990 MW)	0	0	0	0	0	3768	3864	3960	3960	3960	4108	4108	4108
Total centrales nucléaires indigènes	7873	7873	7873	7873	7873	11 777	11 957	12 094	12 094	12 094	12 242	12 242	12 429
Réduction de production des centrales nucléaires pour chaleur à													
distance	- 13	- 23	- 29	- 30	- 31	- 34	- 42	- 46	- 47	- 47	- 49	- 49	- 50
Production indigène moyenne	22 829	22 427	22 406	22 406	22 396	26 208	26 405	26 982	26 949	26 923	26 893	27 053	27 384

¹ STIO = station d'incinération des ordures; STEP = station d'épuration des eaux; BGD = Biogaz de décharge


	1979/80	1980/81	1981/82	1982/83	1983/84	1984/85	1985/86	1986/87	1987/88	1988/89	1989/90	1990/91	1991/92
Production à l'étranger													
Obligations d'exportation													
Centrale nucléaire de Leibstadt	0	0	0	0	0	-472	-484	-496	-496	-496	-515	-515	-515
Total obligations d'exportation	0	0	0	0	0	-472	-484	-496	-496	-496	-515	-515	-515
Centrales nucléaires étrangères													
Tranches													
Fessenheim 1+2 (267 MW)	934	934	934	934	934	934	934	934	934	934	934	934	934
Bugey 2+3 (324 MW)	1134	1134	1134	1134	1134	1134	1134	1134	1134	1134	1134	1134	1134
Total intermédiaire	2068	2068	2068	2068	2068	2068	2068	2068	2068	2068	2068	2068	2068
Centrales nucléaires étrangères Parc													
Cattenom (750 MW)	0	0	0	0	0	0	0	0	0	0	1219	2438	2438
Droits de prélèvement													
(Parc EdF 500 MW)	0	0	0	0	0	0	0	0	0	0	0	0	0
Droits de prélèvement	1007												
(Parc EdF 400 MW)	0	0	0	0	0	0	0	0	0	0	0	0	0
Total intermédiaire	0	0	0	0	0	0	0	0	0	0	1219	2438	2438
Total centrales nucléaires étrangères	2068	2068	2068	2068	2068	1596	1584	1572	1572	1572	2772	3991	3991
Réserves													
Réserves indigènes													
Prélèv. supplément. sur les													
accumulations	580	580	580	580	580	580	580	580	580	580	580	585	590
4 centrales thermiques conventionnelles	200	200	200	200	200	200	200	200	200	200	200	200	200
Exploitation de Vouvry en réserve	490	820	860	860	870	970	1000	620	700	770	1000	1000	1000
Total réserves indigènes	1270	1600	1640	1640	1650	1750	1780	1400	1480	1550	1780	1785	1790
Réserves à l'étranger													
Centrale au charbon (100 MW)	0	0	0	0	0	0	350	350	350	350	350	350	350
Total réserves	1270	1600	1640	1640	1650	1750	2130	1750	1830	1900	2130	2135	2140
Approvisionnement moyen total en	26.165	26.005	26.114	26.114	26.114	20.554	20.110	20.204	20.251	20.205	21.705	22 170	22.515
Suisse et à l'étranger	26 167	26 095	26 114	26 114	26 114	29 554	30 119	30 304	30 351	30 395	31 795	33 179	33 515

Suite de annexe 4

	1992/93	1993/94	1994/95	1995/96	1996/97	1997/98	1998/99	1999/00	2000/01	2001/02	2002/03	2003/04	2004/05
Production indigène													
Centrales hydrauliques													
Petites centrales	70	70	70	70	70	70	70	70	70	70	70	70	70
Apports au fil de l'eau	7676	7676	7676	7676	7676	7676	7676	7676	7676	7676	7676	7676	7676
Prélèvements sur les accumulations	6050	6050	6050	6050	6050	6050	6050	6050	6050	6050	6050	6050	6050
Production par pompage	295	320	350	380	405	435	460	490	530	575	615	660	700
Nouvelles installations:													100000000000000000000000000000000000000
Fil de l'eau	318	393	468	558	647	737	826	916	957	998	1039	1080	1121
Accumulation	149	198	248	314	381	447	514	580	580	580	580	580	580
Débits résiduels supplémentaires	-110	-130	-160	-180	-190	-210	-220	-240	-270	-300	-330	-370	-400
Total centrales hydrauliques	14 448	14 577	14 702	14 868	15 039	15 205	15 376	15 542	15 593	15 649	15 700	15 746	15 797
Centrales thermiques													
conventionnelles													
Centrale de Vouvry	120	120	120	120	120	120	120	120	0	0	0	0	0
Couplage chaleur-force:													
STIO, STEP et BGD ¹	270	280	290	300	310	320	330	340	350	360	370	380	390
Industries	250	255	260	265	270	275	280	285	290	295	300	305	310
Charbon, gaz et fuel	70	85	100	120	140	160	180	200	230	260	290	320	350
Total centrales thermiques													
conventionnelles	710	740	770	805	840	875	910	945	870	915	960	1005	1050
Energies alternatives	2	3	4	5	10	15	20	25	30	35	40	45	50
Centrales nucléaires indigènes													
Mühleberg (320/360 MW)	1452	1452	1452	1452	1452	1452	1452	1452	1452	1452	1452	1452	1452
Beznau 1+2 (700/760 MW)	2905	3030	3030	3030	3154	3154	3154	3154	3154	3154	3154	3154	3154
Gösgen (920/975 MW)	4046	4046	4046	4046	4046	4046	4046	4046	4046	4046	4046	4046	4046
Leibstadt (942/990 MW)	4108	4108	4108	4108	4108	4108	4108	4108	4108	4108	4108	4108	4108
Total centrales nucléaires indigènes	12 511	12 636	12 636	12 636	12 760	12 760	12 760	12 760	12 760	12 760	12 760	12 760	12 760
Réduction de production des													
centrales nucléaires pour chaleur à													
distance	- 51	- 52	- 52	- 52	- 52	- 52	- 52	- 52	- 52	- 52	- 52	- 52	- 52
Production indigène moyenne	27 620	27 904	28 060	28 262	28 597	28 803	29 014	29 220	29 201	29 307	29 408	29 504	29 605

¹ STIO = station d'incinération des ordures; STEP = station d'épuration des eaux; BGD = Biogaz de décharge

	1992/93	1993/94	1994/95	1995/96	1996/97	1997/98	1998/99	1999/00	2000/01	2001/02	2002/03	2003/04	2004/05
Productions à l'étranger													
Obligations d'exportation													
Centrale nucléaire de Leibstadt	-515	-515	-515	-515	-515	-515	-515	-515	-515	-515	-515	-515	-515
Total obligations d'exportation	-515	-515	-515	-515	-515	-515	-515	-515	-515	-515	-515	-515	-515
Centrales nucléaires étrangères													
Tranches													
Fessenheim 1+2 (267 MW)	934	934	934	934	934	934	934	934	934	934	934	934	934
Bugey 2+3 (324 MW)	1134	1134	1134	1134	1134	1134	1134	1134	1134	1134	1134	1134	1134
Total intermédiaire	2068	2068	2068	2068	2068	2068	2068	2068	2068	2068	2068	2068	2068
Centrales nucléaires étrangères Parc													
Cattenom (750 MW)	2438	2438	2438	2438	2438	2438	2438	2438	2438	2438	2438	2438	2438
Droits de prélèvement													
(Parc EdF 500 MW)	0	0	325	650	1625	1625	1625	1625	1625	1625	1625	1625	1625
Droits de prélèvement					,								
(Parc EdF 400 MW)	0	0	325	650	650	650	650	975	1300	1300	1300	1300	1300
Total intermédiaire	2438	2438	3088	3738	4713	4713	4713	5038	5363	5363	5363	5363	5363
Total centrales nucléaires étrangères	3991	3991	4641	5291	6266	6266	6266	6591	6916	6916	6916	6916	6916
Réserves													
Réserves indigènes													
Prélèv. supplément. sur les													
accumulations	594	599	604	610	617	623	629	636	636	636	636	636	636
4 centrales thermiques conventionnelles	200	200	200	200	200	200	200	200	200	200	200	200	200
Exploitation de Vouvry en réserve	1000	1000	1000	1000	1000	1000	1000	1000	0	0	0	0	0
Total réserves indigènes	1794	1799	1804	1810	1817	1823	1829	1836	836	836	836	836	836
Réserves à l'étranger													
Centrale au charbon (100 MW)	350	350	350	350	350	350	350	350	350	350	350	350	350
Total réserves	2144	2149	2154	2160	2167	2173	2179	2186	1186	1186	1186	1186	1186
Approvisionnement moyen total en													
Suisse et à l'étranger	33 755	34 044	34 855	35 713	37 030	37 242	37 459	37 997	37 303	37 409	37 510	37 606	37 707

COUPO	N		Hilfe, wir brauchen mehr Übersicht - berate Sie uns über neue Archivierungsmöglichkei	n ten
Senden Sie uns Pr Unterlagen	rospekt-		Senden Sie uns gratis und unverbindlich do Büchlein "Lager-Tips"	S
Name:		Firmo	:	SEV
Adresse:				
PLZ:	Ort:			
		_		_

WEIRLE SYSTEM

Wilerstrasse CH-9230 Flawil 2 Telefon 071 83 31 11 Telefax 071 83 30 04

Alles in Ordnung!

Schulen für Technik und Informatik

Im Zuge der Erweiterung unserer Engagements im Bereich der technischen Weiterbildung wie auch zur Neubesetzung von Vakanzen in unserem Lehrkörper suchen wir laufend neue Dozenten. Gut ausgewiesenen Ingenieuren und Technikern mit Freude an der Wissensvermittlung und am Umgang mit Menschen bietet sich damit Gelegenheit zu einer

nebenamtlichen Lehrtätigkeit

an unseren Schulen in Zürich, Bern, Basel, Frauenfeld, Sursee und Thun. Die IBZ-Schulen für Technik und Informatik zählen zu den führenden schweizerischen Privatinstituten für berufsbegleitende Aus- und Weiterbildung.

Für die IBZ-Schulen in Bern und Zürich suchen wir für den Fachbereich Elektrotechnik-Meisterkurse

Elektro-Ingenieure HTL

und

Eidg. dipl. Elektro-Installateure/ Kontrolleure

denen wir die Möglichkeit praxisbezogener Wissensvermittlung in den Fächern Elektrotechnik, Mathematik, Masskunde, Schemakenntnisse, Telefonie und Vorschriften bieten.

Im Fachbereich <u>Bautechnik</u> suchen wir für die IBZ-Schulen von Bern und Zürich

Architekten HTL/Bauingenieure HTL Eidg. dipl. Bau- oder Maurermeister Eidg. dipl. Bauleiter

für die nebenberufliche Wissensvermittlung in den Fächern Bauleitungsorganisation, Baukonstruktionslehre, Baukosten, Baurechtsvorschriften/Rechtskunde, Baustelleneinrichtung, Bauzeitplanung, Rapportwesen, Mathematik, Statik und Festigkeitslehre.

Initiative, ausgewiesene Fachleute, die diese Herausforderung annehmen und junge, aktive Berufsleute in deren beruflichem Weiterkommen unterstützen wollen, werden gebeten, sich mit unserem Herrn H.P. Ruggli in Verbindung zu setzen.

IBZ Schulen für Technik und Informatik Brugg AGZentralsekretariat, Wildischachen, 5200 Brugg
Telefon 056/41 46 47, Fax 056/41 48 21