Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 81 (1990)

Heft: 13

Artikel: Technische Informationssysteme in der Energieversorgung : moderne
Entwurfsverfahren

Autor: Goudie, David

DOl: https://doi.org/10.5169/seals-903136

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903136
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Technische Informationssysteme

Technische Informationssysteme in der
Energieversorgung

Moderne Entwurfsverfahren
David Goudie

Der vorliegende Beitrag
beschreibt eine Entwurfsstrate-
gie sowie wesentliche Grund-
satze, die beim Entwurf eines
integrierten technischen Infor-
mationssystems zu beriicksichti-
gen sind. Die Strategie betont
den formalen Ablauf sowie die
Notwendigkeit, mehrere Metho-
den simultan anzuwenden.
Dabei soll der Rechner den Ent-
wickler eher unterstitzen als
kontrollieren.

Le présent article décrit une
stratégie de projet ainsi que les
principes majeurs devant étre
pris en compte lors de I’élabora-
tion d’un systeme d’information
technique intégré. La stratégie
souligne le déroulement formel
ainsi que la nécessité d’appli-
quer simultanément plusieurs
méthodes. Au cours de cette
activité I’ordinateur est censé
soutenir l'opérateur plutét que
de le contréler.

Adresse des Autors

Dr. David Goudie , Leiter Sparte
Netzmanagement, Colenco AG, Parkstrasse 27,
5401 Baden.

Ein Informationssystem fiir Elektri-
sche Energieversorgungsunternehmen
(EVU) muss durch die Bereitstellung
von Informationen und Funktionen
die operationellen Abldufe des Unter-
nehmens unterstiitzen. Da die im In-
formationssystem gespeicherten Infor-
mationen sowohl strategischer als
auch operationeller Art sein konnen,
hat ihre Sicherheit und Integritat beim
Systementwurf erste Prioritédt. Das Sy-
stem sollte nicht primér auf den gele-
gentlichen, ungeschulten Benutzer
ausgerichtet sein; dennoch muss der
innere Aufbau und die Konfiguration
des Systems fiir den Benutzer transpa-
rent sein.

In einem integrierten Informations-
system dirfen Benutzerinteraktion
und Datenzugang nicht durch techni-
sche Eigenschaften einzelner System-
komponenten, sondern ausschliesslich
durch unterschiedliche Datentypen
und unterschiedliche Funktionalitét
begrenzt sein - soweit unterschiedliche
Datenformate nicht konvertierbar
sind. Konkret bedeutet dies etwa, dass
das System die Moglichkeit bieten
muss, Texte, Graphiken und Bilder
frei in eine Dokumentation einzubau-
en, dass aber eine automatische Uber-
setzung von Texten oder die automati-
sche Erstellung von Bildlegenden
nicht gefordert werden konnen. Eine
explizite Forderung an ein Informa-
tionssystem besagt ferner, dass - abge-
sehen von Sicherheitsiiberlegungen -
jedes einzelne Datenelement nur ein-
mal und nur in einer Form gespeichert
werden soll.

Ein technisches Informationssystem
enthdlt in erster Linie Angaben iiber
die physikalischen Eigenschaften von
«Dingen» oder Objekten. Beim heuti-
gen Stand der Technik sind im allge-
meinen unterschiedliche Modelle und
Methoden erforderlich, um unter-
schiedliche Eigenschaften dieser Ob-
jekte zu beschreiben. Im Rahmen auf

Seite 15 findet sich ein Uberblick iiber
die Vielfalt der Datentypen, die ein in-
tegriertes technisches Informationssy-
stem beherrschen muss.

Es mag etwas iiberraschen, dass in-
tegrierte Systeme nicht dadurch reali-
siert werden, dass man alle Kompo-
nenten zu vereinheitlichen versucht,
sondern indem man die vom System
zu akzeptierenden Datentypen identi-
fiziert, formell definiert und anschlies-
send die vorhandenen Daten gemdss
diesen Definitionen klassifiziert.

'

Das System als Entwurfsziel

Das Entwurfsziel ist ein integriertes
technisches Informations-Manage-
ment-System, das online die fiir Ent-
wurf, Beschaffung und Unterhalt er-
forderlichen technischen, operationel-
len und wirtschaftlichen Daten des

“Versorgungsnetzes enthdlt und das

weiterhin auch die erforderlichen
Funktionen fiir Berichterstattung,
Analyse, Entwurf, Planung und Be-
trieb bereitstellt. Information kann
sich dabei auf numerische Daten, auf
Texte, Graphiken, Diagramme und
Bilder beziehen und zwar sowohl be-
zuglich des aktuellen Zustandes des
Systems als auch beziiglich Planungs-
szenarien oder statistischer Analysen.
Es miissen deshalb fortschrittliche
Darstellungs-, Melde- und Analyse-
Algorithmen verfiigbar sein. Die Da-
tenbank des Systems muss ausdriick-
lich sémtliche vorhersehbaren geogra-
phischen, betrieblichen und organisa-
torischen Strukturen des EVU sowie
Verbindungen und Charakteristika al-
ler Einrichtungen beriicksichtigen.
Samtliche Daten sind beziiglich Her-
kunft, Umfang und Qualitdt zu quali-
fizieren. Diese Grundsitze sind auch
bei der Implementierung eines um-
fangmassig nicht sehr grossen Systems
zu beriicksichtigen.

Bulletin SEV/VSE 81(1990)13, 7. Juli

13

Informatik

Ein integriertes technisches Infor-
mationssystem lésst sich allein schon
durch die dadurch gegebene hohere
Datensicherheit und -zuverldssigkeit
sowie die Kostenvorteile einer gut de-
finierten und korrekten Datenbank
rechtfertigen. Unkoordiniertes Wu-
chern von Datenbestidnden innerhalb
eines EVU verursacht bereits an sich
enorme Kosten. Zuséitzlich sind je-
doch noch jene Kosten zu beriicksich-
tigen, die entstehen, wenn Analysen
und Entscheide auf falschen Daten be-
ruhen.

Systementwurf - alles ist
Entwurf, der Entwurf ist alles

Der Entwurf eines Informatiksy-
stems umfasst den gesamten Prozess
von der Abstraktionsebene einer Idee
bis zu jener Ebene, die sich zur Aus-
fiihrung auf dem Rechner eignet. Im
Laufe des Entwurfsprozesses werden
viele Aspekte des Entwurfes wieder-
holt verdndert, korrigiert oder erwei-
tert. Erfolgreiche, elegante Systeme
sind meist das Resultat eines solchen
iterativen Prozesses.

Der Entwurf kann zweckmaéssiger-
weise durch eine (grosse) Zahl von
Einheiten - Module oder Abschnitte -
beschrieben werden. Der Quelltext
dieser Einheiten sollte in einer sehr fle-
xiblen Kombination von formaler
Sprache und freiem Text geschrieben
werden. Die zahlreichen Abhéangigkei-
ten im Systementwurf miissen dabei
ausdriicklich festgehalten werden; sie
diirfen nicht stillschweigend, implizite
in die Einheiten hineingedacht wer-
den. Die meisten Systementwiirfe sind
von Natur aus stark vernetzt, und eine
Beschrankung auf eine willkiirlich ver-
einfachte Struktur ist deshalb nicht
zweckmissig. Die Quellen miissen zu-
satzliche Angaben enthalten, die eine
Darstellung des Entwurfes in verschie-
denen geeigneten sicht- oder lesbaren
Formen erlauben [1]. Case! Tools die-
nen primér zur Unterstiitzung des Ent-
wurfsvorganges. Sie verfiigen iiber ge-
eignete Ablagemethoden, sie erleich-
tern die Systemgenerierung aus dem
Quelltext und ermdglichen die Verfol-
gung und Analyse des Entwurfes. Case
Tools konnen jedoch die kreative Pha-
se des Entwurfes nicht direkt unter-
stiitzen oder liberwachen.

Viele Misserfolge im Systementwurf
sind auf mangelnde Disziplin und
mangelnden Formalismus in der Ent-

' Computer Aided Software Engineering

wurfs- und Realisierungsphase sowie
auf eine unzuldngliche konzeptionelle
Basis zur Integration unterschiedlicher
Datentypen und unterschiedlicher
Funktionalitdt zuriickzufiihren.

Objektorientierter Entwurf

Die Technik des objektorientierten
Entwurfes (OODT - Object Oriented
Design Techniques [2]) ist fiir den Ent-
wurf integrierter technischer Informa-
tionssysteme besonders geeignet, da
sich diese definitionsgemdss mit kom-
plexen physikalischen Objekten befas-
sen. Ein objektorientierter Entwurf hat
heute gegeniiber einem traditionellen,
auf der Funktionalitdt basierenden
Entwurf (Top-Down Functional De-
sign) bedeutende Vorteile, nicht zuletzt
weil er den Transfer des Entwurfes
von der Beschreibung in einer natiirli-
chen Sprache in eine formale Rechner-
sprache unterstiitzt.

Ein objektorientiertes Vorgehen
fiihrt zu einem stark strukturierten
Entwurf, und seine Implementierung
kann, Hand in Hand, von einfach ge-
nerisch? zu detailliert komplex-spezi-
fisch erfolgen. Der Entwurf ist gegen-
iiber funktionalen Anforderungen,
spateren Erweiterungen und funktio-
neller Implementierung relativ un-
empfindlich; die eher generischen
Ebenen konnen dariiberhinaus als
operationelle Prototypen betrachtet
werden, auf denen die eher spezifi-
schen Ebenen aufbauen, ohne diese zu
ersetzen. Wichtig ist die Feststellung,
dass die generischen Routinen, falls
sie richtig entworfen wurden, tiber die
Daten und die Funktionalitdt der ab-
geleiteten Objekte «wissen, was sie
wissen missen» und dass die hoheren
Routinen, die die Charakteristika der
generischen Routinen «erben», voll-
stindig konsistent zu den niedrigeren
Routinen ablaufen.

Die Unterstiitzung des «Prototy-
ping» durch einen objektorientierten
Entwurf ist insofern von Bedeutung,
als in einem gewissen Sinn jede Sy-
stemversion als Prototyp fiir die nach-
folgende Version aufgefasst werden
kann. Auch wenn spétere Erweiterun-
gen Anderungen oder die Zufiigung
neuer Basisobjekte erfordern kénnen,
wird die zugehorige Funktionalitat
entweder automatisch durch das Sy-
stem propagiert oder sie kann einge-
gliedert werden. Das bedeutet, dass
das System erweitert werden kann, um

% allgemein

die neue Funktionalitidt zu unterstiit-
zen, unabhéngig von deren vollen Im-
plementierung.

Erweiterung des
objektorientierten Entwurfes
auf die Systemebene

Objektorientierte Techniken kon-
nen auf natiirliche Weise auf die Sy-
stemebene erweitert werden, vorausge-
setzt, man akzeptiert die Notwendig-
keit einer Mehrzahl verschiedener Pa-
radigmen?® oder formaler Sprachen in-
nerhalb des Systems [3;4;5].

Ein friiher, bedeutender Schritt in
der Anwendung objektorientierter
Techniken wurde vor mehr als zwan-
zig Jahren durch die Entwicklung der
Unix Make Utility* vollzogen. Dies
war insofern ein wesentlicher Durch-
bruch im Bereich des Software Engi-
neering, als die Notwendigkeit er-
kannt wurde, den ausfithrbaren Pro-
zess, respektive seine Generierung, zu
definieren, eine formale Sprache fir
die Definition zu verwenden und mit
der Make Ultility die Definition von
der Realisierung zu trennen. Leider
scheint der Gebrauch solcher Techni-
ken auch heute noch wenig verbreitet
Zu sein.

Formale Sprachen

Es wurde bereits darauf hingewie-
sen, dass der Entwurf auf der hochst-
moglichen Ebene und in einer mog-
lichst prizisen Form formuliert wer-
den soll, weil diese Form die Absich-
ten des Entwicklers am besten wieder-
zugeben vermag und gegeniiber Ande-
rungen wiahrend der Realisierung am
unempfindlichsten sein sollte. Dies
kann wohl am besten - und vielleicht
ausschliesslich - durch den Gebrauch
formaler, lesbarer Sprachen erreicht
werden. Abgesehen von den gut be-
kannten Programmiersprachen sind
die Preprozessorsprache von C, die
Unix Make Utility, Knuths TeX, Ado-
bes Post Script und Ashton Tates
dBase-Konfigurationssprache (Set-Be-
fehle) ausgezeichnete Beispiele fiir den
Nutzen solcher Methoden.

Als spezifisches Beispiel konnen wir
annehmen, es sei zur Dateneingabe
eine Maske entworfen worden und es
sei nun deren Hintergrundfarbe festzu-

3 Darstellungen

4 Make ist ein Programm, welches die Generie-
rung eines Programmsystems ausgehend von
einer Definitionsdatei erlaubt.

14

Bulletin ASE/UCS 81(1990)13, 7 juillet

Technische Informationssysteme

legen. Bei manchen Systemen kann
der Beniitzer nach Belieben ein Icon
oder eine Menu-Position - etwa mit
Hintergrundfarbe bezeichnet - anwéh-
len und dann in einem nachfolgenden
Menu beispielsweise die Farbe Blau
wiahlen. Das System akzeptiert diese
Spezifikation und speichert die Infor-
mation iiblicherweise in einer «ver-
steckten» Form, beispielsweise durch
eine Modifikation der ausfiihrbaren
Bilddatei, durch Speicherung der In-
formation in einer zusétzlichen Daten-
bank, durch Setzen einer bestimmten
Variablen in einer Konfigurationsda-
tei auf einen bestimmten Wert oder,
wie hier vorgeschlagen, durch die Ver-
wendung einer formalen Sprache, d.h.
durch die Eingabe von Text - etwa

Grundsitze fiir einen
integrierten technischen

Systementwurf

Ein integriertes System muss mehr
sein als eine Ansammlung von Kom-
ponenten, die im Laufe der Zeit ohne
Disziplin und schlecht dokumentiert,
das heisst nicht nachvollziehbar, auf
einem Rechner oder auf einem Rech-
nernetz abgelegt wurden. Die Grund-
lage eines integrierten Systems ist eine
prizise formale Definition. Folgende
Grundsitze sollten beim Entwurf
eines integrierten technischen Infor-
mationssystems befolgt oder minde-
stens in Erwédgung gezogen werden:

1. Das Vorgehen soll so diszipliniert
und formal als moglich sein.

EVU

Datentypen eines integrierten technischen Informationssystems fiir

Die Daten eines technischen Informationssystem konnen entsprechend den folgenden
fiinf Typen klassiert werden. Die fiinf Klassierungen werden als erste Ebene der Verfei-
nerung in der Entwicklung von spezifischen, optimierten Strukturen angesehen, die
den effizienten Zugang zu technischen Daten unterstiitzen.

1. Physikalische Daten: die reale, in Vektorform abgespeicherte Eins-zu-Eins-Darstel-
lung der dreidimensionalen Umwelt. Im Extremfall kann aus einer solchen Reprisenta-
tion irgendeine Darstellung, von irgendeinem Gesichtswinkel aus betrachtet, erzeugt
werden. Auch ein Ausschnitt der physikalischen Dateneinheit ist fiir sich betrachtet
noch sinnvoll. Eine Karte stellt einen zweidimensionalen Fall dar. Zooming und Pan-
ning?’ sind zuldssig.

2. Symbolische Daten: schematische Darstellungen, beispielsweise Schaltdiagramme
als Abbild eines Systems der realen Welt. Sie sind im wesentlichen zweidimensional,
jedoch ohne massstabgerechten Bezug zur Wirklichkeit. Sie erfordern einen diskreten
Ansatz beim «Zooming» (Skalierung mit Decluttering®). Auch bei symbolischen Daten
kann die Betrachtung eines Teils sinnvoll sein.

3. Stark strukturierte Daten: Darstellung und Speicherung von Daten aufgrund eines
logischen Schemas, wobei die Interpretation der Daten ohne dieses Schema nicht még-
lich ist. Relationale Datenbanken und Spreadsheets fallen in diese Kategorie.

4. Minimal strukturierte Daten: Speicherung von Textinformation und zugehorigen
Kontrollsequenzen fiir die Darstellung entsprechend vordefinierter Formatierungskon-
zepte. Von speziellen Fillen abgesehen sind Zooming und im allgemeinen auch Aus-
schnitte nicht sinnvoll. Man beachte, dass innerhalb gewisser Grenzen das Layout von
Text und Zahlen auf deren Bedeutung keinen Einfluss hat.

5. Bilder und Videodaten: Sie werden aufgrund ihrer speziellen Eigenschaften als
gesonderte Kategorie betrachtet. Bilder werden als statisch, Videodaten als dynamisch
betrachtet. Sie sind in Pixelform gespeichert und kénnen, abgesehen von sehr speziellen
Ausnahmen, durch den Rechner nicht interpretiert werden.

5 Uberstreichen eines Winkelbereiches
¢ Entfernen von Detailinformationen

«Setze Hintergrundfarbe auf Blau» -
in einer «sichtbaren» Konfigurations-
datei.

Abgesehen von der Unempfindlich-
keit sprachlicher Formen gegen Ver-
falschungen fallt es relativ leicht, einen
angemessenen Ubersetzungsmecha-
nismus = zwischen unterschiedlichen
formalen Sprachen bereitzustellen.

2. Man versuche, das System zu mo-
dularisieren und die Spezifikationen
und Definitionen von der Realisierung
zu trennen, so dass ein moglichst mini-
maler Informationstransfer zwischen
den am Projekt Beteiligten notwendig
ist. Diskussionen sollten auf zwei Fra-
gen beschrinkt bleiben: «Entspricht
die Definition dem, was wir wollen; ist

sie vollstdndig?» und «Entspricht das
System der Definition ?».

3. Man verwende eine formale
Struktur mit integrierten freien und
formalen Textteilen. Fiir die Teile, die
vom Rechner interpretiert werden
miissen, werden mehrere Paradigmen
erforderlich sein. Grosses Gewicht
sollte selbst dann auf eine formale
oder pseudoformale Syntax gelegt
werden, wenn keine automatische In-
terpretation moglich ist.

4. Systemelemente sollen von den
einfach-generischen zu den detailliert-
komplex-spezifischen geplant und ent-
worfen werden. Spezielle Sorgfalt ist
der Festlegung der Schnittstellen zu
widmen.

5. Der Systementwurf soll in Ebenen
erfolgen, und es ist sicherzustellen,
dass jede Ebene ausschliesslich eine
strukturierte Objektmenge enthilt,
dass sie die Funktionalitdt bereitstellt,
um diese Objekte als Ganzes zu mani-
pulieren und sie frei zu bewegen oder
um ein bestimmtes Objekt anzuwih-
len. Funktionalitdt, die erforderlich
ist, um die interne Struktur eines Ob-
jektes zu manipulieren, muss durch
dieses und nur durch dieses Objekt ge-
liefert werden.

6. Man mache von der Tatsache Ge-
brauch, dass mit der Realisierung des
Top-Level-Entwurfes eigentlich ein
operationeller Prototyp entsteht, und
man stelle sicher, dass Systementwurf,
Systemrealisierung und System-Funk-
tionstest Hand in Hand ablaufen.

7. Objekt- oder datenorientierte Ent-
wurfsmethoden sind zu bevorzugen,
denn Methoden fiir die formale Defi-
nition von Datenstrukturen sind we-
sentlich weiter fortgeschritten als die
Methoden fiir die Beschreibung der
Funktionalitdt. Beim Systementwurf
sind Entscheidungen beziiglich der
Datenstrukturen meist die kritischsten.
Die vielen Vorteile, die dadurch ent-
stehen, dass ein System auf Objekten
aufbaut und Funktionalitdt auf diese
Objekte angewendet wird, sind gut do-
kumentiert.

8. Man betrachte die Prozeduren fiir
die Systemgenerierung und die Konfi-
gurationsparameter als Teil des Sy-
stementwurfes. Der Generierungspro-
zess sollte voll automatisiert sein, um
sicherzustellen, dass das erzeugte Sy-
stem die Systemspezifikationen zuver-
lassig wiedergibt. Alle manuellen Ope-
rationen und Dateneingaben sollten
formal dokumentiert werden. Diese
Forderung widerspricht dem heute po-
puldren interaktiven, «undisziplinier-
ten» Trend.

Bulletin SEV/VSE 81(1990)13, 7. Juli

Informatik

9. Fiir wichtige Schnittstellen ver-
wende man Standardsprachen wie
SQL, Post Script und X-Windows,
oder man entwerfe fiir die wichtigsten
Schnittstellen speziell —angepasste
Sprachen.

10. Durch Pseudo Reverse Enginee-
ring [6] schliesse man Entwurfsdefini-
tionen fiir vollimportierte Komponen-
ten ein.

I1. Man beachte strikte die Kon-
trollprozeduren fiir Arbeits- und Frei-
gabeversionen.

12. Man versuche, mindestens auf
dem Top-Level, eine Entwurfsphiloso-
phie zu verwenden, die jener, die bei
der Realisierung des Systems verwen-
det wird, um eine Generation voraus
1st.

Anwendung dieser
Entwurfstechnik auf die
Erstellung von integrierten
Systemen unter Verwendung
von Standardpaketen

Soll ein System vorwiegend durch
Standard- oder vollstdndig importierte
Pakete realisiert werden, sollten die
vorgehend beschriebenen Methoden
sowohl bei der Auswahl der Pakete als
auch bei der Realisierung des Systems
mittels dieser Pakete eingesetzt wer-
den. Selbst wenn der Umfang der
automatischen Realisierung gering
sein mag, kann die vorgeschlagene
Methodik unter Einsatz manueller
Konversion der formalen Definition
bei der Implementierung immer noch
Vorteile bieten.

Bei den meisten Systemen liegt wohl
der grosste Entwurfsaufwand der Ent-
wickler oder des EVU-Personals in der
Datenbank und in den damit verbun-
denen Dateneingabe- und Berichts-
programmen. Hier ist die Anwendung
der beschriebenen Methoden beson-
ders wichtig, auch wenn die Verkaufs-
publikationen der Datenbankherstel-
ler beziiglich der erforderlichen Diszi-
plin und der formalen Techniken ab
und zu einen andern Eindruck vermit-
teln. In Ubereinstimmung mit den auf-
gestellten Grundsitzen muss die Da-
tenbankentwurfsdefinition alle Aspek-
te des Datenbankentwurfes beriick-
sichtigen; sie kann sich nicht auf jene
beschrinken, die durch die aktuelle
Version des gewéhlten Datenbank-
Management-Systems akzeptiert wer-
den. Die Datenbank-Entwurfsdefini-
tionen sollten ebenfalls auf der hochst-
moglichen Ebene und so formal wie
moglich formuliert werden. Entitédten,
Beziehungen zwischen Entitidten, Do-
ménen, Schliissel usw., aber auch we-
sentliche Insert-, Delete- und Update-
Regeln sind explizite zu definieren
und zu dokumentieren. Dariiberhin-
aus ist es unerldsslich, dass EVU, die
beziiglich ihrer betrieblichen Abldufe
ja zunehmend auf Rechnerunterstiit-
zung zuriickgreifen, diese Ablaufe kor-
rekt und formal definieren sowie im-
plementieren und dass das Manage-
ment diese Festschreibung unterstiitzt.
Auch hier sei wiederum die Trennung
zwischen der formalen Festlegung des-
sen, was erreicht werden soll und der
Implementierung betont.

Schlussfolgerung

Es wurde das Prinzip aufgezeigt,
wonach der dokumentierte Entwurf
eines integrierten technischen Infor-
mationssystems explizite und formal
alles Notwendige enthalten muss, um
ein solches System zu produzieren,
dass der Rechner den Entwickler beim
Verfolgen und Kontrollieren des Ent-
wurfes unterstiitzen muss, dass er aber
die kreative Phase nicht behindern
darf. Eine gesunde Mischung von for-
malem und freiem Text diirfte dieser
Forderung am besten entsprechen. Es
wurde schliesslich betont, dass das ge-
nerierte, operationelle System den for-
malen, dokumentierten Entwurf
wieddergeben muss, und nicht ledig-
lich das Resultat zahlreicher interakti-
ver, durch nachtriglich nicht identifi-
zierbare Personen ausgefiihrter Ablau-
fe am Terminal sein darf.

Literaturverzeichnis

[1] P.W. Oman and C.R. Cook: The Book Para-
digm for Improved Maintenance. IEEE Soft-
ware, January 1990, pp 39...45.

[2] B. Meyer: Objectoriented Software Con-
struction. Prentice-Hall 1988.

[3]1 A.J. Czuchy, Jr. and D.R. Harris: KBRA: A
new Paradigm for Requirements Enginee-
ring. IEEE Expert 3(1988)4, pp 21...35.

[4] G.E. Kaiser, N.S. Barghouti, P.H. Feiler &
R.Schwanke: Database Support for Know-
ledge-Based Engineering Environments.
IEEE Expert 3(1988)2, pp 18..32.

[5] S. Rugaber, S.B. Ornburn and R.J. Le Blanc:
Recognising Design Decisions in Programs.
IEEE Software January 1990, pp 46...54

[6] E.J. Chikofsky and J.H. Cross: Reverse
Engineering and Design Recovery: A Taxo-
nomy. IEEE Software, January 1900, pp
13...17

Bulletin ASE/UCS 81(1990)13, 7 juillet

	Technische Informationssysteme in der Energieversorgung : moderne Entwurfsverfahren

