
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 81 (1990)

Heft: 13

Artikel: Technische Informationssysteme in der Energieversorgung : moderne
Entwurfsverfahren

Autor: Goudie, David

DOI: https://doi.org/10.5169/seals-903136

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903136
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Technische Informationssysteme

Technische Informationssysteme in der
Energieversorgung
Moderne Entwurfsverfahren

David Goudie

Der vorliegende Beitrag
beschreibt eine Entwurfsstrategie

sowie wesentliche Grundsätze.

die beim Entwurf eines
integrierten technischen
Informationssystems zu berücksichtigen

sind. Die Strategie betont
den formalen Ablauf sowie die
Notwendigkeit, mehrere Methoden

simultan anzuwenden.
Dabei soll der Rechner den
Entwickler eher unterstützen als
kontrollieren.

Le présent article décrit une
stratégie de projet ainsi que les
principes majeurs devant être
pris en compte lors de l'élaboration

d'un système d'information
technique intégré. La stratégie
souligne le déroulement formel
ainsi que la nécessité d'appliquer

simultanément plusieurs
méthodes. Au cours de cette
activité l'ordinateur est censé
soutenir l'opérateur plutôt que
de le contrôler.

Adresse des Autors

Dr. David Goudie Leiter Sparte
Netzmanagement, Colenco AG, Parkstrasse 27,
5401 Baden.

Ein Informationssystem für Elektrische

Energieversorgungsuntemehmen
(EVU) muss durch die Bereitstellung
von Informationen und Funktionen
die operationeilen Abläufe des
Unternehmens unterstützen. Da die im
Informationssystem gespeicherten
Informationen sowohl strategischer als
auch operationeller Art sein können,
hat ihre Sicherheit und Integrität beim
Systementwurf erste Priorität. Das
System sollte nicht primär auf den
gelegentlichen, ungeschulten Benutzer
ausgerichtet sein; dennoch muss der
innere Aufbau und die Konfiguration
des Systems für den Benutzer transparent

sein.
In einem integrierten Informationssystem

dürfen Benutzerinteraktion
und Datenzugang nicht durch technische

Eigenschaften einzelner
Systemkomponenten, sondern ausschliesslich
durch unterschiedliche Datentypen
und unterschiedliche Funktionalität
begrenzt sein - soweit unterschiedliche
Datenformate nicht konvertierbar
sind. Konkret bedeutet dies etwa, dass
das System die Möglichkeit bieten
muss, Texte, Graphiken und Bilder
frei in eine Dokumentation einzubauen,

dass aber eine automatische
Übersetzung von Texten oder die automatische

Erstellung von Bildlegenden
nicht gefordert werden können. Eine
explizite Forderung an ein
Informationssystem besagt ferner, dass -
abgesehen von Sicherheitsüberlegungen -
jedes einzelne Datenelement nur einmal

und nur in einer Form gespeichert
werden soll.

Ein technisches Informationssystem
enthält in erster Linie Angaben über
die physikalischen Eigenschaften von
«Dingen» oder Objekten. Beim heutigen

Stand der Technik sind im
allgemeinen unterschiedliche Modelle und
Methoden erforderlich, um
unterschiedliche Eigenschaften dieser
Objekte zu beschreiben. Im Rahmen auf

Seite 15 findet sich ein Überblick über
die Vielfalt der Datentypen, die ein
integriertes technisches Informationssystem

beherrschen muss.
Es mag etwas überraschen, dass

integrierte Systeme nicht dadurch realisiert

werden, dass man alle Komponenten

zu vereinheitlichen versucht,
sondern indem man die vom System
zu akzeptierenden Datentypen
identifiziert, formell definiert und anschliessend

die vorhandenen Daten gemäss
diesen Definitionen klassifiziert.

Das System als Entwurfsziel
Das Entwurfsziel ist ein integriertes

technisches Informations-Management-System,

das online die für
Entwurf, Beschaffung und Unterhalt
erforderlichen technischen, operationeilen

und wirtschaftlichen Daten des
* Versorgungsnetzes enthält und das
weiterhin auch die erforderlichen
Funktionen für Berichterstattung,
Analyse, Entwurf, Planung und
Betrieb bereitstellt. Information kann
sich dabei auf numerische Daten, auf
Texte, Graphiken, Diagramme und
Bilder beziehen und zwar sowohl
bezüglich des aktuellen Zustandes des

Systems als auch bezüglich Planungsszenarien

oder statistischer Analysen.
Es müssen deshalb fortschrittliche
Darstellungs-, Melde- und Analyse-
Algorithmen verfügbar sein. Die
Datenbank des Systems muss ausdrücklich

sämtliche vorhersehbaren
geographischen, betrieblichen und organisatorischen

Strukturen des EVU sowie
Verbindungen und Charakteristika
aller Einrichtungen berücksichtigen.
Sämtliche Daten sind bezüglich
Herkunft, Umfang und Qualität zu
qualifizieren. Diese Grundsätze sind auch
bei der Implementierung eines um-
fangmässig nicht sehr grossen Systems
zu berücksichtigen.

Bulletin SEV/VSE 81(1990)13, 7. Juli 13



Informatik

Ein integriertes technisches
Informationssystem lässt sich allein schon
durch die dadurch gegebene höhere
Datensicherheit und -Zuverlässigkeit
sowie die Kostenvorteile einer gut
definierten und korrekten Datenbank
rechtfertigen. Unkoordiniertes
Wuchern von Datenbeständen innerhalb
eines EVU verursacht bereits an sich
enorme Kosten. Zusätzlich sind
jedoch noch jene Kosten zu berücksichtigen,

die entstehen, wenn Analysen
und Entscheide auf falschen Daten
beruhen.

Systementwurf - alles ist
Entwurf, der Entwurf ist alles

Der Entwurf eines Informatiksystems

umfasst den gesamten Prozess
von der Abstraktionsebene einer Idee
bis zu jener Ebene, die sich zur
Ausführung auf dem Rechner eignet. Im
Laufe des Entwurfsprozesses werden
viele Aspekte des Entwurfes wiederholt

verändert, korrigiert oder erweitert.

Erfolgreiche, elegante Systeme
sind meist das Resultat eines solchen
iterativen Prozesses.

Der Entwurf kann zweckmässigerweise

durch eine (grosse) Zahl von
Einheiten - Module oder Abschnitte -
beschrieben werden. Der Quelltext
dieser Einheiten sollte in einer sehr
flexiblen Kombination von formaler
Sprache und freiem Text geschrieben
werden. Die zahlreichen Abhängigkeiten

im Systementwurf müssen dabei
ausdrücklich festgehalten werden; sie
dürfen nicht stillschweigend, implizite
in die Einheiten hineingedacht werden.

Die meisten Systementwürfe sind
von Natur aus stark vernetzt, und eine
Beschränkung auf eine willkürlich
vereinfachte Struktur ist deshalb nicht
zweckmässig. Die Quellen müssen
zusätzliche Angaben enthalten, die eine
Darstellung des Entwurfes in verschiedenen

geeigneten sieht- oder lesbaren
Formen erlauben [1]. Case1 Tools dienen

primär zur Unterstützung des

Entwurfsvorganges. Sie verfügen über
geeignete Ablagemethoden, sie erleichtern

die Systemgenerierung aus dem
Quelltext und ermöglichen die Verfolgung

und Analyse des Entwurfes. Case
Tools können jedoch die kreative Phase

des Entwurfes nicht direkt
unterstützen oder überwachen.

Viele Misserfolge im Systementwurf
sind auf mangelnde Disziplin und
mangelnden Formalismus in der Ent-

1 Computer Aided Software Engineering

wurfs- und Realisierungsphase sowie
auf eine unzulängliche konzeptionelle
Basis zur Integration unterschiedlicher
Datentypen und unterschiedlicher
Funktionalität zurückzuführen.

Objektorientierter Entwurf
Die Technik des objektorientierten

Entwurfes (OODT - Object Oriented
Design Techniques [2]) ist für den
Entwurf integrierter technischer
Informationssysteme besonders geeignet, da
sich diese definitionsgemäss mit
komplexen physikalischen Objekten befassen.

Ein objektorientierter Entwurf hat
heute gegenüber einem traditionellen,
auf der Funktionalität basierenden
Entwurf (Top-Down Functional
Design) bedeutende Vorteile, nicht zuletzt
weil er den Transfer des Entwurfes
von der Beschreibung in einer natürlichen

Sprache in eine formale Rechnersprache

unterstützt.
Ein objektorientiertes Vorgehen

führt zu einem stark strukturierten
Entwurf, und seine Implementierung
kann, Fland in Hand, von einfach ge-
nerisch2 zu detailliert komplex-spezifisch

erfolgen. Der Entwurf ist gegenüber

funktionalen Anforderungen,
späteren Erweiterungen und funktioneller

Implementierung relativ
unempfindlich; die eher generischen
Ebenen können darüberhinaus als
operationeile Prototypen betrachtet
werden, auf denen die eher spezifischen

Ebenen aufbauen, ohne diese zu
ersetzen. Wichtig ist die Feststellung,
dass die generischen Routinen, falls
sie richtig entworfen wurden, über die
Daten und die Funktionalität der
abgeleiteten Objekte «wissen, was sie
wissen müssen» und dass die höheren
Routinen, die die Charakteristika der
generischen Routinen «erben»,
vollständig konsistent zu den niedrigeren
Routinen ablaufen.

Die Unterstützung des «Prototyping»

durch einen objektorientierten
Entwurf ist insofern von Bedeutung,
als in einem gewissen Sinn jede
Systemversion als Prototyp für die
nachfolgende Version aufgefasst werden
kann. Auch wenn spätere Erweiterungen

Änderungen oder die Zufügung
neuer Basisobjekte erfordern können,
wird die zugehörige Funktionalität
entweder automatisch durch das
System propagiert oder sie kann
eingegliedert werden. Das bedeutet, dass
das System erweitert werden kann, um

1 allgemein

die neue Funktionalität zu unterstützen,

unabhängig von deren vollen
Implementierung.

Erweiterung des

objektorientierten Entwurfes
auf die Systemebene

Objektorientierte Techniken können

auf natürliche Weise auf die
Systemebene erweitert werden, vorausgesetzt,

man akzeptiert die Notwendigkeit
einer Mehrzahl verschiedener

Paradigmen3 oder formaler Sprachen
innerhalb des Systems [3;4;5].

Ein früher, bedeutender Schritt in
der Anwendung objektorientierter
Techniken wurde vor mehr als zwanzig

Jahren durch die Entwicklung der
Unix Make Utility4 vollzogen. Dies
war insofern ein wesentlicher Durchbruch

im Bereich des Software
Engineering, als die Notwendigkeit
erkannt wurde, den ausführbaren
Prozess, respektive seine Generierung, zu
definieren, eine formale Sprache für
die Definition zu verwenden und mit
der Make Utility die Definition von
der Realisierung zu trennen. Leider
scheint der Gebrauch solcher Techniken

auch heute noch wenig verbreitet
zu sein.

Formale Sprachen
Es wurde bereits darauf hingewiesen,

dass der Entwurf auf der
höchstmöglichen Ebene und in einer
möglichst präzisen Form formuliert werden

soll, weil diese Form die Absichten

des Entwicklers am besten
wiederzugeben vermag und gegenüber
Änderungen während der Realisierung am
unempfindlichsten sein sollte. Dies
kann wohl am besten - und vielleicht
ausschliesslich - durch den Gebrauch
formaler, lesbarer Sprachen erreicht
werden. Abgesehen von den gut
bekannten Programmiersprachen sind
die Preprozessorsprache von C, die
Unix Make Utility, Knuths TeX, Adobes

Post Script und Ashton Tates
dBase-Konfigurationssprache (Set-Be-
fehle) ausgezeichnete Beispiele für den
Nutzen solcher Methoden.

Als spezifisches Beispiel können wir
annehmen, es sei zur Dateneingabe
eine Maske entworfen worden und es
sei nun deren Hintergrundfarbe festzu-

3 Darstellungen

4 Make ist ein Programm, welches die Generierung

eines Programmsystems ausgehend von
einer Definitionsdatei erlaubt.

14 Bulletin ASE/UCS 81(1990)13, 7 juillet



Technische Informationssysteme

legen. Bei manchen Systemen kann
der Benützer nach Belieben ein Icon
oder eine Menu-Position - etwa mit
Hintergrundfarbe bezeichnet - anwählen

und dann in einem nachfolgenden
Menu beispielsweise die Farbe Blau
wählen. Das System akzeptiert diese
Spezifikation und speichert die
Information üblicherweise in einer
«versteckten» Form, beispielsweise durch
eine Modifikation der ausführbaren
Bilddatei, durch Speicherung der
Information in einer zusätzlichen Datenbank,

durch Setzen einer bestimmten
Variablen in einer Konfigurationsdatei

auf einen bestimmten Wert oder,
wie hier vorgeschlagen, durch die
Verwendung einer formalen Sprache, d.h.
durch die Eingabe von Text - etwa

«Setze Hintergrundfarbe auf Blau» -
in einer «sichtbaren» Konfigurationsdatei.

Abgesehen von der Unempfindlich-
keit sprachlicher Formen gegen
Verfälschungen fällt es relativ leicht, einen
angemessenen Übersetzungsmechanismus

zwischen unterschiedlichen
formalen Sprachen bereitzustellen.

Grundsätze für einen
integrierten technischen
Systementwurf

Ein integriertes System muss mehr
sein als eine Ansammlung von
Komponenten, die im Laufe der Zeit ohne
Disziplin und schlecht dokumentiert,
das heisst nicht nachvollziehbar, auf
einem Rechner oder auf einem
Rechnernetz abgelegt wurden. Die Grundlage

eines integrierten Systems ist eine
präzise formale Definition. Folgende
Grundsätze sollten beim Entwurf
eines integrierten technischen
Informationssystems befolgt oder mindestens

in Erwägung gezogen werden:
1. Das Vorgehen soll so diszipliniert

und formal als möglich sein.

2. Man versuche, das System zu mo-
dularisieren und die Spezifikationen
und Definitionen von der Realisierung
zu trennen, so dass ein möglichst
minimaler Informationstransfer zwischen
den am Projekt Beteiligten notwendig
ist. Diskussionen sollten auf zwei Fragen

beschränkt bleiben: «Entspricht
die Definition dem, was wir wollen; ist

sie vollständig?» und «Entspricht das

System der Definition?».
3. Man verwende eine formale

Struktur mit integrierten freien und
formalen Textteilen. Für die Teile, die
vom Rechner interpretiert werden
müssen, werden mehrere Paradigmen
erforderlich sein. Grosses Gewicht
sollte selbst dann auf eine formale
oder pseudoformale Syntax gelegt
werden, wenn keine automatische
Interpretation möglich ist.

4. Systemelemente sollen von den
einfach-generischen zu den detailliert-
komplex-spezifischen geplant und
entworfen werden. Spezielle Sorgfalt ist
der Festlegung der Schnittstellen zu
widmen.

5. Der Systementwurf soll in Ebenen
erfolgen, und es ist sicherzustellen,
dass jede Ebene ausschliesslich eine
strukturierte Objektmenge enthält,
dass sie die Funktionalität bereitstellt,
um diese Objekte als Ganzes zu
manipulieren und sie frei zu bewegen oder
um ein bestimmtes Objekt anzuwählen.

Funktionalität, die erforderlich
ist, um die interne Struktur eines
Objektes zu manipulieren, muss durch
dieses und nur durch dieses Objekt
geliefert werden.

6. Man mache von der Tatsache
Gebrauch, dass mit der Realisierung des

Top-Level-Entwurfes eigentlich ein
operationeller Prototyp entsteht, und
man stelle sicher, dass Systementwurf,
Systemrealisierung und System-Funktionstest

Hand in Hand ablaufen.
7. Objekt- oder datenorientierte

Entwurfsmethoden sind zu bevorzugen,
denn Methoden für die formale
Definition von Datenstrukturen sind
wesentlich weiter fortgeschritten als die
Methoden für die Beschreibung der
Funktionalität. Beim Systementwurf
sind Entscheidungen bezüglich der
Datenstrukturen meist die kritischsten.
Die vielen Vorteile, die dadurch
entstehen, dass ein System auf Objekten
aufbaut und Funktionalität auf diese
Objekte angewendet wird, sind gut
dokumentiert.

8. Man betrachte die Prozeduren für
die Systemgenerierung und die
Konfigurationsparameter als Teil des
Systementwurfes. Der Generierungspro-
zess sollte voll automatisiert sein, um
sicherzustellen, dass das erzeugte
System die Systemspezifikationen zuverlässig

wiedergibt. Alle manuellen
Operationen und Dateneingaben sollten
formal dokumentiert werden. Diese
Forderung widerspricht dem heute
populären interaktiven, «undisziplinierten»

Trend.

Datentypen eines integrierten technischen Informationssystems für
EVU
Die Daten eines technischen Informationssystem können entsprechend den folgenden
fünf Typen klassiert werden. Die fünf Klassierungen werden als erste Ebene der
Verfeinerung in der Entwicklung von spezifischen, optimierten Strukturen angesehen, die
den effizienten Zugang zu technischen Daten unterstützen.
1. Physikalische Daten: die reale, in Vektorform abgespeicherte Eins-zu-Eins-Darstel-
lung der dreidimensionalen Umwelt. Im Extremfall kann aus einer solchen Repräsentation

irgendeine Darstellung, von irgendeinem Gesichtswinkel aus betrachtet, erzeugt
werden. Auch ein Ausschnitt der physikalischen Dateneinheit ist für sich betrachtet
noch sinnvoll. Eine Karte stellt einen zweidimensionalen Fall dar. Zooming und
Panning5 sind zulässig.
2. Symbolische Daten: schematische Darstellungen, beispielsweise Schaltdiagramme
als Abbild eines Systems der realen Welt. Sie sind im wesentlichen zweidimensional,
jedoch ohne massstabgerechten Bezug zur Wirklichkeit. Sie erfordern einen diskreten
Ansatz beim «Zooming» (Skalierung mit Decluttering6). Auch bei symbolischen Daten
kann die Betrachtung eines Teils sinnvoll sein.
3. Stark strukturierte Daten: Darstellung und Speicherung von Daten aufgrund eines

logischen Schemas, wobei die Interpretation der Daten ohne dieses Schema nicht möglich

ist. Relationale Datenbanken und Spreadsheets fallen in diese Kategorie.
4. Minimal strukturierte Daten: Speicherung von Textinformation und zugehörigen
Kontrollsequenzen für die Darstellung entsprechend vordefinierter Formatierungskonzepte.

Von speziellen Fällen abgesehen sind Zooming und im allgemeinen auch
Ausschnitte nicht sinnvoll. Man beachte, dass innerhalb gewisser Grenzen das Layout von
Text und Zahlen auf deren Bedeutung keinen Einfluss hat.
5. Bilder und Videodaten: Sie werden aufgrund ihrer speziellen Eigenschaften als

gesonderte Kategorie betrachtet. Bilder werden als statisch, Videodaten als dynamisch
betrachtet. Sie sind in Pixelform gespeichert und können, abgesehen von sehr speziellen
Ausnahmen, durch den Rechner nicht interpretiert werden.

5 Überstreichen eines Winkelbereiches
6 Entfernen von Detailinformationen

Bulletin SEV/VSE 81(1990)13, 7. Juli 15



Informatik

9. Für wichtige Schnittstellen
verwende man Standardsprachen wie
SQL, Post Script und X-Windows,
oder man entwerfe für die wichtigsten
Schnittstellen speziell angepasste
Sprachen.

10. Durch Pseudo Reverse Engineering

[6] schliesse man Entwurfsdefinitionen

für vollimportierte Komponenten
ein.

11. Man beachte strikte die
Kontrollprozeduren für Arbeits- und
Freigabeversionen.

12. Man versuche, mindestens auf
dem Top-Level, eine Entwurfsphilosophie

zu verwenden, die jener, die bei
der Realisierung des Systems verwendet

wird, um eine Generation voraus
ist.

Anwendung dieser
Entwurfstechnik auf die
Erstellung von integrierten
Systemen unter Verwendung
von Standardpaketen

Soll ein System vorwiegend durch
Standard- oder vollständig importierte
Pakete realisiert werden, sollten die
vorgehend beschriebenen Methoden
sowohl bei der Auswahl der Pakete als
auch bei der Realisierung des Systems
mittels dieser Pakete eingesetzt werden.

Selbst wenn der Umfang der
automatischen Realisierung gering
sein mag, kann die vorgeschlagene
Methodik unter Einsatz manueller
Konversion der formalen Definition
bei der Implementierung immer noch
Vorteile bieten.

Bei den meisten Systemen liegt wohl
der grösste Entwurfsaufwand der
Entwickler oder des EVU-Personals in der
Datenbank und in den damit verbundenen

Dateneingabe- und
Berichtsprogrammen. Hier ist die Anwendung
der beschriebenen Methoden besonders

wichtig, auch wenn die
Verkaufspublikationen der Datenbankhersteller

bezüglich der erforderlichen Disziplin

und der formalen Techniken ab
und zu einen andern Eindruck vermitteln.

In Übereinstimmung mit den
aufgestellten Grundsätzen muss die
Datenbankentwurfsdefinition alle Aspekte

des Datenbankentwurfes
berücksichtigen; sie kann sich nicht auf jene
beschränken, die durch die aktuelle
Version des gewählten Datenbank-
Management-Systems akzeptiert werden.

Die Datenbank-Entwurfsdefinitionen
sollten ebenfalls auf der

höchstmöglichen Ebene und so formal wie
möglich formuliert werden. Entitäten,
Beziehungen zwischen Entitäten,
Domänen, Schlüssel usw., aber auch
wesentliche Insert-, Delete- und Update-
Regeln sind explizite zu definieren
und zu dokumentieren. Darüberhinaus

ist es unerlässlich, dass EVU, die
bezüglich ihrer betrieblichen Abläufe
ja zunehmend auf Rechnerunterstützung

zurückgreifen, diese Abläufe korrekt

und formal definieren sowie
implementieren und dass das Management

diese Festschreibung unterstützt.
Auch hier sei wiederum die Trennung
zwischen der formalen Festlegung dessen,

was erreicht werden soll und der
Implementierung betont.

Schlussfolgerung
Es wurde das Prinzip aufgezeigt,

wonach der dokumentierte Entwurf
eines integrierten technischen
Informationssystems explizite und formal
alles Notwendige enthalten muss, um
ein solches System zu produzieren,
dass der Rechner den Entwickler beim
Verfolgen und Kontrollieren des
Entwurfes unterstützen muss, dass er aber
die kreative Phase nicht behindern
darf. Eine gesunde Mischung von
formalem und freiem Text dürfte dieser
Forderung am besten entsprechen. Es
wurde schliesslich betont, dass das
generierte, operationeile System den
formalen, dokumentierten Entwurf
wieddergeben muss, und nicht lediglich

das Resultat zahlreicher interaktiver,

durch nachträglich nicht
identifizierbare Personen ausgeführter Abläufe

am Terminal sein darf.

Literaturverzeichnis
[1] P.W. Oman and CR. Cook: The Book Para¬

digm for Improved Maintenance. IEEE
Software, January 1990, pp 39...45.

[2] B. Meyer: Objectoriented Software
Construction. Prentice-Hall 1988.

[3] A.J. Czuchy, Jr. and D R. Harris: KBRA: A
new Paradigm for Requirements Engineering.

IEEE Expert 3(1988)4, pp21...35.
[4] G.E. Kaiser, N.S. Barghouli, P H. Feiler &

R.Schwanke: Database Support for
Knowledge-Based Engineering Environments.
IEEE Expert 3(1988)2, pp 18..32.

[5] S. Rugaber, S.B. Ornburn and R.J. Le Blanc:
Recognising Design Decisions in Programs.
IEEE Software January 1990, pp 46...54

[6] E.J. Chikofsky and J.II. Cross: Reverse
Engineering and Design Recovery: A
Taxonomy. IEEE Software, January 1900, pp
13...17

16 Bulletin ASE/UCS 81(1990)13, 7 juillet


	Technische Informationssysteme in der Energieversorgung : moderne Entwurfsverfahren

