
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 81 (1990)

Heft: 13

Artikel: Von der Subroutinentechnik zur objektorientierten Programmierung :
Teil 1 : Subroutinen und Prozeduren

Autor: Marty, Rudolf

DOI: https://doi.org/10.5169/seals-903135

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903135
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Objektorien tierte Programmierung

Von der Subroutinentechnik zur
objektorientierten Programmierung
Teil 1 Subroutinen und Prozeduren

Rudolf Marty

Objektorientierte Programmierung

ist eines der Schlagworte,
auf das selbst der Software-Laie
immer wieder stösst. Ausgehend

vom guten alten Subrouti-
nenkonzept zeigt der Autor in
drei Folgeaufsätzen, wie die
Softwareentwicklung durch
Überwindung von Unvollkom-
menheiten der jeweils vorhergehenden

Stufe fast zwangsläufig
zu einer objektorientierten
Softwarekonstruktion führt, wobei
mit Unvollkommenheit vor allem
eine schlechte Wiederverwendbarkeit

und ungenügende
Datensicherheit gemeint sind.

La programmation orientée objet
est un de ces slogans auquel se
heurte même le profane en logiciel

fréquemment. Se basant sur
le bon vieux concept des sous-
programmes, l'auteur montre
dans une succession de trois
articles comment le développement

de logiciels - du fait que
l'on surmonte les imperfections
de chaque étape précédente -
mène presque inévitablement à

une construction logicielle orientée

objet; par imperfections on
entend surtout une mauvaise
aptitude à la réutilisation et une
sécurité de données insuffisante.

Adresse des Autors
Prof. Dr. RudolfMarty Schweiz.
Bankgesellschaft, Ubilab (UBS Informatics
Laboratory), 8021 Zürich

Das Gebiet des Software Engineering

hat sich einhergehend mit der
Aufgliederung und methodischen
Verbreiterung der Informatik enorm stark
ausgeweitet. Nach Pomberger verstehen

wir heute unter Software Engineering

«... die praktische Anwendung
wissenschaftlicher Erkenntnisse für
die wirtschaftliche Herstellung und
den wirtschaftlichen Einsatz zuverlässiger

und effizienter Software» [1]. Im
weiten Feld der Interessenströmungen,

Forschungsarbeiten und
Entwicklungsvorhaben innerhalb des Software
Engineering nimmt die Frage der
konstruktiven Gliederung von Programmen

eine zentrale Rolle ein: Seit den
Anfängen der Softwareentwicklung
beschäftigt uns die Frage, durch welche

Entwurfsmethoden und
Gliederungsstrukturen wir das Ziel hochwertiger,

kostengünstiger Software am
besten erreichen können. Stichworte zu
Entwicklungen in diesem Bereich sind
unter vielen anderen: Makro-Kon-
strukte, Prozeduren/Funktionen,
Blockstruktur, strukturierte Programmierung,

Modularität, abstrakte
Datentypen und Information Hiding.

Objektorientierte Software ist ein in
jüngerer Zeit auf sehr viel Interesse
stossendes Konstruktionsprinzip für
Computerprogramme. Auf wenige
Wesenszüge reduziert geht es dabei
darum, Software durch Reproduktionen

von Objektbeschreibungen zu
erzeugen. Eine Objektbeschreibung
enthält Definitionen von Daten zusammen

mit einer Spezifikation der auf
diese Daten anwendbaren Aktionen.
Im Unterschied zu der modularen
Programmierung, wie sie zum Beispiel
Modula-2 [2] zugrunde liegt, sind
Objektbeschreibungen lediglich eine Art
Typenbeschreibung. Sie bilden keine
real existierenden Konstrukte wie etwa
ein Modul im Sinne von Modula-2.

Erst durch Instantiierung einer
Objektbeschreibung wird ein Objekt
erzeugt, ähnlich wie erst durch die
Deklaration einer Variablen in Modula-2
oder Pascal [3] ein Datenobjekt vom
angegebenen Typ erzeugt wird, nicht
bereits durch die Typendefinition.

Ausserordentlich wichtig, ja geradezu

zentral für den Erfolg der
objektorientierten Softwareentwicklung ist
die Tatsache, dass diese Beschreibungen

nicht jeweils eine vollständige
Definition des Objektverhaltens, also all
seiner Daten und Aktionen beinhaltet.
Die Objektbeschreibungen sind in
einer Hierarchie angeordnet, so dass
auf jeder Hierarchiestufe nur jeweils
diejenigen Daten und Aktionen
spezifiziert werden, die in übergeordneten
Objektbeschreibungen nicht bereits
definiert wurden. Dabei werden die
Modifikationen an Daten und Aktionen

beschrieben, ohne die übergeordneten

Objektbeschreibungen zu verändern.

Damit steht die objektorientierte
Softwareentwicklung im krassen
Gegensatz zu der modularen Programmierung,

bei der eine Wiederverwendung

eines Moduls nur dann ohne
Korrekturen an dessen Implementationsteil

möglich ist, wenn im Rahmen
der Wiederverwendung das Modulverhalten,

das heisst die semantische und
die syntaktische Schnittstelle zum Modul,

unverändert passt.
Durch die Möglichkeit der inkre-

mentellen Ergänzung und Anpassung
von Objektbeschreibungen, ohne dabei

deren Code anzutasten, eröffnen
sich der Wiederverwendbarkeit von
Softwarekomponenten neue Dimensionen.

Wie zu zeigen sein wird, hat
dies profunde Auswirkungen auf die
Organisation von Softwaresystemen
als Ganzem. Anstelle der heute
weitverbreiteten Bibliotheken von
wiederverwendbaren Funktionsmodulen, de¬

Bulletin SEV/VSE 81(1990)13, 7. Juli 7



Informatik

ren Komponenten bei der Konstruktion

von Software verwendet werden,
entstehen Bibliotheken von
Objektbeschreibungshierarchien, die eigentliche

Applikationsrahmen bilden.
Beispiele für solche Applikationsrahmen
sind MacApp [4] und ET++ [5].

Statt das Gerüst einer Applikation
immer wieder von neuem zu bauen
und sodann Bibliotheksmodule
einzubinden, wird in der objektorientierten
Softwareentwicklung von vorgefertigten

Applikationen und Applikationsteilen

ausgegangen, die an die konkreten

Bedürfnisse angepasst werden,
ohne diese übernommenen Teile
jedoch zu verändern. Damit können
später Änderungen an den vorgefertigten

Applikationsteilen vorgenommen
werden, die völlig transparent und
ohne weiteres Zutun auch auf alle hie-
von abgeleiteten Applikationen
durchdringen. Eine Situation, die im klassischen

Schema der Wiederverwendung
von Programmteilen undenkbar ist,
werden doch hierbei die Programmteile

typischerweise mit einem Editor auf
Quelltextebene physisch kopiert und
abgeändert.

Objektorientierte Softwareentwicklung
ist also mehr als nur ein neues

Programmierparadigma, mehr als
lediglich eine Erweiterung prozeduraler
und modularer Programmiersprachen.
Durch die Wiederverwendung von
bestehenden Komponenten unter
Vornahme von Abänderungen, ohne dabei

das Prinzip des Information Hiding
[6] zu verletzen, wird die Softwareentwicklung

auf neue Fundamente
gebaut. Möglich wird dies zunächst
durch die Verwendung objektorientierter

Programmiersprachen. Software

mit einer solchen zu implementieren,

führt jedoch noch nicht automatisch

zu einem objektorientierten
Softwaresystem. Erst durch Befolgung von
objektorientierten Konstruktionsprinzipien

wird dieses Ziel erreicht. Wie
auf der ganzen Breite des Software
Engineering, so müssen auch in der
objektorientierten Softwareentwicklung

Methodik und Werkzeuge aufeinander

abgestimmt sein: Ohne Verwendung

einer objektorientierten
Programmiersprache ist keine sinnvolle
objektorientierte Konstruktion möglich,

ohne objektorientierte Konstruktionslehre

enstehen anderseits selbst
bei Verwendung einer objektorientierten

Programmiersprache keine
befriedigenden objektorientierten Systeme.

Die folgenden Ausführungen sind
als Einstiegslektüre in die objektorientierte

Softwareentwicklung gedacht.

Sie führen über fünf markante
Gliederungsstufen prozeduraler
Programmiersprachen zu einem Verständnis
der Grundfesten objektorientierter
Programmierung. Die Diskussion der
einzelnen Gliederungsstufen ist be-
wusst relativ ausführlich gehalten, um
auch einem im Umgang mit prozedu-
ralen und modularen Programmiertechniken

nicht ausgebildeten Praktiker

eine methodisch saubere, schrittweise

Flinführung zum Konzept
objektorientierter Software zu bieten.
Informatiker mit entsprechenden
Vorkenntnissen können ohne weiteres
direkt zu den Ausführungen über die
Schwachstellen der Prozeduren in
Kapitel 3 (Seite 9) oder die Schwachstellen

der Module in Kapitel 4 (im
2. Teil) springen.

1. Am Anfang war die
Maschine

Die Computer der Frühzeit elektronischer

Informationsverarbeitung waren

durch sehr knapp bemessene
Speicher- und Prozessorressourcen
gekennzeichnet. Es galt, der
«Rechenmaschine» die zu bearbeitenden
Vorgänge möglichst kompakt und auf
deren Maschinenstruktur angepasst zu
beschreiben. Eine wichtige Konsequenz

dieser Art der Programmierung
war die Modellierung der Denkvorgänge

im Kopf des Software-Ingenieurs:

Er dachte in der Begriffswelt
und in Konzepten der Maschine, er
gab durch sein Programm der Maschine

Schritt für Schritt vor, was sie zu
tun habe. Der gute Programmierer
formulierte nicht nur, nein, er dachte
auch in der «Maschinenweit». Seine
Qualifikation war insbesondere davon
geprägt, wie gut er die Eigenheiten der
Maschine kannte, wie füllig seine Pro-
grammier-Trickkiste war und wie gut
er Speicherauszüge lesen konnte.

Die Abstraktionslücke zwischen
Problem und Programm war damals
enorm gross, und die Abbildung eines
Problems in ein einigermassen
effizientes Programm erforderte profunde
Maschinenkenntnisse. Eine kleinere
Linderung dieser Situation erfolgte
durch das Konzept der sogenannten
Subroutinen oder Unterprogramme,
die wir nun als ersten Abstraktionsschritt

auf dem Wege von der
unstrukturierten, maschinenbezogenen
Programmierung zu objektorientierter
Software betrachten.

2. Ein erster
Abstraktionsschritt :

Subroutinen
Die Wurzeln der Subroutinen- oder

Unterprogrammtechnik gehen auf das
Bestreben zurück, in einem Programm
mehrmals vorkommende Codesequenzen

auszugliedern, an einem Platz
zusammenzufassen und sodann durch
eine geeignete Instruktion (meist call
subroutine oder ähnlich genannt)
aufzurufen.

Informationskapselung, Abstraktion
Neben der blossen Platzersparnis,

die im Rahmen unserer Überlegungen
an dieser Stelle nicht interessiert, wurde

durch das Subroutinenkonzept
auch eine Verbesserung der
Programmstruktur und eine Anhebung
des Abstraktionsniveaus der Programmierung

erreicht: Die konkrete
Instruktionsfolge zur Ausführung einer
bestimmten Operation auf bestimmte
Daten bleibt durch den Subroutinen-
aufruf verborgen. Die Subroutine ist
also eine Art abstrakte, «höhere»
Operation. Sie kapselt eine Instruktionsfolge

gegen aussen ab, der Programmierer

braucht sich bei deren Aufruf
nicht mehr um Instruktionsdetails zu
kümmern.

Ein Problem tritt auf, wenn die
gewünschte abstrakte Operation nicht
stets dieselbe ist, sondern in einem
gewissen Grad parametrisiert werden
muss. Ein Beispiel hierfür ist eine
Subroutine zur Berechnung des Barwertes
einer Rente, die mit Zinssatz, Rentenbetrag

und Laufzeit der Rente parametrisiert

werden muss. In Ermangelung
eines Parameterkonzeptes, das uns die
Subroutinen ja nicht zur Verfügung
stellen, werden globale Variablen zu
Parametern «missbraucht», wobei diese

Variablenverwendung zur Steuerung

der Subroutine im besten Fall in
einem ihr vorangestellen Kommentar
erklärt wird. Im schlechteren und oft
anzutreffenden Fall wird eine solche
«Pseudo-Parametrisierung» nur durch
Analyse des Subroutinencodes deutlich.

Neben der Steuerung einer abstrakten

Operation über Globalvariablen
verbleibt natürlich noch das Problem
des Datenaustausches zwischen dem
aufrufenden Programmteil und der
Subroutine. Die Subroutinentechnik
bietet uns auch in diesem Bereich keine

spezielle Unterstützung durch
zweckmässige Konstruktionen. Aus
der Beschreibung der Subroutine

8 Bulletin ASE/UCS 81(1990)13, 7 juillet



Objektorien tierte Programmierung

(Kommentar innerhalb des

Programmcodes oder separate Dokumentation)

geht hervor, auf welchen globalen

Datenobjekten eine Subroutine
ihre Funktionen ausführt, welche sie
modifiziert und in welchen sie Resultate

ablegt. Globale Datenobjekte
übernehmen eine Art Transferrolle,
treten also in eine Art Import-Export-
Schnittstellenrolle, ohne dass sie
syntaktisch irgendwie besonders bezeichnet

würden. Ihre spezielle Rolle tritt
direkt nur durch die Analyse des
Programmcodes oder indirekt durch
Kommentare und Dokumentation
hervor.

Zur Erfüllung ihrer Aufgabe benötigt

eine Subroutine in praktisch jedem
Fall eine Anzahl von sogenannten
Arbeitsvariablen. Beispiele hierfür sind
Schleifenvariablen, Indizes,
Temporärvariablen zur Speicherung von
Zwischenresultaten usw. Da die Subrouti-
nentechnik keine Möglichkeit zur
lokalen, das heisst an die Subroutine
gebundenen Deklaration von Variablen
bietet, werden die Arbeitsvariablen
aller Subroutinen im globalen Namensbereich

gehalten. Sie sind folglich
allen Programmteilen bekannt und können

überall verwendet werden. Eine
sehr unliebsame Folge davon ist die
Verunmöglichung einer konsequenten
Abkapselung der subroutineninternen
Datenobjekte gegen missbräuchliche
Verwendung von aussen.

Subroutinen in höheren
Programmiersprachen

Das Subroutinenkonzept, das in seiner

Grundstruktur aus der Programmierung

in Maschinensprache bzw.
Assembler stammt, wurde in mehreren
höheren Programmiersprachen zwar
syntaktisch etwas angehoben, in seiner
methodischen Grundstruktur jedoch
unverändert übernommen. Es seien
hier nur zwei repräsentative Beispiele
genannt: Cobol und Basic. Eine Co-
bol-Subroutine wird gebildet durch
eine Sequenz von Paragraphen, die
durch PERFORM-Anweisungen
aufgerufen werden, in Basic werden
Sequenzen von Anweisungen durch GO-
SUB als Subroutine ausgeführt.

Auch in diesen sogenannten «höheren»

Programmiersprachen verbleiben
natürlich die Kernprobleme der
konventionellen Subroutinenstrukturen
wie mangelhafte Abstraktion, Interde-
pendenzen über externe Variablen und
das Fehlen von lokalen Arbeitsvariablen.

Lediglich bei Verwendung von
externen Subroutinen (in Cobol mit

einer CALL-Anweisung aufgerufen)
und bei Basic-Funktionen werden die
Probleme ein wenig in Richtung eines
Prozedurkonzeptes gelindert.

Schwachstellen des

Subroutinenkonzeptes

Den Zielen einer möglichst in sich
abgeschlossenen Abkapselung von
Programmfunktionen und den syntaktisch

klar formulierten Beziehungen
zwischen einer solcherart abgekapselten

Funktion und ihrer Umwelt wird
bei Subroutinen in keiner Art und
Weise Rechnung getragen.
Konsequenzen sind unter anderem:
- mangelhafte funktionale Abstraktion,

insbesondere wegen des Fehlens
eines sauberen Parametermechanismus

und der Möglichkeit zur Deklaration

von lokalen Arbeitsvariablen
- schwer lesbare und modifizierbare
Programme sowie unerwünschte
Nebeneffekte und Fehlersituationen
durch versteckte funktionale und da-
tenmässige Beziehungen zwischen
Programmteilen
- geringe Förderung der
Wiederverwendbarkeit von Programmkomponenten

als Folge der «Verwebung»
von Subroutinen über die Verwendung
von Globalvariablen.

3. Ein zweiter
Abstraktionsschritt :

Prozeduren, Funktionen
In den sechziger Jahren entstand,

hauptsächlich durch die Entwicklung
von Algol geprägt, eine prägnante
Umorientierung der Denkweise über
algorithmische Prozesse. Die
herkömmliche Sicht, ein Programm weise
den Computer «Schritt für Schritt» an,
was er zu tun habe, wurde abgelöst
durch eine mathematisch-abstrakte
Denkweise: Ein Programm beschreibt
ein Problem in einer höheren,
mathematischen Notation; die Übersetzersoftware

und die Hardware sorgen
sodann für die Ausführung der algorithmischen

Problembeschreibung, des

Programmes also.
Die Mathematisierung der

Softwareentwicklung hatte selbstverständlich
einen grossen Einfluss auf die Evolution

der Programmiersprachen und
insbesondere auch auf die syntaktische
und semantische Ausgestaltung ihrer
Konstrukte zur Strukturierung und
Modularisierung von Softwarekomponenten.

Ein Resultat war die
Verfeinerung des Konzeptes parametrisierter

Subroutinen, wie sie von Fortran
bekannt waren, in ein eigentliches
Prozedurkonzept.

Eine Funktion ist eine Prozedur, die
einen Rückgabewert erzeugt. Leider
werden die Begriffe Prozedur und
Funktion nicht in allen Programmiersprachen

konsistent verwendet. Manche

kennen nur Prozeduren (z.B.
Modula-2) oder ausschliesslich Funktionen

(z.B. C [7]); in diesen Sprachen
wird dann zwischen Prozeduren bzw.
Funktionen mit Rückgabewert und
solchen ohne unterschieden. Wo dies
nicht besonders vermerkt ist, meinen
wir mit Prozedur jeweils auch solche,
die einen Wert zurückgeben.

Das Prozedurkonzept ist Ausgangspunkt

und Fundament für die
Beschreitung des Weges hin zu einer
entwicklungstechnisch adäquaten
Problemformulierung auf abstraktem
Niveau. Alle weiteren, im Laufe der
schrittweisen Hinführung zur
objektorientierten Softwaregliederung
besprochenen Gliederungsstrukturen
von Software bauen auf dem
Prozedurkonzept auf. Um so erstaunlicher
ist die Tatsache, dass in der Praxis solche

Programmiersprachen die weiteste
Verbreitung haben (und wohl auch
noch einige Zeit haben werden), die
noch nicht einmal den Schritt von den
Subroutinenstrukturen zum Prozedurkonzept

vollzogen haben.
Welches sind die wichtigsten

methodisch-konzeptionellen Fortschritte der
Prozedurtechnik gegenüber der Sub-
routinentechnik?
- Eine Prozedur implementiert eine
bestimmte (abstrakte) Funktion. Ihre
Aktivierung (bzw. ihr Aufruf) nimmt
im Programm die Form einer
mathematischen Funktionsbezeichnung an
(z.B. Lies(KdNr) oder arctan(y)). Ein
Prozeduraufruf kann deshalb im
Gegensatz zu Subroutinen überall da
vorkommen, wo ein Wert benötigt wird,
also beispielsweise auch direkt in
Ausdrücken wie sqrt(sin(x)/cos(x)). Eine
Prozedur ist ein sauberes mathematisches

Konzept (mindestens solange sie
keine Nebeneffekte hat), wohingegen
die Subroutine ein Maschinenkonzept
ist.

- Eine Prozedur kann parametrisiert
werden. Dadurch entsteht eine klare,
syntaktisch und beschränkt auch
semantisch überprüfbare
Kommunikationsschnittstelle zwischen aufrufendem

Programmteil und der Prozedur.
Dasselbe gilt sinngemäss für Rückgabewerte

einer Prozedur bzw. einer
Funktion. Die bei den Subroutinen
besprochene, fehleranfällige und obsku-

Bulletin SEV/VSE 81(1990)13, 7. Juli 9



Informatik

var a,b,c : real;
i ; integer;
Top : integer ;

procedure LadeElement (x,y: real; n: integer) ;
beginif n > MaxElt then

Stop("Überlauf von <Tab>")
else begin

Tab[n] := sqrt(sqr(x) + sqr(y));if n > Top then Top := n
end

end;

function Annuität (Kapital,ZSatz: real;
Jahre: integer): real ;

var r,rn: real;
begin

r := 1 + ZSatz/100;
rn := exp(r,Jahre); /* errechnet r hoch Jahre */
Annuität := Kapital * rn * (r-1) / (rn - 1)

end;

Top := 0;

LadeElement(a,b,39);

writeln("jährliche Abzahlung Annuität(a, c,24): 8 : 4) ;

Bild 1 Prozeduren und Funktionen in Pascal

re Kommunikation über globale
Variablen entfällt.
- Eine Prozedur hat einen eigenen
Namensbereich, es können also innerhalb

ihrer Grenzen Objekte deklariert
werden, die ausserhalb der Prozedur
unbekannt und nicht zugreifbar sind.
Im Unterschied zu Subroutinen, die
keinen eigenen Namensbereich
aufweisen, werden Arbeitsvariablen
innerhalb der Prozeduren abgekapselt.

Prozeduren und Funktionen in Pascal
und C

Betrachten wir zur Illustration die
syntaktische Struktur von Prozeduren
bzw. Funktionen in Pascal und in C.
Es handelt sich um dasselbe
Programmgerüst mit je einer Prozedur mit
und einer ohne Rückgabewert (Bild 1

und 2).
Da in der Folge oft C++ [8]-Pro-

grammfragmente erscheinen werden,
sei für den C-Neuling gleich hier auf
ein paar von manchen anderen Sprachen

abweichende syntaktische Eigenheiten

der Sprache C hingewiesen:
- Den begin-end-Paaren, wie sie in

chen in C die geschweiften Klammern

- In Deklarationen steht der Typ stets

vor den Namen der deklarierten
Objekte:

float a,b

deklariert also a und b als reelle (Gleit-
komma-)Variablen,

int F(...)

definiert den Rückgabewert der Funktion

F als integer.
- Das Symbol « » ist in C das
Zuweisungssymbol, der relationale Operator
«gleich» nimmt die Form « » an.

Die prozedurale Grundstruktur
gleicht sich in den meisten
Programmiersprachen, die ein Prozedurkonzept

unterstützen. Immerhin gibt es

zwischen Pascal und C zwei
bemerkenswerte Unterschiede:

- Pascal kennt keine sogenannten
statischen Variablen. Deshalb nehmen
alle in einer Prozedur oder Funktion
deklarierten Variablen bei jedem Ein¬

tritt Undefinierte Werte an. Muss sich
eine Pascal-Prozedur oder -Funktion
gewisse Daten merken (also einen
Zustand konservieren), so ist sie gezwungen,

eine globale Variable dazu zu
verwenden (siehe Top in Bild 1). Dies ist
ein grosser Nachteil, da dies zu einer
Durchlöcherung des Prinzips der
Informationskapselung führt und potentielle

Fehlersituationen schafft. In C
behalten die als static deklarierten
Variablen ihren Wert über Aufrufe hinweg

(siehe Top in Bild 2).

- In C, das immer von Funktionen
spricht, selbst bei Prozeduren ohne
Rückgabewert wie LadeElement in
Bild 2, können Funktionen lexikalisch
nicht ineinander verschachtelt werden.
Es gibt daher lediglich zwei hierarchische

Namensbereiche: den globalen
Namensbereich und den Namensbereich

je Funktion.

Schrittweise Verfeinerung
Das Prinzip der schrittweisen

Verfeinerung (Stepwise Refinement) wurde

von Wirth als algorithmische
Konstruktionslehre propagiert [9]. Sie ist
eine im Rahmen prozeduralen
Aufbaus von Software sehr typische und
immer noch aktuelle Methode: Man
beginnt bei der Konzeption eines
Programmes oder eines Programmteils
auf einer hohen Abstraktionsstufe und
definiert dieser Stufe entsprechende,
hypothetische Funktionen. Sodann
zergliedert man diese hypothetischen
(abstrakten) Funktionen in eine Reihe
weniger abstrakte Funktionen, die
man im nächsten Schritt einzeln
betrachtet. So fährt man weiter, bis man
in Top-Down-Manier auf der Stufe
des Programmcodes angelangt ist.
Durch hierarchische Komposition der
Einzelfunktionen integriert man die
Software schliesslich bottom-up.

Die schrittweise Verfeinerung ist
eine ausserordentlich stark funktions-
orientierte Entwurfsmethode, die nur
sehr beschränkt zu Fokalität von Daten

führt. Gewiss, die Arbeitsvariablen
und die Parameterstrukturen der dabei
entworfenen Funktionen genügen dem
Prinzip der Informationskapselung,
der Fokalität von Daten also. Was wir
jedoch durch schrittweise Verfeinerung

nicht erhalten, sind
Softwarestrukturen höherer Ordnung, wie die
nachfolgend besprochenen Module
oder gar Klassenhierarchien. Es ist für
das Verständnis der Prinzipien
objektorientierter Softwareentwicklung
wichtig, das Prinzip der schrittweisen
Verfeinerung als Entwurfsmethode in

10 Bulletin ASE/UCS 81(1990)13, 7 juillet



Objektorien tierte Programmierung

float a,b,c;
int i ;

LadeElement (x,y,n)
float x,y;
int n ;

{
static int Top 0;

if (n > MaxElt)
Stop("Überlauf von <Tab>") ;

else
Tab[n] sqrt(sqr(x) + sqr(y));
if (n > Top) Top n;

float Annuität (Kapital,ZSatz,Jahre)
float Kapital,ZSatz;
int Jahre;

float r,rn;
r 1 + ZSatz/100;
rn exp(r,Jahre); /* errechnet r hoch Jahre */
return (Kapital * rn * (r-1) / (rn - 1));

LadeElement(a,b,39);

printf("jährliche Abzahlung %8.2f", Annuität(a,c,24))

Bild 2 Prozeduren und Funktionen in C

denjenigen Bereich einzuordnen, in
den es auch gehört: Entwurf von
Prozeduren und Funktionen auf unterster
Stufe, gewissermassen auf der «Mikro-
stufe» der Programmierung.

Schwachstellen des Prozedurkonzeptes

Auch bei der Verwendung von
Prozeduren verbleiben eine Reihe von
gravierenden Schwachstellen, die uns
die Anwendung höherer Konzepte zur
Strukturierung von Software als
wünschenswert erscheinen lassen:

- Die «Aussenbeziehungen» einer
Prozedur sind lediglich was den
Verkehr über Parameter und Rückgabewerte

betrifft aus der Prozedurdeklaration
ersichtlich. Die Verwendung von

externen Variablen wird nirgends
besonders vermerkt; in dieser Beziehung
bieten die Prozeduren keine
Fortschritte gegenüber Subroutinen.
- Irrtümlichen Zugriffen auf externe
Variablen werden folglich keine
syntaktischen oder semantischen Schranken

gesetzt. Wird in einer Prozedur
beispielsweise eine Arbeitsvariable i

verwendet, und wird deren Deklara¬

tion innerhalb der Prozedur vergessen,
so wird eine global deklarierte Variable

i angesprochen. Dies kann zu Fehlern

führen, wenn dadurch
Invarianzannahmen in anderen Programmteilen
verletzt werden.

- Eine Kapselung von höheren
Datenobjekten umfasst stets Datenkomponenten

und zugehörige Funktionen.
Die Kapselung eines Koordinatensystems

schliesst beispielsweise die
Repräsentation der Koordinaten (z.B.
polare und kartesische) sowie die
Funktionen zur Durchführung von
Operationen auf Koordinaten ein.
Durch Prozeduren allein ist eine solche

Modellierung nicht sauber möglich,

da damit keine syntaktisch einfache

und semantisch genügende
Konstruktion zur Zusammenfassung von
Daten und Funktionen zu einem gegen
aussen abgekapselten Ganzen zur
Verfügung steht. Insbesondere störend ist
die Ausgliederung aller permanenten
Statusvariablen aus Prozeduren in den
globalen Bereich, was in allen Sprachen

ohne statische Variablen zur
Notwendigkeit wird.
- Weitgehend gleiche Gründe führen

zur Einsicht, dass durch ein Prozedurkonzept

allein eine anwendungsorien-
tierte Modellierung von Subsystemen
wie Grafiksysteme, Datenbanksysteme,

Kommunikationsdienste,
Betriebssystemservices usw. kaum sauber
möglich ist. Wo dies trotzdem getan
wird, verwaltet die Klientensoftware
meist direkt oder indirekt auch
Datenbestände, die eigentlich vollständig
zum Subsystem selbst gehörten (siehe
beispielsweise in der Macintosh Toolbox

[10]). Auch stellt das Subsystem
häufig auf ein «wohlwollendes»
Verhalten der Klientensoftware ab und
verspricht bei allfälligem Fehlverhalten

(z.B. durch falsche Parameter oder
unzulässige Folgen von Funktionsaufrufen)

Undefinierte Resultate.
Diese Schwachstellen des

Prozedurkonzeptes traten natürlich im Umfeld
professioneller Softwareentwicklung
sehr bald an die Oberfläche. Dies war
ein Grund, warum beispielsweise derart

viele Pascal-Erweiterungen
definiert wurden. Die meisten davon
enthielten Konstrukte, die genau die
aufgezeigten Schwachstellen zu lindern
versuchten und damit in Richtung der
als nächstes zu besprechenden Module
gingen. Im Rahmen dieser Einführung
in objektorientierte Software beleuchten

wir einzelne typische
Entwicklungsstufen. Es ist dem Kenner der
Programmiersprachen-Evolution aber
klar, dass in der Realität diese Schritte
nicht so klar und für sich isoliert dastehen.

Sie sind vielmehr Ausprägungen
einer kontinuierlichen Entwicklung.

(Teil 2 folgt im Heft 17/90)

Literatur
[1] G. Pomberger: Softwaretechnik und Modula-2,

Carl-Hanser-Verlag, 1984.
[2] N. Wirth: Programming in Modula-2, Sprin¬

ger-Verlag, 1982.

[3] R. Marly: Methodik der Programmierung in
Pascal, Springer-Verlag, 1986.

[4] K. Schmucker: Object Oriented Program¬
ming for the Macintosh, Hayden Book Company,

1986.

[5] E. Gamma. A. Weinand, R. Marty: ET++ -
An Object Oriented Application Framework
in C+ + Proceedings of OOPSLA '88, ACH,
1988.

[6] D. Parnas: On the Criteria to be Used in
Decomposing Systems into Modules,
Communications of the ACM 15 (1972) 12.

[7] B.W. Kernighan. D.M. Ritchie: The C Pro¬

gramming Language, Prentice-Hall, 1978.

[8] B. Stroustrup: The C++ Programming Lan¬

guage, Addison-Wesley, 1986.

[9] N. Wirth: Program Development by Step¬
wise Refinement, Communications of the
ACM 14(1971)4.

[10] Apple Computer Inc.: Inside Macintosh, Vol.
I-V, Addison-Wesley, 1988.

Bulletin SEV/VSE 81(1990)13, 7. Juli 11



Unser Entstörungslabor

- prüft die Störempfindlichkeit und das Störvermögen,
- bestimmt Störschutz- und Schirmmassnahmen,
- kontrolliert Apparate und Anlagen auf Einhaltung der gesetzlichen Störschutzbestimmungen,
- führt Prototyp- und serienmässige Entstörungen aus,
- steht Fabrikations- und Importfirmen für fachmännische Beratung in EMV-Problemen zur Verfügung.

PRO RADIO-TELEVISION, Entstörungslabor, 3084 Wabern, Telefon 031 /54 2244

In modernen Unternehmen ist es üblich,
Schutzbefehle optisch zu übertragen.

Aus sicherheitstechnischen, wirtschaftlichen und

anwenderspezifischen Gründen wird vielfach FOX 20

bevorzugt. Denn unser modulares 20-Kanal-Lichtleitersystem

für die Übermittlung von Daten, Sprache und speziell
Schutzbefehlen ist ganz auf Sicherheit ausgelegt. Durch

fehlerhafte Schutzsignalübertragung verursachte

Fehlschaltungen von Energieversorgungsanlagen und die damit

verbundenen hohen Folgekosten fallen dahin! Dann haben

wirfür den Einsatz in der Elektrizitätswirtschaft ein spezielles

Sortiment von Schnittstellen für den Anschluss an

Signalquellen ohne Modems, Fernauslösgeräte und andere

kostspielige Komponenten entwickelt. Zur Schonung der

Investitions- und Unterhaltsbudgets! Weiter sind dank der

digitalen Durchschalt- und Abzweigtechnik nebst Punkt-

Punkt-Verbindungen auch komplette Telekommunikationsnetze

für die diversen EW-Applikationen realisierbar. Einfacher

und anwenderfreundlicher geht's nicht! Natürlich

spricht noch einiges mehr für FOX 20. Was genau, hören

Sie, nachdem Sie uns mit Ihrer

Visitenkarte ein Zeichen gegeben

haben. __

ABB Infocom, Abt. ENF, 5300 Turgi

Tel. 056 29 27 47, Fax 056 29 94 61 ASEA BROWN BOVERI

12


	Von der Subroutinentechnik zur objektorientierten Programmierung : Teil 1 : Subroutinen und Prozeduren

