Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 81 (1990)

Heft: 13

Artikel: Von der Subroutinentechnik zur objektorientierten Programmierung :
Teil 1 : Subroutinen und Prozeduren

Autor: Marty, Rudolf

DOl: https://doi.org/10.5169/seals-903135

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903135
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Objektorientierte Programmierung

Von der Subroutinentechnik zur
objektorientierten Programmierung

Teil 1T Subroutinen und Prozeduren

Rudolf Marty

Objektorientierte Programmie-
rung ist eines der Schlagworte,
auf das selbst der Software-Laie
immer wieder stosst. Ausge-
hend vom guten alten Subrouti-
nenkonzept zeigt der Autor in
drei Folgeaufsatzen, wie die
Softwareentwicklung durch
Uberwindung von Unvollkom-
menheiten der jeweils vorherge-
henden Stufe fast zwangslaufig
zu einer objektorientierten Soft-
warekonstruktion fiihrt, wobei
mit Unvollkommenheit vor allem
eine schlechte Wiederverwend-
barkeit und ungeniigende Daten-
sicherheit gemeint sind.

La programmation orientée objet
est un de ces slogans auquel se
heurte méme le profane en logi-
ciel fréequemment. Se basant sur
le bon vieux concept des sous-
programmes, I’auteur montre
dans une succession de trois
articles comment le développe-
ment de logiciels — du fait que
I'on surmonte les imperfections
de chaque étape précédente —
meéne presque inévitablement a
une construction logicielle orien-
tee objet; par imperfections on
entend surtout une mauvaise
aptitude a la réutilisation et une
sécurité de données insuffi-
sante.

Adresse des Autors

Prof. Dr. Rudolf Marty , Schweiz.
Bankgesellschaft, Ubilab (UBS Informatics
Laboratory), 8021 Ziirich

Das Gebiet des Software Enginee-
ring hat sich einhergehend mit der
Aufgliederung und methodischen Ver-
breiterung der Informatik enorm stark
ausgeweitet. Nach Pomberger verste-
hen wir heute unter Software Enginee-
ring «...die praktische Anwendung
wissenschaftlicher Erkenntnisse fir
die wirtschaftliche Herstellung und
den wirtschaftlichen Einsatz zuverlds-
siger und effizienter Software» [1]. Im
weiten Feld der Interessenstromun-
gen, Forschungsarbeiten und Entwick-
lungsvorhaben innerhalb des Software
Engineering nimmt die Frage der kon-
struktiven Gliederung von Program-
men eine zentrale Rolle ein: Seit den
Anfingen der Softwareentwicklung
beschiftigt uns die Frage, durch wel-
che Entwurfsmethoden und Gliede-
rungsstrukturen wir das Ziel hochwer-
tiger, kostengiinstiger Software am be-
sten erreichen kdnnen. Stichworte zu
Entwicklungen in diesem Bereich sind
unter vielen anderen: Makro-Kon-
strukte, Prozeduren/Funktionen,
Blockstruktur, strukturierte Program-
mierung, Modularitdt, abstrakte Da-
tentypen und Information Hiding.

Objektorientierte Software ist ein in
jungerer Zeit auf sehr viel Interesse
stossendes Konstruktionsprinzip fiir
Computerprogramme. Auf wenige
Wesensziige reduziert geht es dabei
darum, Software durch Reproduktio-
nen von Objektbeschreibungen zu er-
zeugen. Eine Objektbeschreibung ent-
hélt Definitionen von Daten zusam-
men mit einer Spezifikation der auf
diese Daten anwendbaren Aktionen.
Im Unterschied zu der modularen Pro-
grammierung, wie sie zum Beispiel
Modula-2 [2] zugrunde liegt, sind Ob-
jektbeschreibungen lediglich eine Art
Typenbeschreibung. Sie bilden keine
real existierenden Konstrukte wie etwa
ein Modul im Sinne von Modula-2.

Erst durch Instantiierung einer Ob-
jektbeschreibung wird ein Objekt er-
zeugt, dhnlich wie erst durch die De-
klaration einer Variablen in Modula-2
oder Pascal [3] ein Datenobjekt vom
angegebenen Typ erzeugt wird, nicht
bereits durch die Typendefinition.

Ausserordentlich wichtig, ja gerade-
zu zentral fiir den Erfolg der objekt-
orientierten Softwareentwicklung ist
die Tatsache, dass diese Beschreibun-
gen nicht jeweils eine vollstandige De-
finition des Objektverhaltens, also all
seiner Daten und Aktionen beinhaltet.
Die Objektbeschreibungen sind in
einer Hierarchie angeordnet, so dass
auf jeder Hierarchiestufe nur jeweils
diejenigen Daten und Aktionen spezi-
fiziert werden, die in iibergeordneten
Objektbeschreibungen nicht bereits
definiert wurden. Dabei werden die
Modifikationen an Daten und Aktio-
nen beschrieben, ohne die iibergeord-
neten Objektbeschreibungen zu verin-
dern. Damit steht die objektorientierte
Softwareentwicklung iin krassen Ge-
gensatz zu der modularen Program-
mierung, bei der eine Wiederverwen-
dung eines Moduls nur dann ohne
Korrekturen an dessen Implementa-
tionsteil moglich ist, wenn im Rahmen
der Wiederverwendung das Modulver-
halten, das heisst die semantische und
die syntaktische Schnittstelle zum Mo-
dul, unverdndert passt.

Durch die Méoglichkeit der inkre-
mentellen Ergdnzung und Anpassung
von Objektbeschreibungen, ohne da-
bei deren Code anzutasten, erdffnen
sich der Wiederverwendbarkeit von
Softwarekomponenten neue Dimen-
sionen. Wie zu zeigen sein wird, hat
dies profunde Auswirkungen auf die
Organisation von Softwaresystemen
als Ganzem. Anstelle der heute weit-
verbreiteten Bibliotheken von wieder-
verwendbaren Funktionsmodulen, de-

Bulletin SEV/VSE 81(1990)13, 7. Juli

Informatik

ren Komponenten bei der Konstruk-
tion von Software verwendet werden,
entstehen Bibliotheken von Objektbe-
schreibungshierarchien, die eigentli-
che Applikationsrahmen bilden. Bei-
spiele fiir solche Applikationsrahmen
sind MacApp [4]und ET** [5].

Statt das Geriist einer Applikation
immer wieder von neuem zu bauen
und sodann Bibliotheksmodule einzu-
binden, wird in der objektorientierten
Softwareentwicklung von vorgefertig-
ten Applikationen und Applikations-
teilen ausgegangen, die an die konkre-
ten Bediirfnisse angepasst werden,
ohne diese iibernommenen Teile je-
doch zu verindern. Damit konnen
spiter Anderungen an den vorgefertig-
ten Applikationsteilen vorgenommen
werden, die vollig transparent und
ohne weiteres Zutun auch auf alle hie-
von abgeleiteten Applikationen durch-
dringen. Eine Situation, die im klassi-
schen Schema der Wiederverwendung
von Programmteilen undenkbar ist,
werden doch hierbei die Programmtei-
le typischerweise mit einem Editor auf
Quelltextebene physisch kopiert und
abgedndert.

Objektorientierte Softwareentwick-
lung ist also mehr als nur ein neues
Programmierparadigma, mehr als le-
diglich eine Erweiterung prozeduraler
und modularer Programmiersprachen.
Durch die Wiederverwendung von be-
stehenden Komponenten unter Vor-
nahme von Abédnderungen, ohne da-
bei das Prinzip des Information Hiding
[6] zu verletzen, wird die Softwareent-
wicklung auf neue Fundamente ge-
baut. Moglich wird dies zunéchst
durch die Verwendung objektorien-
tierter Programmiersprachen. Softwa-
re mit einer solchen zu implementie-
ren, filhrt jedoch noch nicht automa-
tisch zu einem objektorientierten Soft-
waresystem. Erst durch Befolgung von
objektorientierten Konstruktionsprin-
zipien wird dieses Ziel erreicht. Wie
auf der ganzen Breite des Software En-
gineering, so missen auch in der
objektorientierten Softwareentwick-
lung Methodik und Werkzeuge aufein-
ander abgestimmt sein: Ohne Verwen-
dung einer objektorientierten Pro-
grammiersprache ist keine sinnvolle
objektorientierte Konstruktion mog-
lich, ohne objektorientierte Konstruk-
tionslehre enstehen anderseits selbst
bei Verwendung einer objektorientier-
ten Programmiersprache keine befrie-
digenden objektorientierten Systeme.

Die folgenden Ausfithrungen sind
als Einstiegslektiire in die objektorien-
tierte Softwareentwicklung gedacht.

Sie fiihren iiber fiinf markante Gliede-
rungsstufen prozeduraler Program-
miersprachen zu einem Verstdndnis
der Grundfesten objektorientierter
Programmierung. Die Diskussion der
einzelnen Gliederungsstufen ist be-
wusst relativ ausfithrlich gehalten, um
auch einem im Umgang mit prozedu-
ralen und modularen Programmier-
techniken nicht ausgebildeten Prakti-
ker eine methodisch saubere, schritt-
weise Hinfithrung zum Konzept ob-
jektorientierter Software zu bieten. In-
formatiker mit entsprechenden Vor-
kenntnissen kdonnen ohne weiteres di-
rekt zu den Ausfiihrungen iiber die
Schwachstellen der Prozeduren in Ka-
pitel 3 (Seite 9) oder die Schwachstel-
len der Module in Kapitel 4 (im
2. Teil) springen.

1. Am Anfang war die
Maschine

Die Computer der Friihzeit elektro-
nischer Informationsverarbeitung wa-
ren durch sehr knapp bemessene Spei-
cher- und Prozessorressourcen ge-
kennzeichnet. Es galt, der «Rechen-
maschine» die zu bearbeitenden Vor-
giange moglichst kompakt und auf de-
ren Maschinenstruktur angepasst zu
beschreiben. Eine wichtige Konse-
quenz dieser Art der Programmierung
war die Modellierung der Denkvor-
giange im Kopf des Software-Inge-
nieurs: Er dachte in der Begriffswelt
und in Konzepten der Maschine, er
gab durch sein Programm der Maschi-
ne Schritt fiir Schritt vor, was sie zu
tun habe. Der gute Programmierer for-
mulierte nicht nur, nein, er dachte
auch in der «Maschinenwelt». Seine
Qualifikation war insbesondere davon
geprigt, wie gut er die Eigenheiten der
Maschine kannte, wie fiillig seine Pro-
grammier-Trickkiste war und wie gut
er Speicherausziige lesen konnte.

Die Abstraktionsliicke zwischen
Problem und Programm war damals
enorm gross, und die Abbildung eines
Problems in ein einigermassen effi-
zientes Programm erforderte profunde
Maschinenkenntnisse. Eine kleinere
Linderung dieser Situation erfolgte
durch das Konzept der sogenannten
Subroutinen oder Unterprogramme,
die wir nun als ersten Abstraktions-
schritt auf dem Wege von der unstruk-
turierten, maschinenbezogenen Pro-
grammierung zu objektorientierter
Software betrachten.

2. Ein erster
Abstraktionsschritt:
Subroutinen

Die Wurzeln der Subroutinen- oder
Unterprogrammtechnik gehen auf das
Bestreben zuriick, in einem Programm
mehrmals vorkommende Codesequen-
zen auszugliedern, an einem Platz zu-
sammenzufassen und sodann durch
eine geeignete Instruktion (meist call
subroutine oder dhnlich genannt) auf-
zurufen.

Informationskapselung, Abstraktion

Neben der blossen Platzersparnis,
die im Rahmen unserer Uberlegungen
an dieser Stelle nicht interessiert, wur-
de durch das Subroutinenkonzept
auch eine Verbesserung der Pro-
grammstruktur und eine Anhebung
des Abstraktionsniveaus der Program-
mierung erreicht: Die konkrete In-
struktionsfolge zur Ausfiihrung einer
bestimmten Operation auf bestimmte
Daten bleibt durch den Subroutinen-
aufruf verborgen. Die Subroutine ist
also eine Art abstrakte, «hdhere» Ope-
ration. Sie kapselt eine Instruktions-
folge gegen aussen ab, der Program-
mierer braucht sich bei deren Aufruf
nicht mehr um Instruktionsdetails zu
kiimmern.

Ein Problem tritt auf, wenn die ge-
wiinschte abstrakte Operation nicht
stets dieselbe ist, sondern in einem ge-
wissen Grad parametrisiert werden
muss. Ein Beispiel hierfiir ist eine Sub-
routine zur Berechnung des Barwertes
einer Rente, die mit Zinssatz, Renten-
betrag und Laufzeit der Rente parame-
trisiert werden muss. In Ermangelung
eines Parameterkonzeptes, das uns die
Subroutinen ja nicht zur Verfiigung
stellen, werden globale Variablen zu
Parametern «missbraucht», wobei die-
se Variablenverwendung zur Steue-
rung der Subroutine im besten Fall in
einem ihr vorangestellen Kommentar
erklart wird. Im schlechteren und oft
anzutreffenden Fall wird eine solche
«Pseudo-Parametrisierung» nur durch
Analyse des Subroutinencodes deut-
lich.

Neben der Steuerung einer abstrak-
ten Operation iiber Globalvariablen
verbleibt natiirlich noch das Problem
des Datenaustausches zwischen dem
aufrufenden Programmteil und der
Subroutine. Die Subroutinentechnik
bietet uns auch in diesem Bereich kei-
ne spezielle Unterstiitzung durch
zweckmaissige Konstruktionen. Aus
der Beschreibung der Subroutine

Bulletin ASE/UCS 81(1990)13, 7 juillet

Objektorientierte Programmierung

(Kommentar innerhalb des Pro-
grammcodes oder separate Dokumen-
tation) geht hervor, auf welchen globa-
len Datenobjekten eine Subroutine
ihre Funktionen ausfiihrt, welche sie
modifiziert und in welchen sie Resul-
tate ablegt. Globale Datenobjekte
iibernehmen eine Art Transferrolle,
treten also in eine Art Import-Export-
Schnittstellenrolle, ohne dass sie syn-
taktisch irgendwie besonders bezeich-
net wiirden. Ihre spezielle Rolle tritt
direkt nur durch die Analyse des Pro-

grammcodes oder indirekt durch
Kommentare und Dokumentation
hervor.

Zur Erfillung ihrer Aufgabe beno-
tigt eine Subroutine in praktisch jedem
Fall eine Anzahl von sogenannten Ar-
beitsvariablen. Beispiele hierfiir sind
Schleifenvariablen, Indizes, Tempo-
rarvariablen zur Speicherung von Zwi-
schenresultaten usw. Da die Subrouti-
nentechnik keine Mdglichkeit zur lo-
kalen, das heisst an die Subroutine ge-
bundenen Deklaration von Variablen
bietet, werden die Arbeitsvariablen al-
ler Subroutinen im globalen Namens-
bereich gehalten. Sie sind folglich al-
len Programmteilen bekannt und kon-
nen tiberall verwendet werden. Eine
sehr unliebsame Folge davon ist die
Verunmdoglichung einer konsequenten
Abkapselung der subroutineninternen
Datenobjekte gegen missbriauchliche
Verwendung von aussen.

Subroutinen in hoheren
Programmiersprachen

Das Subroutinenkonzept, das in sei-
ner Grundstruktur aus der Program-
mierung in Maschinensprache bzw.
Assembler stammt, wurde in mehreren
hoheren Programmiersprachen zwar
syntaktisch etwas angehoben, in seiner
methodischen Grundstruktur jedoch
unverdndert iibernommen. Es seien
hier nur zwei représentative Beispiele
genannt: Cobol und Basic. Eine Co-
bol-Subroutine wird gebildet durch
eine Sequenz von Paragraphen, die
durch PERFORM-Anweisungen auf-
gerufen werden, in Basic werden Se-
quenzen von Anweisungen durch GO-
SUB als Subroutine ausgefiihrt.

Auch in diesen sogenannten «hdhe-
ren» Programmiersprachen verbleiben
natiirlich die Kernprobleme der kon-
ventionellen Subroutinenstrukturen
wie mangelhafte Abstraktion, Interde-
pendenzen liber externe Variablen und
das Fehlen von lokalen Arbeitsvaria-
blen. Lediglich bei Verwendung von
externen Subroutinen (in Cobol mit

einer CALL-Anweisung aufgerufen)
und bei Basic-Funktionen werden die
Probleme ein wenig in Richtung eines
Prozedurkonzeptes gelindert.

Schwachstellen des
Subroutinenkonzeptes

Den Zielen einer moglichst in sich
abgeschlossenen Abkapselung von
Programmfunktionen und den syntak-
tisch klar formulierten Beziehungen
zwischen einer solcherart abgekapsel-
ten Funktion und ihrer Umwelt wird
bei Subroutinen in keiner Art und
Weise Rechnung getragen. Konse-
quenzen sind unter anderem:

- mangelhafte funktionale Abstrak-
tion, insbesondere wegen des Fehlens
eines sauberen Parametermechanis-
mus und der Méoglichkeit zur Deklara-
tion von lokalen Arbeitsvariablen

- schwer lesbare und modifizierbare
Programme sowie unerwiinschte Ne-
beneffekte und Fehlersituationen
durch versteckte funktionale und da-
tenméssige Beziehungen zwischen
Programmteilen

- geringe Forderung der Wiederver-
wendbarkeit von Programmkompo-
nenten als Folge der «Verwebung»
von Subroutinen iiber die Verwendung
von Globalvariablen.

3. Ein zweiter
Abstraktionsschritt:
Prozeduren, Funktionen

In den sechziger Jahren entstand,
hauptsidchlich durch die Entwicklung
von Algol geprigt, eine préignante
Umorientierung der Denkweise iiber
algorithmische Prozesse. Die her-
kommliche Sicht, ein Programm weise
den Computer «Schritt fiir Schritt» an,
was er zu tun habe, wurde abgeldst
durch eine mathematisch-abstrakte
Denkweise: Ein Programm beschreibt
ein Problem in einer hoheren, mathe-
matischen Notation; die Ubersetzer-
software und die Hardware sorgen so-
dann fiir die Ausfithrung der algorith-
mischen Problembeschreibung, des
Programmes also.

Die Mathematisierung der Software-
entwicklung hatte selbstverstindlich
einen grossen Einfluss auf die Evolu-
tion der Programmiersprachen und
insbesondere auch auf die syntaktische
und semantische Ausgestaltung ihrer
Konstrukte zur Strukturierung und
Modularisierung von Softwarekom-
ponenten. Ein Resultat war die Verfei-
nerung des Konzeptes parametrisierter

Subroutinen, wie sie von Fortran be-
kannt waren, in ein eigentliches Proze-
durkonzept.

Eine Funktion ist eine Prozedur, die
einen Riickgabewert erzeugt. Leider
werden die Begriffe Prozedur und
Funktion nicht in allen Programmier-
sprachen konsistent verwendet. Man-
che kennen nur Prozeduren (z.B. Mo-
dula-2) oder ausschliesslich Funktio-
nen (z.B. C [7]); in diesen Sprachen
wird dann zwischen Prozeduren bzw.
Funktionen mit Riickgabewert und
solchen ohne unterschieden. Wo dies
nicht besonders vermerkt ist, meinen
wir mit Prozedur jeweils auch solche,
die einen Wert zuriickgeben.

Das Prozedurkonzept ist Ausgangs-
punkt und Fundament fiir die Be-
schreitung des Weges hin zu einer ent-
wicklungstechnisch adidquaten Pro-
blemformulierung auf abstraktem Ni-
veau. Alle weiteren, im Laufe der
schrittweisen Hinfithrung zur objekt-
orientierten Softwaregliederung be-
sprochenen Gliederungsstrukturen
von Software bauen auf dem Proze-
durkonzept auf. Um so erstaunlicher
ist die Tatsache, dass in der Praxis sol-
che Programmiersprachen die weiteste
Verbreitung haben (und wohl auch
noch einige Zeit haben werden), die
noch nicht einmal den Schritt von den
Subroutinenstrukturen zum Prozedur-
konzept vollzogen haben.

Welches sind die wichtigsten metho-
disch-konzeptionellen Fortschritte der
Prozedurtechnik gegeniiber der Sub-
routinentechnik?

- Eine Prozedur implementiert eine
bestimmte (abstrakte) Funktion. Ihre
Aktivierung (bzw. ihr Aufruf) nimmt
im Programm die Form einer mathe-
matischen Funktionsbezeichnung an
(z.B. Lies(KdNr) oder arctan(y)). Ein
Prozeduraufruf kann deshalb im Ge-
gensatz zu Subroutinen iberall da vor-
kommen, wo ein Wert bendtigt wird,
also beispielsweise auch direkt in Aus-
driicken wie sqrt(sin(x)/cos(x)). Eine
Prozedur ist ein sauberes mathemati-
sches Konzept (mindestens solange sie
keine Nebeneffekte hat), wohingegen
die Subroutine ein Maschinenkonzept
ist.

- Eine Prozedur kann parametrisiert
werden. Dadurch entsteht eine klare,
syntaktisch und beschrdnkt auch se-
mantisch liberprifbare Kommunika-
tionsschnittstelle zwischen aufrufen-
dem Programmteil und der Prozedur.
Dasselbe gilt sinngemiéss fiir Riickga-
bewerte einer Prozedur bzw. einer
Funktion. Die bei den Subroutinen be-
sprochene, fehleranfillige und obsku-

Bulletin SEV/VSE 81(1990)13, 7. Juli

Informatik

var a,b,c : real;
i : integer;
Top : integer;

begin
if n > MaxElt then

else begin
Tab(n] :=
if n > Top then Top
end
end;

Jahre:

var r,rn: real;
begin

r := 1 + ZSatz/100;

rn := exp(r,Jahre);

Annuitat
end;

Top := 0;

LadeElement(a,b,39);

procedure LadeElement (x,y: real; n: integer) ;
Stop ("Uberlauf von <Tab>")

sqrt(sqr(x) + sqr(y))i
= n

function Annuitat (Kapital,Zsatz: real;
integer): real;

/* errechnet r hoch Jahre */
:= Kapital * rn * (r-1) / (rn - 1)

writeln("jahrliche Abzahlung = ", Annuitat(a,c,24):8:4);

Bild1 Prozeduren und Funktionen in Pascal

re Kommunikation iiber globale Va-
riablen entfallt.

- Eine Prozedur hat einen eigenen
Namensbereich, es kdnnen also inner-
halb ihrer Grenzen Objekte deklariert
werden, die ausserhalb der Prozedur
unbekannt und nicht zugreifbar sind.
Im Unterschied zu Subroutinen, die
keinen eigenen Namensbereich auf-
weisen, werden Arbeitsvariablen in-
nerhalb der Prozeduren abgekapselt.

Prozeduren und Funktionen in Pascal
und C

Betrachten wir zur Illustration die
syntaktische Struktur von Prozeduren
bzw. Funktionen in Pascal und in C.
Es handelt sich um dasselbe Pro-
grammgeriist mit je einer Prozedur mit
und einer ohne Riickgabewert (Bild 1
und 2).

Da in der Folge oft C** [§]-Pro-
grammfragmente erscheinen werden,
sei fiir den C-Neuling gleich hier auf
ein paar von manchen anderen Spra-
chen abweichende syntaktische Eigen-
heiten der Sprache C hingewiesen:

- Den begin-end-Paaren, wie sie in

chen in C die geschweiften Klammern

- In Deklarationen steht der Typ stets
vor den Namen der deklarierten Ob-
jekte:

float a,b

deklariert also a und b als reelle (Gleit-
komma-)Variablen,

intF(...)

definiert den Riickgabewert der Funk-
tion F als integer.
- Das Symbol «=» ist in C das Zuwei-
sungssymbol, der relationale Operator
«gleich» nimmt die Form «==» an.
Die prozedurale Grundstruktur
gleicht sich in den meisten Program-
miersprachen, die ein Prozedurkon-
zept unterstiitzen. Immerhin gibt es
zwischen Pascal und C zwei bemer-
kenswerte Unterschiede:
- Pascal kennt keine sogenannten sta-
tischen Variablen. Deshalb nehmen
alle in einer Prozedur oder Funktion
deklarierten Variablen bei jedem Ein-

tritt undefinierte Werte an. Muss sich
eine Pascal-Prozedur oder -Funktion
gewisse Daten merken (also einen Zu-
stand konservieren), so ist sie gezwun-
gen, eine globale Variable dazu zu ver-
wenden (siehe Top in Bild 1). Dies ist
ein grosser Nachteil, da dies zu einer
Durchlocherung des Prinzips der In-
formationskapselung fiihrt und poten-
tielle Fehlersituationen schafft. In C
behalten die als static deklarierten Va-
riablen ihren Wert iiber Aufrufe hin-
weg (siehe Top in Bild 2).

- In C, das immer von Funktionen
spricht, selbst bei Prozeduren ohne
Riickgabewert wie LadeElement in
Bild 2, k6nnen Funktionen lexikalisch
nicht ineinander verschachtelt werden.
Es gibt daher lediglich zwei hierarchi-
sche Namensbereiche: den globalen
Namensbereich und den Namensbe-
reich je Funktion.

Schrittweise Verfeinerung

Das Prinzip der schrittweisen Ver-
feinerung (Stepwise Refinement) wur-
de von Wirth als algorithmische Kon-
struktionslehre propagiert [9]. Sie ist
eine im Rahmen prozeduralen Auf-
baus von Software sehr typische und
immer noch aktuelle Methode: Man
beginnt bei der Konzeption eines Pro-
grammes oder eines Programmteils
auf einer hohen Abstraktionsstufe und
definiert dieser Stufe entsprechende,
hypothetische Funktionen. Sodann
zergliedert man diese hypothetischen
(abstrakten) Funktionen in eine Reihe
weniger abstrakte Funktionen, die
man im néchsten Schritt einzeln be-
trachtet. So fihrt man weiter, bis man
in Top-Down-Manier auf der Stufe
des Programmcodes angelangt ist.
Durch hierarchische Komposition der
Einzelfunktionen integriert man die
Software schliesslich bottom-up.

Die schrittweise Verfeinerung ist
eine ausserordentlich stark funktions-
orientierte Entwurfsmethode, die nur
sehr beschrinkt zu Lokalitdt von Da-
ten fuhrt. Gewiss, die Arbeitsvariablen
und die Parameterstrukturen der dabei
entworfenen Funktionen geniigen dem
Prinzip der Informationskapselung,
der Lokalitat von Daten also. Was wir
jedoch durch schrittweise Verfeine-
rung nicht erhalten, sind Software-
strukturen hoherer Ordnung, wie die
nachfolgend besprochenen Module
oder gar Klassenhierarchien. Es ist fiir
das Verstdndnis der Prinzipien objekt-
orientierter Softwareentwicklung
wichtig, das Prinzip der schrittweisen
Verfeinerung als Entwurfsmethode in

10

Bulletin ASE/UCS 81(1990)13, 7 juillet

Objektorientierte Programmierung

float a,b,c;
int is

LadeElement (x,Y,n)
float X,Y7
int n;
static int Top = 0:
if (n > MaxElt)

else (

)

r = 1 + ZSatz/100;
rn = exp(r,Jahre);

}

LadeElement(a,b,39);

Stop ("Uberlauf von <Tab>");

Tab(n] = sqrt(sqr(x) + sqgr(y)):
if (n > Top) Top = n;

float Annuitat (Kapital,ZSatz,Jahre)

float Kapital,ZSatz:
int Jahre;

(
float B0

/* errechnet r hoch Jahre */
return (Kapital * rn * (r-1) / (rn - 1))

i)i—intf("jéhrliche Abzahlung = %8.2f", Annuitat(a,c,24));

Bild 2 Prozeduren und Funktionen in C

denjenigen Bereich einzuordnen, in
den es auch gehort: Entwurf von Pro-
zeduren und Funktionen auf unterster
Stufe, gewissermassen auf der « Mikro-
stufe» der Programmierung.

Schwachstellen des Prozedurkonzeptes

Auch bei der Verwendung von Pro-
zeduren verbleiben eine Reihe von
gravierenden Schwachstellen, die uns
die Anwendung héherer Konzepte zur
Strukturierung von Software als wiin-
schenswert erscheinen lassen:

- Die «Aussenbezichungen» einer
Prozedur sind lediglich was den Ver-
kehr iiber Parameter und Riickgabe-
werte betrifft aus der Prozedurdeklara-
tion ersichtlich. Die Verwendung von
externen Variablen wird nirgends be-
sonders vermerkt; in dieser Beziehung
bieten die Prozeduren keine Fort-
schritte gegeniiber Subroutinen.

- Irrtimlichen Zugriffen auf externe
Variablen werden folglich keine syn-
taktischen oder semantischen Schran-
ken gesetzt. Wird in einer Prozedur
beispielsweise eine Arbeitsvariable i
verwendet, und wird deren Deklara-

tion innerhalb der Prozedur vergessen,
so wird eine global deklarierte Varia-
ble i angesprochen. Dies kann zu Feh-
lern fiihren, wenn dadurch Invarianz-
annahmen in anderen Programmteilen
verletzt werden.

- Eine Kapselung von hoheren Daten-
objekten umfasst stets Datenkompo-
nenten und zugehorige Funktionen.
Die Kapselung eines Koordinatensy-
stems schliesst beispielsweise die Re-
priasentation der Koordinaten (z.B.
polare und kartesische) sowie die
Funktionen zur Durchfithrung von
Operationen auf Koordinaten ein.
Durch Prozeduren allein ist eine sol-
che Modellierung nicht sauber mog-
lich, da damit keine syntaktisch einfa-
che und semantisch geniigende Kon-
struktion zur Zusammenfassung von
Daten und Funktionen zu einem gegen
aussen abgekapselten Ganzen zur Ver-
fiigung steht. Insbesondere storend ist
die Ausgliederung aller permanenten
Statusvariablen aus Prozeduren in den
globalen Bereich, was in allen Spra-
chen ohne statische Variablen zur Not-
wendigkeit wird.

- Weitgehend gleiche Griinde fithren

zur Einsicht, dass durch ein Prozedur-
konzept allein eine anwendungsorien-
tierte Modellierung von Subsystemen
wie Grafiksysteme, Datenbanksyste-
me, Kommunikationsdienste, Be-
triebssystemservices usw. kaum sauber
moglich ist. Wo dies trotzdem getan
wird, verwaltet die Klientensoftware
meist direkt oder indirekt auch Daten-
bestande, die eigentlich vollstindig
zum Subsystem selbst gehdrten (siehe
beispielsweise in der Macintosh Tool-
box [10]). Auch stellt das Subsystem
hdufig auf ein «wohlwollendes» Ver-
halten der Klientensoftware ab und
verspricht bei allfdlligem Fehlverhal-
ten (z.B. durch falsche Parameter oder
unzuldssige Folgen von Funktionsauf-
rufen) undefinierte Resultate.

Diese Schwachstellen des Prozedur-
konzeptes traten natiirlich im Umfeld
professioneller Softwareentwicklung
sehr bald an die Oberfldche. Dies war
ein Grund, warum beispielsweise der-
art viele Pascal-Erweiterungen defi-
niert wurden. Die meisten davon ent-
hielten Konstrukte, die genau die auf-
gezeigten Schwachstellen zu lindern
versuchten und damit in Richtung der
als néchstes zu besprechenden Module
gingen. Im Rahmen dieser Einfiihrung
in objektorientierte Software beleuch-
ten wir einzelne typische Entwick-
lungsstufen. Es ist dem Kenner der
Programmiersprachen-Evolution aber
klar, dass in der Realitit diese Schritte
nicht so klar und fiir sich isoliert daste-
hen. Sie sind vielmehr Ausprigungen
einer kontinuierlichen Entwicklung.

(Teil 2 folgt im Heft 17/90)

Literatur

[1]1 G. Pomberger: Softwaretechnik und Modu-
la-2, Carl-Hanser-Verlag, 1984.

[2] N. Wirth: Programming in Modula-2, Sprin-
ger-Verlag, 1982.

[3] R. Marty: Methodik der Programmierung in
Pascal, Springer-Verlag, 1986.

[4] K. Schmucker: Object Oriented Program-
ming for the Macintosh, Hayden Book Com-
pany, 1986.

[5] E. Gamma, A. Weinand, R. Marty: ETT+ —
An Object Oriented Application Framework
in C**, Proceedings of OOPSLA ’88, ACH,
1988.

[6] D. Parnas: On the Criteria to be Used in
Decomposing Systems into Modules, Com-
munications of the ACM 15 (1972) 12.

[7]1 B.W. Kernighan, D.M. Ritchie: The C Pro-
gramming Language, Prentice-Hall, 1978.

[8] B. Stroustrup: The C** Programming Lan-
guage, Addison-Wesley, 1986.

[9] N. Wirth: Program Development by Step-
wise Refinement, Communications of the
ACM 14(1971) 4.

[10] Apple Computer Inc.: Inside Macintosh, Vol.
I-V, Addison-Wesley, 1988.

Bulletin SEV/VSE 81(1990)13, 7. Juli

fiir elektronische Apparate und Anlagen

Unser Entstérungslabor

— prift die Storempfindlichkeit und das Storvermogen,

— bestimmt Stérschutz- und Schirmmassnahmen,

kontrolliert Apparate und Anlagen auf Einhaltung der gesetzlichen Storschutzbestimmungen,

flihrt Prototyp- und serienméassige Entstérungen aus,

steht Fabrikations- und Importfirmen fur fachméannische Beratung in EMV-Problemen zur Verfligung.

PRO RADIO-TELEVISION, Entstorungslabor, 3084 Wabern, Telefon 031/54 22 44

In modernen Unternehmen ist es iiblich,
Schutzbefehle optisch zu ubertragen.

Aus sicherheitstechnischen, wirtschaftlichen und
anwenderspezifischen Griinden wird vielfach FOX 20 be-
vorzugt. Denn unser modulares 20-Kanal-Lichtleitersy-
stem fiir die Ubermittlung von Daten, Sprache und speziell
Schutzbefehlen ist ganz auf Sicherheit ausgelegt. Durch
fehlerhafte Schutzsignaliibertragung verursachte Fehl-
schaltungen von Energieversorgungsanlagen und die damit
verbundenen hohen Folgekosten fallen dahin! Dann haben
wir fiir den Einsatz in der Elektrizitatswirtschaft ein speziel-
les Sortiment von Schnittstellen fiir den Anschluss an Si-
gnalquellen ohne Modems, Fernauslasgerdte und andere
kostspielige Komponenten entwickelt. Zur Schonung der

12

Investitions- und Unterhaltsbudgets! Weiter sind dank der
digitalen Durchschalt- und Abzweigtechnik nebst Punkt-
Punkt-Verbindungen auch komplette Telekommunikations-
netze fiir die diversen EW-Applikationen realisierbar. Einfa-
cher und anwenderfreundlicher geht’s nicht! Natiirlich
spricht noch einiges mehr fiir FOX 20. Was genau, hiren
Sie, nachdem Sie uns mit lhrer

Visitenkarte ein Zeichen gegeben

A DD
ABB Infocom, Abt. ENF, 5300 Turgi ".' I.

Tel. 056 292747, Fax 056 29 94 61 ASEA BROWN BOVERI

	Von der Subroutinentechnik zur objektorientierten Programmierung : Teil 1 : Subroutinen und Prozeduren

