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Kommunikation

Datenkompression mittels iterierter
Funktionensysteme (IFS)

Fraktale Datenkompression, Teil 2

Thilo Gipser

Im ersten Teil wurden Wesen
und Eigenschaften von Frakta-
len naher erlautert und ein Ein-
blick in die revolutionaren Aus-
wirkungen der Fraktaltheorie auf
die Wissenschaft vermittelt.
Dieser zweite Teil beschaftigt
sich nun mit der fraktalen Daten-
kompression selbst und zeigt
deren Bedeutung und Moglich-
keiten auf.

La premiere partie a expliqué la
nature et les propriétés des frac-
tales et donné une vue des
effets révolutionnaires de la
théorie fractale dans pratique-
ment tous les domaines scienti-
fiques. Cette deuxieme partie
présente la compression frac-
tale des données, son impor-
tance et ses possibilités.

Adresse des Autors

Thilo Gipser, Dipl. El.-Ing. ETH, Institut fiir
Kommunikationstechnik, ETH-Zentrum, 8092
Ziirich

Bildverarbeitung ist noch heute ein
den Personal-Computern im allgemei-
nen vorenthaltenes Gebiet. Der Grund
hierfiir liegt in der enormen Daten-
menge, welche die Digitalisierung von
Bildern mit sich bringt und im Fehlen
geeigneter  Kompressionsmechanis-
men, um den erforderlichen Speicher-
platz drastisch zu reduzieren. Man be-
trachte zum Beispiel eine hochaufl6-
sende Luftaufnahme, welche auf 1 m?
vergrossert wurde und nun noch eine
Auflésung von 100 Pixel/cm bei 8 si-
gnifikanten Bit pro Pixel besitzt. Dann
ergibt sich eine Datenmenge von 100
MByte - viel zu viel fiir eine Verarbei-
tung auf Personal-Computern. Die
gingigen Kompressionsmethoden er-
reichen Kompressionsfaktoren zwi-
schen 2:1 und 10:1, die Datenmenge
der Luftaufnahme liegt dann aber im-
mer noch zwischen 10 und 50 MByte.
Die fraktale Datenkompression ver-
spricht dagegen sensationelle Daten-
kompressionsfaktoren von 10000:1
und mehr!

Begriinder der fraktalen Datenkom-
pression ist Michael F. Barnsley, Ma-
thematiker am Georgia Institute of
Technology in Atlanta, USA. Seine
Forschungsarbeiten erregen weltweit
grosses Aufsehen; selbst die amerika-
nische Armee, der amerikanische Ge-
heimdienst CIA und die Weltraumbe-
horde Nasa interessieren sich dafiir
und gewihren mittlerweile grossere fi-
nanzielle Unterstiitzung.

Worin besteht nun die Idee von
Barnsleys fraktaler Datenkompres-
sion? Das Grundprinzip ist denkbar
einfach. Wenn es geldnge, die Struktur
eines gegebenen Bildes mittels eines
mathematischen Ausdrucks zu erfas-
sen, das Bild quasi in einer zugehori-
gen Formel aufzuschliisseln, dann
miisste anstelle des gesamten Bildes le-
diglich diese Formel iibertragen oder
abgespeichert werden. Es ist dabei ab-
solut einleuchtend, dass die Daten-

menge dieser Formel um ein Vielfa-
ches geringer ausfillt als diejenige des
gesamten Bildes; offenbar sind gewal-
tige Datenkompressionsfaktoren zu
erwarten. Bei der Dekodierung wird
das Bild einfach wieder aus dem ma-
thematischen Ausdruck zurtickentwik-
kelt (Bild 1).

Mit der auf dieser Idee basierenden
Methode wurden am Georgia Institute
of Technology farbige Bilder mit Mo-
tiven wie Sonnenblumenfelder, Wol-
kenstudien, Kiisten, Landschaften,
Schwarzwaldszenarien, Kopf eines
arktischen Wolfes, Gesicht eines boli-
vianischen Middchens u.v.m. kompri-
miert und dabei enorme Datenkom-
pressionsfaktoren erzielt [1].

Die Grundziige dieser Datenkom-
pression sollen im folgenden aufge-
zeigt werden.

Das Chaosspiel

Um das Grundprinzip der fraktalen
Datenkompression zu verstehen, sei
ein recht erstaunliches Spiel, das soge-
nannte Chaosspiel [3], vorgestellt. Auf
einem Stiick Papier markiere man 3
beliebige Punkte (Fixpunkte) und gebe
ihnen die Namen Rot, Blau und Griin.
Weiter stehe ein Wiirfel zur Verfii-
gung, dessen Seiten ebenfalls die obi-
gen 3 Farben aufweisen (jede Farbe er-
scheint auf jeweils zwei Wiirfelfla-
chen). Alle 6 Seiten des Wiirfels kom-
men beim Werfen mit der gleichen
Wahrscheinlichkeit vor. Nun markiere
man einen vierten Punkt z) (den An-
fangspunkt) auf dem Papier - irgend-
wo - und beginne das Chaosspiel. Ein
erster Wurf des Wiirfels - und die Far-
be Rot liegt oben. Auf dem Blatt Pa-
pier zeichnet man einen Punkt z;, und
zwar genau in der Mitte der Strecke
von zp und dem Fixpunkt Rot. Ein er-
neutes Werfen des Wiirfels ergibt die
Farbe Griin. Man markiere den Punkt
7> genau in der Mitte der Strecke von z
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IFS-Code

Der Name IFS steht fiir iterierte Funktionensysteme (engl. iterated function systems).
Dabei hancelt es sich um rekursive definierte mathematische Ausdriicke; die Zusam-
menfassung von mehreren dieser Funktionen nennt man einen IFS-Code. Letzterer de-
finiert nun ein ganz bestimmtes, durch Anzahl und Aufbau der einzelnen Ausdriicke
festgelegtes Bild. Zur Decodierung eines IFS-Codes werden die Funktionen in vollig
zufilligen Reihenfolge hintereinander aufgerufen, wodurch man eine vollstindige
Konstruktion des dem 1FS-Code zugrunde liegenden Bildes zu erreichen vermag.

und dem Fixpunkt Griin. In diesem
Sinne geht es'weiter: Beim n-ten Schritt
zeichne man den Punkt z, auf das Pa-
pier, welcher genau in der Mitte zwi-
schem dem Punkt z,-; und demjenigen
Fixpunkt zu liegen kommt, dessen

im ersten Beitrag dieser Publikation
ausfiihrlich dargelegt, ist dies bei frak-
talen Strukturen moglich. Es liegt da-
her nahe, fraktale Beschreibungsme-
thoden zur Kodierung von Bildern
heranzuziehen. Da es sich dabei be-

BILD-BEREICH

MATHEM. BEREICH

gegebenes '
Originalbild

Codierung

mathematischer
Ausdruck (IFS-Code)

gegebenes ) mathematischer
Originalbild ‘ ‘ Decodierung Ausdruck (IFS-Code)
Bild 1 Funktionsprinzip der fraktalen Datenkompression

Fiir ein gegebenes Originalbild wird ein zugeordneter mathematischer Ausdruck bestimmt (oben). Von
nun an braucht nur noch diese Formel iibertragen oder abgespeichert zu werden. Um wieder das Origi-
nalbild zu erhalten, entwickelt man das Bild aus dem mathematischen Ausdruck zuriick (unten).

Name mit der Farbe der nach oben zei-
genden Seite des geworfenen Wiirfels
ubereinstimmt (3  Abbildungsvor-
schriften). Auf diese Weise markiere
man 100 000 Punkte. Nun werden die
ersten 20 Punkte z. .. zj9 ausgeldscht,
und man betrachte die entstandene
Zeichnung. Wonach sieht die derart
erhaltene Punktmenge aus? Nach
einer zufilligen Zusammenballung der
einzelnen Punkte um die 3 Fixpunkte
herum, wie man annehmen konnte?
Bei weitem nicht, das Resultat zeigt
Bild 2 in Form eines Sierpinski-
Dreiecks.

Affine Abbildungen der
fraktalen Datenkompression

Um ein beliebiges, vorgegebenes
Originalbild formelméssig darstellen
zu konnen, miissen fir komplizierte
Formen einfache mathematische Be-
schreibungen gefunden werden. Wie

kanntlich um Rekursionsprozesse
handelt, miissen anpassungsfdhige, re-
kursiv definierte mathematische Aus-
driicke Grundlage einer allgemeinen
fraktalen Datenkompression sein. Sol-
che Terme sind in den affinen Abbil-

dungen der iterierten Funktionensy-
steme (IFS) gegeben.

Eine affine Abbildung' bildet - geo-
metrisch betrachtet - eine Punktmenge
durch eine beliebige Kombination aus
Drehung, Streckung und Verschie-
bung auf eine andere Punktmenge ab
(Bild 3). Hauptmerkmal einer derarti-
gen Transformation stellt die Eigen-
schaft dar, dass eine gegebene Figur
nicht bis zur Unkenntlichkeit entstellt,
sondern ein der Ausgangsfigur dhnlich
erscheinendes Abbild erzeugt wird.
Grundeigenschaften der urspriingli-
chen Figur bleiben so erhalten (ein
Dreieck bleibt ein Dreieck). Bei der af-
finen Transformation einer Figur wird
im Prinzip jeder ihrer Punkte durch
die Abbildungsvorschrift geschleust.

Eine affine Transformation w in
kartesischen Koordinaten kann in all-
gemeiner Form wie folgt angeschrie-
ben werden:

% a b z e
nl=ledlz]- o
Dabei stellen die Koeffizienten a, b, c,
d, e, f reelle Konstanten dar, welche
entsprechend der gewiinschten Trans-
formation festgelegt werden. Um zum
Beispiel die in Bild 3 angegebene Ab-
bildung zu beschreiben, miissen obige
Koeffizienten folgende Werte anneh-
men:

Ty | _ 1,0 0,2 Ty
Ylzo | T 103 08 2z
1,0
* [ 1,2 ] )
Ausgeschrieben ergibt sich der Aus-
druck w (xi, x2)=(x;+0,2 - x»+1,0; 0,3
- x1+0,8 - x2+1,2), wodurch das recht-

winklige Dreieck in das nichtrecht-
winklige abgebildet wird.

"affin verwandt, dhnlich

Bild 2
Chaos-Spiel

Ein klar begrenztes Sierpinski-Dreieck erscheint als Resultat des Chaos-

Spiels.
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1 T
Q 1 2 X
Bild 3 Affine Transformation w

Affin transformierte Bilder werden nicht bis zur
Unkenntlichkeit verzerrt, sondern sehen dem Ori-
ginalbild immer noch dhnlich.

Wie lassen sich nun die Koeffizien-
ten einer gewiinschten affinen Trans-
formation bestimmen? Dies ist relativ
einfach zu bewerkstelligen, braucht
man doch nur 3 Punkte des Original-
bildes (z.B. die 3 Ecken des rechtwink-
ligen Dreiecks in Bild 3) und die ent-
sprechenden 3 Bildpunkte (die 3 Ek-
ken des nichtrechtwinkligen Dreiecks)
in die Gleichung (1) einzusetzen; auf
diese Weise ergeben sich 6 Gleichun-
gen, aus welchen die 6 Unbekannten a,
b, ¢, d, e, fermittelt werden kdnnen.

Der Vollstindigkeit halber sei noch
erwidhnt, dass zur Beschreibung affi-
ner Abbildungen noch andere, aussa-
gekriftigere (dquivalente) Darstellun-
gen als die in (1) gegebene allgemeine
Form zur Verfiigung stehen [4].

Fixpunkt einer affinen
Abbildung

Damit eine affine Abbildung zur
fraktalen Datenkompression herange-
zogen werden kann, muss sie kontrak-
tiv sein. Eine kontraktive affine Abbil-
dung werfiillt die Bedingung

w(x) —w <[ x— yl 3)

d.h. die durch die Transformation w
abgebildeten Punkte w(x) und w(y) lie-
gen ndher beisammen als die wur-
spriinglichen Punkte x und y. Wire
dem nicht so, ldgen also die Bildpunk-
te weiter auseinander als die urspriing-
lichen Punkte, so wiirden mit der fort-
gesetzten Abarbeitung einer Transfor-
mation die Bildpunkte immer weiter
(unendlich weit) voneinander wegstre-
ben. Das Ziel ist jedoch genau das Ge-
genteil; die Punkte sollen spéter einen

exakt begrenzten Bereich ausfiillen.
Bei der fortgesetzten Abarbeitung
einer kontraktiven Abbildung w wer-
den die Abstdnde der Bildpunkte so-
mit immer kleiner, sie streben auf
einen Punkt, den Fixpunkt der kon-
traktiven Abbildung, zu. Im Chaos-
spiel liegen die 3 Fixpunkte der 3 Ab-
bildungsvorschriften in den Ecken des
Sierpinski-Dreiecks.

IFS-Codes

Ordnet man schliesslich jeder kon-
traktiven affinen Transformation w;
eine Wahrscheinlichkeit p; zu und fasst
mehrere derartige Transformationen
zusammen, so erhdlt man den IFS-
Code eines Bildes. Die Wahrschein-

nen Abbildungen, die fiir das Zeich-
nen von grosseren Bildausschnitten
verantwortlich sind, stdarker gewichtet
oder durch Hervorhebung einzelner
Transformationen Schattierungen im
Zielbild bewirkt werden.

Dekodierung von IFS-Codes

Die Dekodierung eines IFS-Codes
ist gleichbedeutend mit der Ermittlung
des einem IFS-Code zugeordneten Bil-
des (Attraktor). Dabei entspricht die
Vorgehensweise grundsétzlich derjeni-
gen im vorgestellten Chaosspiel.

Ein beliebiger Anfangspunkt Py
werde festgelegt. Mittels eines Zufalls-
zahlengenerators ist nun zuféllig eine
Transformation w; des gegebenen IFS-

Chaos

Unter Chaos versteht man ungeordnetes, nicht deterministisches Verhalten. Die Aus-
wirkungen kleinster Verdnderungen (z.B. Bahnabweichungen) bleiben nicht gering,
sondern wachsen liberraschend schnell an, wie z.B. beim Butterfly-Effekt. Der Aus-
druck Butterfly-Effekt wurde 1963 vom amerikanischen Meteorologen E.N. Lorentz
am Massachusetts Institute of Technology geprégt und verdeutlicht die Tatsache, dass
unser Wetter einem gigantischen chaotischen System entspringt, in welchem bereits
kleinste Einfliisse wie zum Beispiel der Fliigelschlag eines Schmetterlings iiber das Wet-
tergeschehen (den Hurrikan) von morgen entscheiden konnen. Neueste Forschungen
[2] erbrachten nun die aufregende Entdeckung, dass es auch in chaotischen Systemen
nicht nur vollig ungeordnet zu und her geht, sondern dass im Gegenteil eine gewisse
Ordnung im Chaos vorherrschen kann. Die Zustinde eines Systems bewegen sich dann
auf ganz bestimmten Bahnen oder Gebieten, sog. Attraktoren (von lat. attrahere anzie-
hen), sind also in gewisser Weise vorhersagbar.

lichkeit p; gibt dabei an, wie oft die Ab-
bildung w; im Vergleich zu den ande-
ren Transformationen des IFS-Codes
abgearbeitet  (zufillig aufgerufen)
wird; die Summe aller Wahrschein-
lichkeiten p; eines IFS-Codes hat na-
tiirlich immer den Wert 1.

Jeder IFS-Code definiert nun einen
Attraktor (Zielbild). Der Attraktor ent-
spricht dem bei der Dekodierung eines
IFS-Codes entstehenden Bild. Im
Chaosspiel wird der Attraktor durch
die 3 Abbildungsvorschriften zur Er-
mittlung des jeweils nichsten Bild-
punktes definiert und durch das ent-
standene Sierpinski-Dreieck darge-
stellt.

Die den Transformationen zugewie-
senen Wabhrscheinlichkeiten nehmen
grundsatzlich keinen Einfluss auf Aus-
sehen und Gestalt des Attraktors. Sie
legen aber fest, welche Transformatio-
nen im Unterschied zu den iibrigen wie
oft abzuarbeiten sind. Dadurch kon-

Codes zu bestimmen und der Punkt P,
auf den Punkt Pi=w; (Py) abzubilden.
Im nédchsten Schritt wird P; seinerseits
durch eine weitere, erneut zuféllig aus-
gewihlte Transformation w; in den
Punkt P,=wj; (Py) transformiert. Nach
gentigend vielen Wiederholungen die-
ses iterativen Prozesses entspricht die
entstandene Punktmenge dem Attrak-
tor des IFS-Codes. Aus der formel-
massigen Darstellung (im IFS-Code)
lasst sich so das gewiinschte Bild er-
mitteln (Bild 4).

Liegt der (frei wéhlbare) Anfangs-
punkt P, ausserhalb des Zielbildes, so
konvergieren die Bildpunkte P; rasch
in den zugehorigen Attraktor; die er-
sten 10 bis 20 Punkte gehdren dann
aber noch nicht dazu und miissen ent-
fernt werden. Aus diesem Grund wer-
den letztere im allgemeinen erst gar
nicht gezeichnet.

Es ist zu beachten, dass die beim De-
kodierungsprozess auftretende zufilli-
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Bild4 Decodierung eines IFS-Codes

Bei der Decodierung entsteht aus einem IFS-
Code nach und nach (wie im Chaos-Spiel) das zu-
gehorige Zielbild; in diesem Fall handelt es sich
dabei um die Kochsche Schneeflockenkurve.

ge Reihenfolge der Transformationen
absolut keinen Einfluss auf das enste-
hende Zielbild ausiibt. Die zugeordne-
ten Wahrscheinlichkeiten p; sind je-
doch dafiir verantwortlich, wie oft die
einzelnen Abbildungen w; im Ver-
gleich zu den iibrigen Transformatio-
nen aufgerufen werden.

Kodierung der Originalbilder

Bislang war stets von der Dekodie-
rung eines IFS-Codes die Rede. Es
stellt sich nun umgekehrt die Frage,
wie aus einem gegebenen Originalbild
der zugehorige IFS-Code - also die

Formel eines Bildes - ermittelt werden
kann. Dieses inverse Problem ist un-
gleich schwieriger zu 16sen, und seiner
Bewiltigung kommt fundamentale Be-
deutung zu.

Die triviale Losung bestiinde darin,
zu jedem Punkt eines durch ein Punkt-
raster gegebenen Originalbildes eine
affine Abbildung zu bestimmen, wel-
che das gesamte Bild auf diesen Punkt
zusammenschrumpfen ldsst. Der At-
traktor des so erhaltenen IFS-Codes
wire dann offensichtlich mit dem Ur-
sprungsbild identisch. Dieses Vorge-
hen ist aber nicht besonders zweck-
massig, da hierbei genauso viele affine
Transformationen bendtigt wiirden,
wie das Originalbild Punkte hat - die
resultierenden  Datenkompressions-
faktoren wiren also alles andere als
beeindruckend. Hier hilft das soge-
nannte Collage-Theorem weiter, das
im folgenden ndher erldutert werden
soll.

Es sei ein digitalisiertes Ursprungs-
bild T gegeben (z.B. ein schwarzes
Blatt auf einem weissen Hintergrund).
Eine affine Transformation w; werde
eingefiihrt und das dadurch bestimmte
Subbild wi(T) (welches eine verklei-
nerte, transformierte Kopie von T dar-
stellt) berechnet. Dieses Bild ver-
schiebt man nun so lange, bis es einen
Teil von T moglichst gut iiberdeckt.
Dabei muss wi(T) als Teilmenge der
Punkte erscheinen, die T reprisentie-
ren, d.h. die iiberlappenden Rinder
von T und wi(T) sollten moglichst
genau ibereinstimmen, im Idealfall
deckungsgleich sein. Alsdann wdihlt
man eine zweite Transformation und
verschiebt das Bild wy(T) erneut der-
art, dass es einen weiteren Ausschnitt
von T iiberlagert. Bei alledem ist die
Uberlappung der transformierten Bil-
der wi(T) und wy(T) moglichst gering
zu halten (Uberlappungen fiihren
nicht zu Fehldekodierungen, wohl
aber zu einer Verminderung der Deko-
dierungsgeschwindigkeit). Auf diese
Weise fiahrt man fort, bis schliesslich
das Originalbild T vollstindig von af-
fin transformierten Kopien wi(T)
iiberdeckt wird (Bild 5). Dieser Prozess
der vollstindigen Uberlagerung eines
Originalbildes T durch kleinere Sub-
bilder wi(T) heisst im Englischen Ti-
ling®.

Mit diesem Vorgehen ergibt sich
eine Anzahl kontraktiver affiner Ab-
bildungen, die durch die finalen Posi-
tionen der Subbilder relativ zum Ur-

2engl. tiling das Dachdecken, das Kachellegen

Bild5 Codierung eines Bildes

Das Originalbild (hier ein Ahornblatt) wird suk-
zessive mit Subbildern iiberdeckt. Wihlt man letz-
tere nicht optimal aus, so entstehen Uberlappun-
gen (im Bild erkennbar an den Schattierungsin-
derungen).
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sprungsbild bestimmt sind und tber
welche das Collage-Theorem folgen-
den Aussage macht: Kann ein Origi-
nalbild T anndhernd vollstindig mit
kleineren affinen Transformationen
wi(T) seiner selbst iberdeckt werden,
dann lédsst sich eine Approximation
des Originalbildes konstruieren, in-
dem der Attraktor der Gesamtheit der
affinen Abbildungen berechnet wird.
Ist eine vollstindige Uberdeckung
moglich, so ist eine exakte Rekon-
struktion des Originalbildes gegeben.

Erliduterungen und Beispiele

Die Zahl der beim Kodierungspro-
zess unter Verwendung des Collage-
Theorems erhaltenen Subbilder ent-
spricht der Anzahl der fiir die Kodie-
rung des Originalbildes erforderlichen
Transformationen. Die Schwierigkeit
liegt darin, einerseits das Ursprungs-
bild durch moglichst wenig affin trans-
formierte Kopien zu iiberdecken, an-
derseits aber die Uberlappungen der
einzelnen Subbilder minimal zu hal-
ten. Es ist somit eine moglichst kleine
Familie von affinen Abbildungen zu
bestimmen, welche das gegebene Bild
mit einer gewiinschten Aufldsung dar-
stellt.

Interessant ist die folgende Anmer-
kung zur eben erwidhnten Aufldsung
eines Zielbildes. Bis zu der geforderten
Auflésung ist der Attraktor bei perfek-
ter fraktaler Kodierung vom Original-
bild nicht zu unterscheiden. Vergros-
sert man ihn aber weiter, so wird
selbstverstdandlich ein fehlerhaftes Er-
gebnis erzielt: Da das Zielbild ein
Fraktalbild ist (ein Attraktor wird ja
rekursiv aufgebaut und hat grundsitz-
lich fraktalen Charakter), werden bei
zunehmender Vergrdsserung immer
feinere Details selbst bei einem Mass-
stab enthiillt, wo auf dem Originalbild
nur noch ein einziger Bildpunkt er-
scheint.

Soll nun ein differenzierter aufge-
bautes Originalbild, zum Beispiel das
Bild einer verregneten Meereskiiste,
kodiert werden, so lasst sich dieses im-
mer in einfachere Teilbilder aufspal-
ten. Die Teilbilder werden einzeln ko-
diert und das Zielbild dann aus ihrer
Gesamtheit zusammengesetzt. Im er-
wihnten Beispiel ldsst sich das Origi-
nalbild etwa wie folgt aufteilen: Re-
gen, Wolken, Himmel, Felsen im Was-
ser in Kiistennahe, Meer, Vogel in der
Luft, Streifen Strand und Gras entlang
dieses Strandes.

IFS-Codes weisen eine fundamenta-
le Stabilitdt auf: Der 1FS-Code muss

nicht vollig exakt bestimmt werden,
um eine gute Ahnlichkeit mit dem Ori-
ginalbild zu erreichen. Er ist im Ge-
genteil robust, d.h. kleine Anderungen
im Code flihren nicht zu unakzepta-
blen Schiaden im Zielbild. Dies steht
im Gegensatz zu vielen anderen rekur-
siv definierten Algorithmen (etwa zur
Erzeugung von pflanzlichen Struktu-
ren), bei welchen das erhaltene End-
produkt von der genauen Sequenz der
Zufallszahlen wéhrend der Berech-

Farben und dreidimensionale
Darstellung

Es soll noch kurz auf die Mdoglich-
keit eingegangen werden, farbige und
dreidimensionale Bilder mittels IFS-
Codes auf dem Computer zu erzeugen.
Ordnet man im einfachsten Fall jeder
Transformation eine eigene Farbe zu,
so zeigen sich sehr schon die Subbil-
der, aus welchen der Attraktor zusam-
mengesetzt ist. Eine interessantere Me-

Bild6 Zusammen-
stellung der in diesem
Beitrag erwiihnten

IFS-Codes

Objekt w a b c d e f p
Koch’sche Insel 1 034 0.0 0.0 0.33 1068 47 0.13
2 03 0.0 00 033 2068 47 0.13
§ 034 0.0 00 033 318 130 0.13
4 034 0.0 00 033 268 213 0.13
5 034 0.0 00 033 168 213 0.13
6 034 0.0 00 033 120 130 0.13
7 0.0 056 -056 0.0 225 373 0.22
Ahorn-Blatt 1 040 038 -025 044 25 209 021
2 059 0.0 -001 060 126 16 0.28
§ 040 -0.35 026 042 309 73 021
4 074 003 -002 074 67 80 0.30
Sierpinski-Dreieck | 1 0.5 0.0 00 05 00 00 0.33
2 05 0.0 00 05 10 05 0.33
3 0.5 0.0 00 05 05 05 0.34
Farn 1 0.0 0.0 00 0.16 00 00 0.01
2 08 004 -004 08 0.0 1.6 0.85
g 020 -023 023 020 00 1.6 0.07
4 -015 028 0.26 024 00 044 0.07

nung abhingt. Diese Stabilitit ist ein
wichtiges Merkmal im Hinblick auf
die Systemunabhingigkeit und die in-
teraktive Bearbeitung von IFS-Codes
am Computer.

Im folgenden sollen zur Illustration
einige IFS-Codes angegeben werden.
Sie sind in Bild 6 zusammengestellt.
Interessant ist vor allem der IFS-Code
des im letzten Kapitel kodierten
Ahornblatts einschliesslich seines At-
traktors gemdiss Bild 7. Daraus ersieht
man auch die Aussage des Collage-
Theorems, dass eine ungenaue Uber-
deckung des Originalbildes durch Sub-
bilder zu einem ungenauen Zielbild
fiithrt. Man beachte weiter die Werte
der Koeffizienten beim Sierpinski-
Dreieck: Wie leicht ersichtlich ist, stel-
len sie nichts anderes als die formel-
missige Beschreibung der 3 Abbil-
dungsvorschriften aus dem Chaosspiel
dar. Die ganze Brisanz der fraktalen
Datenkompression verdeutlicht das
letzte Beispiel: Aus nur 4(!) affinen
Transformationen kann das Farnblatt
in Bild 8 konstruiert werden.

thode besteht darin, jeweils die Farbe
zu indern, wenn ein Punkt an der glei-
chen Stelle wiederholt gezeichnet wird.
Dann sind die den Transformationen
zugeordneten ~ Wahrscheinlichkeiten
direkt fiir die Farbgebung des erzeug-
ten Zielbildes verantwortlich.

Bild 7 Attraktor des Ahornblattes

Man vergleiche die Ubereinstimmung mit dem
Originalbild
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Bild8 Farnblatt

Aus einem nur 4 affine Transformationen
umfassenden IFS-Code lasst sich dieses Farnblatt
decodieren.

Natiirlich kéonnen IFS-Transforma-
tionen auch auf die dritte Dimension
ausgeweitet werden. In diesem Fall er-
geben sich in Gleichung (1) dreidimen-
sionale Vektoren und eine 3 X 3-Abbil-
dungsmatrix. Zur graphischen Dar-
stellung auf dem Computer sind geeig-
nete Algorithmen zu verwenden, die
eine Projektion des nunmehr dreidi-
mensionalen Attraktors auf den zwei-
dimensionalen Bildschirm ermogli-
chen.

Fazit und
Schlussbemerkungen

Anlisslich einer Diplomarbeit [5]
am Institut fiir Kommunikationstech-
nik der ETH Ziirich wurde eine kom-
plette IFS-Umgebung zur Ermittlung
und Dekodierung von IFS-Codes auf-
gebaut (IFS-Tools), welcher auch die
hier prasentierten Bilder entstammen.
Mit ihrer Hilfe konnen Bilder in den
Computer eingelesen, mittels eines
Collage-Editors interaktiv kodiert, die
ermittelten IFS-Codes analysiert, mo-
difiziert, abgespeichert und natiirlich

auch dekodiert werden. Verschiedene
Algorithmen stehen fiir die Bestim-
mung der Kodierungsqualitidt zur Ver-
fligung (so ist es zwecks Ermittlung der
Kodierungsgenauigkeit moglich, Ori-
ginalbild und Attraktor quasi liberein-
anderzulegen). Diverse Hilfsprogram-
me dienen der Vereinfachung des Um-
gangs mit dem Softwarepaket. Es ge-
lang eine Kodierung der verschieden-
sten Originalbilder, vor allem auch die
Bestimmung der IFS-Codes von vielen
nichtfraktalen Strukturen wie Rech-
tecken, Quadraten, Dreiecken, Gera-
den, Kreisen, Spiralen u.a. Die Unter-
suchungen werden fortgesetzt.

Potentielle Anwendungsgebiete der
fraktalen Datenkompression diirften
in Zukunft iberall dort liegen, wo di-
gitale Bilder zu iibertragen oder abzu-
speichern sind. Grosses Interesse be-
steht ferner in all den Bereichen, wel-
che sich mit der Archivierung von
Bildmaterial auseinanderzusetzen ha-
ben (Raumfahrt, Satellitenaufkli-
rung). Da die anfallenden Datenmen-
gen dort hdufig zu gross sind, sieht
man sich infolge fehlender geeigneter
Kompressionsmethoden oftmals ge-
zwungen, betrichtliche Datenmengen
zu vernichten. Ein weiterer Einsatzbe-
reich zeichnet sich im Bereich der Mo-
dellierungs- und Simulationstechniken
ab [6].

Die fraktale Datenkompression ist
allerdings noch nicht ausgereift. Insbe-
sondere reichen die Kodierungsmdog-
lichkeiten von Bildern mit Hilfe des
Collage-Theorems nicht aus, um belie-
bige Originalbilder rasch kodieren zu
konnen. Hier sind neue Kodieralgo-
rithmen zu entwickeln; denkbar wére
zum Beispiel im Hinblick auf die Sta-
bilitdt der IFS-Codes eine riickgekop-
pelte, automatisierte Anderung der
Abbildungsparameter.

Der weitere Erfolg der fraktalen Da-
tenkompression diirfte auch eng mit
dem der Entwicklung von Bilderken-
nungsmethoden verkniipft sein. Eine
damit verbundene, anzustrebende
Automatisierung der Bildkodierung,
das heisst ein selbstindiges Auffinden
fraktaler Grundmuster unter Verwen-
dung des Collage-Theorems oder an-
derer Algorithmen, wiirde einen gros-
sen Schritt nach vorn bedeuten.

Keine Hindernisse sieht der Autor
hingegen in der Tatsache, dass der

vollstindige Bildaufbau beim Deko-
dierungsprozess heute noch eine bis
mehrere  Minuten in  Anspruch
nimmt3. Einerseits weist  die
Computerentwicklung klar in Rich-
tung hoherer Leistungsfahigkeit und
damit auch in Richtung hoherer Verar-
beitungsgeschwindigkeiten, anderseits
kann die Dekodierung eines gegebe-
nen IFS-Codes problemlos von meh-
reren Prozessoren gleichzeitig vorge-
nommen und die Dekodierungsge-
schwindigkeit dadurch betrédchtlich ge-
steigert werden. Weil die Reihenfolge
der von den einzelnen Prozessoren
aufgerufenen Abbildungsvorschriften
zufillig und damit unterschiedlich ist,
werden von allen Prozessen gleichzei-
tig verschiedene Bereiche des Zielbil-
des aufgebaut.

Bleibt zu erwdhnen, dass es sich bei
den Forschungsgebieten im Bereich
der Fraktale, des deterministischen
Chaos und vor allem auch der frakta-
len Datenkompression um durchwegs
sehr junge Disziplinen handelt, deren
Bearbeitung und Nutzung erst durch
die Entwicklung und den Einsatz von
Computer iberhaupt ermoglicht wur-
den. Trozu ihrer kurzen Entwichlungs-
phase sind bereits interessante Er-
kenntnisse gewonnen worden. Die
fraktale Datenkompression, die noch
in den Kinderschuhen steckt, diirfte in
Zukunft noch zu reden geben.

3IBM PC PS/2,50 (CPU 80286, 10 MHz)
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