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Kommunikation

Datenkompression mittels iterierter
Funktionensysteme (IFS)
Fraktale Datenkompression, Teil 2

Thilo Gipser

Im ersten Teil wurden Wesen
und Eigenschaften von Frakta-
len näher erläutert und ein
Einblick in die revolutionären
Auswirkungen der Fraktaltheorie auf
die Wissenschaft vermittelt.
Dieser zweite Teil beschäftigt
sich nun mit der fraktalen
Datenkompression selbst und zeigt
deren Bedeutung und Möglichkeiten

auf.

La première partie a expliqué la
nature et les propriétés des
tractates et donné une vue des
effets révolutionnaires de la
théorie fractale dans pratiquement

tous les domaines scientifiques.

Cette deuxième partie
présente la compression fractale

des données, son importance

et ses possibilités.

Adresse des Autors
Thilo Gipser, Dipl. El.-Ing. ETH, Institut für
Kommunikationstechnik, ETH-Zentrum, 8092
Zürich

Bildverarbeitung ist noch heute ein
den Personal-Computern im allgemeinen

vorenthaltenes Gebiet. Der Grund
hierfür liegt in der enormen
Datenmenge, welche die Digitalisierung von
Bildern mit sich bringt und im Fehlen
geeigneter Kompressionsmechanismen,

um den erforderlichen Speicherplatz

drastisch zu reduzieren. Man
betrachte zum Beispiel eine hochauflösende

Luftaufnahme, welche auf 1 ma

vergrössert wurde und nun noch eine
Auflösung von 100 Pixel/cm bei 8

signifikanten Bit pro Pixel besitzt. Dann
ergibt sich eine Datenmenge von 100

MByte - viel zu viel für eine Verarbeitung

auf Personal-Computern. Die
gängigen Kompressionsmethoden
erreichen Kompressionsfaktoren
zwischen 2:1 und 10:1, die Datenmenge
der Luftaufnahme liegt dann aber
immer noch zwischen 10 und 50 MByte.
Die fraktale Datenkompression
verspricht dagegen sensationelle
Datenkompressionsfaktoren von 10 000:1
und mehr!

Begründer der fraktalen Datenkompression

ist Michael F. Barnsley,
Mathematiker am Georgia Institute of
Technology in Atlanta, USA. Seine
Forschungsarbeiten erregen weltweit
grosses Aufsehen; selbst die amerikanische

Armee, der amerikanische
Geheimdienst CIA und die Weltraumbehörde

Nasa interessieren sich dafür
und gewähren mittlerweile grössere
finanzielle Unterstützung.

Worin besteht nun die Idee von
Barnsleys fraktaler Datenkompression?

Das Grundprinzip ist denkbar
einfach. Wenn es gelänge, die Struktur
eines gegebenen Bildes mittels eines
mathematischen Ausdrucks zu erfassen,

das Bild quasi in einer zugehörigen

Formel aufzuschlüsseln, dann
müsste anstelle des gesamten Bildes
lediglich diese Formel übertragen oder
abgespeichert werden. Es ist dabei
absolut einleuchtend, dass die Daten¬

menge dieser Formel um ein Vielfaches

geringer ausfällt als diejenige des

gesamten Bildes; offenbar sind gewaltige

Datenkompressionsfaktoren zu
erwarten. Bei der Dekodierung wird
das Bild einfach wieder aus dem
mathematischen Ausdruck zurückentwik-
kelt (Bild 1).

Mit der auf dieser Idee basierenden
Methode wurden am Georgia Institute
of Technology farbige Bilder mit
Motiven wie Sonnenblumenfelder,
Wolkenstudien, Küsten, Landschaften,
Schwarzwaldszenarien, Kopf eines
arktischen Wolfes, Gesicht eines
bolivianischen Mädchens u.v.m. komprimiert

und dabei enorme
Datenkompressionsfaktoren erzielt [1],

Die Grundzüge dieser Datenkompression

sollen im folgenden aufgezeigt

werden.

Das Chaosspiel
Um das Grundprinzip der fraktalen

Datenkompression zu verstehen, sei
ein recht erstaunliches Spiel, das
sogenannte Chaosspiel [3], vorgestellt. Auf
einem Stück Papier markiere man 3

beliebige Punkte (Fixpunkte) und gebe
ihnen die Namen Rot, Blau und Grün.
Weiter stehe ein Würfel zur Verfügung,

dessen Seiten ebenfalls die obigen

3 Farben aufweisen (jede Farbe
erscheint auf jeweils zwei Würfelflächen).

Alle 6 Seiten des Würfels kommen

beim Werfen mit der gleichen
Wahrscheinlichkeit vor. Nun markiere
man einen vierten Punkt zq (den
Anfangspunkt) auf dem Papier - irgendwo

- und beginne das Chaosspiel. Ein
erster Wurf des Würfels - und die Farbe

Rot liegt oben. Auf dem Blatt
Papier zeichnet man einen Punkt z\, und
zwar genau in der Mitte der Strecke
von zo und dem Fixpunkt Rot. Ein
erneutes Werfen des Würfels ergibt die
Farbe Grün. Man markiere den Punkt
Z2 genau in der Mitte der Strecke von z\
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Datenkompression

IFS-Code
Der Name IFS steht für iterierte Funktionensysteme (engl, iterated function systems).
Dabei hancelt es sich um rekursive definierte mathematische Ausdrücke; die
Zusammenfassung von mehreren dieser Funktionen nennt man einen IFS-Code. Letzterer
definiert nun ein ganz bestimmtes, durch Anzahl und Aufbau der einzelnen Ausdrücke
festgelegtes Bild. Zur Decodierung eines I FS-Codes werden die Funktionen in völlig
zufälligen Reihenfolge hintereinander aufgerufen, wodurch man eine vollständige
Konstruktion des dem I FS-Code zugrunde liegenden Bildes zu erreichen vermag.

und dem Fixpunkt Grün. In diesem
Sinne geht es weiter: Beim n-ten Schritt
zeichne man den Punkt z„ auf das
Papier, welcher genau in der Mitte
zwischen! dem Punkt zn-i und demjenigen
Fixpunkt zu liegen kommt, dessen

BILD-BEREICH

im ersten Beitrag dieser Publikation
ausführlich dargelegt, ist dies bei frak-
talen Strukturen möglich. Es liegt
daher nahe, fraktale Beschreibungsmethoden

zur Kodierung von Bildern
heranzuziehen. Da es sich dabei be-

MATHEM. BEREICH

gegebenes
Original bild

gegebenes
Originalbild

Codierung

Decodierung J

mathematischer
Ausdruck (IFS-Code)

mathematischer
Ausdruck (IFS-Code)

Name mit der Farbe der nach oben
zeigenden Seite des geworfenen Würfels
übereinstimmt (3 Abbildungsvorschriften).

Auf diese Weise markiere
man 100 000 Punkte. Nun werden die
ersten 20 Punkte zo... Z19 ausgelöscht,
und man betrachte die entstandene
Zeichnung. Wonach sieht die derart
erhaltene Punktmenge aus? Nach
einer zufälligen Zusammenballung der
einzelnen Punkte um die 3 Fixpunkte
herum, wie man annehmen könnte?
Bei weitem nicht, das Resultat zeigt
Bild 2 in Form eines Sierpinski-
Dreiecks.

Affine Abbildungen der
fraktalen Datenkompression

Um ein beliebiges, vorgegebenes
Originalbild formelmässig darstellen
zu können, müssen für komplizierte
Formen einfache mathematische
Beschreibungen gefunden werden. Wie

düngen der iterierten Funktionensysteme

(IFS) gegeben.
Eine affine Abbildung1 bildet -

geometrisch betrachtet - eine Punktmenge
durch eine beliebige Kombination aus
Drehung, Streckung und Verschiebung

auf eine andere Punktmenge ab

(Bild 3). Hauptmerkmal einer derartigen

Transformation stellt die Eigenschaft

dar, dass eine gegebene Figur
nicht bis zur Unkenntlichkeit entstellt,
sondern ein der Ausgangsfigur ähnlich
erscheinendes Abbild erzeugt wird.
Grundeigenschaften der ursprünglichen

Figur bleiben so erhalten (ein
Dreieck bleibt ein Dreieck). Bei der
affinen Transformation einer Figur wird
im Prinzip jeder ihrer Punkte durch
die Abbildungsvorschrift geschleust.

Eine affine Transformation w in
kartesischen Koordinaten kann in
allgemeiner Form wie folgt angeschrieben

werden:

*2
a b

c d x2
+ (1)

Dabei stellen die Koeffizienten a, b. c.

d, e, f reelle Konstanten dar, welche
entsprechend der gewünschten
Transformation festgelegt werden. Um zum
Beispiel die in Bild 3 angegebene
Abbildung zu beschreiben, müssen obige
Koeffizienten folgende Werte annehmen:

Bild 1 Funktionsprinzip der fraktalen Datenkompression
Für ein gegebenes Originalbild wird ein zugeordneter mathematischer Ausdruck bestimmt (oben). Von
nun an braucht nur noch diese Formel übertragen oder abgespeichert zu werden. Um wieder das
Originalbild zu erhalten, entwickelt man das Bild aus dem mathematischen Ausdruck zurück (unten).

1,0
0.3

1,0

1,2

0,2
0,8

zi
Xl

(2)

kanntlich um Rekursionsprozesse
handelt, müssen anpassungsfähige,
rekursiv definierte mathematische
Ausdrücke Grundlage einer allgemeinen
fraktalen Datenkompression sein. Solche

Terme sind in den affinen Abbil-

Bild 2

Chaos-Spiel

Ausgeschrieben ergibt sich der
Ausdruck w (xi, X2)=(xi + 0,2 • X2+ 1,0; 0,3

• xi + 0,8 • xi+ 1,2), wodurch das
rechtwinklige Dreieck in das nichtrechtwinklige

abgebildet wird.

1 affin verwandt, ähnlich

Ein klar begrenztes Sierpinski-Dreieck erscheint als Resultat des Chaos-
Spiels.
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Bild 3 Affine Transformation M1

Affin transformierte Bilder werden nicht bis zur
Unkenntlichkeit verzerrt, sondern sehen dem
Originalbild immer noch ähnlich.

exakt begrenzten Bereich ausfüllen.
Bei der fortgesetzten Abarbeitung
einer kontraktiven Abbildung w werden

die Abstände der Bildpunkte
somit immer kleiner, sie streben auf
einen Punkt, den Fixpunkt der
kontraktiven Abbildung, zu. Im Chaosspiel

liegen die 3 Fixpunkte der 3

Abbildungsvorschriften in den Ecken des

Sierpinski-Dreiecks.

IFS-Codes
Ordnet man schliesslich jeder

kontraktiven affinen Transformation w,
eine Wahrscheinlichkeit pi zu und fasst
mehrere derartige Transformationen
zusammen, so erhält man den IFS-
Code eines Bildes. Die Wahrschein-

nen Abbildungen, die für das Zeichnen

von grösseren Bildausschnitten
verantwortlich sind, stärker gewichtet
oder durch Hervorhebung einzelner
Transformationen Schattierungen im
Zielbild bewirkt werden.

Dekodierung von IFS-Codes
Die Dekodierung eines IFS-Codes

ist gleichbedeutend mit der Ermittlung
des einem IFS-Code zugeordneten Bildes

(Attraktor). Dabei entspricht die
Vorgehensweise grundsätzlich derjenigen

im vorgestellten Chaosspiel.
Ein beliebiger Anfangspunkt Po

werde festgelegt. Mittels eines
Zufallszahlengenerators ist nun zufällig eine
Transformation w, des gegebenen IFS-

Chaos

Unter Chaos versteht man ungeordnetes, nicht deterministisches Verhalten. Die
Auswirkungen kleinster Veränderungen (z.B. Bahnabweichungen) bleiben nicht gering,
sondern wachsen überraschend schnell an, wie z.B. beim Butterfly-Effekt. Der
Ausdruck Butterfly-Effekt wurde 1963 vom amerikanischen Meteorologen E.N. Lorentz
am Massachusetts Institute of Technology geprägt und verdeutlicht die Tatsache, dass

unser Wetter einem gigantischen chaotischen System entspringt, in welchem bereits
kleinste Einflüsse wie zum Beispiel der Flügelschlag eines Schmetterlings über das
Wettergeschehen (den Hurrikan) von morgen entscheiden können. Neueste Forschungen
[2] erbrachten nun die aufregende Entdeckung, dass es auch in chaotischen Systemen
nicht nur völlig ungeordnet zu und her geht, sondern dass im Gegenteil eine gewisse
Ordnung im Chaos vorherrschen kann. Die Zustände eines Systems bewegen sich dann
auf ganz bestimmten Bahnen oder Gebieten, sog. Attraktoren (von lat. aftra/iere anziehen),

sind also in gewisser Weise vorhersagbar.

Wie lassen sich nun die Koeffizienten

einer gewünschten affinen
Transformation bestimmen? Dies ist relativ
einfach zu bewerkstelligen, braucht
man doch nur 3 Punkte des Originalbildes

(z.B. die 3 Ecken des rechtwinkligen

Dreiecks in Bild 3) und die
entsprechenden 3 Bildpunkte (die 3 Ek-
ken des nichtrechtwinkligen Dreiecks)
in die Gleichung (1) einzusetzen; auf
diese Weise ergeben sich 6 Gleichungen,

aus welchen die 6 Unbekannten a,
b, c, d, e,/ermittelt werden können.

Der Vollständigkeit halber sei noch
erwähnt, dass zur Beschreibung affiner

Abbildungen noch andere,
aussagekräftigere (äquivalente) Darstellungen

als die in (1) gegebene allgemeine
Form zur Verfügung stehen [4].

Fixpunkt einer affinen
Abbildung

Damit eine affine Abbildung zur
fraktalen Datenkompression herangezogen

werden kann, muss sie kontrak-
tiv sein. Eine kontraktive affine Abbildung

w erfüllt die Bedingung

II w(jc) - w(t)II < II *- y\\, (3)

d.h. die durch die Transformation w

abgebildeten Punkte w(x) und w(y)
liegen näher beisammen als die
ursprünglichen Punkte x und y. Wäre
dem nicht so, lägen also die Bildpunkte

weiter auseinander als die ursprünglichen

Punkte, so würden mit der
fortgesetzten Abarbeitung einer Transformation

die Bildpunkte immer weiter
(unendlich weit) voneinander wegstreben.

Das Ziel ist jedoch genau das
Gegenteil; die Punkte sollen später einen

lichkeit p, gibt dabei an, wie oft die
Abbildung Wj im Vergleich zu den anderen

Transformationen des IFS-Codes
abgearbeitet (zufällig aufgerufen)
wird; die Summe aller Wahrscheinlichkeiten

pi eines IFS-Codes hat
natürlich immer den Wert 1.

Jeder IFS-Code definiert nun einen
Attraktor (Zielbild). Der Attraktor
entspricht dem bei der Dekodierung eines
IFS-Codes entstehenden Bild. Im
Chaosspiel wird der Attraktor durch
die 3 Abbildungsvorschriften zur
Ermittlung des jeweils nächsten
Bildpunktes definiert und durch das
entstandene Sierpiriski-Dreieck dargestellt.

Die den Transformationen zugewiesenen

Wahrscheinlichkeiten nehmen
grundsätzlich keinen Einfluss auf
Aussehen und Gestalt des Attraktors. Sie
legen aber fest, welche Transformationen

im Unterschied zu den übrigen wie
oft abzuarbeiten sind. Dadurch kön-

Codes zu bestimmen und der Punkt Po

auf den Punkt Pi w, (Po) abzubilden.
Im nächsten Schritt wird P\ seinerseits
durch eine weitere, erneut zufällig
ausgewählte Transformation Wj in den
Punkt P2 Wj (P\) transformiert. Nach
genügend vielen Wiederholungen dieses

iterativen Prozesses entspricht die
entstandene Punktmenge dem Attraktor

des IFS-Codes. Aus der formel-
mässigen Darstellung (im IFS-Code)
lässt sich so das gewünschte Bild
ermitteln (Bild 4).

Liegt der (frei wählbare) Anfangspunkt

Po ausserhalb des Zielbildes, so
konvergieren die Bildpunkte Pi rasch
in den zugehörigen Attraktor; die
ersten 10 bis 20 Punkte gehören dann
aber noch nicht dazu und müssen
entfernt werden. Aus diesem Grund werden

letztere im allgemeinen erst gar
nicht gezeichnet.

Es ist zu beachten, dass die beim De-
kodierungsprozess auftretende zufälli-
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Bild 4 Decodierung eines IFS-Codes
Bei der Decodierung entsteht aus einem IFS-
Code nach und nach (wie im Chaos-Spiel) das
zugehörige Zielbild; in diesem Fall handelt es sich
dabei um die Kochsche Schneeflockenkurve.

ge Reihenfolge der Transformationen
absolut keinen Einfluss auf das enste-
hende Zielbild ausübt. Die zugeordneten

Wahrscheinlichkeiten />,- sind
jedoch dafür verantwortlich, wie oft die
einzelnen Abbildungen w, im
Vergleich zu den übrigen Transformationen

aufgerufen werden.

Kodierung der Originalbilder
Bislang war stets von der Dekodie-

rung eines IFS-Codes die Rede. Es
stellt sich nun umgekehrt die Frage,
wie aus einem gegebenen Originalbild
der zugehörige IFS-Code - also die

Formel eines Bildes - ermittelt werden
kann. Dieses inverse Problem ist
ungleich schwieriger zu lösen, und seiner
Bewältigung kommt fundamentale
Bedeutung zu.

Die triviale Lösung bestünde darin,
zu jedem Punkt eines durch ein Punktraster

gegebenen Originalbildes eine
affine Abbildung zu bestimmen, welche

das gesamte Bild auf diesen Punkt
zusammenschrumpfen lässt. Der At-
traktor des so erhaltenen IFS-Codes
wäre dann offensichtlich mit dem
Ursprungsbild identisch. Dieses Vorgehen

ist aber nicht besonders
zweckmässig, da hierbei genauso viele affine
Transformationen benötigt würden,
wie das Originalbild Punkte hat - die
resultierenden Datenkompressionsfaktoren

wären also alles andere als
beeindruckend. Hier hilft das
sogenannte Collage-Theorem weiter, das
im folgenden näher erläutert werden
soll.

Es sei ein digitalisiertes Ursprungsbild
T gegeben (z.B. ein schwarzes

Blatt auf einem weissen Hintergrund).
Eine affine Transformation w\ werde
eingeführt und das dadurch bestimmte
Subbild w\(T) (welches eine verkleinerte,

transformierte Kopie von T
darstellt) berechnet. Dieses Bild
verschiebt man nun so lange, bis es einen
Teil von T möglichst gut überdeckt.
Dabei muss w\(T) als Teilmenge der
Punkte erscheinen, die T repräsentieren,

d.h. die überlappenden Ränder
von T und w\(T) sollten möglichst
genau übereinstimmen, im Idealfall
deckungsgleich sein. Alsdann wählt
man eine zweite Transformation und
verschiebt das Bild W2(7) erneut derart,

dass es einen weiteren Ausschnitt
von T überlagert. Bei alledem ist die
Überlappung der transformierten Bilder

w\(T) und w2(7) möglichst gering
zu halten (Überlappungen führen
nicht zu Fehidekodierungen, wohl
aber zu einer Verminderung der Deko-
dierungsgeschwindigkeit). Auf diese
Weise fährt man fort, bis schliesslich
das Originalbild T vollständig von
affin transformierten Kopien w,(7)
überdeckt wird (Bild 5). Dieser Prozess
der vollständigen Überlagerung eines

Originalbildes T durch kleinere Sub-
bilder w,(7) heisst im Englischen
Tiling\

Mit diesem Vorgehen ergibt sich
eine Anzahl kontraktiver affiner
Abbildungen, die durch die finalen
Positionen der Subbilder relativ zum Ur-

2engl. tiling das Dachdecken, das Kachellegen

Bild 5 Codierung eines Bildes
Das Originalbild (hier ein Ahornblatt) wird
sukzessive mit Subbildern überdeckt. Wählt man letztere

nicht optimal aus, so entstehen Überlappungen
(im Bild erkennbar an den Schattierungsänderungen).
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sprungsbild bestimmt sind und über
welche das Collage-Theorem folgenden

Aussage macht: Kann ein
Originalbild T annähernd vollständig mit
kleineren affinen Transformationen
Wj(T) seiner selbst überdeckt werden,
dann lässt sich eine Approximation
des Originalbildes konstruieren,
indem der Attraktor der Gesamtheit der
affinen Abbildungen berechnet wird.
Ist eine vollständige Überdeckung
möglich, so ist eine exakte
Rekonstruktion des Originalbildes gegeben.

Erläuterungen und Beispiele
Die Zahl der beim Kodierungspro-

zess unter Verwendung des Collage-
Theorems erhaltenen Subbilder
entspricht der Anzahl der für die Kodierung

des Originalbildes erforderlichen
Transformationen. Die Schwierigkeit
liegt darin, einerseits das Ursprungsbild

durch möglichst wenig affin
transformierte Kopien zu überdecken,
anderseits aber die Überlappungen der
einzelnen Subbilder minimal zu halten.

Es ist somit eine möglichst kleine
Familie von affinen Abbildungen zu
bestimmen, welche das gegebene Bild
mit einer gewünschten Auflösung
darstellt.

Interessant ist die folgende Anmerkung

zur eben erwähnten Auflösung
eines Zielbildes. Bis zu der geforderten
Auflösung ist der Attraktor bei perfekter

fraktaler Kodierung vom Originalbild
nicht zu unterscheiden. Vergrös-

sert man ihn aber weiter, so wird
selbstverständlich ein fehlerhaftes
Ergebnis erzielt: Da das Zielbild ein
Fraktalbild ist (ein Attraktor wird ja
rekursiv aufgebaut und hat grundsätzlich

fraktalen Charakter), werden bei
zunehmender Vergrösserung immer
feinere Details selbst bei einem Massstab

enthüllt, wo auf dem Originalbild
nur noch ein einziger Bildpunkt
erscheint.

Soll nun ein differenzierter
aufgebautes Originalbild, zum Beispiel das
Bild einer verregneten Meeresküste,
kodiert werden, so lässt sich dieses
immer in einfachere Teilbilder aufspalten.

Die Teilbilder werden einzeln
kodiert und das Zielbild dann aus ihrer
Gesamtheit zusammengesetzt. Im
erwähnten Beispiel lässt sich das
Originalbild etwa wie folgt aufteilen:
Regen, Wolken, Himmel, Felsen im Wasser

in Küstennähe, Meer, Vögel in der
Fuft, Streifen Strand und Gras entlang
dieses Strandes.

IFS-Codes weisen eine fundamentale
Stabilität auf: Der IFS-Code muss

nicht völlig exakt bestimmt werden,
um eine gute Ähnlichkeit mit dem
Originalbild zu erreichen. Er ist im
Gegenteil robust, d.h. kleine Änderungen
im Code führen nicht zu unakzeptablen

Schäden im Zielbild. Dies steht
im Gegensatz zu vielen anderen rekursiv

definierten Algorithmen (etwa zur
Erzeugung von pflanzlichen Strukturen),

bei welchen das erhaltene
Endprodukt von der genauen Sequenz der
Zufallszahlen während der Berech-

Farben und dreidimensionale
Darstellung

Es soll noch kurz auf die Möglichkeit

eingegangen werden, farbige und
dreidimensionale Bilder mittels IFS-
Codes auf dem Computer zu erzeugen.
Ordnet man im einfachsten Fall jeder
Transformation eine eigene Farbe zu,
so zeigen sich sehr schön die Subbilder,

aus welchen der Attraktor
zusammengesetzt ist. Eine interessantere Me-

Bild 6 Zusammenstellung

der in diesem

Beitrag erwähnten
IFS-Codes

Objekt w a b c d e f P

Koch'sche Insel 1 0.31 0.0 0.0 0.33 168 47 0.13
2 0.31 0.0 0.0 0.33 268 47 0.13
S 0.34 0.0 0.0 0.33 318 130 0.13

I 0.34 0.0 0.0 0.33 268 213 0.13

5 0.34 0.0 0.0 0.33 168 213 0.13

6 0.34 0.0 0.0 0.33 120 130 0.13

7 0.0 0.56 -0.56 0.0 225 373 0.22

Ahorn-Blatt 1 0.40 0.38 -0.25 0.44 25 209 0.21

2 0.50 0.0 -0.01 0.60 126 16 0.28

S 0.40 -0.35 0.26 0.42 309 73 0.21

I 0.74 0.03 -0.02 0.74 67 80 0.30

Sierpiriski-Dreieck 1 0.5 0.0 0.0 0.5 0.0 0.0 0.33

2 0.5 0.0 0.0 0.5 1.0 0.5 0.33

3 0.5 0.0 0.0 0.5 0.5 0.5 0.34

Farn 1 0.0 0.0 0.0 0.16 0.0 0.0 0.01

2 0.85 0.04 -0.04 0.85 0.0 1.6 0.85

3 0.20 -0.23 0.23 0.20 0.0 1.6 0.07

I -0.15 0.28 0.26 0.24 0.0 0.44 0.07

nung abhängt. Diese Stabilität ist ein
wichtiges Merkmal im Hinblick auf
die Systemunabhängigkeit und die
interaktive Bearbeitung von IFS-Codes
am Computer.

Im folgenden sollen zur Illustration
einige IFS-Codes angegeben werden.
Sie sind in Bild 6 zusammengestellt.
Interessant ist vor allem der IFS-Code
des im letzten Kapitel kodierten
Ahornblatts einschliesslich seines At-
traktors gemäss Bild 7. Daraus ersieht
man auch die Aussage des Collage-
Theorems, dass eine ungenaue
Überdeckung des Originalbildes durch
Subbilder zu einem ungenauen Zielbild
führt. Man beachte weiter die Werte
der Koeffizienten beim Sierpinski-
Dreieck: Wie leicht ersichtlich ist, stellen

sie nichts anderes als die formel-
mässige Beschreibung der 3

Abbildungsvorschriften aus dem Chaosspiel
dar. Die ganze Brisanz der fraktalen
Datenkompression verdeutlicht das
letzte Beispiel: Aus nur 4(!) affinen
Transformationen kann das Farnblatt
in Bild 8 konstruiert werden.

thode besteht darin, jeweils die Farbe
zu ändern, wenn ein Punkt an der
gleichen Stelle wiederholt gezeichnet wird.
Dann sind die den Transformationen
zugeordneten Wahrscheinlichkeiten
direkt für die Farbgebung des erzeugten

Zielbildes verantwortlich.

Bild 7 Attraktor des Ahornblattes
Man vergleiche die Übereinstimmung mit dem
Originalbild
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Da tenkompression

Bild 8 Farnblatt
Aus einem nur 4 affine Transformationen
umfassenden IFS-Code lässt sich dieses Farnblatt
decodieren.

Natürlich können IFS-Transforma-
tionen auch auf die dritte Dimension
ausgeweitet werden. In diesem Fall
ergeben sich in Gleichung (1) dreidimensionale

Vektoren und eine 3x3-Abbil-
dungsmatrix. Zur graphischen
Darstellung auf dem Computer sind geeignete

Algorithmen zu verwenden, die
eine Projektion des nunmehr
dreidimensionalen Attraktors auf den
zweidimensionalen Bildschirm ermöglichen.

Fazit und
Schlussbemerkungen

Anlässlich einer Diplomarbeit [5]
am Institut für Kommunikationstechnik

der ETH Zürich wurde eine
komplette IFS-Umgebung zur Ermittlung
und Dekodierung von IFS-Codes
aufgebaut (IFS-Tools), welcher auch die
hier präsentierten Bilder entstammen.
Mit ihrer Hilfe können Bilder in den
Computer eingelesen, mittels eines
Collage-Editors interaktiv kodiert, die
ermittelten IFS-Codes analysiert,
modifiziert, abgespeichert und natürlich

auch dekodiert werden. Verschiedene
Algorithmen stehen für die Bestimmung

der Kodierungsqualität zur
Verfügung (so ist es zwecks Ermittlung der
Kodierungsgenauigkeit möglich,
Originalbild und Attraktor quasi überein-
anderzulegen). Diverse Hilfsprogramme

dienen der Vereinfachung des

Umgangs mit dem Softwarepaket. Es
gelang eine Kodierung der verschiedensten

Originalbilder, vor allem auch die
Bestimmung der IFS-Codes von vielen
nichtfraktalen Strukturen wie
Rechtecken, Quadraten, Dreiecken, Geraden,

Kreisen, Spiralen u.a. Die
Untersuchungen werden fortgesetzt.

Potentielle Anwendungsgebiete der
fraktalen Datenkompression dürften
in Zukunft überall dort liegen, wo
digitale Bilder zu übertragen oder
abzuspeichern sind. Grosses Interesse
besteht ferner in all den Bereichen, welche

sich mit der Archivierung von
Bildmaterial auseinanderzusetzen
haben (Raumfahrt, Satellitenaufklärung).

Da die anfallenden Datenmengen

dort häufig zu gross sind, sieht
man sich infolge fehlender geeigneter
Kompressionsmethoden oftmals
gezwungen, beträchtliche Datenmengen
zu vernichten. Ein weiterer Einsatzbereich

zeichnet sich im Bereich der Mo-
dellierungs- und Simulationstechniken
ab [6].

Die fraktale Datenkompression ist
allerdings noch nicht ausgereift.
Insbesondere reichen die Kodierungsmöglichkeiten

von Bildern mit Hilfe des

Collage-Theorems nicht aus, um beliebige

Originalbilder rasch kodieren zu
können. Hier sind neue Kodieralgorithmen

zu entwickeln; denkbar wäre
zum Beispiel im Hinblick auf die
Stabilität der IFS-Codes eine rückgekoppelte,

automatisierte Änderung der
Abbildungsparameter.

Der weitere Erfolg der fraktalen
Datenkompression dürfte auch eng mit
dem der Entwicklung von
Bilderkennungsmethoden verknüpft sein. Eine
damit verbundene, anzustrebende
Automatisierung der Bildkodierung,
das heisst ein selbständiges Auffinden
fraktaler Grundmuster unter Verwendung

des Collage-Theorems oder
anderer Algorithmen, würde einen grossen

Schritt nach vorn bedeuten.
Keine Hindernisse sieht der Autor

hingegen in der Tatsache, dass der

vollständige Bildaufbau beim Deko-
dierungsprozess heute noch eine bis
mehrere Minuten in Anspruch
nimmt3. Einerseits weist die
Computerentwicklung klar in Richtung

höherer Leistungsfähigkeit und
damit auch in Richtung höherer
Verarbeitungsgeschwindigkeiten, anderseits
kann die Dekodierung eines gegebenen

IFS-Codes problemlos von
mehreren Prozessoren gleichzeitig
vorgenommen und die Dekodierungsge-
schwindigkeit dadurch beträchtlich
gesteigert werden. Weil die Reihenfolge
der von den einzelnen Prozessoren
aufgerufenen Abbildungsvorschriften
zufällig und damit unterschiedlich ist,
werden von allen Prozessen gleichzeitig

verschiedene Bereiche des Zielbildes

aufgebaut.
Bleibt zu erwähnen, dass es sich bei

den Forschungsgebieten im Bereich
der Fraktale, des deterministischen
Chaos und vor allem auch der fraktalen

Datenkompression um durchwegs
sehr junge Disziplinen handelt, deren
Bearbeitung und Nutzung erst durch
die Entwicklung und den Einsatz von
Computer überhaupt ermöglicht wurden.

Trozu ihrer kurzen Entwichlungs-
phase sind bereits interessante
Erkenntnisse gewonnen worden. Die
fraktale Datenkompression, die noch
in den Kinderschuhen steckt, dürfte in
Zukunft noch zu reden geben.

3 IBM PC PS/2,50 (CPU 80286, 10 MHz)
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