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Kommunikation

Fraktale - eine neue Sprache der
Wissenschaft
Fraktale Datenkompression, Teil 1

Thilo Gipser

Die sogenannte fraktale
Datenkompression verspricht für
Bilddaten sensationelle
Kompressionsfaktoren von 10000 : 1 und
mehr. In zwei Beiträgen soll dieses

neue Verfahren mit seinen
Eigenschaften, Möglichkeiten
und Realisierungschancen näher
beleuchtet werden. In einem
ersten Teil werden Wesen und
Eigenschaften von Fraktalen
näher erläutert und ein Einblick
in die revolutionären Auswirkungen

der Fraktaltheorie auf
nahezu alle Bereiche der
Wissenschaft vermittelt. In einem
zweiten Teil wird die fraktale
Datenkompression selbst und
deren Bedeutung und Möglichkeiten

vorgestellt.

Pour les données-vidéo, la
compression dite fractale des
données promet de sensationnels
facteurs de compression de
10 000 : 1 et plus. Deux articles
vont décrire cette nouvelle
méthode, ses propriétés, ses
possibilités et ses chances de
réalisation. La première partie
explique la nature et les propriétés

des fractales et prodigue une
vue des effets révolutionnaires
de la théorie fractale dans
pratiquement tous les domaines
scientifiques. La deuxième partie

présente la compression des
données, fractale son importance

et ses possibilités.
Adresse des Autors

Thilo Gipser. Dipl. El.-Ing. ETH, Institut für
Kommunikationstechnik, ETH-Zentrum, 8092
Zurich

«Es ist gefährlich weiterzulesen! Die
fraktale Geometrie wird Ihre Sicht der
Dinge grundlegend verändern. Sie
werden riskieren, Ihre kindliche
Auffassung von Wolken, Wäldern, Galaxien,

Blättern, Federn, Blumen,
Felsen, Gebirgen, Teppichen und vielen
anderen Dingen zu verlieren. Niemals
werden Sie zu den Ihnen vertrauten
Interpretationen dieser Dinge zurückkehren

können!» Mit diesen Sätzen
charakterisiert Michael F. Barnsley,
Mathematiker am Georgia Institute of
Technology in Atlanta, USA, und
Begründer der fraktalen Datenkompression,

die Brisanz der Fraktaltheorie,
welche einen völlig neuen, umfassenden

und faszinierenden Einblick in
unsere Natur ermöglicht. Wir leben in
einer Welt voll von Fraktalen, ohne
uns dieser Tatsache überhaupt bewusst
zu sein. Wie wenig wir bisher die
einfachsten Grundgesetze der Natur
begriffen haben, verdeutlicht eindrücklich

die folgende Fragestellung.

Wie lang ist die Küste von
England?

Diese scheinbar triviale Frage stellte
1967 ein relativ unbekannter
Mathematiker in der amerikanischen
Wissenschaftszeitschrift Science. Sein
Name: Benoît B. Mandelbrot, 1924 in
Warschau geboren, Studium in Paris
und heute IBM-Fellow am Thomas J.

Watson Research Center in Yorks-
town, USA. «Wie lang ist die Küste
von England?» ist zugegebenermassen
ein reichlich seltsamer Titel für eine
wissenschaftliche Arbeit. Gewiss kann
eine solche Frage nicht auf Anhieb
beantwortet werden, aber dann schlägt
man doch einfach im Lexikon nach -
oder?

Man nehme eine Landkarte von
Grossbritannien zur Hand und messe
selbst die Küste von England aus. Der
so erhaltene Wert ist aber sicherlich

viel zu klein, weil durch den
verhältnismässig grossen Massstab der Landkarte

alle grösseren und kleineren
Buchten und Halbinseln im tatsächlichen

Verlauf der Küste unterschlagen
wurden. Um diesem Übel abzuhelfen,
behändige man eine detailliertere
Landkarte von geringerem Massstab
und messe die Küstenlänge erneut. Die
nun erhaltene Länge ist zwar sicher
grösser als die alte, aber im Vergleich
zur tatsächlichen Länge immer noch
viel zu klein, da viele «Halb-Halbin-
seln», Buchten von Buchten usw. noch
nicht berücksichtigt werden konnten.
Nach wiederholtem Verringern des
Massstabes und Ausmessen der
englischen Küste erhält man jeweils einen
erneuten Längenzuwachs, die Küstenlänge

wird damit abhängig vom
verwendeten Massstab und (in letzter
Konsequenz) unendlich gross!

Mandelbrot war durch einen Artikel
des Engländers Lewis F. Richardson
auf die Beobachtung gestossen, dass
die Angaben über die britische
Küstenlänge erstaunlich differierten. Das
Gleiche ergab sich auch bei der Länge
der Grenze zwischen Portugal und
Spanien: Die Spanier gaben 987
Kilometer an, die Portugiesen 1214
Kilometer. Die Küstenlinie einer Insel hat
also die bizarre Eigenschaft, eine
unendliche Länge zu besitzen und trotzdem

eine endliche Fläche (nämlich die
Inselfläche) einzuschliessen. Derart
seltsame, scheinbar unklassifizierbare
Strukturen wurden von Mathematikern

jahrzehntelang ignoriert oder gar
als unwissenschaftlich abqualifiziert.
Mandelbrot dagegen erfasste die
Bedeutung dieser Gebilde und bezeichnete

sie als Fraktale'. Heute revolutioniert

seine Fraktaltheorie [1] in stark
zunehmendem Masse weite Teile der
Wissenschaft.

'von lat. fractum, Partizip des Verbs frangere
brechen, bersten
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Definition und Eigenschaften
von Fraktaien

Was sind nun eigentlich Fraktale,
und worin bestehen ihre ausserge-
wöhnlichen Eigenschaften? Fraktale
sind Objekte, welche bei jeder Ver-
grösserung neue Details zeigen. Im
Gegensatz zu den herkömmlichen und

3

Bild 1 Vergrösserungen eines Monsters
Mit jeder Vergrösserung eines Ausschnitts des

vorherigen Bildes werden neue, fremdartig schöne

Details enthüllt.

vor allem geometrischen Gebilden, die
bei einer Vergrösserung keine neuen
Einzelheiten offenbaren, erscheinen
bei fraktaien Objekten mit jeder
Vergrösserung neuartige, vorher nicht
erkennbare Strukturen, die dem
Ausgangsgebilde ähneln. So ergibt die
Vergrösserung eines beliebigen
Ausschnittes einer Geraden als Beispiel
eines nichtfraktalen Gebildes keine
neuen Strukturen preis, das vergrös-
serte Bild ist wieder eine Gerade; die
Vergrösserung einer fraktaien Kurve
dagegen zeigt immer neue Bögen oder
Ecken, welche vorher nicht ersichtlich
waren (Bild 1). Rauheit und Zersplitterung

bleiben dabei mit zunehmender
Verfeinerung der Besichtigung im
wesentlichen unverändert (Skaleninvarianz).

Theoretisch ist dieses Phänomen

ein unendlicher Kaskadenpro-
zess; praktisch jedoch gibt es einen
äusseren Abschnitt (Cutoff), der die
Grösse der Figur bestimmt, sowie

Bild 2 Kochsche Schneeflockenkurve
Die unendlich lange Kurve vermag eine nur
endliche Fläche zu umschliessen.

einen inneren, der spätestens dann
auftritt, wenn man bei realen Gebilden
die Grösse eines Atoms erreicht.

Die bei verschiedenen Vergrösserungen

eines Fraktals zutage tretenden
Formen sind jedoch einander alle ähnlich,

sie gleichen in ihrem grundlegenden

Muster auch stark dem ursprünglichen,

unvergrösserten Fraktal. Diese
Eigenschaft heisst Selbstähnlichkeit2;
die Struktur eines jeden Teilstücks
enthält den Schlüssel zur Gesamtstruktur.
Fraktale entstehen weiter aus einem
endlichen oder unendlichen Rekur-
sionsprozess und besitzen eine fraktale
Dimension (siehe später).

2engl. self-similarity

Beispiele mathematischer
Fraktale

Obwohl den Mathematikern schon
seit geraumer Zeit bekannt, verlebten
Fraktale über lange Zeit ein verstaubtes

Schattendasein in den Schubladen
der Mathematiker. Ihre ausserordentlich

seltsamen Eigenschaften erschienen

den meisten Mathematikern
suspekt, worauf derartige Strukturen als
Monster und pathologisch (krankhaft)
abqualifiziert wurden. Die bekanntesten

dieser Monster seien im folgenden
vorgestellt.

Eines der berühmtesten Monster
wurde um 1904 von Helge von Koch
ausgetüftelt. Es wird Kochsche Insel
oder Kochsche Schneeflockenkurve
genannt (Bild 2). Bei der Erzeugung dieses

Fraktals (Bild 3) nimmt seine
bisherige Länge mit jedem Schritt um den
Faktor 4A zu; ausgehend von einem
gleichseitigen Dreieck mit einer Kan-

Bild 3 Erzeugung der Kochschen Schneeflocke

Ein Fraktal entsteht grundsätzlich aus wiederholten

Verformungsprozessen. Hier ersetzt der
sogenannte Generator in der 2. Zeile fortlaufend einen
Initiator (z.B. den Initiator der I. Zeile).

tenlänge von 1 m erreicht man bereits
im 57. Schritt die Länge des Äquators
(rund 40000 km)! Damit wird die
Küstenlänge der Kochschen Insel unendlich

lang, umschliesst jedoch nur eine
endliche Fläche.

Ein weiteres, sehr bekanntes Monster

ist das sogenannte Sierpinski-
Dreieck (Bild 4), welches 1916 vom
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Bild 5 Apfelmännchen
Das Fraktal der Fraktale liegt im Zentrum der komplexen Zahlenebene. Es umfasst alle Punkte, bei
denen eine bestimmte Iterationsgrösse endlich bleibt.

polnischen Mathematiker Waclaw
Sierpinski (1882-1969) vorgestellt
wurde. Jedes einzelne Dreieck ist aus
drei kleineren Dreiecken aufgebaut.
Das Fraktal besitzt die Eigenschaft,
dass seine Gesamtfläche gleich Null,
der Gesamtumfang der Löcher hingegen

unendlich ist.
Das berühmteste und schönste

mathematische Fraktal stellt jedoch
zweifelsohne die Mandelbrot-Menge (Bild
5) dar (im deutschsprachigen Raum
wegen ihres Aussehens auch
Apfelmännchen genannt). Sie wurde 1980

von Benoît B. Mandelbrot entdeckt
und liegt im Zentrum der komplexen
Zahlenebene. Wendet man eine
bestimmte mathematische Funktion (siehe

später) iterativ auf alle Punkte der
komplexen Zahlenebene an, so fliehen
die Zahlen ausserhalb der Menge ins
Unendliche (Divergenz), während die
Zahlen innerhalb der Menge in derselben

umherwandern (Konvergenz).
Dieses Innere der Figur wird auch als

Ordnung bezeichnet, während man
den äusseren Bereich Chaos nennt. In
der Grenzfläche zwischen Ordnung

Bild 4 Sierpinski-Dreieck
Unendlich viele Dreiecke liegen alle in einem
einzigen Dreieck.

und Chaos liegen Fraktale; hier
markieren immer detailliertere Strukturen
von seltener Vielfalt und fremdartiger
Schönheit den Beginn der Instabilität
[2], Vergrössert man Ausschnitte aus
dem Rand der Mandelbrot-Menge, so
sieht man immer neue Formen,
entdeckt neue Apfelmännchen, welche
der Ausgangsfigur jedoch nie ganz
gleichen (Bild 1). Jedes quadratische
Gebiet, welches einen Teil des Randes
umfasst, enthält unendlich viele dieser
Apfelmännchen-Miniaturen

Selbstverständlich sind die
mathematischen Fraktale nicht nur auf zwei
Dimensionen beschränkt; als Beispiel
eines dreidimensionalen Fraktals sei

der nach seinem Entdecker Karl Menger

benannte Mengersche Schwamm

erwähnt (Bild 6). Hier ist jeder Würfel
aus 20 kleineren Würfeln aufgebaut,
deren Kantenlänge genau ein Drittel
derjenigen des ursprünglichen Würfels

beträgt. Der Mengersche Schwamm ist
ein sehr berühmtes Fraktal mit einem
Volumen gleich Null und einer unendlich

grossen Oberfläche.

Bild 6

Mengerscher
Schwamm
Das dreidimensionale
Monster besitzt bei
einem Volumen gleich
Null eine unendlich
grosse Oberfläche.
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Beispiele natürlicher Fraktale
Die Existenz von Fraktalen

beschränkt sich aber keineswegs nur auf
die Mathematik, vielmehr sind Fraktale

allgegenwärtig, sie sind ein grundlegendes

Muster der Natur. Diese Tatsache

ist für das Scheitern einer
Beschreibung letzterer mit Hilfe von
Werkzeugen aus der klassischen
Geometrie verantwortlich. Mandelbrot
umschreibt dies wie folgt: «Die Natur
hat der klassischen Geometrie ein
Schnippchen geschlagen. Denn Wolken

sind eben keine Kugeln, Berge keine

Kegel, Inseln keine Kreise und
Baumstämme keine Zylinder. Der
Blitz verläuft auf keiner Geraden und
die Oberfläche eines Planeten ist auch
nicht glatt.»

So muss eine Beschreibung der Natur

mit Hilfsmitteln der klassischen
Geometrie implizit zum Scheitern
verurteilt sein. Eine Geometrie der Natur
dagegen muss aus Objekten aufgebaut
werden, die sich nur wenig oder
überhaupt nicht manierlich verhalten, aus
Kurven von grosser Länge, die nur ein
kleines Flächenstück einschliessen,
oder aus ausgedehnten Flächen, welche

nur ein kleines Volumen ausfüllen
(z.B. wie bei der menschlichen Lunge):
eben aus Fraktalen.

Der fraktale Charakter der Natur ist
nicht nur aus den bereits besprochenen
Küstenlinien ersichtlich (mit jeder
Vergrösserung erscheinen wieder neue
Knicke im Küstenverlauf)- Geographische

Gebilde wie zum Beispiel
Gebirgslandschaften, Erd- oder
Planetenoberflächen weisen ebenfalls einen
ausgeprägt fraktalen Charakter auf.
Das Zufallsmuster von Wolken,
Oberflächen von Steinen, Felsen und Pflanzen

(Blätteroberflächen, Baumrinden
usw.) sind fraktal aufgebaut. Typisch
fraktale Strukturen zeigen sich bei dif-
fusionsbegrenztem Wachstum, in der
Verästelung von Bäumen (ein kleiner
Birkenast sieht mit seinen Verzweigungen

im Prinzip genauso aus wie ein
ganzer Baum), im Aufbau von
Korallenriffen, in den zufälligen Verzweigungen

von Blutgefässen oder Luftwegen

in der Lunge. Eine fraktale Struktur

erscheint bei der Brownschen
Bewegung oder dem Gaussschen
Rauschen in der Elektrotechnik. Fraktaler
Wachstumscharakter ist bei vielen
elektrischen Entladungsmustern, z.B.
bei Blitzentladungen, zu beobachten.

Man nimmt übrigens an, dass der
Rekursionsprozess bei natürlichen
Fraktalen prinzipiell endlich ist, d.h.
der fraktale Charakter findet späte¬

stens beim Erreichen atomarer Dimensionen

ein Ende.

Erzeugung von Fraktalen
Betrachtet man die komplizierten

Strukturen von Fraktalen in der
Mathematik und Natur, so müsste man
vermuten, dass die Konstruktion derart

komplizierter Formen die Notwendigkeit

komplexer Regeln bedingen
würde. Genau das Gegenteil ist der
Fall. Die Erzeugung regulärer Fraktale
erfolgt mittels einfacher Regeln in
einem (un-)endlichen Rekursionsprozess.

Durch unbegrenzte oder in der
Praxis bis zur Auflösungsgrenze
wiederholte Verformungsprozesse
können so Strukturen äusserster
Reichhaltigkeit und ausserordentlicher

Schönheit generiert werden.
Der rekursive Konstruktionsprozess

von Fraktalen ist geometrisch sehr
schön in der Erzeugung der Koch-
schen Schneeflocke (Bild 3) oder
mathematisch im Aufbau der Definitionsgleichung

des Apfelmännchens zu
beobachten.

Ausgangspunkt für die Berechnung
der Mandelbrot-Menge ist die
Iterationsvorschrift

Zn+l =/(zn) Zn2 + d, (1)

wobei zn, zn+i und d komplexe Zahlen
darstellen. Setzt man nun d zo, wobei
zo irgendein komplexer Anfangswert
der Iteration bedeutet, so leitet sich aus
der Gleichung (1) die Definition des
Apfelmännchens ab:

Zn+| =/(Zn) Zn2 + Z0. (2)

Dabei bedeutet zo einen beliebigen
Punkt in der komplexen Zahlenebene.
Wird dieser innerhalb der sogenannten,

Mandelbrot-Menge gewählt, so
konvergiert der Wert zn +1 bei Abarbeitung

des Rekursionsprozesses gegen
einen festen Wert. Liegt er dagegen
ausserhalb des Apfelmännchens, so
wächst der Funktionswert zn+i mit
zunehmendem n Anzahl Iterationen)
über alle Schranken. Setzt man alle
Punkte der komplexen Zahlenebene in
obige Gleichung (2) ein, so erhält man
das Apfelmännchen als Menge aller
Punkte, bei welchen die Werte z„+i
endlich bleiben (Bild 5).

Somit kann ein äusserst vielfältig
strukturiertes Objekt (Bild 1) durch
eine erstaunlich einfache Formel
vollständig beschrieben werden. Die
Brisanz der Fraktaltheorie wird damit
klar ersichtlich: Auf den ersten Blick

kompliziert aufgebaute Strukturen
oder chaotisch anmutende Vorgänge,
die mit der klassischen Geometrie
nicht oder nur unter unverhältnismässig

grossem Aufwand in den Griff zu
bekommen sind, können mit Hilfe der
Fraktaltheorie auf einfachste Weise
beschrieben werden. Die Problematik
liegt damit in der Lösung des inversen
Problems, d.h. der Bestimmung einer
fraktalen Beschreibung einer gegebenen

Struktur oder eines bekannten
Vorgangs. Der Lösung dieses inversen
Problems kommt auch in der fraktalen
Datenkompression eine zentrale
Bedeutung zu.

Doch zurück zur Erzeugung von
Fraktalen. Wenn die Fraktaltheorie
eine treffende Geometrie der Natur
darstellen soll, so müssten sich nicht
nur mathematische, sondern auch
komplexe natürliche Formen mittels
einfacher Regeln realisieren lassen.
Als Beispiel dazu wird im folgenden
eine Rekursionsvorschrift zur Erzeugung

fraktaler Gebirge aufgezeigt, die,
unter Verwendung möglichst einfacher

Regeln, zu fraktalen Gebirgszügen
mit maximaler Ähnlichkeit bezüglich

realer Gebirgsketten führt.
Der Bergstock weise der Einfachheit

halber einen dreieckigen Umriss auf.
Dieses Dreieck wird nun, indem man
die Seitenmitten bestimmt und miteinander

verbindet, in drei kleinere
Dreiecke unterteilt. Jedes neuentstandene

Dreieck wird auf die gleiche Art
weiter aufgespalten - so lange, bis die
Grenzen der Auflösung oder der
Rechenzeit erreicht sind. Das Ergebnis ist
vorerst ein relativ langweiliges
Dreieckgitter - das Sierpinski-Dreieck
(Bild 4). Bringt man nun jedoch vertikale

Störungen in der Art an, dass sich

jeder neu hinzugekommene Schnittpunkt

um einen zufälligen Betrag nach
oben oder unten verschiebt, so ergibt
sich ein äusserst realistisches fraktales
Gebirge (Bild 7).Um natürlichen
Gebirgszügen möglichst nahe zu kommen,

werden die eingebrachten
Verschiebungen bei jedem Rekursionsschnitt

verkleinert. Die willkürlich
gewählten vertikalen Versetzungen im
sogenannten Mittelpunktverschie-
bungsverfahreif zeichnen dabei
verantwortlich für die fraktale Dimension
(siehe nächstes Kapitel) der entstehenden

Landschaft, welche, um ein
möglichst natürliches Aussehen des fraktalen

Berges zu erreichen, der fraktalen
Dimension echter Landstriche
entsprechen sollte.

3engl. midpoint displacement method
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Bild 7 Fraktale Gebirge
Eine geometrische Vorschrift verwandelt ein

Sierpinski-Dreieck in ein äusserst realistisch
aussehendes fraktales Gebirge.

steme [3]. Sie stellen im wesentlichen
ein Regelwerk zur Erzeugung neuer
Zeichenketten aus alten dar. Im
folgenden Beispiel sollen hierfür die Zahlen

0 und 1 sowie die Symbole [ und ]

verwendet werden. Mit den
Ersetzungsregeln

0- 1[0]1[0]0 (3)
1-11

lässt sich nun ein breites Sortiment
komplizierter botanischer Formen
erzeugen. Wendet man obige Regeln
beispielsweise auf die nur aus der Ziffer 0

bestehende Zeichenkette an, so ergibt
sich nacheinander

0 (4)
1 [0] 1 [0]0
11 [ 1 [0] 1 [0]0] 11[1[0]1[0]0]1[0]1[0]0

Fasst man dann jede Zahl (0 oder 1)

als Linie gleicher Länge und jede
Klammer als Verzweigung auf und
heftet schliesslich an jedes Ende der
0-Linien ein Blatt, so ergeben sich
sogenannte graphtale Pflanzenstrukturen

gemäss Bild 8. Auf ähnliche Art
und Weise lässt sich die Kochsche
Schneeflockenkurve aus wenigen
Ersetzungsregeln konstruieren. Die L-Sy-
steme stellen damit eine extrem
kompakte, rekursive Codierungsmethode
komplizierter fraktaler Strukturen dar.
Sie werden vor allem für die Modellierung

von Pflanzen aller Art wie
Blumen, Büschen und Bäumen verwendet.

Fraktale Dimension

Bereits mehrfach wurde vom Begriff
der fraktalen Dimension Gebrauch
gemacht. Inwiefern unterscheidet sich
die Dimension eines Fraktals von der
einer Geraden, einer Ebene oder eines
Würfels?

Es ist nicht immer leicht, die Dimension

von geometrischen Gebilden zu
bestimmen. Eine Kugeloberfläche
beispielsweise sollte zweidimensional
sein, schliesslich ist sie eine Fläche.
Anderseits besitzt sie (im Gegensatz zu
einer unendlichen planaren Fläche)
eine räumliche Ausdehnung, also
etwas Dreidimensionales.

Die zentrale Eigenschaft von Fraktalen

ist nun gerade ihre ungewöhnliche
Dimension. Fraktale sind im

allgemeinen mehr als ein-, aber doch weniger

als zweidimensional (ebene Fraktale),

beziehungsweise mehr als zwei-,
aber weniger als dreidimensional
(räumliche Fraktale)!

Die natürliche Verallgemeinerung
des vertrauten Begriffs der Raumdimension

führt zum fraktalen
Dimensionsbegriff, welcher 1919 vom
deutschen Mathematiker und Schriftsteller
Felix Hausdorff definiert wurde.
Hausdorff nahm dabei Bezug auf den
Messvorgang, der zur Ermittlung der
Grösse eines geometrischen Gebildes
durchgeführt werden muss.

Kurven, Flächen und Körper besitzen

die topologischen Dimensionen 1,

2 und 3. Zu deren Vermessung benötigt

man ein auf ihre Dimensionen
zugeschnittenes Einheitsmass: für eine
Kurve eine Strecke der Länge 1, für
Flächen ein Quadrat der Seitenlänge 1

Das hier beschriebene Prinzip lässt
sich vielfältig variieren und wurde unter

anderem zur Modellierung von
Erosionsgesetzen bei Gebirgen oder
zur Untersuchung von Erdbebendaten
im Hinblick auf Veränderungen in
Bruchzonen verwendet. Der amerikanische

Physiker Richard V. Voss, ein
Kollege Mandelbrots am
IBM-Forschungszentrum, erzeugte auf diese
Art und Weise Modelle von Planeten,
Monden, Wolken und Gebirgen, die
der Wirklichkeit täuschend nahe kommen.

Eine andere Methode zur Erzeugung

von fraktalen Strukturen wurde
1968 vom dänischen Biologen Aristid
Lindenmayer zur Beschreibung von
Pflanzenformen entwickelt. Es handelt
sich um die nach ihm benannten L-Sy-
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und für einen Körper einen Würfel der
Kantenlänge 1. Um kleine, komplexe
Gebilde zu vermessen, kann man von
den Einheitsmassen kleinere Masse
ableiten. Hierzu werden die Seiten
eines Einheitsmasses einfach in b gleiche

Teile unterteilt, die neue Masseinheit

hat nun die Seitenlänge

r=\/b. (5)

Um das Einheitsmass mit Masseinheiten

der Seitenlänge r aufzufüllen,
benötigt man für die Einheitsstrecke N
b Teile, für die Einheitsfläche N tf
und für den Einheitswürfel N b3 Teile.

Afist somit gemäss

N bD r~D (6)

direkt von der Dimension D abhängig,
und es folgt damit aus der Formel (6)
(bei gleichen Längenstücken r) für die
fraktale Dimension

r, logAD (7)
log \/r '

Darin bedeutet N den Faktor, um
welchen die Anzahl der Segmente pro
Rekursionsschritt zunimmt und r die
neue Seiten- oder Kantenlänge.

Als Beispiel soll die fraktale Dimension

der Kochschen Schneeflockenkurve

ermittelt werden. Wie aus Bild 3

unschwer zu erkennen, nimmt die
Anzahl neuer Segmente pro Rekursionsschritt

um N 4 zu, während die neue
Seitenlänge r 1/3 der alten beträgt.
Damit ergibt sich für die Kochsche Insel

eine fraktale Dimension von

log 4
D 1,26. (8)

log 3

Die fraktale Dimension eines Sierpin-
ski-Dreiecks berechnet sich zu D
1,59; diejenige des räumlichen Men-
gerschen Schwamms zu D 2,73.

Die fraktale Dimension ist damit
primär ein Mass für die Rauheit eines
fraktalen Gebildes. Je besser der Verlauf

eines Fraktals einer Geraden
entspricht, desto näher liegt seine Dimension

bei D 1; je vollständiger eine
fraktale Kurve eine Ebene ausfüllt, desto

näher liegt seine Dimension beim
Wert D 2; und je besser ein Fraktal

einen bestimmten Raum ausfüllt,
umso näher liegt seine fraktale Dimension

bei D 3.

Interessant wird es aber erst bei der
Ermittlung von fraktalen Dimensionen

in der Natur. So beträgt diejenige
von Küstenlinien D 1,25 - ob Zufall
oder nicht, entspricht dieses Ergebnis
ziemlich genau der fraktalen Dimension

der Kochschen Insel! Unsere
Lunge soll eine fraktale Dimension
aufweisen, welche weit über derjenigen

des Mengerschen Schwammes
liegt, und in der Botanik wurde mit der
Bestimmung der fraktalen Dimension
von Pflanzenoberflächen gleichzeitig
ein Widerspruch aufgeklärt; Werden
diese Pflanzen von zehnfach kleineren
Insekten als ursprünglich bevölkert, so
nimmt deren Zahl nicht wie in der
zweidimensionalen Ebene um das
Hundertfache, sondern um das rund
Sechshundertfache zu (D 2,79; 102'79

617 statt 102 100!). Auch unser
Weltall weist vermutlich fraktalen
Charakter auf. Galaxien verteilen sich
nämlich nicht gleichmässig im Raum,
wie man früher geglaubt hatte.
Vielmehr bilden mehrere Galaxien einen
Galaxienhaufen, von denen mehrere
wieder einen Superhaufen bilden, die
sich ihrerseits wieder zu Super-Super-
haufen vereinigen, usw. Nach einer
kürzlich erfolgten Berechnung hat unser

Universum eine fraktale Dimension

zwischen D 1,2 und D 1,4.

(Punktförmige Anordnung im
dreidimensionalen Raum).

Auswirkungen und Zukunft
der Fraktaltheorie

Die Auswirkungen der Fraktaltheorie
sind, wie die aufgeführten Beispiele

belegen, von grundsätzlicher Natur
und äusserst vielseitig. Primär erlauben

die neuen Beschreibungsmethoden
ein besseres, umfassenderes

Verstände der Natur und einer Vielzahl
von natürlichen Vorgängen. Sekundär
führt die Fraktaltheorie zur Entwicklung

neuartiger Techniken in vielen
Bereichen der Wissenschaft.

Eng verknüpft sind die Fraktale mit
einem anderen, ebenfalls sehr jungen

und hochinteressanten Wissenschaftszweig:

der Chaosforschung. In chaotischen

Systemen können kleinste
Veränderungen grösste Wirkungen zur
Folge haben; ein fundamentales Prinzip,

das nicht nur in physikalischen,
sondern offensichtlich auch in sozialen

Systemen seine Gültigkeit hat (als
Beispiel hierfür seien die gewaltigen
Auswirkungen der vergleichsweise
unbedeutenden Ernennung von Michail
Gorbatschow zum neuen Kremlherrscher

vor 5 Jahren angeführt). Es
existieren nun bestimmte geometrische
Strukturen im Chaos, sogenannte At-
traktoren, welche einen fraktalen Aufbau

aufweisen und eine gewisse
Vorhersage chaotischer Vorgänge erlauben.

Daraus erhofft man sich zum
Beispiel fundamentale Erkenntisse über
das Verhalten von Turbulenzen in
Flüssigkeiten oder Hinweise für die
Bekämpfung und Verhinderung von
Herzkammernflimmern (Sekundenherztod)

[4],
Grössten Einfluss dürften Fraktale

aber in Zukunft auf die Gebiete der
Simulationstechniken und der
Bilderzeugung gewinnen. Simulationen unter

Beizug von fraktalen
Beschreibungsmethoden empfehlen sich vor
allem dann, wenn natürliche Systeme
oder Verhaltensmuster wirklichkeitsgetreu

nachgeahmt werden sollen.
Fraktale eignen sich neben der Modellierung

verschiedenster Landschaften
auch zur Simulation ökologischer und
sozialer Systeme. Aufgrund ihrer
einfachen Erzeugungsvorschriften ist
insbesondere auch im Bereich der
Computergrafik ein Boom vorauszusehen.
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