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Kommunikation

Fraktale — eine neue Sprache der

Wissenschaft

Fraktale Datenkompression, Teil 1

Thilo Gipser

Die sogenannte fraktale Daten-
kompression verspricht fir Bild-
daten sensationelle Kompres-
sionsfaktoren von 10000 : 1 und
mehr. In zwei Beitragen soll die-
ses neue Verfahren mit seinen
Eigenschaften, Moglichkeiten
und Realisierungschancen naher
beleuchtet werden. In einem
ersten Teil werden Wesen und
Eigenschaften von Fraktalen
naher erldautert und ein Einblick
in die revolutionaren Auswirkun-
gen der Fraktaltheorie auf
nahezu alle Bereiche der Wis-
senschaft vermittelt. In einem
zweiten Teil wird die fraktale
Datenkompression selbst und
deren Bedeutung und Maoglich-
keiten vorgestelit.

Pour les données-vidéo, la com-
pression dite fractale des don-
nées promet de sensationnels
facteurs de compression de
10000 : 1 et plus. Deux articles
vont décrire cette nouvelle
méthode, ses propriétés, ses
possibilités et ses chances de
réalisation. La premiere partie
explique la nature et les proprie-
tés des fractales et prodigue une
vue des effets révolutionnaires
de la théorie fractale dans prati-
quement tous les domaines
scientifiques. La deuxieme par-
tie présente la compression des
données, fractale son impor-
tance et ses possibilités.

Adresse des Autors

Thilo Gipser, Dipl. El.-Ing. ETH, Institut fiir
Kommunikationstechnik, ETH-Zentrum, 8092
Ziirich

«Es ist gefahrlich weiterzulesen! Die
fraktale Geometrie wird Ihre Sicht der
Dinge grundlegend verdndern. Sie
werden riskieren, Thre kindliche Auf-
fassung von Wolken, Wildern, Gala-
xien, Blattern, Federn, Blumen, Fel-
sen, Gebirgen, Teppichen und vielen
anderen Dingen zu verlieren. Niemals
werden Sie zu den lhnen vertrauten
Interpretationen dieser Dinge zurtick-
kehren konnen!» Mit diesen Sétzen
charakterisiert Michael F. Barnsley,
Mathematiker am Georgia Institute of
Technology in Atlanta, USA, und Be-
griinder der fraktalen Datenkompres-
sion, die Brisanz der Fraktaltheorie,
welche einen vollig neuen, umfassen-
den und faszinierenden Einblick in
unsere Natur ermoglicht. Wir leben in
einer Welt voll von Fraktalen, ohne
uns dieser Tatsache tiberhaupt bewusst
zu sein. Wie wenig wir bisher die ein-
fachsten Grundgesetze der Natur be-
griffen haben, verdeutlicht eindriick-
lich die folgende Fragestellung.

Wie lang ist die Kiiste von
England?

Diese scheinbar triviale Frage stellte
1967 ein relativ unbekannter Mathe-
matiker in der amerikanischen Wis-
senschaftszeitschrift  Science. Sein
Name: Benoit B. Mandelbrot, 1924 in
Warschau geboren, Studium in Paris
und heute IBM-Fellow am Thomas J.
Watson Research Center in Yorks-
town, USA. «Wie lang ist die Kiiste
von England?» ist zugegebenermassen
ein reichlich seltsamer Titel fiir eine
wissenschaftliche Arbeit. Gewiss kann
eine solche Frage nicht auf Anhieb be-
antwortet werden, aber dann schléagt
man doch einfach im Lexikon nach -
oder?

Man nehme eine Landkarte von
Grossbritannien zur Hand und messe
selbst die Kiiste von England aus. Der
so erhaltene Wert ist aber sicherlich

viel zu klein, weil durch den verhalt-
nisméissig grossen Massstab der Land-
karte alle grosseren und kleineren
Buchten und Halbinseln im tatséchli-
chen Verlauf der Kiiste unterschlagen
wurden. Um diesem Ubel abzuhelfen,
behdndige man eine detailliertere
Landkarte von geringerem Massstab
und messe die Kiistenldnge erneut. Die
nun erhaltene Lange ist zwar sicher
grosser als die alte, aber im Vergleich
zur tatsdchlichen Linge immer noch
viel zu klein, da viele «Halb-Halbin-
seln», Buchten von Buchten usw. noch
nicht beriicksichtigt werden konnten.
Nach wiederholtem Verringern des
Massstabes und Ausmessen der engli-
schen Kiiste erhilt man jeweils einen
erneuten Liangenzuwachs, die Kiisten-
linge wird damit abhangig vom ver-
wendeten Massstab und (in letzter
Konsequenz) unendlich gross!

Mandelbrot war durch einen Artikel
des Engldnders Lewis F. Richardson
auf die Beobachtung gestossen, dass
die Angaben iiber die britische Kii-
stenldnge erstaunlich differierten. Das
Gleiche ergab sich auch bei der Lange
der Grenze zwischen Portugal und
Spanien: Die Spanier gaben 987 Kilo-
meter an, die Portugiesen 1214 Kilo-
meter. Die Kiistenlinie einer Insel hat
also die bizarre Eigenschaft, eine un-
endliche Linge zu besitzen und trotz-
dem eine endliche Flache (namlich die
Inselfldche) einzuschliessen. Derart
seltsame, scheinbar unklassifizierbare
Strukturen wurden von Mathemati-
kern jahrzehntelang ignoriert oder gar
als unwissenschaftlich abqualifiziert.
Mandelbrot dagegen erfasste die Be-
deutung dieser Gebilde und bezeichne-
te sie als Fraktale'. Heute revolutio-
niert seine Fraktaltheorie [1] in stark
zunehmendem Masse weite Teile der
Wissenschaft.

'von lat. fractum, Partizip des Verbs frangere bre-
chen, bersten
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Definition und Eigenschaften
von Fraktalen

Was sind nun eigentlich Fraktale,
und worin bestehen ihre ausserge-
wohnlichen Eigenschaften? Fraktale
sind Objekte, welche bei jeder Ver-
grosserung neue Details zeigen. Im
Gegensatz zu den herkémmlichen und

Bild 1

Vergrosserungen eines Monsters

Mit jeder Vergrosserung eines Ausschnitts des
vorherigen Bildes werden neue, fremdartig scho-
ne Details enthiillt.

vor allem geometrischen Gebilden, die
bei einer Vergrosserung keine neuen
Einzelheiten offenbaren, erscheinen
bei fraktalen Objekten mit jeder Ver-
grosserung neuartige, vorher nicht er-
kennbare Strukturen, die dem Aus-
gangsgebilde &dhneln. So ergibt die
Vergrosserung eines beliebigen Aus-
schnittes einer Geraden als Beispiel
eines nichtfraktalen Gebildes keine
neuen Strukturen preis, das vergros-
serte Bild ist wieder eine Gerade; die
Vergrosserung einer fraktalen ‘Kurve
dagegen zeigt immer neue Bogen oder
Ecken, welche vorher nicht ersichtlich
waren (Bild I). Rauheit und Zersplitte-
rung bleiben dabei mit zunehmender
Verfeinerung der Besichtigung im we-
sentlichen unverdndert (Skaleninva-
rianz). Theoretisch ist dieses Phino-
men ein unendlicher Kaskadenpro-
zess; praktisch jedoch gibt es einen
dusseren Abschnitt (Cutoff), der die
Grosse der Figur bestimmt, sowie

Bild 2 Kochsche Schneeflockenkurve

Die unendlich lange Kurve vermag eine nur end-
liche Flache zu umschliessen.

einen inneren, der spitestens dann
auftritt, wenn man bei realen Gebilden
die Grosse eines Atoms erreicht.

Die bei verschiedenen Vergrosse-
rungen eines Fraktals zutage tretenden
Formen sind jedoch einander alle &hn-
lich, sie gleichen in ihrem grundlegen-
den Muster auch stark dem urspriingli-
chen, unvergrdsserten Fraktal. Diese
Eigenschaft heisst Selbstihnlichkeit?;
die Struktur eines jeden Teilstiicks ent-
hilt den Schliissel zur Gesamtstruktur.
Fraktale entstehen weiter aus einem
endlichen oder unendlichen Rekur-
sionsprozess und besitzen eine fraktale
Dimension (siehe spiter).

Zengl. self-similarity

Beispiele mathematischer
Fraktale

Obwohl den Mathematikern schon
seit geraumer Zeit bekannt, verlebten
Fraktale iiber lange Zeit ein verstaub-
tes Schattendasein in den Schubladen
der Mathematiker. Thre ausserordent-
lich seltsamen Eigenschaften erschie-
nen den meisten Mathematikern su-
spekt, worauf derartige Strukturen als
Monster und pathologisch (krankhaft)
abqualifiziert wurden. Die bekannte-
sten dieser Monster seien im folgenden
vorgestellt.

Eines der beriihmtesten Monster
wurde um 1904 von Helge von Koch
ausgetiiftelt. Es wird Kochsche Insel
oder Kochsche Schneeflockenkurve ge-
nannt (Bild 2). Bei der Erzeugung die-
ses Fraktals (Bild 3) nimmt seine bis-
herige Liange mit jedem Schritt um den
Faktor %; zu; ausgehend von einem
gleichseitigen Dreieck mit einer Kan-

o

Bild 3 Erzeugung der Kochschen Schnee-
flocke

Ein Fraktal entsteht grundsatzlich aus wiederhol-
ten Verformungsprozessen. Hier ersetzt der soge-
nannte Generator in der 2. Zeile fortlaufend einen
Initiator (z.B. den Initiator der . Zeile).

tenldnge von 1 m erreicht man bereits
im 57. Schritt die Linge des Aquators
(rund 40000 km)! Damit wird die Kii-
stenldnge der Kochschen Insel unend-
lich lang, umschliesst jedoch nur eine
endliche Fliche.

Ein weiteres, sehr bekanntes Mon-
ster ist das sogenannte Sierpinski-
Dreieck (Bild 4), welches 1916 vom
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polnischen Mathematiker Waclaw
Sierpinski  (1882-1969) vorgestellt
wurde. Jedes einzelne Dreieck ist aus
drei kleineren Dreiecken aufgebaut.
Das Fraktal besitzt die Eigenschaft,
dass seine Gesamtfldache gleich Null,
der Gesamtumfang der Locher hinge-
gen unendlich ist.

Das berithmteste und schonste ma-
thematische Fraktal stellt jedoch zwei-
felsohne die Mandelbrot-Menge (Bild
5) dar (im deutschsprachigen Raum
wegen ihres Aussehens auch Apfel-
miannchen genannt). Sie wurde 1980
von Benoit B. Mandelbrot entdeckt
und liegt im Zentrum der komplexen
Zahlenebene. Wendet man eine be-
stimmte mathematische Funktion (sie-
he spéter) iterativ auf alle Punkte der
komplexen Zahlenebene an, so flichen
die Zahlen ausserhalb der Menge ins
Unendliche (Divergenz), wihrend die
Zahlen innerhalb der Menge in dersel-
ben umherwandern (Konvergenz).
Dieses Innere der Figur wird auch als
Ordnung bezeichnet, wihrend man
den dusseren Bereich Chaos nennt. In
der Grenzflache zwischen Ordnung

Bild 4 Sierpinski-Dreieck
Unendlich viele Dreiecke liegen alle in einem ein-
zigen Dreieck.

und Chaos liegen Fraktale; hier mar-
kieren immer detailliertere Strukturen
von seltener Vielfalt und fremdartiger
Schonheit den Beginn der Instabilitat
[2]. Vergrossert man Ausschnitte aus
dem Rand der Mandelbrot-Menge, so
sieht man immer neue Formen, ent-
deckt neue Apfelmidnnchen, welche
der Ausgangsfigur jedoch nie ganz
gleichen (Bild 1). Jedes quadratische
Gebiet, welches einen Teil des Randes
umfasst, enthilt unendlich viele dieser
Apfelmédnnchen-Miniaturen!
Selbstverstiandlich sind die mathe-
matischen Fraktale nicht nur auf zwei
Dimensionen beschrinkt; als Beispiel
eines dreidimensionalen Fraktals sei
der nach seinem Entdecker Karl Men-
ger benannte Mengersche Schwamm

Bild 5 Apfelminnchen

Das Fraktal der Fraktale liegt im Zentrum der komplexen Zahlenebene. Es umfasst alle Punkte, bei de-

nen eine bestimmte Iterationsgrosse endlich bleibt.

erwahnt (Bild 6). Hier ist jeder Wiirfel
aus 20 kleineren Wiirfeln aufgebaut,
deren Kantenldnge genau ein Drittel
derjenigen des urspriinglichen Wiirfels

Bild 6
Mengerscher
Schwamm

Das dreidimensionale
Monster besitzt bei
einem Volumen gleich
Null eine unendlich
grosse Oberfliche.

betragt. Der Mengersche Schwamm ist
ein sehr berithmtes Fraktal mit einem
Volumen gleich Null und einer unend-
lich grossen Oberflache.

Bulletin SEV/VSE 81(1990)9, 5. Mai

45



Datenkompression

Beispiele natiirlicher Fraktale

Die Existenz von Fraktalen be-
schriankt sich aber keineswegs nur auf
die Mathematik, vielmehr sind Frakta-
le allgegenwiirtig, sie sind ein grundle-
gendes Muster der Natur. Diese Tatsa-
che ist fiir das Scheitern einer Be-
schreibung letzterer mit Hilfe von
Werkzeugen aus der klassischen Geo-
metrie verantwortlich. Mandelbrot
umschreibt dies wie folgt: «Die Natur
hat der klassischen Geometrie ein
Schnippchen geschlagen. Denn Wol-
ken sind eben keine Kugeln, Berge kei-
ne Kegel, Inseln keine Kreise und
Baumstimme keine Zylinder. Der
Blitz verlauft auf keiner Geraden und
die Oberflédche eines Planeten ist auch
nicht glatt.»

So muss eine Beschreibung der Na-
tur mit Hilfsmitteln der klassischen
Geometrie implizit zum Scheitern ver-
urteilt sein. Eine Geometrie der Natur
dagegen muss aus Objekten aufgebaut
werden, die sich nur wenig oder tiber-
haupt nicht manierlich verhalten, aus
Kurven von grosser Liange, die nur ein
kleines Flachenstiick einschliessen,
oder aus ausgedehnten Fldchen, wel-
che nur ein kleines Volumen ausfiillen
(z.B. wie bei der menschlichen Lunge):
eben aus Fraktalen.

Der fraktale Charakter der Natur ist
nicht nur aus den bereits besprochenen
Kiistenlinien ersichtlich (mit jeder
Vergrosserung erscheinen wieder neue
Knicke im Kiistenverlauf). Geogra-
phische Gebilde wie zum Beispiel Ge-
birgslandschaften, Erd- oder Planeten-
oberflichen weisen ebenfalls einen
ausgeprigt fraktalen Charakter auf.
Das Zufallsmuster von Wolken, Ober-
flichen von Steinen, Felsen und Pflan-
zen (Blatteroberflichen, Baumrinden
usw.) sind fraktal aufgebaut. Typisch
fraktale Strukturen zeigen sich bei dif-
fusionsbegrenztem Wachstum, in der
Verastelung von Bdumen (ein kleiner
Birkenast sieht mit seinen Verzweigun-
gen im Prinzip genauso aus wie ein
ganzer Baum), im Aufbau von Koral-
lenriffen, in den zufilligen Verzwei-
gungen von Blutgefdssen oder Luftwe-
gen in der Lunge. Eine fraktale Struk-
tur erscheint bei der Brownschen Be-
wegung oder dem Gaussschen Rau-
schen in der Elektrotechnik. Fraktaler
Wachstumscharakter ist bei vielen
elektrischen Entladungsmustern, z.B.
bei Blitzentladungen, zu beobachten.

Man nimmt {brigens an, dass der
Rekursionsprozess bei natiirlichen
Fraktalen prinzipiell endlich ist, d.h.
der fraktale Charakter findet spite-

stens beim Erreichen atomarer Dimen-
sionen ein Ende.

Erzeugung von Fraktalen

Betrachtet man die komplizierten
Strukturen von Fraktalen in der Ma-
thematik und Natur, so miisste man
vermuten, dass die Konstruktion der-
art komplizierter Formen die Notwen-
digkeit komplexer Regeln bedingen
wiirde. Genau das Gegenteil ist der
Fall. Die Erzeugung regulédrer Fraktale
erfolgt mittels einfacher Regeln in
einem (un-)endlichen Rekursionspro-
zess. Durch unbegrenzte oder in der

Praxis bis zur Auflosungsgrenze
wiederholte Verformungsprozesse
konnen so Strukturen &dusserster

Reichhaltigkeit und ausserordentli-
cher Schonheit generiert werden.

Der rekursive Konstruktionsprozess
von Fraktalen ist geometrisch sehr
schon in der Erzeugung der Koch-
schen Schneeflocke (Bild 3) oder ma-
thematisch im Aufbau der Definitions-
gleichung des Apfelmidnnchens zu
beobachten.

Ausgangspunkt fiir die Berechnung
der Mandelbrot-Menge ist die Itera-
tionsvorschrift

Zor1 = f(zn) = 22 + d, (1)

wobei z,, zh+1 und d komplexe Zahlen
darstellen. Setzt man nun d = z, wobei
7o irgendein komplexer Anfangswert
der Iteration bedeutet, so leitet sich aus
der Gleichung (1) die Definition des
Apfelmédnnchens ab:

Zn+1 =f(Zn) = an + 2zo. (2)

Dabei bedeutet z, einen beliebigen
Punkt in der komplexen Zahlenebene.
Wird dieser innerhalb der sogenann-
ten, Mandelbrot-Menge gewihlt, so
konvergiert der Wert z, +| bei Abarbei-
tung des Rekursionsprozesses gegen
einen festen Wert. Liegt er dagegen
ausserhalb des Apfelmdnnchens, so
wichst der Funktionswert z,4; mit zu-
nehmendem n (= Anzahl Iterationen)
iber alle Schranken. Setzt man alle
Punkte der komplexen Zahlenebene in
obige Gleichung (2) ein, so erhilt man
das Apfelmidnnchen als Menge aller
Punkte, bei welchen die Werte z,4;
endlich bleiben (Bild 5).

Somit kann ein dusserst vielfiltig
strukturiertes Objekt (Bild 1) durch
eine erstaunlich einfache Formel voll-
stindig beschrieben werden. Die Bri-
sanz der Fraktaltheorie wird damit
klar ersichtlich: Auf den ersten Blick

kompliziert aufgebaute Strukturen
oder chaotisch anmutende Vorginge,
die mit der klassischen Geometrie
nicht oder nur unter unverhiltnismas-
sig grossem Aufwand in den Griff zu
bekommen sind, konnen mit Hilfe der
Fraktaltheorie auf einfachste Weise
beschrieben werden. Die Problematik
liegt damit in der Losung des inversen
Problems, d.h. der Bestimmung einer
fraktalen Beschreibung einer gegebe-
nen Struktur oder eines bekannten
Vorgangs. Der Lésung dieses inversen
Problems kommt auch in der fraktalen
Datenkompression eine zentrale Be-
deutung zu.

Doch zuriick zur Erzeugung von
Fraktalen. Wenn die Fraktaltheorie
eine treffende Geometrie der Natur
darstellen soll, so mussten sich nicht
nur mathematische, sondern auch
komplexe natiirliche Formen mittels
einfacher Regeln realisieren lassen.
Als Beispiel dazu wird im folgenden
eine Rekursionsvorschrift zur Erzeu-
gung fraktaler Gebirge aufgezeigt, die,
unter Verwendung moglichst einfa-
cher Regeln, zu fraktalen Gebirgszii-
gen mit maximaler Ahnlichkeit beziig-
lich realer Gebirgsketten fiihrt.

Der Bergstock weise der Einfachheit
halber einen dreieckigen Umriss auf.
Dieses Dreieck wird nun, indem man
die Seitenmitten bestimmt und mitein-
ander verbindet, in drei kleinere
Dreiecke unterteilt. Jedes neuentstan-
dene Dreieck wird auf die gleiche Art
weiter aufgespalten - so lange, bis die
Grenzen der Auflésung oder der Re-
chenzeit erreicht sind. Das Ergebnis ist
vorerst ein relativ  langweiliges
Dreieckgitter - das Sierpinski-Dreieck
(Bild 4). Bringt man nun jedoch verti-
kale Stérungen in der Art an, dass sich
jeder neu hinzugekommene Schnitt-
punkt um einen zufilligen Betrag nach
oben oder unten verschiebt, so ergibt
sich ein dusserst realistisches fraktales
Gebirge (Bild 7).Um natiirlichen Ge-
birgsziigen moglichst nahe zu kom-
men, werden die eingebrachten Ver-
schiebungen bei jedem Rekursions-
schnitt verkleinert. Die willkiirlich ge-
wihlten vertikalen Versetzungen im
sogenannten Mittelpunktverschie-
bungsverfahren® zeichnen dabei ver-
antwortlich fiir die fraktale Dimension
(siehe nidchstes Kapitel) der entstehen-
den Landschaft, welche, um ein mdg-
lichst natiirliches Aussehen des frakta-
len Berges zu erreichen, der fraktalen
Dimension echter Landstriche ent-
sprechen sollte.

Sengl. midpoint displacement method
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Bild 7 Fraktale Gebirge

Eine geometrische Vorschrift verwandelt ein
Sierpinski-Dreieck in ein dusserst realistisch
aussehendes fraktales Gebirge.

Das hier beschriebene Prinzip lédsst
sich vielfaltig variieren und wurde un-
ter anderem zur Modellierung von
Erosionsgesetzen bei Gebirgen oder
zur Untersuchung von Erdbebendaten
im Hinblick auf Verdnderungen in
Bruchzonen verwendet. Der amerika-
nische Physiker Richard V. Voss, ein
Kollege Mandelbrots am IBM-For-
schungszentrum, erzeugte auf diese
Art und Weise Modelle von Planeten,
Monden, Wolken und Gebirgen, die
der Wirklichkeit tduschend nahe kom-
men.

Eine andere Methode zur Erzeu-
gung von fraktalen Strukturen wurde
1968 vom danischen Biologen Aristid
Lindenmayer zur Beschreibung von
Pflanzenformen entwickelt. Es handelt
sich um die nach ihm benannten L-Sy-

steme [3]. Sie stellen im wesentlichen
ein Regelwerk zur Erzeugung neuer
Zeichenketten aus alten dar. Im fol-
genden Beispiel sollen hierfiir die Zah-
len 0 und 1 sowie die Symbole [ und ]
verwendet werden. Mit den Erset-
zungsregeln

0— 1[0]1[0]0 3)
1—11

lasst sich nun ein breites Sortiment
komplizierter botanischer Formen er-
zeugen. Wendet man obige Regeln bei-
spielsweise auf die nur aus der Ziffer 0
bestehende Zeichenkette an, so ergibt
sich nacheinander

0 (4)
1{0]1[0]0
11[1[0]1[0]0]1 1[1[0]1[0]0]1[0]1[0]O

Fasst man dann jede Zahl (0 oder 1)
als Linie gleicher Ldnge und jede
Klammer als Verzweigung auf und
heftet schliesslich an jedes Ende der
0-Linien ein Blatt, so ergeben sich so-
genannte graphtale Pflanzenstruktu-
ren gemiss Bild 8. Auf dhnliche Art
und Weise ldsst sich die Kochsche
Schneeflockenkurve aus wenigen Er-
setzungsregeln konstruieren. Die L-Sy-
steme stellen damit eine extrem kom-
pakte, rekursive Codierungsmethode
komplizierter fraktaler Strukturen dar.
Sie werden vor allem fiir die Modellie-
rung von Pflanzen aller Art wie Blu-
men, Blischen und Bdumen verwen-
det.

Fraktale Dimension

Bereits mehrfach wurde vom Begriff
der fraktalen Dimension Gebrauch ge-
macht. Inwiefern unterscheidet sich
die Dimension eines Fraktals von der
einer Geraden, einer Ebene oder eines
Wiirfels?

Es ist nicht immer leicht, die Dimen-
sion von geometrischen Gebilden zu
bestimmen. Eine Kugeloberflache bei-
spielsweise sollte zweidimensional
sein, schliesslich ist sie eine Flache.
Anderseits besitzt sie (im Gegensatz zu
einer unendlichen planaren Fliche)
eine rdumliche Ausdehnung, also et-
was Dreidimensionales.

Die zentrale Eigenschaft von Frak-
talen ist nun gerade ihre ungewdhnli-
che Dimension. Fraktale sind im allge-
meinen mehr als ein-, aber doch weni-
ger als zweidimensional (ebene Frak-
tale), beziehungsweise mehr als zwei-,
aber weniger als dreidimensional
(rdumliche Fraktale)!

Die natiirliche Verallgemeinerung
des vertrauten Begriffs der Raumdi-
mension fithrt zum fraktalen Dimen-
sionsbegriff, welcher 1919 vom deut-
schen Mathematiker und Schriftsteller
Felix Hausdorff definiert wurde.
Hausdorff nahm dabei Bezug auf den
Messvorgang, der zur Ermittlung der
Grosse eines geometrischen Gebildes
durchgefiihrt werden muss.

Kurven, Flichen und Korper besit-
zen die topologischen Dimensionen 1,
2 und 3. Zu deren Vermessung beno-
tigt man ein auf ihre Dimensionen zu-
geschnittenes Einheitsmass: fir eine
Kurve eine Strecke der Lénge 1, fiir
Flachen ein Quadrat der Seitenldnge 1

o o

¢
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Bild8 Graphtale Pflanzen

Aus einfachen Ersetzungsregeln konnen komplizierte Pflanzenstrukturen aufgebaut werden.
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und fiir einen Korper einen Wiirfel der
Kantenldnge 1. Um kleine, komplexe
Gebilde zu vermessen, kann man von
den Einheitsmassen kleinere Masse
ableiten. Hierzu werden die Seiten
eines Einheitsmasses einfach in b glei-
che Teile unterteilt, die neue Massein-
heit hat nun die Seitenldnge

r=1/b. (5)

Um das Einheitsmass mit Masseinhei-
ten der Seitenldnge r aufzufiillen, be-
notigt man fiir die Einheitsstrecke N =
b Teile, fiir die Einheitsfliche N = b?
und fir den Einheitswiirfel N = b® Tei-
le. Nist somit gemaiss

N=bP =P (6)

direkt von der Dimension D abhingig,
und es folgt damit aus der Formel (6)
(bei gleichen Lingenstiicken r) fiir die
fraktale Dimension

logN

log 1/r Q)

Darin bedeutet N den Faktor, um wel-
chen die Anzahl der Segmente pro Re-
kursionsschritt zunimmt und r die
neue Seiten- oder Kantenlidnge.

Als Beispiel soll die fraktale Dimen-
sion der Kochschen Schneeflocken-
kurve ermittelt werden. Wie aus Bild 3
unschwer zu erkennen, nimmt die An-
zahl neuer Segmente pro Rekursions-
schritt um N = 4 zu, wéahrend die neue
Seitenldnge r = 1/3 der alten betrdgt.
Damit ergibt sich fiir die Kochsche In-
sel eine fraktale Dimension von
D= loi =1,26. (8)

log3
Die fraktale Dimension eines Sierpin-
ski-Dreiecks berechnet sich zu D =
1,59; diejenige des rdumlichen Men-
gerschen Schwamms zu D = 2,73.

Die fraktale Dimension ist damit
primér ein Mass fiir die Rauheit eines
fraktalen Gebildes. Je besser der Ver-
lauf eines Fraktals einer Geraden ent-
spricht, desto nédher liegt seine Dimen-
sion bei D = 1; je vollstindiger eine
fraktale Kurve eine Ebene ausfullt, de-
sto ndher liegt seine Dimension beim
Wert D = 2; und je besser ein Fraktal

einen bestimmten Raum ausfillt,
umso naher liegt seine fraktale Dimen-
sion bei D = 3.

Interessant wird es aber erst bei der
Ermittlung von fraktalen Dimensio-
nen in der Natur. So betrigt diejenige
von Kistenlinien D = 1,25 - ob Zufall
oder nicht, entspricht dieses Ergebnis
ziemlich genau der fraktalen Dimen-
sion der Kochschen Insel! Unsere
Lunge soll eine fraktale Dimension
aufweisen, welche weit iliber derjeni-
gen des Mengerschen Schwammes
liegt, und in der Botanik wurde mit der
Bestimmung der fraktalen Dimension
von Pflanzenoberflichen gleichzeitig
ein Widerspruch aufgeklirt: Werden
diese Pflanzen von zehnfach kleineren
Insekten als urspriinglich bevdlkert, so
nimmt deren Zahl nicht wie in der
zweidimensionalen Ebene um das
Hundertfache, sondern um das rund
Sechshundertfache zu (D = 2,79; 10270
= 617 statt 10> = 100!). Auch unser
Weltall weist vermutlich fraktalen
Charakter auf. Galaxien verteilen sich
ndmlich nicht gleichmissig im Raum,
wie man friiher geglaubt hatte. Viel-
mehr bilden mehrere Galaxien einen
Galaxienhaufen, von denen mehrere
wieder einen Superhaufen bilden, die
sich ihrerseits wieder zu Super-Super-
haufen vereinigen, usw. Nach einer
kiirzlich erfolgten Berechnung hat un-
ser Universum eine fraktale Dimen-
sion zwischen D = 1,2 und D = 14.
(Punktformige Anordnung im dreidi-
mensionalen Raum).

Auswirkungen und Zukunft
der Fraktaltheorie

Die Auswirkungen der Fraktaltheo-
rie sind, wie die aufgefiihrten Beispiele
belegen, von grundsitzlicher Natur
und dusserst vielseitig. Priméar erlau-
ben die neuen Beschreibungsmetho-
den ein besseres, umfassenderes Ver-
stindis der Natur und einer Vielzahl
von natiirlichen Vorgédngen. Sekundar
fihrt die Fraktaltheorie zur Entwick-
lung neuartiger Techniken in vielen
Bereichen der Wissenschaft.

Eng verkniipft sind die Fraktale mit
einem anderen, ebenfalls sehr jungen

und hochinteressanten Wissenschafts-
zweig: der Chaosforschung. In chaoti-
schen Systemen kdnnen kleinste Ver-
anderungen grosste Wirkungen zur
Folge haben; ein fundamentales Prin-
zip, das nicht nur in physikalischen,
sondern offensichtlich auch in sozia-
len Systemen seine Giiltigkeit hat (als
Beispiel hierfiir seien die gewaltigen
Auswirkungen der vergleichsweise un-
bedeutenden Ernennung von Michail
Gorbatschow zum neuen Kremlherr-
scher vor 5 Jahren angefiihrt). Es exi-
stieren nun bestimmte geometrische
Strukturen im Chaos, sogenannte At-
traktoren, welche einen fraktalen Auf-
bau aufweisen und eine gewisse Vor-
hersage chaotischer Vorginge erlau-
ben. Daraus erhofft man sich zum Bei-
spiel fundamentale Erkenntisse iiber
das Verhalten von Turbulenzen in
Flissigkeiten oder Hinweise fiir die
Bekdmpfung und Verhinderung von
Herzkammernflimmern  (Sekunden-
herztod) [4].

Grossten Einfluss diirften Fraktale
aber in Zukunft auf die Gebiete der Si-
mulationstechniken und der Bilder-
zeugung gewinnen. Simulationen un-
ter Beizug von fraktalen Beschrei-
bungsmethoden empfehlen sich vor al-
lem dann, wenn natiirliche Systeme
oder Verhaltensmuster wirklichkeits-
getreu nachgeahmt werden sollen.
Fraktale eignen sich neben der Model-
lierung verschiedenster Landschaften
auch zur Simulation 6kologischer und
sozialer Systeme. Aufgrund ihrer ein-
fachen Erzeugungsvorschriften ist ins-
besondere auch im Bereich der Com-
putergrafik ein Boom vorauszusehen.
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