
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 80 (1989)

Heft: 17

Artikel: JSD : eine wirkungsvolle Methode zur Entwicklung von
Softwaresystemen

Autor: Renold, A.

DOI: https://doi.org/10.5169/seals-903712

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903712
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Case

JSD - eine wirkungsvolle Methode zur
Entwicklung von Softwaresystemen
A. Renold

Jackson System Development
(JSD) basiert auf dem operationeilen

Ansatz der Softwareentwicklung

und ist gleichermassen
für kommerzielle und Echtzeitsysteme

geeignet. Viele bekannte
Konzepte aus anderen Methoden

finden sich in JSD wieder;
sie sind aber anders angeordnet,
was den Entwickler zu tieferer
Einsicht in das zu entwickelnde
System führt.

La méthode Jackson System
Development (JSD) se base sur
la conception opérationnelle du
développement de logiciel. Elle
convient tant aux systèmes de
gestion qu'aux applications en
temps réel. On y retrouve
plusieurs concepts connus provenant

d'autres méthodes, mais ils
sont arrangés différemment, ce
qui permet de mieux
comprendre le système à développer.

Adresse des Autors:
André Renold, dipl. El.-Ing. ETH,
M-Informatic AG, Grünaustrasse 23,
8953 Dietikon.

Jackson System Development (JSD)
ist eine Methode zur Entwicklung von
Softwaresystemen. Sie deckt den
technischen Aspekt eines Softwareprojekts
von den Anforderungen bis zur Wartung

ab. JSD wurde von Michael Jackson

(nicht dem Sänger!) in London
entwickelt und 1981 erstmals
veröffentlicht. Eine Reihe von nachfolgenden

Publikationen [1 5] zeigt, dass
sich die Methode anhand der
Erfahrungen aus ungefähr 200 Projekten
fortlaufend weiterentwickelt.

JSD ist aus Jackson Structured
Programming (JSP) entstanden. JSP ist
eine Programm-Entwurfsmethode,
welche auch unter dem Namen Jackson

Design Methodology (JDM)
bekannt ist. JSP ist ein integrierender
Bestandteil von JSD. JSD leitet den
Entwickler an, wie er ein System aus
einzelnen Prozessen zusammensetzen
kann, wobei die einzelnen Prozesse
mit JSP entwickelt werden. JSD und
JSP basieren auf den gleichen theoretischen

Konzepten und gehen nahtlos
ineinander über.

Leider wird die Jackson-Methode
oft mit kommerziellen Anwendungen
und Cobol assoziiert. Sie ist aber
genausogut für Echtzeitsysteme (Embedded

Systems) geeignet. Es ist richtig,
dass die Jackson-Methode im
kommerziellen Bereich entstanden ist, sie
wurde aber ebenso erfolgreich im
technischen Bereich eingesetzt (z.B. [6]).
JSD basiert wesentlich auf dem Hoare-
schen Ansatz asynchron miteinander
kommunizierender Prozesse [7], der
sich in der technischen Welt gut
bewährt hat.

Verglichen mit anderen Methoden,
wie z.B. Structured Analysis/Structured

Design, Mascot, SADT, geht
JSD von einem radikal anderen
Denkansatz aus. Man hat oft das Gefühl,
JSD zäume das Pferd am Schwanz auf,
realisiert dann aber, dass genau diese
unterschiedliche Sichtweise zu neuen

Einsichten und tieferem Verständnis
führt. Dadurch wird es einfacher,
korrekte Systeme zu entwickeln, was auch
den Zeitaufwand für das Testen und
die Wartung reduziert. Natürlich ist es

oft schwierig, sich eine neue Denkweise

anzueignen. Dies mag auch einer
der Gründe sein, warum sich JSD
noch nicht auf breiterer Front
durchgesetzt hat.

Im vorliegenden Beitrag sollen die
Grundkonzepte und das Vorgehen
von JSD vorgestellt und anhand von
Vergleichen mit anderen Methoden
und Konzepten verdeutlicht werden.

Methodenansätze
Der konventionelle Ansatz in der

Softwareentwicklung trennt die
Definition des äusseren Verhaltens eines
Systems, das Was (Anforderungsspezifikation),

von der Definition der
inneren Mechanismen des Systems,
das Wie (Entwurfsspezifikation). Das
Grundkonzept ist dabei im wesentlichen

eine hierarchische Top-Down-
Aufgliederung von Black Boxes. Ziel
dieser Aufgliederung ist, in der feinsten

Aufteilung ausführbare Code-
Module zu erzeugen. Die Aufgliederung

ist darauf ausgerichtet, ein
System zu erzeugen, das optimal auf die
gewünschte Laufzeitumgebung
ausgerichtet ist und darin effizient abläuft.
Vertreter des konventionellen Ansatzes

sind z.B. Structured Analysis/
Structured Design (SASD) [7; 8] und
Mascot.

Im Gegensatz zum konventionellen
Ansatz geht der operationelle Ansatz
[9] davon aus, dass die Operationellen
Belange von den implementations-
orientierten Belangen getrennt werden.
Dies wird mit einer Spezifikation
erreicht, die nur problemrelevante
Tatsachen enthält, also noch keine
Implementation vorwegnimmt. Diese Spezi-

Bulletin SEV/VSE 80(1989)17,30. August 1069

Case

fikation ist so formal, dass sie mit
einem geeigneten Interpreter direkt
ausführbar ist. Sie kann dadurch als

Prototyp dienen, der aber unter
Umständen noch zu wenig effizient
abläuft.

In einem zweiten Schritt wird die
Implementation mit Hilfe von bedeu-
tungserhaltenden Transformationen
aus der Spezifikation abgeleitet. Die
Transformationen werden dabei so
ausgewählt, dass das implementierte
System die verlangten Zeitanforderungen

erfüllt, d.h. die Spezifikation wird
auf die Laufzeitumgebung hin
optimiert. Die notwendigen Transformationen

lassen sich zum grössten Teil
automatisieren. Die Korrektheit der
Transformationen garantiert die
Konsistenz zwischen Spezifikation und
Implementation. Vertreter des opera-
tionellen Ansatzes sind z.B. JSD und
Paisley [9].

Vergleicht man die beiden Ansätze
miteinander, findet man einige
charakteristische Unterschiede. Beim
konventionellen Ansatz ist die
Anforderungsspezifikation nichtformal
beschrieben. Sie ist für einen technisch
nicht vorgebildeten Anwender einfacher

verständlich, aber nur sehr
schwierig auf ihre Korrektheit,
Vollständigkeit und Widerspruchsfreiheit
überprüfbar. Die Spezifikation beim
operationeilen Ansatz lässt sich hingegen

automatisch prüfen, weil sie
formal und deshalb maschinell verarbeitbar

ist. Für den technisch nicht
vorgebildeten Anwender ist eine solche
Spezifikation schwieriger zu verstehen
und muss gegebenenfalls in seine
Sprache übersetzt werden.

Der konventionelle Ansatz
vermischt, im Gegensatz zum operationeilen

Ansatz, funktionelle und
implementationsabhängige Mechanismen.
Diese Vermischung entsteht, weil die
Aufgliederung des Systems so gewählt
werden muss, dass auf der untersten
Stufe Code-Module entstehen, die in
der Laufzeitumgebung effizient ablaufen.

Weiter sind beim konventionellen
Ansatz die modulinternen Mechanismen

mit der Implementationssprache
vermischt, denn die einzige Art, einen
Mechanismus zu definieren, besteht
darin, ihn zu programmieren. Der
operationeile Ansatz spezifiziert die
funktionellen Mechanismen unabhängig

von der Implementationssprache.
Es scheint, als ob die Unterschiede

zwischen den beiden Ansätzen
verschwinden würden, wenn man beim
konventionellen Ansatz eine 4.

Generations-Sprache verwendet. Dies

stimmt aber nicht, weil eine operatio-
nelle Spezifikation im Gegensatz zum
konventionellen Ansatz nicht Lösungen,

sondern Probleme beschreibt.
Zudem nimmt die operationeile Spezifikation

die Laufzeitumgebung nicht
vorweg.

Die eben beschriebenen Unterschiede
sind natürlich Idealisierungen. Die

meisten Software-Entwicklungsmethoden
lassen sich nicht scharf dem

einen oder anderen Ansatz zuordnen.
Vielmehr liegen sie irgendwo dazwischen,

mehr zum einen oder anderen
Ansatz tendierend, und versuchen die
Vorteile beider Ansätze miteinander
zu verbinden.

Der operationelle Ansatz hat gegenüber

dem konventionellen einige
bestechende Vorzüge, er ist aber in der
Praxis schwieriger zu verwirklichen.
Den meisten Entwicklern macht es

Mühe, die formale Spezifikation aus
den Anforderungen herzuleiten. JSD
ist eine der wenigen Methoden, die auf
dem operationellen Ansatz beruhen,
den Entwickler schrittweise zur formalen

Spezifikation führen und zudem in
der Praxis erprobt sind.

Die JSD-Methode
JSD hat drei wesentliche

Entwicklungsphasen:

1. Modellierung
2. Netzwerk
3. Implementierung

Die Modellierungsphase beantwortet
die Frage «Wovon handelt das

System?». Das Ziel ist, ein Modell der für
das System relevanten Realität zu
bilden. Das Modell besteht aus einer
Anzahl von praktisch unabhängigen
Modellprozessen, welche eine Abbildung
der in der Realität vorkommenden
Objekte sind.

Bei der Netzwerkphase geht es um
die Frage «Was soll das System tun?».
In dieser Phase werden zu den
Modellprozessen schrittweise weitere Prozesse

hinzugefügt, welche die Funktionen
des Systems festlegen. Dadurch
entsteht ein Netzwerk von Prozessen, die
über den Austausch von Meldungen
oder über Nur-Lese-Zugriffe auf die
Daten eines anderen Prozesses miteinander

kommunizieren. Das Netzwerk
bildet zusammen mit den einzelnen
Prozessspezifikationen und der
Modellbeschreibung die Spezifikation im
Sinne des operationeilen Ansatzes.
Das bedeutet, dass die Spezifikation
implementationsunabhängig und (im
Prinzip) ausführbar ist.

In der Implementierungsphase geht
es schliesslich darum, wie das Netzwerk

ausgeführt werden soll. Dazu
wird die Spezifikation mit Hilfe von
Transformationen so umstrukturiert,
dass das realisierte System auf die
gegebene Hard- und Softwarezielumgebung

abgestimmt ist und so die
gegebenen Zeitanforderungen erfüllt. Die
drei Hauptphasen von JSD sind weiter
in einzelne Schritte unterteilt.

Modellierungsphase
In der Modellierungsphase wird als

erstes eine Abstraktion der realen Welt
gebildet, die für das System von
Bedeutung ist, wobei das Schwergewicht
auf der zeitlichen Dimension liegt.
Diese Abstraktion wird in JSD Modell
genannt. Das Modell ist im wesentlichen

ein Ereignismodell und
beschreibt die möglichen Reihenfolgen
von Ereignissen. Das Modell hält
exakt alle jene Tatsachen fest, die das

System kennen muss, um die funktionellen

Anforderungen erfüllen zu können.

Aus dem Modell werden dann
Prozesse abgeleitet, welche das Abbild
der Realität innerhalb des Systems
darstellen.

Beschreibung der Realität

Das Modell wird in Form von
Ereignissen, Objekten und Rollen
(Tab. I) beschrieben. Ein Ereignis ist
ein atomares Vorkommnis in der realen

Welt, über welches das System
Informationen benötigt oder Informa-

Ereignisliste für einfaches
Liftsystem der Figur 1

Drücken Ein Knopf wird gedrückt,
damit der Lift das zugehörige

Stockwerk bedient.

Extra- Ein Knopf wird gedrückt,
Drücken nachdem der Lift schon

verlangt wurde, er aber
das zugehörige Stockwerk
noch nicht bedient hat.

Reset Der Lift hat das zugehöri¬
ge Stockwerk bedient.

Ankommen Der Lift kommt auf einem
Stockwerk an, d.h. der
entsprechende Stockwerkkontakt

spricht an.

Wegfahren Der Lift verlässt das

Stockwerk, d.h. der betreffende

Stockwerkkontakt
fällt wieder ab.

Tabelle I

1070 Bulletin ASE/UCS 80(1989) 17, 30 août

Case

Figur 1 Die beiden Rollenstrukturen für das einfachstmögliche Liftsystem
a Rollenstruktur für Liftknopf
b Rollenstruktur für Liftkörper
* Iteration

tionen weitergeben muss. Objekte im
Sinne von JSD sind Personen,
Organisationen, Objekte oder Begriffe, welche

eine für das System relevante
Abfolge von Ereignissen auslösen oder
erleiden. Jedes Objekt hat eine oder
mehrere Rollen. Eine Rolle beschreibt
jeweils ein unabhängiges Verhalten
des betreffenden Objekts. Die möglichen

Ereignisfolgen einer Rolle werden

mit Hilfe eines Strukturdiagramms

beschrieben (Fig. 1). Diese
Rollenstrukturen definieren alle in der
Realität möglichen und deshalb
erlaubten zeitlichen Folgen von
Ereignissen. Sie sind aus sogenannten
Grundstrukturkomponenten aufgebaut

(Fig. 2). Alle Ereignisse werden in
einer Ereignisliste (Glossar) (Tab. II)
beschrieben. Dieses enthält Beschreibungen

der Ereignisse selbst sowie der
Attribute, die mit ihnen verknüpft
sind. Ereignisattribute sind Antworten
auf Fragen, die über ein Ereignis
gestellt werden können, beschreiben also
die Merkmale eines Ereignisses. Das
Ereignis Zifferwählen beim Telefonieren

hat z.B. die gewählte Ziffer als
Attribut.

Das Modell besteht aus einer Menge
nicht miteinander verbundener
Modellprozesse. Der einzige Zweck dieser
Prozesse ist, die reale Welt im System
abzubilden, nichts anderes. Das Modell

bildet die Grundlage für die
Systemfunktionen, indem es die Begriffe
festlegt, mit denen die funktionellen
Anforderungen definiert werden müssen.

Das Modell definiert somit den
Bereich von funktionellen Anforderungen,

die es unterstützen kann, und,
was noch wichtiger ist, es schliesst
diejenigen Anforderungen aus, die es

nicht unterstützen kann. Die aktuellen
Anforderungen müssen aus diesem
Bereich ausgewählt werden, das heisst,
das Modell muss umfassend genug
sein, um die aktuellen Anforderungen
unterstützen zu können.

Modellprozesse

In diesem Schritt werden die
Rollenstrukturen zu ausführbaren
Modellprozessen erweitert. Dazu müssen
zuerst die Rollenattribute identifiziert
werden. Rollenattribute sind Daten,
die wir über ein bestimmtes Objekt
abspeichern wollen und bilden die
Grundlage für die Datenbank des
Systems. Rollenattribute sind private Daten

des betreffenden Modellprozesses.
Sind die Rollenattribute gefunden,
müssen die Mechanismen zur Aktualisierung

der einzelnen Attribute spezifiziert

werden, indem man geeignete
Operationen definiert und diese den
zutreffenden Komponenten der
Rollenstruktur zuordnet. Die Datentypen
der Attribute und die Operationen
können dabei entweder nichtformal
oder direkt in der gewünschten
Programmiersprache beschrieben werden.

Ein Modellprozess beschreibt eine
Prozessklasse, die mehrere Exemplare

Figur 2
Grundstrukturkomponenten

Sequenz: A besteht aus
B, gefolgt von C, gefolgt
von D
Selektion: A besteht
entweder aus Boder aus
C oder aus nichts
Iteration: A besteht aus
0...« Komponenten B

(instances, Realisierungen) haben
kann. Wenn ein Modellprozess mehrere

Exemplare hat, muss er einen
eindeutigen Identifikator besitzen. Der
Identifikator wird in der gleichen Art
wie ein Rollenattribut spezifiziert.

Netzwerkphase
Ausgehend von den untereinander

nicht verbundenen Modellprozessen,
die aus der Modellierungsphase
resultieren, wird schrittweise ein Netzwerk
von asynchronen, parallel ablaufenden

Prozessen aufgebaut. Es können
drei Arten von Prozessen ins Netzwerk
eingefügt werden: Informationsfunktionen,

interaktive Funktionen und
Eingabeprozesse (Fig. 3).

Informationsfunktionen extrahieren
Informationen aus dem Modell, um
daraus die verlangten Systemausgaben
zu erzeugen. Für jede unabhängige
Systemausgabe oder für jeden Auslöser
einer Systemausgabe wird eine eigene
Funktion definiert. Eine
Informationsfunktion besitzt als Eingaben
sowohl einen Auslöser wie auch Daten,
die aus dem Modell stammen. Ange-
stossen wird die Funktion entweder
durch ein Ereignis des Modells, durch
einen externen Auslöser (Benutzeroder

Hardwareanforderung) oder
durch einen periodischen Auslöser
(z.B. täglich).

Interaktive Funktionen erzeugen
interne Ereignisse. Interne Ereignisse
kann man sich wie externe, reale
Ereignisse vorstellen, die aber vom
System selbst erzeugt werden. Im Gegensatz

zu den Informationsfunktionen
erzeugen interaktive Funktionen
Eingaben ins Modell anstatt Systemausgaben.

Oft sind interne Ereignisse
notwendig, um ein Modell überhaupt
realisieren zu können.

Sind alle Ereignisse eines Systems
extern, dann ist das Modell ein reines
Abbild der Realität. Werden alle
Ereignisse intern erzeugt, ist das
System eine Simulation des definierten
Modells. Beim Spezifizieren einer
interaktiven Funktion muss sich der Ent-

A

1 1

CÛ C D

SEQUENZ SELEKTION ITERATION

Bulletin SEV/VSE 80(1989)17, 30. August 1071

Case

Wickler überlegen, aus welchen Gründen

ein internes Ereignis erzeugt werden

soll. Im Gegensatz dazu spielt es
keine Rolle, warum ein Ereignis in der
realen Welt geschieht. Obwohl ein
solches Ereignis die Folge einer
Systemausgabe sein kann, wird diese Tatsache

beim Definieren des Modells ausser

acht gelassen.
Eingabeprozesse sammeln Daten

aus der realen Welt (Ereignisse und
deren Attribute) und prüfen diese auf
Fehler. Sind die Daten korrekt, gibt sie
der betreffende Eingabeprozess ans
Modell weiter, andernfalls weist er sie
zurück und erzeugt eine Fehlermeldung.

Die Eingabeprozesse behandeln
zwei Arten von Fehlern: Eingabefehler
treten auf, wenn Eingabedaten nicht
ihrer Datentypdefinition entsprechen
(Plausibilitätstest). Kontextfehler können

anhand des Modellzustandes
erkannt werden (z.B. unzeitgemässe
Ereignisse). Falls ein Ereignis mehreren

Rollen zugehört, verteilen die
Eingabeprozesse entsprechende Meldungen

an die betroffenen Modellprozesse.
Eingabeprozesse können auch Dialoge

mit dem Benützer enthalten,
wenn fehlende Daten zu beschaffen,
fehlerhafte zu korrigieren oder mehrere

Ereignisse auf einmal zu behandeln
sind. Ereignisse aus der realen Welt
müssen von den Eingabeprozessen de-
tektiert werden können, sonst lässt
sich das Modell im System nicht
realisieren.

Für jeden während der Netzwerkphase

ins Netzwerk eingefügten Pro-
zess müssen folgende Punkte spezifiziert

werden:

- Aufgrund der Informationsbedürfnisse
des Prozesses werden die Verbindungen

zu den Modellprozessen und
möglicherweise zu anderen Prozessen
festgelegt. Unter Umständen müssen
dazu die betroffenen Modellprozesse
erweitert werden. Es gibt zwei
verschiedene Arten von Verbindungen
(Fig. 4). Die Datenstromverbindung ist
ein First-in-First-out-Puffer mit
konzeptionell unbeschränkter Kapazität.
Bei einer Statusvektorverbindung
inspiziert ein Prozess die privaten Daten,
den Statusvektor, eines fremden
Prozesses, ohne dass dieser davon etwas
merkt.

- Mit Hilfe von JSP werden die internen

Mechanismen des Prozesses
definiert. Die Prozessstruktur wird aus den
Daten-Zeit-Strukturen seiner Ein- und
Ausgabedatenströme abgeleitet. Mögliche

Strukturkonflikte werden durch
Aufteilen in Teilprozesse gelöst. Alle

JSD-Begriffe
Modell: Abstraktion der realen Welt, die für das System von Bedeutung ist (Ereignismodell).

Ereignis: Ein atomares Vorkommnis in der realen Welt, worüber das System Informationen

braucht oder erzeugen muss. Ein Ereignis kann zu mehreren Rollen gehören.

Ereignisattribut: Informationen, die mit dem Ereignis anfallen und für das System von
Bedeutung sind.

Objekt: Person, Organisation, Objekt oder Begriff in der realen Welt, welche eine
relevante Folge von Ereignissen auslösen oder erleiden.

Rolle: Ein unabhängiges Verhalten eines Objekts. Ein Objekt kann mehrere Rollen
haben. Eine Rolle kann zu mehreren Objekten gehören.
Rollenstruktur: Strukturdiagramm, welches die möglichen Abfolgen der Ereignisse
einer Rolle beschreibt.

Rollenattribut: Informationen aus der realen Welt, die vom Modellprozess abgespeichert

werden müssen. Sie werden von den Funktionen benötigt, um die verlangten
Systemausgaben erzeugen zu können.
Prozess: Ausführung eines sequentiellen Programms auf einem eigenen Prozessor.

Funktion: Eine Menge von Funktionsprozessen, die zusammen Systemausgaben oder
interne Ereignisse erzeugen.

Spezifikationsprozess: Modell-, Funktions- oder Eingabeprozess. Jeder Spezifikations-
prozess ist ein sequentieller Prozess, der konzeptionell auf einem eigenen Prozessor
läuft.

Modellprozess: Prozess im System, der aus einer Rolle entsteht. Seine Struktur
beschreibt die möglichen Reihenfolgen von Ereignissen.

Funktionsprozess: Ein Informations-Funktionsprozess erzeugt Systemausgaben, ein
interaktiver Funktionsprozess erzeugt systeminterne Ereignisse.

Eingabeprozess: Sammelt und prüft Informationen aus der realen Welt und gibt die
korrekten Ereignisse an die Modellprozesse weiter.

Statusvektor: Private Daten eines Prozesses, die ausschliesslich von ihm aktualisiert
werden.

Statusvektorverbindung: Nur-Lese-Zugriff eines Prozesses auf den Statusvektor eines
anderen Prozesses.

Datenstromverbindung: First-in-First-out-Meldungspuffer mit konzeptionell unendlicher

Kapazität.
Implementationsprozess: Eine Menge von Spezifikationsprozessen (oder zergliederten
Teilen davon), die unter der Kontrolle eines Ablaufsteuerungsprozesses auf demselben
(evtl. virtuellen) Prozessor ablaufen.

Tabelle II

I l

Figur 3 Grundstruktur eines JSD-Systems

1072 Bulletin ASE/UCS 80(1989)17, 30 août

Case

K-Clock L-Clock

Knopf-

Abfrage

Drücken

Anfrage

Durchschnitt-Wartezeit

Eingabe-Prozesse

Lift

Lift-Ereignisse

Ankommen
Wegfahren

Modellprozesse

LS-lnput
Ankommen
Wegfahren

Lift-
Steuerung

Funktions-Prozesse

Motor-Befehle

Figur 4 Netzwerk-Diagramm eines primitiven Liftsystems
| | Prozess(klasse) —O—- LI Relation

—O—- Datenstrom(klasse) O-^—- bn Relation

Verflechtung von Datenströmen —- mm Relation

' Statusvektor-Verbindung(sklasse)

notwendigen Operationen werden in
einer Operationsliste definiert und den
passenden Komponenten der Prozessstruktur

zugeordnet. Schliesslich werden

die Ablaufbedingungen für die
Iterationen und Selektionen in der
Prozessstruktur formuliert.

- Die Zeitanforderungen an die
Implementation des Prozesses werden
definiert, indem man die Antwortzeit und
die Aktualität der produzierten
Ausgaben festlegt.

Das Resultat der Netzwerkphase,
die Spezifikation, ist ein Netzwerk von
asynchron miteinander kommunizierenden

Prozessen (Fig. 4), deren innere
Struktur mit Hilfe von Baumdiagrammen

(Fig. 5) festgelegt ist. Jeder Pro-

zess hat seine eigenen privaten Daten,
seinen Statusvektor.

Die Spezifikation ist im Prinzip
ausführbar. Dazu braucht es entweder
einen allgemeinen Scheduler (Ablauf-
steuerungsprozess), ein Multitasking-
Betriebssystem oder eine
Programmiersprache für parallele Prozesse.
Weiter müssen die Operationen aller
Prozesse in einer geeigneten
Programmiersprache definiert sein. Natürlich
ist eine solche Ausführung meistens zu
wenig effizient, weil die Spezifikation
noch viel zu viel Parallelität enthält.
Deshalb wird bei der Implementierung
die Spezifikation durch Umstrukturierung

so optimiert, dass das realisierte
System die verlangten Zeitanforderungen

erfüllt.

Implementierungsphase
Die Implementierung besteht aus

einer Transformation der Spezifikation

und der eigentlichen Code-Produktion.

Bei der Transformation geht
es im wesentlichen darum, zwei
Abbildungen zu definieren. Die erste legt
fest, wie die Spezifikationsprozesse
auf die gegebenen (möglicherweise
virtuellen) Prozessoren abgebildet werden

(physischer Programmentwurf).
Dabei werden einerseits die
Ablaufsteuerung des Systems und anderseits
die Verbindungen zwischen den
Prozessoren definiert. Der Entwickler
kann frei entscheiden, welche Teile der
Spezifikation mit welcher Priorität
ablaufen sollen. Die Abbildung der
Spezifikationsprozesse wird in Form
eines System-Implementations-Dia-
gramms (SID) dokumentiert (Fig. 6).
Das SID legt für jeden Prozessor eine
Aufrufhierarchie seiner Prozesse fest.

Figur 5 Modellprozess Knopf
Operations- und Bedingungsliste siehe Tab. III

Operationsliste :

1. [1] Lampe einschalten
2. [1] Lampe ausschalten

Rn. [4] Read Knopf-Ereignisse

Bedingungsliste :

Cl. [1] true
C2. [1] Ereignis Extra-Drücken

Tabelle III Listen zu Figur 5

Bulletin SEV/VSE 80(1989)17, 30. August 1073

Case

Interrupt-
Scheduler

ZTA
Knopf- Lift-

Abfrage Abfrage

L-Puffer 1

['
K-Putler

DWZ
-SV

Hintergrund-
Scheduler

X
Lift Lift-SV

LSt-SV

Knopf

IDurchschnittliche-
Wartezeit X

Figur 6 System-Implementations-Diagramm eines primitiven Liftsystems
Implementation auf zwei virtuellen Prozessoren
ANF Anfang

CLK Clock
I D Ablaufsteuerungsprozess (Scheduler, 1 pro Prozessor)
I I Prozess(teil)

Datenpuffer (FIFO)

Speicher für Statusvektoren (RAM, Disk usw.)0
'
JL| Programm-Inversion

O Datenstrom

TT Vollständige Ausführung eines Programms (Subroutine)

Die zweite Abbildung legt fest, wie
die Statusvektoren der Spezifikationsprozesse

auf die gegebenen Speicher
abgebildet werden (Datenbankentwurf).

Gleichzeitig wird festgelegt, wie
auf die Statusvektoren zugegriffen
wird (Zugriffsmechanismen).

JSD enthält einen Satz von
wohldefinierten Standardtransformationen,
mit welchen die beiden Abbildungen
realisiert werden können. Wenn diese
Transformationen korrekt angewandt
werden, was z.B. durch Automatisierung

sichergestellt werden kann,
bewahren sie die Korrektheit der Spezifikation.

Nachfolgend sind die wichtigsten

Transformationen kurz beschrieben.

Die Programm-Inversion kombiniert
zwei getrennte Spezifikationsprozesse
in einen einzigen Implementations-
prozess. Der invertierte Prozess wird
dabei zu einer Sub-Coroutine des
anderen Prozesses. Der invertierte Prozess

wird jedesmal dann aufgerufen,
wenn der aufrufende Prozess ihm
einen Datensatz schicken oder von
ihm empfangen will. Der invertierte
Prozess fährt dabei an jener Stelle fort,
wo er nach dem letzten Aufruf stehen¬

geblieben ist. Sobald er den betreffenden

Datensatz konsumiert oder produziert

hat, gibt er die Kontrolle wieder
an den aufrufenden Prozess zurück.

Bei der Statusvektor-Abtrennung
wird der Statusvektor jedes
Prozessexemplars von seinem Prozesstext
getrennt. Dies erlaubt einem Prozessor,
mehrere Exemplare einer Prozessklasse

zu verwalten. Die verschiedenen
Exemplare einer Prozessklasse teilen
sich in den gleichen Prozesstext. Beim
Aufruf eines Prozesses kann entweder
der Prozess selbst oder der aufrufende
Steuerprozess den Statusvektor des
aufgerufenen Prozesses verwalten.

Die Programm-Zergliederung trennt
einen Spezifikationsprozess in mehrere

Teilprozesse auf, die in verschiedenen

Zusammenhängen aufgerufen
werden. Damit ist es sogar möglich,
verschiedene Teile eines
Spezifikationsprozesses in der Implementation
mit verschiedenen Prioritäten ablaufen

zu lassen.

Bei der Statusvektor-Zergliederung
wird ein Statusvektor in eine Anzahl
Teile aufgetrennt, wobei jeder Teil an
einem anderen Ort abgespeichert wird.

JSD im Vergleich mit
anderen Ansätzen

Es ist oft schwierig, den Unterschied
zwischen verschiedenen Methoden zu
verstehen, weil sie meist sehr ähnliche
Konzepte verwenden. Ein genaues
Verständnis ist aber deshalb wichtig,
weil die verwendeten Konzepte einen
signifikanten Einfluss auf die Art
haben, wie der Entwickler denkt und das

zu entwickelnde System versteht. Was
noch wichtiger ist, sie beeinflussen die
Reihenfolge der Entscheidungen, die
der Entwickler trifft. Im folgenden
sind die wesentlichsten Unterschiede
von JSD zu anderen Methoden und
Konzepten kurz zusammengefasst.

Datenflussansatz

Vertreter des Datenflussansatzes
sind z.B. Mascot und SASD [7; 8]. Diese

Methoden definieren zuerst den Da-
tenfluss des zu entwickelnden Systems.
Kontroll- und Ereignisaspekt werden
vollständig getrennt betrachtet und
erst in einem zweiten Schritt in den
Datenfluss eingepasst.

JSD identifiziert in erster Linie
Ereignisse und deren mögliche
Reihenfolgen. Aus der zeitlichen Ordnung
der Ereignisse werden die
Kontrollstrukturen abgeleitet. Der Datenfluss
des Systems ergibt sich während der
Netzwerkphase anhand der
Informationsbedürfnisse der einzelnen
Funktionen von selbst. Der Datenfluss
innerhalb der Prozesse wird durch die
zugeordneten Operationen bestimmt.
Dadurch erübrigt sich das Abstimmen
von Daten- und Kontrollfluss.

Der Datenflussansatz macht keinen
Unterschied zwischen Modell und
Funktion. SASD stellt zwar die Forderung,

dass die Systemstruktur der
Problemstruktur entsprechen sollte,
betrachtet aber das Abbild der Realität
zusammen mit den Systemfunktionen.
Im fertigen System ist daher das Modell

nicht explizit erkennbar.
JSD verlangt ein explizites Modell

als Grundlage für die Systemfunktionen
und die Fehlerprüfungen. Damit

sind die Begriffe, die später zur Definition

der Funktionen gebraucht werden,

präzise festgelegt. Weiter lässt
sich beim Systemtest auf einfachste
Weise prüfen, ob das System mit der
Realität Schritt hält. Dies ist um so

wichtiger, je komplexer das Modell ist.
Da der Entwickler sich zu Beginn des

Projekts nur auf das Modell konzentrieren

muss, hat er sich mit weniger
Informationen gleichzeitig zu befassen

1074 Bulletin ASE/UCS 80(1989)17, 30 août

Case

als in SASD. Dies erleichtert den
Einstieg wesentlich.

Datenflussdiagramme können
hierarchisch, top-down, in Teildiagramme
aufgelöst werden. Dadurch entsteht
eine funktionale Hierarchie beliebiger
Tiefe. Im Gegensatz dazu umfasst eine

JSD-Spezifikation nur zwei Ebenen,
die Netzwerkebene, welche die Prozesse

mit ihren Verbindungen zeigt, und
die Prozessebene, welche die innere
Struktur der einzelnen Prozesse zeigt.
Prozessstrukturen sind zwar
hierarchisch, sie entstehen aber aus den
Datenstrukturen, nicht etwa aus einer
funktionalen Zerlegung. Eine Hierarchie

ergibt sich erst bei der Implementation,

nämlich die Aufrufhierarchie
der Prozesse (oder Teilprozesse) auf
einem Prozessor.

Ein JSD-System entsteht nicht top-
down, sondern von der Mitte nach

aussen, indem schrittweise Prozesse zu
den Modellprozessen hinzugefügt werden.

Das Problem des Top-Down-Ent-
wurfs liegt darin, dass sich nur dann
eine sinnvolle Aufgliederung finden
lässt, wenn man das zu entwickelnde
System schon kennt. Diese Bedingung
ist aber zu Beginn des Projektes gerade
nicht erfüllt!

Das Top-Down-Vorgehen zielt
direkt auf eine Implementation. Deshalb
muss man grössere Teile der Entwicklung

nochmals nachvollziehen, wenn
man eine andere Implementation
wünscht. Bei JSD kann man einfach
auf die Spezifikation zurückgreifen
und neue Transformationen wählen.
Dies ist mit kleinem Aufwand möglich,

wenn man geeignete Werkzeuge
verwendet. Zudem ist sichergestellt,
dass sich dabei die Funktionalität des

Systems nicht verändert.

Datenmodellierung

Die verschiedenen Arten der
Datenmodellierung (Datenbankentwurf)
befassen sich alle mit einer Kombination
von Entitäten, Attributen und Relationen

[10]. Das Ziel ist ähnlich wie bei
der JSD-Modellierung. Das Datenmodell

soll die Grundlage sein für den
Rest des Systems. Diese Grundlage ist
stabiler als die funktionellen Anforderungen

und dient als Kommunikationsmittel

für den Dialog mit dem
Anwender.

JSD liefert direkt die Grundlage für
die Datenmodellierung. Entitäten und
Attribute sind in einem JSD-Modell
explizit enthalten, Relationen nur
implizit. Fremdschlüssel in einem Mo-
dellprozess, d.h. Attribute von Modell¬

prozessen, welche Identifikatoren von
anderen Modellprozessen sind, können

als (abgemagerte) Relationen
interpretiert werden. Geht man davon
aus, dass jeder Prozess-Statusvektor
ein eigener Datenbanksatz ist, entsteht
ein erstes, einfaches Datenmodell.
Dieses lässt sich verfeinern und der
gewählten Implementation besser anpassen,

indem man z.B. mehrere
Statusvektoren in einen Datenbanksatz
zusammenlegt oder einen Statusvektor
auf mehrere Datenbanksätze aufteilt.

Beginnt man die Entwicklung mit
dem Datenmodell, muss man in einem
weiteren Schritt die Ereignisse definieren,

welche die Datenbank aktualisieren

und die zugehörigen Konsistenzregeln

spezifizieren. In JSD geht man
den umgekehrten Weg. Zuerst kommen

die Ereignisse und deren mögliche

Reihenfolgen. In den Modellprozessen

wird exakt die Logik zur
Aktualisierung der Rollenattribute definiert.
Zusammen mit den Modellprozessstrukturen

ist damit automatisch die
Konsistenz der Datenbank sichergestellt.

Die Konsistenzregeln müssen
also nicht nachträglich auf die Datenbank

aufgepfropft werden. Im Gegensatz

zu einem Datenmodell kann mit
einem JSD-Modell das dynamische
Verhalten des Systems detailliert
diskutiert werden. Für die meisten
Anwender ist es einfacher, ein Modell
anhand der Ereignisse und ihrer Reihenfolgen

zu diskutieren, als anhand eines
statischen Datenmodells. Für Systeme
ohne grosse Dynamik ist die
Datenmodellierung möglicherweise besser

geeignet.
Zusammenfassend kann gesagt werden,

dass die Datenmodellierung eine
wesentliche Ergänzung zu JSD ist, wobei

die Grundlage des Datenmodells
von JSD geliefert wird.

Objektorientierter Ansatz

Der objektorientierte Ansatz (OOA)
ist ein äusserst wirkungsvolles Konzept

zur Strukturierung von Software.
Er ist aber noch keine volle Methode.
JSD gibt im Vergleich dazu wesentlich
mehr Führung beim Entwicklungspro-
zess. In JSD ist nur die Modellierungsphase

objektorientiert. Die Funktionen

werden in der Netzwerkphase
nicht notwendigerweise wegen ihrer
Objektorientierung ausgewählt [11].

Der objektorientierte Ansatz
betrachtet zuerst die Objekte und erst in
zweiter Linie die Operationen (bzw.
Methoden im Sinne des OOA). Bei
JSD ist es genau umgekehrt. Die Er¬

fahrung zeigt, dass der JSD-Ansatz,
vor allem bei schwierigeren Fällen,
leichter ist. Ein weiterer Unterschied
zum OOA besteht darin, dass JSD bei
der Modellierung nur Ereignisse
betrachtet, die den Modellzustand verändern.

Ein JSD-Objekt ist einschränkender

definiert als ein OOA-Objekt.
Nur Objekte, die eine zeitliche
Ereignisfolge erleiden oder über welche Daten

gespeichert werden müssen, sind in
JSD Objekte. Deshalb führt JSD auch
auf weniger Objekte als der OOA [11].

Wie der Datenflussansatz, macht
auch der OOA keine Unterscheidung
zwischen dem Modell der Realität und
den funktionellen Anforderungen,
d.h. ein Objekt im Sinne des OOA
beschreibt beides miteinander.

Der OOA ist sehr gut für eine Bot-
tom-Up-Entwicklung geeignet. Von da
her ist der OOA eine gute Ergänzung
zu JSD, wenn es darum geht, die
Operationen innerhalb eines Funktionsprozesses

zu definieren, insbesondere
bei Standardoperationen, die in
verschiedenen Prozessen gebraucht werden.

Im Gegensatz zum OOA ist JSD
nicht gut geeignet für abstrakte,
mathematische Objekte. JSD-Objekte
sind auch nicht wiederverwendbar,
weil sie genau auf die Realität zurecht-
geschneidert sind. Hingegen lässt sich
die Vererbung von Verhalten mit Hilfe
von Rollen, die zu mehreren Objekten
gehören, realisieren.

Zustandsdiagramme und
Baumstrukturen

Zustandsdiagramme werden häufig
für die Entwicklung von Hard- und
Softwaresystemen eingesetzt, vor
allem im technischen Bereich. Sie gestatten

es, beliebige Strukturen zu definieren

und sind einfach verständlich.
Jedes Baumdiagramm kann als Zu-
standsdiagramm dargestellt werden.
Die Figur 5 zeigt den Modellprozess
für den Liftknopf, wie er in Figur 1

definiert ist. Die zusätzliche Komponente
Knopf-Body braucht es, weil durch

Hinzufügen der Leseoperation R1 eine
Sequenz entsteht. Figur 7 zeigt das zu
Figur 5 äquivalente Zustandsdia-
gramm. Jede Lese-Operation (Rn)
entspricht einem Zustand in Figur 7a. Die
Zustandsübergänge entsprechen den
Ereignissen mit ihren zugeordneten
Operationen.

Das Zustandsdiagramm kann
vereinfacht werden, indem die Zustände
R1 und R4 in den Zustand «frei» und
die Zustände R2 und R3 in den Zu¬

Bulletin SEV/VSE 80(1989)17, 30. August 1075

Case

Figur 7 Zustandsdiagramme
a Äquivalentes Zustandsdiagramm zu Figur 6

R1 Systemstandzustand, in den man nie zurückkehrt
b Vereinfachtes Zustandsdiagramm

stand «verlangt» zusammengelegt
werden (Fig. 7b). Das vereinfachte
Zustandsdiagramm erlaubt die gleiche
Folge von Ereignissen wie das
Baumdiagramm, enthält aber weniger
Information. Der Begriff Service, als logische

Gruppierung von Ereignissen,
fehlt im Zustandsdiagramm. Das
Baumdiagramm legt genau fest, was
ein «Service» ist und ermöglicht
dadurch eine exaktere Spezifikation von
Funktionen, die auf diesem Begriff
basieren. Beim Zustandsdiagramm müssen

solche Begriffe mit zusätzlichen
Mitteln festgelegt werden, was weniger
übersichtlich und zuverlässig ist.
Zudem wird der Entwickler beim
Baumdiagramm dazu angeleitet, sich die
verwendeten Begriffe genau zu überlegen.

Beim Entwickeln von Systemen
fördern Zustandsdiagramme dynamisches

Denken (was muss ich tun, wenn
im Zustand X das Ereignis Y auftritt?).
Baumdiagramme führen den Entwickler

eher zu einer statischen Sichtweise
(wie sind die Ereignisse logisch geordnet?)

und ermöglichen dadurch ein
tieferes Verständnis. Insbesondere zeigen
Baumdiagramme die Geschichte eines
Objekts oder Prozesses. Für Prozesse,
bei denen die Geschichte eine unter¬

geordnete Rolle spielt, dürften
Zustandsdiagramme besser geeignet sein.

Werkzeuge
Eine Methode ist vor allem bei

komplexeren Systemen nur praktikabel,
wenn sie durch einen Satz von
Werkzeugen unterstützt ist. Langsam setzt
sich auch die Erkenntnis durch, dass

Werkzeuge auf einer Methode
aufbauen sollten, nicht umgekehrt! Zu
JSD gibt es einen Satz von Werkzeugen,

welche die Modellierung, die
Netzwerkphase und die Code-Produktion

unterstützen. Diese Werkzeuge
sind genau auf JSD zugeschnitten und
erlauben es, direkt aus der Spezifikation

ausführbaren Code und die
Dokumentation zu erzeugen (z.B. die
Figuren 1, 4 und 5 wurden damit
erzeugt). Die Werkzeuge überprüfen
online die Konsistenz der Spezifikation.

Zu JSD gibt es auch eine passende
Projektmanagementmethode, die aber
bis jetzt noch nicht werkzeugunterstützt

ist.

Erfahrungen mit JSD
Die Erfahrung zeigt, dass die

konsequente Anwendung von JSD ein ver¬

tieftes Verständnis sowohl des zu
entwickelnden Systems wie auch des

Entwicklungsvorganges bewirkt. Die klare

und knappe Dokumentation, ein
zwingendes Nebenprodukt der
Entwicklung, ist ein ausgezeichnetes Mittel

zur Kommunikation und Teamarbeit.

Schwierigkeiten ergeben sich vor
allem aus dem zu anderen Verfahren
unterschiedlichen Denkansatz. Die
meisten Entwickler sind sich gewohnt,
in Implementationen zu denken, was
die Implementationsunabhängigkeit
der Spezifikation gefährden kann.
Diese Schwierigkeit ist bei entsprechender

Praxis und guter Betreuung
durch erfahrene JSD-Entwickler ohne
weiteres zu überwinden.

Als Schlussfolgerung kann gesagt
werden, dass JSD ein gangbarer und
praktisch erprobter Weg ist, den ope-
rationellen Ansatz mit all seinen
Vorteilen in die Praxis umzusetzen.

Literatur
[1] M.A. Jackson: System development. Engle-

wood Cliffs/N.J., Prentice-Hall, 1983.

[2] J. R. Cameron: JSP and JSD: The Jackson
approach to software development. IEEE-
Tutorial 516. Silver Spring/MD, IEEE Computer

Society Press, 1983 (second edition
1989).

[3] J. R. Cameron: An overview of JSD. IEEE
Trans. Software Engineering SE-12(1986)2,
p. 222...240.

[4] J. R. Cameron: The modelling phase of JSD.
Information and Software Technology
30(1988)6, p. 373...383.

[5] A. Renold: Jackson system development for
real time systems. Scientia Electrica
34(1988)2, p. 3...44.

[6] A. Renold: Designing a music synthesizer
with the JSD method. Scientia Electrica
34(1988)4, p3...46.

[7] T. DeMarco: Structured analysis and system
specification. Yourdon Press, New York,
1978.

[8] E. Yourdon and L. L. Constantine: Structured
design: fundamentals of a discipline of
computer program and systems design. Engle-
wood Cliffs/N. J., Prentice-Hall, 1978.

[9] P. Zave: The operational versus the conventional

approach to software development.
Communications of the ACM (Association
for Computing Machinery) 27(1984)2,
p. 104...118.

[10] M. Vetter: Strategie der Anwendungssoft¬
ware-Entwicklung, Planung, Prinzipien,
Konzepte. Stuttgart, Teubner, 1988.

[11] A. Birchenough and J. R. Cameron: JSD and
Object-oriented design. SI-Informationen
15(1989)23, p. 7...11

1076 Bulletin ASE/UCS 80(1989)17, 30 août

	JSD : eine wirkungsvolle Methode zur Entwicklung von Softwaresystemen

