Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 80 (1989)

Heft: 17

Artikel: JSD : eine wirkungsvolle Methode zur Entwicklung von
Softwaresystemen

Autor: Renold, A.

DOl: https://doi.org/10.5169/seals-903712

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903712
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Case

JSD - eine wirkungsvolle Methode zur
Entwicklung von Softwaresystemen

A. Renold

Jackson System Development
(JSD) basiert auf dem operatio-
nellen Ansatz der Softwareent-
wicklung und ist gleichermassen
fir kommerzielle und Echtzeitsy-
steme geeignet. Viele bekannte
Konzepte aus anderen Metho-
den finden sich in JSD wieder;
sie sind aber anders angeordnet,
was den Entwickler zu tieferer
Einsicht in das zu entwickelnde
System fiihrt.

La méthode Jackson System
Development (JSD) se base sur
la conception opérationnelle du
développement de logiciel. Elle
convient tant aux systéemes de
gestion qu’aux applications en
temps réel. On y retrouve plu-
sieurs concepts connus prove-
nant d’autres méthodes, mais ils
sont arrangés différemment, ce
qui permet de mieux com-
prendre le systeme a dévelop-
per.

Adresse des Autors:

André Renold, dipl. El.-Ing. ETH,
M-Informatic AG, Griinaustrasse 23,
8953 Dietikon.

Jackson System Development (JSD)
ist eine Methode zur Entwicklung von
Softwaresystemen. Sie deckt den tech-
nischen Aspekt eines Softwareprojekts
von den Anforderungen bis zur War-
tung ab. JSD wurde von Michael Jack-
son (nicht dem Sidnger!) in London
entwickelt und 1981 erstmals verof-
fentlicht. Eine Reihe von nachfolgen-
den Publikationen [I ...5] zeigt, dass
sich die Methode anhand der Erfah-
rungen aus ungefihr 200 Projekten
fortlaufend weiterentwickelt.

JSD ist aus Jackson Structured Pro-
gramming (JSP) entstanden. JSP ist
eine Programm-Entwurfsmethode,
welche auch unter dem Namen Jack-
son Design Methodology (JDM) be-
kannt ist. JSP ist ein integrierender Be-
standteil von JSD. JSD leitet den Ent-
wickler an, wie er ein System aus ein-
zelnen Prozessen zusammensetzen
kann, wobei die einzelnen Prozesse
mit JSP entwickelt werden. JSD und
JSP basieren auf den gleichen theoreti-
schen Konzepten und gehen nahtlos
ineinander iiber.

Leider wird die Jackson-Methode
oft mit kommerziellen Anwendungen
und Cobol assoziiert. Sie ist aber ge-
nausogut fiir Echtzeitsysteme (Embed-
ded Systems) geeignet. Es ist richtig,
dass die Jackson-Methode im kom-
merziellen Bereich entstanden ist, sie
wurde aber ebenso erfolgreich im tech-
nischen Bereich eingesetzt (z.B. [6]).
JSD basiert wesentlich auf dem Hoare-
schen Ansatz asynchron miteinander
kommunizierender Prozesse [7], der
sich in der technischen Welt gut be-
wihrt hat.

Verglichen mit anderen Methoden,
wie z.B. Structured Analysis/Struc-
tured Design, Mascot, SADT, geht
JSD von einem radikal anderen Denk-
ansatz aus. Man hat oft das Gefuhl,
JSD zdume das Pferd am Schwanz auf,
realisiert dann aber, dass genau diese
unterschiedliche Sichtweise zu neuen

Einsichten und tieferem Verstindnis
fiihrt. Dadurch wird es einfacher, kor-
rekte Systeme zu entwickeln, was auch
den Zeitaufwand fiir das Testen und
die Wartung reduziert. Natiirlich ist es
oft schwierig, sich eine neue Denkwei-
se anzueignen. Dies mag auch einer
der Griinde sein, warum sich JSD
noch nicht auf breiterer Front durch-
gesetzt hat.

Im vorliegenden Beitrag sollen die
Grundkonzepte und das Vorgehen
von JSD vorgestellt und anhand von
Vergleichen mit anderen Methoden
und Konzepten verdeutlicht werden.

Methodenansitze

Der konventionelle Ansatz in der
Softwareentwicklung trennt die Defi-
nition des dusseren Verhaltens eines
Systems, das Was (Anforderungsspe-
zifikation), von der Definition der
inneren Mechanismen des Systems,
das Wie (Entwurfsspezifikation). Das
Grundkonzept ist dabei im wesentli-
chen eine hierarchische Top-Down-
Aufgliederung von Black Boxes. Ziel
dieser Aufgliederung ist, in der fein-
sten Aufteilung ausfiihrbare Code-
Module zu erzeugen. Die Aufgliede-
rung ist darauf ausgerichtet, ein Sy-
stem zu erzeugen, das optimal auf die
gewiinschte Laufzeitumgebung ausge-
richtet ist und darin effizient ablauft.
Vertreter des konventionellen Ansat-
zes sind z.B. Structured Analysis/
Structured Design (SASD) [7; 8] und
Mascot.

Im Gegensatz zum konventionellen
Ansatz geht der operationelle Ansatz
[9] davon aus, dass die operationellen
Belange von den implementations-
orientierten Belangen getrennt werden.
Dies wird mit einer Spezifikation er-
reicht, die nur problemrelevante Tat-
sachen enthélt, also noch keine Imple-
mentation vorwegnimmt. Diese Spezi-

Bulletin SEV/VSE 80(1989)17, 30. August

1069

Case

fikation ist so formal, dass sie mit
einem geeigneten Interpreter direkt
ausfiihrbar ist. Sie kann dadurch als
Prototyp dienen, der aber unter Um-
stinden noch zu wenig effizient ab-
lauft.

In einem zweiten Schritt wird die
Implementation mit Hilfe von bedeu-
tungserhaltenden Transformationen
aus der Spezifikation abgeleitet. Die
Transformationen werden dabei so
ausgewihlt, dass das implementierte
System die verlangten Zeitanforderun-
gen erfiillt, d.h. die Spezifikation wird
auf die Laufzeitumgebung hin opti-
miert. Die notwendigen Transforma-
tionen lassen sich zum gréssten Teil
automatisieren. Die Korrektheit der
Transformationen garantiert die Kon-
sistenz zwischen Spezifikation und
Implementation. Vertreter des opera-
tionellen Ansatzes sind z.B. JSD und
Paisley [9].

Vergleicht man die beiden Ansitze
miteinander, findet man einige cha-
rakteristische Unterschiede. Beim kon-
ventionellen Ansatz ist die Anforde-
rungsspezifikation nichtformal be-
schrieben. Sie ist fiir einen technisch
nicht vorgebildeten Anwender einfa-
cher verstindlich, aber nur sehr
schwierig auf ihre Korrektheit, Voll-
stindigkeit und Widerspruchsfreiheit
iberpriifbar. Die Spezifikation beim
operationellen Ansatz lisst sich hinge-
gen automatisch priifen, weil sie for-
mal und deshalb maschinell verarbeit-
bar ist. Fiir den technisch nicht vorge-
bildeten Anwender ist eine solche Spe-
zifikation schwieriger zu verstehen
und muss gegebenenfalls in seine
Sprache iibersetzt werden.

Der konventionelle Ansatz ver-
mischt, im Gegensatz zum operatio-
nellen Ansatz, funktionelle und imple-
mentationsabhédngige Mechanismen.
Diese Vermischung entsteht, weil die
Aufgliederung des Systems so gewéhlt
werden muss, dass auf der untersten
Stufe Code-Module entstehen, die in
der Laufzeitumgebung effizient ablau-
fen. Weiter sind beim konventionellen
Ansatz die modulinternen Mechanis-
men mit der Implementationssprache
vermischt, denn die einzige Art, einen
Mechanismus zu definieren, besteht
darin, ihn zu programmieren. Der
operationelle Ansatz spezifiziert die
funktionellen Mechanismen unabhén-
gig von der Implementationssprache.

Es scheint, als ob die Unterschiede
zwischen den beiden Ansidtzen ver-
schwinden wiirden, wenn man beim
konventionellen Ansatz eine 4. Gene-
rations-Sprache verwendet. Dies

stimmt aber nicht, weil eine operatio-
nelle Spezifikation im Gegensatz zum
konventionellen Ansatz nicht Losun-
gen, sondern Probleme beschreibt. Zu-
dem nimmt die operationelle Spezifi-
kation die Laufzeitumgebung nicht
vorweg.

Die eben beschriebenen Unterschie-
de sind natiirlich Idealisierungen. Die
meisten Software-Entwicklungsme-
thoden lassen sich nicht scharf dem
einen oder anderen Ansatz zuordnen.
Vielmehr liegen sie irgendwo dazwi-
schen, mehr zum einen oder anderen
Ansatz tendierend, und versuchen die
Vorteile beider Ansidtze miteinander
zu verbinden.

Der operationelle Ansatz hat gegen-
iiber dem konventionellen einige be-
stechende Vorziige, er ist aber in der
Praxis schwieriger zu verwirklichen.
Den meisten Entwicklern macht es
Miihe, die formale Spezifikation aus
den Anforderungen herzuleiten. JSD
ist eine der wenigen Methoden, die auf
dem operationellen Ansatz beruhen,
den Entwickler schrittweise zur forma-
len Spezifikation fithren und zudem in
der Praxis erprobt sind.

Die JSD-Methode

JSD hat drei wesentliche Entwick-
lungsphasen:

1. Modellierung
2. Netzwerk
3. Implementierung

Die Modellierungsphase beantwor-
tet die Frage « Wovon handelt das Sy-
stem ?». Das Ziel ist, ein Modell der fiir
das System relevanten Realitét zu bil-
den. Das Modell besteht aus einer An-
zahl von praktisch unabhidngigen Mo-
dellprozessen, welche eine Abbildung
der in der Realitidt vorkommenden Ob-
jekte sind.

Bei der Netzwerkphase geht es um
die Frage «Was soll das System tun ?».
In dieser Phase werden zu den Modell-
prozessen schrittweise weitere Prozes-
se hinzugefiigt, welche die Funktionen
des Systems festlegen. Dadurch ent-
steht ein Netzwerk von Prozessen, die
iiber den Austausch von Meldungen
oder iiber Nur-Lese-Zugriffe auf die
Daten eines anderen Prozesses mitein-
ander kommunizieren. Das Netzwerk
bildet zusammen mit den einzelnen
Prozessspezifikationen und der Mo-
dellbeschreibung die Spezifikation im
Sinne des operationellen Ansatzes.
Das bedeutet, dass die Spezifikation
implementationsunabhingig und (im
Prinzip) ausfiihrbar ist.

In der Implementierungsphase geht
es schliesslich darum, wie das Netz-
werk ausgefithrt werden soll. Dazu
wird die Spezifikation mit Hilfe von
Transformationen so umstrukturiert,
dass das realisierte System auf die ge-
gebene Hard- und Softwarezielumge-
bung abgestimmt ist und so die gege-
benen Zeitanforderungen erfiillt. Die
drei Hauptphasen von JSD sind weiter
in einzelne Schritte unterteilt.

Modellierungsphase

In der Modellierungsphase wird als
erstes eine Abstraktion der realen Welt
gebildet, die fiir das System von Be-
deutung ist, wobei das Schwergewicht
auf der zeitlichen Dimension liegt.
Diese Abstraktion wird in JSD Modell
genannt. Das Modell ist im wesentli-
chen ein Ereignismodell und be-
schreibt die moglichen Reihenfolgen
von Ereignissen. Das Modell hilt
exakt alle jene Tatsachen fest, die das
System kennen muss, um die funktio-
nellen Anforderungen erfiillen zu kén-
nen. Aus dem Modell werden dann
Prozesse abgeleitet, welche das Abbild
der Realitdt innerhalb des Systems
darstellen.

Beschreibung der Realitéit

Das Modell wird in Form von
Ereignissen, Objekten und Rollen
(Tab. I) beschrieben. Ein Ereignis ist
ein atomares Vorkommnis in der rea-
len Welt, iiber welches das System In-
formationen bendétigt oder Informa-

Ereignisliste fiir einfaches

Liftsystem der Figur 1

Driicken Ein Knopf wird gedriickt,
damit der Lift das zugeho-
rige Stockwerk bedient.

Extra- Ein Knopf wird gedriickt,

Driicken nachdem der Lift schon
verlangt wurde, er aber
das zugehorige Stockwerk
noch nicht bedient hat.

Reset Der Lift hat das zugehdri-
ge Stockwerk bedient.

Ankommen Der Lift kommt auf einem
Stockwerk an, d.h. der ent-
sprechende Stockwerk-
kontakt spricht an.

Wegfahren Der Lift verldsst das
Stockwerk, d.h. der betref-
fende Stockwerkkontakt
fallt wieder ab.

Tabelle I

1070

Bulletin ASE/UCS 80(1989)17, 30 aoit

Case

a Knopf b Lift
[
[]
*
Service Mégliches Lift-
Wegfahren Leben
1 ——] |
[1 1
o o *
Drucken ||Zusdtzl- Reset Wegfahren _ Stockwerk
Dricken
*
Extra- Ankommen | |Wegfahren
Dricken

Figur 1 Die beiden Rollenstrukturen fiir das einfachstmogliche Liftsystem

a Rollenstruktur fiir Liftknopf
b Rollenstruktur fir Liftkorper
* Iteration

tionen weitergeben muss. Objekte im
Sinne von JSD sind Personen, Organi-
sationen, Objekte oder Begriffe, wel-
che eine fiir das System relevante Ab-
folge von Ereignissen ausldsen oder
erleiden. Jedes Objekt hat eine oder
mehrere Rollen. Eine Rolle beschreibt
jeweils ein unabhdngiges Verhalten
des betreffenden Objekts. Die mogli-
chen Ereignisfolgen einer Rolle wer-
den mit Hilfe eines Strukturdia-
gramms beschrieben (Fig.1). Diese
Rollenstrukturen definieren alle in der
Realitdt moglichen und deshalb er-
laubten zeitlichen Folgen von Ereig-
nissen. Sie sind aus sogenannten
Grundstrukturkomponenten aufge-
baut (Fig. 2). Alle Ereignisse werden in
einer Ereignisliste (Glossar) (Tab. II)
beschrieben. Dieses enthélt Beschrei-
bungen der Ereignisse selbst sowie der
Attribute, die mit ihnen verkniipft
sind. Ereignisattribute sind Antworten
auf Fragen, die iiber ein Ereignis ge-
stellt werden konnen, beschreiben also
die Merkmale eines Ereignisses. Das
Ereignis Zifferwdhlen beim Telefonie-
ren hat z.B. die gewihlte Ziffer als
Attribut.

Das Modell besteht aus einer Menge
nicht miteinander verbundener Mo-
dellprozesse. Der einzige Zweck dieser
Prozesse ist, die reale Welt im System
abzubilden, nichts anderes. Das Mo-
dell bildet die Grundlage fiir die Sy-
stemfunktionen, indem es die Begriffe
festlegt, mit denen die funktionellen
Anforderungen definiert werden miis-
sen. Das Modell definiert somit den
Bereich von funktionellen Anforde-
rungen, die es unterstiitzen kann, und,
was noch wichtiger ist, es schliesst die-
jenigen Anforderungen aus, die es

nicht unterstiitzen kann. Die aktuellen
Anforderungen miissen aus diesem
Bereich ausgewéhlt werden, das heisst,
das Modell muss umfassend genug
sein, um die aktuellen Anforderungen
unterstiitzen zu kénnen.

Modellprozesse

In diesem Schritt werden die Rol-
lenstrukturen zu ausfithrbaren Mo-
dellprozessen erweitert. Dazu miissen
zuerst die Rollenattribute identifiziert
werden. Rollenattribute sind Daten,
die wir Uiber ein bestimmtes Objekt ab-
speichern wollen und bilden die
Grundlage fiir die Datenbank des Sy-
stems. Rollenattribute sind private Da-
ten des betreffenden Modellprozesses.
Sind die Rollenattribute gefunden,
miissen die Mechanismen zur Aktuali-
sierung der einzelnen Attribute spezifi-
ziert werden, indem man geeignete
Operationen definiert und diese den
zutreffenden Komponenten der Rol-
lenstruktur zuordnet. Die Datentypen
der Attribute und die Operationen
konnen dabei entweder nichtformal
oder direkt in der gewiinschten Pro-
grammiersprache beschrieben werden.

Ein Modellprozess beschreibt eine
Prozessklasse, die mehrere Exemplare

(instances, Realisierungen) haben
kann. Wenn ein Modellprozess mehre-
re Exemplare hat, muss er einen ein-
deutigen Identifikator besitzen. Der
Identifikator wird in der gleichen Art
wie ein Rollenattribut spezifiziert.

Netzwerkphase

Ausgehend von den untereinander
nicht verbundenen Modellprozessen,
die aus der Modellierungsphase resul-
tieren, wird schrittweise ein Netzwerk
von asynchronen, parallel ablaufen-
den Prozessen aufgebaut. Es kénnen
drei Arten von Prozessen ins Netzwerk
eingefiigt werden: Informationsfunk-
tionen, interaktive Funktionen und
Eingabeprozesse (Fig. 3).

Informationsfunktionen extrahieren
Informationen aus dem Modell, um
daraus die verlangten Systemausgaben
zu erzeugen. Fiir jede unabhingige Sy-
stemausgabe oder fiir jeden Ausldser
einer Systemausgabe wird eine eigene
Funktion definiert. Eine Informa-
tionsfunktion besitzt als Eingaben so-
wohl einen Ausloser wie auch Daten,
die aus dem Modell stammen. Ange-
stossen wird die Funktion entweder
durch ein Ereignis des Modells, durch
einen externen Ausldser (Benutzer-
oder Hardwareanforderung) oder
durch einen periodischen Ausloser
(z.B. taglich).

Interaktive Funktionen erzeugen in-
terne Ereignisse. Interne Ereignisse
kann man sich wie externe, reale
Ereignisse vorstellen, die aber vom Sy-
stem selbst erzeugt werden. Im Gegen-
satz zu den Informationsfunktionen
erzeugen interaktive Funktionen Ein-
gaben ins Modell anstatt Systemausga-
ben. Oft sind interne Ereignisse not-
wendig, um ein Modell iiberhaupt rea-
lisieren zu kénnen.

Sind alle Ereignisse eines Systems
extern, dann ist das Modell ein reines
Abbild der Realitit. Werden alle
Ereignisse intern erzeugt, ist das Sy-
stem eine Simulation des definierten
Modells. Beim Spezifizieren einer in-
teraktiven Funktion muss sich der Ent-

Figur 2
Grundstruktur-
komponenten A

Sequenz: 4 besteht aus

B, gefolgt von C, gefolgt
von D
Selektion: A besteht B C D

entweder aus B oder aus
Coder aus nichts
Iteration: 4 besteht aus
0...n Komponenten B

SEQUENZ

A A
o [¢] o *
B C || — B
SELEKTION ITERATION

Bulletin SEV/VSE 80(1989)17, 30. August

1071

Case

wickler iiberlegen, aus welchen Griin-
den ein internes Ereignis erzeugt wer-
den soll. Im Gegensatz dazu spielt es
keine Rolle, warum ein Ereignis in der
realen Welt geschieht. Obwohl ein sol-
ches Ereignis die Folge einer System-
ausgabe sein kann, wird diese Tatsa-
che beim Definieren des Modells aus-
ser acht gelassen.

Eingabeprozesse sammeln Daten
aus der realen Welt (Ereignisse und de-
ren Attribute) und priifen diese auf
Fehler. Sind die Daten korrekt, gibt sie
der betreffende Eingabeprozess ans
Modell weiter, andernfalls weist er sie
zuriick und erzeugt eine Fehlermel-
dung. Die Eingabeprozesse behandeln
zwei Arten von Fehlern: Eingabefehler
treten auf, wenn Eingabedaten nicht
ihrer Datentypdefinition entsprechen
(Plausibilitétstest). Kontextfehler kon-
nen anhand des Modellzustandes er-
kannt werden (z.B. unzeitgemdisse
Ereignisse). Falls ein Ereignis mehre-
ren Rollen zugehort, verteilen die Ein-
gabeprozesse entsprechende Meldun-
gen an die betroffenen Modellprozes-
se. Eingabeprozesse konnen auch Dia-
loge mit dem Beniitzer enthalten,
wenn fehlende Daten zu beschaffen,
fehlerhafte zu korrigieren oder mehre-
re Ereignisse auf einmal zu behandeln
sind. Ereignisse aus der realen Welt
miissen von den Eingabeprozessen de-
tektiert werden koOnnen, sonst ldsst
sich das Modell im System nicht reali-
sieren.

Fiir jeden wihrend der Netzwerk-
phase ins Netzwerk eingefiigten Pro-
zess miissen folgende Punkte spezifi-
ziert werden:

- Aufgrund der Informationsbediirf-
nisse des Prozesses werden die Verbin-
dungen zu den Modellprozessen und
moglicherweise zu anderen Prozessen
festgelegt. Unter Umstdnden miissen
dazu die betroffenen Modellprozesse
erweitert werden. Es gibt zwei ver-
schiedene Arten von Verbindungen
(Fig. 4). Die Datenstromverbindung ist
ein First-in-First-out-Puffer mit kon-
zeptionell unbeschrankter Kapazitit.
Bei einer Statusvektorverbindung in-
spiziert ein Prozess die privaten Daten,
den Statusvektor, eines fremden Pro-
zesses, ohne dass dieser davon etwas
merkt.

- Mit Hilfe von JSP werden die inter-
nen Mechanismen des Prozesses defi-
niert. Die Prozessstruktur wird aus den
Daten-Zeit-Strukturen seiner Ein- und
Ausgabedatenstrome abgeleitet. Mog-
liche Strukturkonflikte werden durch
Aufteilen in Teilprozesse gelost. Alle

JSD-Begriffe

Modell: Abstraktion der realen Welt, die fiir das System von Bedeutung ist (Ereignis-
modell).

Ereignis: Ein atomares Vorkommnis in der realen Welt, woriiber das System Informa-
tionen braucht oder erzeugen muss. Ein Ereignis kann zu mehreren Rollen gehoren.
Ereignisattribut: Informationen, die mit dem Ereignis anfallen und fiir das System von
Bedeutung sind.

Objekt: Person, Organisation, Objekt oder Begriff in der realen Welt, welche eine rele-
vante Folge von Ereignissen auslosen oder erleiden.

Rolle: Ein unabhingiges Verhalten eines Objekts. Ein Objekt kann mehrere Rollen ha-
ben. Eine Rolle kann zu mehreren Objekten gehdren.

Rollenstruktur: Strukturdiagramm, welches die moglichen Abfolgen der Ereignisse
einer Rolle beschreibt.

Rollenattribut: Informationen aus der realen Welt, die vom Modellprozess abgespei-
chert werden miissen. Sie werden von den Funktionen bendtigt, um die verlangten
Systemausgaben erzeugen zu konnen.

Prozess: Ausfiihrung eines sequentiellen Programms auf einem eigenen Prozessor.
Funktion: Eine Menge von Funktionsprozessen, die zusammen Systemausgaben oder
interne Ereignisse erzeugen.

Spezifikationsprozess: Modell-, Funktions- oder Eingabeprozess. Jeder Spezifikations-
prozess ist ein sequentieller Prozess, der konzeptionell auf einem eigenen Prozessor
lauft.

Modellprozess: Prozess im System, der aus einer Rolle entsteht. Seine Struktur be-
schreibt die moglichen Reihenfolgen von Ereignissen.

Funktionsprozess: Ein Informations-Funktionsprozess erzeugt Systemausgaben, ein in-
teraktiver Funktionsprozess erzeugt systeminterne Ereignisse.

Eingabeprozess: Sammelt und priift Informationen aus der realen Welt und gibt die
korrekten Ereignisse an die Modellprozesse weiter.

Statusvektor: Private Daten eines Prozesses, die ausschliesslich von ihm aktualisiert
werden.

Statusvektorverbindung: Nur-Lese-Zugriff eines Prozesses auf den Statusvektor eines
anderen Prozesses.

Datenstromverbindung: First-in-First-out-Meldungspuffer mit konzeptionell unendli-
cher Kapazitit.

Implementationsprozess: Eine Menge von Spezifikationsprozessen (oder zergliederten
Teilen davon), die unter der Kontrolle eines Ablaufsteuerungsprozesses auf demselben
(evtl. virtuellen) Prozessor ablaufen.

Tabelle I1
[T s S e e e =
: ; Systemeingaben
terne Ereignisse)
. System (; (ex
\ Eingabe- |
: Prozesse :
. interne :
1 Ereignisse léor(ekt_e .
I reignisse 1
| |) 4 !
! Interaktive Modell- :
| Funktionen Prozesse ! Reale Welt
1
1 K——) |
!]
! |
|
: A I
! 1
I Informations- I
: Funktionen !
| C !
: 3 » Systemausgaben
Lo _

Figur 3 Grundstruktur eines JSD-Systems

1072

Bulletin ASE/UCS 80(1989)17, 30 aotit

Case

K-Clock :
Knopf-
Abfrage

Knopf-Ereigniss

Knopf

Durch-
schnittliche
Wartezeit

Durchschnitt-Wartezeit

L-Clock

G

Anfrage ' @
' Knopf-Zustand

Lift-

Eingabe-Prozesse
Abfrage

Lift-Ereignisse

Ankommen
Wegfahren

Lift Modellprozesse

LS-Input
Ankommen
Wegfahren

Lift-

Funktions-Prozesse
Steuerung

Motor-Befehle

Figur 4
Prozess(klasse)

Datenstrom(klasse)

Verflechtung von Datenstromen

Yol

Statusvektor-Verbindung(sklasse)

notwendigen Operationen werden in
einer Operationsliste definiert und den
passenden Komponenten der Prozess-
struktur zugeordnet. Schliesslich wer-
den die Ablaufbedingungen fiir die
Iterationen und Selektionen in der
Prozessstruktur formuliert.

- Die Zeitanforderungen an die Im-
plementation des Prozesses werden de-
finiert, indem man die Antwortzeit und
die Aktualitdt der produzierten Aus-
gaben festlegt.

Das Resultat der Netzwerkphase,
die Spezifikation, ist ein Netzwerk von
asynchron miteinander kommunizie-
renden Prozessen (Fig. 4), deren innere
Struktur mit Hilfe von Baumdiagram-
men (Fig. 5) festgelegt ist. Jeder Pro-

Netzwerk-Diagramm eines primitiven Liftsystems

—O—— I:1 Relation
—CO—+— l:n Relation

—+()-— m:n Relation

zess hat seine eigenen privaten Daten,
seinen Statusvektor.

Die Spezifikation ist im Prinzip aus-
fithrbar. Dazu braucht es entweder
einen allgemeinen Scheduler (Ablauf-
steuerungsprozess), ein Multitasking-
Betriebssystem oder eine Program-
miersprache fiir parallele Prozesse.
Weiter miissen die Operationen aller
Prozesse in einer geeigneten Program-
miersprache definiert sein. Natiirlich
ist eine solche Ausfithrung meistens zu
wenig effizient, weil die Spezifikation
noch viel zu viel Parallelitdt enthilt.
Deshalb wird bei der Implementierung
die Spezifikation durch Umstrukturie-
rung so optimiert, dass das realisierte
System die verlangten Zeitanforderun-
gen erfiillt.

Implementierungsphase

Die Implementierung besteht aus
einer Transformation der Spezifika-
tion und der eigentlichen Code-Pro-
duktion. Bei der Transformation geht
es im wesentlichen darum, zwei Abbil-
dungen zu definieren. Die erste legt
fest, wie die Spezifikationsprozesse
auf die gegebenen (moglicherweise vir-
tuellen) Prozessoren abgebildet wer-
den (physischer Programmentwurf).
Dabei werden einerseits die Ablauf-
steuerung des Systems und anderseits
die Verbindungen zwischen den Pro-
zessoren definiert. Der Entwickler
kann frei entscheiden, welche Teile der
Spezifikation mit welcher Prioritat
ablaufen sollen. Die Abbildung der
Spezifikationsprozesse wird in Form
eines System-Implementations-Dia-
gramms (SID) dokumentiert (Fig. 6).
Das SID legt fiir jeden Prozessor eine
Aufrufhierarchie seiner Prozesse fest.

Knopf

Knopf-
Body

|u c1

*
Service

l
[[]

Zusatzl- Reset

Dricken

l N

[1.r2] «|[2,re]
Extra-
Dricken

)

Figur5 Modellprozess Knopf
Operations- und Bedingungsliste siehe Tab. ITI

Dricken

Operationsliste:

1. [1] Lampe einschalten

2. [1] Lampe ausschalten
Rn. [4] Read Knopf-Ereignisse

Bedingungsliste:
Cl. [1] true
C2. [1] Ereignis = Extra-Driicken

Tabelle IIl Listen zu Figur 5

Bulletin SEV/VSE 80(1989)17, 30. August

1073

Case

®

Interrupt- Hintergrund-
Scheduler Scheduler
Knopf- Lift- .] -
Abfrage Abfrage Lt
(L-Puffer ' Lift-
Steuerung
K-Puffer //

Knopf

Knopf -Sv

/

| Durchschnittliche-
Wartezeit

5

DWZ
-Sv

Figur 6 System-Implementations-Diagramm eines primitiven Liftsystems

Implementation auf zwei virtuellen Prozessoren

ANF Anfang

CLK Clock
Ablaufsteuerungsprozess (Scheduler, 1 pro Prozessor)
Prozess(teil)
Datenpuffer (FIFO)

Programm-Inversion

Datenstrom

MeHIO UL

Die zweite Abbildung legt fest, wie
die Statusvektoren der Spezifikations-
prozesse auf die gegebenen Speicher
abgebildet werden (Datenbankent-
wurf). Gleichzeitig wird festgelegt, wie
auf die Statusvektoren zugegriffen
wird (Zugriffsmechanismen).

JSD enthilt einen Satz von wohl-
definierten Standardtransformationen,
mit welchen die beiden Abbildungen
realisiert werden kénnen. Wenn diese
Transformationen korrekt angewandt
werden, was z.B. durch Automatisie-
rung sichergestellt werden kann, be-
wahren sie die Korrektheit der Spezifi-
kation. Nachfolgend sind die wichtig-
sten Transformationen kurz beschrie-
ben.

Die Programm-Inversion kombiniert
zwei getrennte Spezifikationsprozesse
in einen einzigen Implementations-
prozess. Der invertierte Prozess wird
dabei zu einer Sub-Coroutine des an-
deren Prozesses. Der invertierte Pro-
zess wird jedesmal dann aufgerufen,
wenn der aufrufende Prozess ihm
einen Datensatz schicken oder von
ihm empfangen will. Der invertierte
Prozess fihrt dabei an jener Stelle fort,
wo er nach dem letzten Aufruf stehen-

Speicher fiir Statusvektoren (RAM, Disk usw.)

Vollstdndige Ausfiihrung eines Programms (Subroutine)

geblieben ist. Sobald er den betreffen-
den Datensatz konsumiert oder produ-
ziert hat, gibt er die Kontrolle wieder
an den aufrufenden Prozess zuriick.

Bei der Statusvektor-Abtrennung
wird der Statusvektor jedes Prozess-
exemplars von seinem Prozesstext ge-
trennt. Dies erlaubt einem Prozessor,
mehrere Exemplare einer Prozessklas-
se zu verwalten. Die verschiedenen
Exemplare einer Prozessklasse teilen
sich in den gleichen Prozesstext. Beim
Aufruf eines Prozesses kann entweder
der Prozess selbst oder der aufrufende
Steuerprozess den Statusvektor des
aufgerufenen Prozesses verwalten.

Die Programm-Zergliederung trennt
einen Spezifikationsprozess in mehre-
re Teilprozesse auf, die in verschiede-
nen Zusammenhidngen aufgerufen
werden. Damit ist es sogar moglich,
verschiedene Teile eines Spezifika-
tionsprozesses in der Implementation
mit verschiedenen Priorititen ablau-
fen zu lassen.

Bei der Statusvektor-Zergliederung
wird ein Statusvektor in eine Anzahl
Teile aufgetrennt, wobei jeder Teil an
einem anderen Ort abgespeichert wird.

JSD im Vergleich mit
anderen Ansitzen

Es ist oft schwierig, den Unterschied
zwischen verschiedenen Methoden zu
verstehen, weil sie meist sehr dhnliche
Konzepte verwenden. Ein genaues
Verstdndnis ist aber deshalb wichtig,
weil die verwendeten Konzepte einen
signifikanten Einfluss auf die Art ha-
ben, wie der Entwickler denkt und das
zu entwickelnde System versteht. Was
noch wichtiger ist, sie beeinflussen die
Reihenfolge der Entscheidungen, die
der Entwickler trifft. Im folgenden
sind die wesentlichsten Unterschiede
von JSD zu anderen Methoden und
Konzepten kurz zusammengefasst.

Datenflussansatz

Vertreter des Datenflussansatzes
sind z.B. Mascot und SASD [7; 8]. Die-
se Methoden definieren zuerst den Da-
tenfluss des zu entwickelnden Systems.
Kontroll- und Ereignisaspekt werden
vollstindig getrennt betrachtet und
erst in einem zweiten Schritt in den
Datenfluss eingepasst.

JSD identifiziert in erster Linie
Ereignisse und deren mogliche Rei-
henfolgen. Aus der zeitlichen Ordnung
der Ereignisse werden die Kontroll-
strukturen abgeleitet. Der Datenfluss
des Systems ergibt sich wihrend der
Netzwerkphase anhand der Informa-
tionsbediirfnisse der einzelnen Funk-
tionen von selbst. Der Datenfluss in-
nerhalb der Prozesse wird durch die
zugeordneten Operationen bestimmt.
Dadurch eriibrigt sich das Abstimmen
von Daten- und Kontrollfluss.

Der Datenflussansatz macht keinen
Unterschied zwischen Modell und
Funktion. SASD stellt zwar die Forde-
rung, dass die Systemstruktur der Pro-
blemstruktur entsprechen sollte, be-
trachtet aber das Abbild der Realitét
zusammen mit den Systemfunktionen.
Im fertigen System ist daher das Mo-
dell nicht explizit erkennbar.

JSD verlangt ein explizites Modell
als Grundlage fiir die Systemfunktio-
nen und die Fehlerpriiffungen. Damit
sind die Begriffe, die spater zur Defini-
tion der Funktionen gebraucht wer-
den, prézise festgelegt. Weiter ldsst
sich beim Systemtest auf einfachste
Weise priifen, ob das System mit der
Realitdt Schritt hilt. Dies ist um so
wichtiger, je komplexer das Modell ist.
Da der Entwickler sich zu Beginn des
Projekts nur auf das Modell konzen-
trieren muss, hat er sich mit weniger
Informationen gleichzeitig zu befassen

1074

Bulletin ASE/UCS 80(1989)17, 30 aoiit

Case

als in SASD. Dies erleichtert den Ein-
stieg wesentlich.

Datenflussdiagramme konnen hier-
archisch, top-down, in Teildiagramme
aufgeldst werden. Dadurch entsteht
eine funktionale Hierarchie beliebiger
Tiefe. Im Gegensatz dazu umfasst eine
JSD-Spezifikation nur zwei Ebenen,
die Netzwerkebene, welche die Prozes-
se mit ihren Verbindungen zeigt, und
die Prozessebene, welche die innere
Struktur der einzelnen Prozesse zeigt.
Prozessstrukturen sind zwar hierar-
chisch, sie entstehen aber aus den
Datenstrukturen, nicht etwa aus einer
funktionalen Zerlegung. Eine Hierar-
chie ergibt sich erst bei der Implemen-
tation, namlich die Aufrufhierarchie
der Prozesse (oder Teilprozesse) auf
einem Prozessor.

Ein JSD-System entsteht nicht top-
down, sondern von der Mitte nach
aussen, indem schrittweise Prozesse zu
den Modellprozessen hinzugefiigt wer-
den. Das Problem des Top-Down-Ent-
wurfs liegt darin, dass sich nur dann
eine sinnvolle Aufgliederung finden
ldsst, wenn man das zu entwickelnde
System schon kennt. Diese Bedingung
ist aber zu Beginn des Projektes gerade
nicht erfiillt!

Das Top-Down-Vorgehen zielt di-
rekt auf eine Implementation. Deshalb
muss man grossere Teile der Entwick-
lung nochmals nachvollziehen, wenn
man eine andere Implementation
wiinscht. Bei JSD kann man einfach
auf die Spezifikation zuriickgreifen
und neue Transformationen wihlen.
Dies ist mit kleinem Aufwand mog-
lich, wenn man geeignete Werkzeuge
verwendet. Zudem ist sichergestellt,
dass sich dabei die Funktionalitdt des
Systems nicht verdandert.

Datenmodellierung

Die verschiedenen Arten der Daten-
modellierung (Datenbankentwurf) be-
fassen sich alle mit einer Kombination
von Entitaten, Attributen und Relatio-
nen [10]. Das Ziel ist dhnlich wie bei
der JSD-Modellierung. Das Datenmo-
dell soll die Grundlage sein fiir den
Rest des Systems. Diese Grundlage ist
stabiler als die funktionellen Anforde-
rungen und dient als Kommunika-
tionsmittel fiir den Dialog mit dem
Anwender.

JSD liefert direkt die Grundlage fiir
die Datenmodellierung. Entitdten und
Attribute sind in einem JSD-Modell
explizit enthalten, Relationen nur im-
plizit. Fremdschliissel in einem Mo-
dellprozess, d.h. Attribute von Modell-

prozessen, welche Identifikatoren von
anderen Modellprozessen sind, kon-
nen als (abgemagerte) Relationen in-
terpretiert werden. Geht man davon
aus, dass jeder Prozess-Statusvektor
ein eigener Datenbanksatz ist, entsteht
ein erstes, einfaches Datenmodell.
Dieses ldsst sich verfeinern und der ge-
wihlten Implementation besser anpas-
sen, indem man z.B. mehrere Status-
vektoren in einen Datenbanksatz zu-
sammenlegt oder einen Statusvektor
auf mehrere Datenbanksatze aufteilt.

Beginnt man die Entwicklung mit
dem Datenmodell, muss man in einem
weiteren Schritt die Ereignisse definie-
ren, welche die Datenbank aktualisie-
ren und die zugehorigen Konsistenzre-
geln spezifizieren. In JSD geht man
den umgekehrten Weg. Zuerst kom-
men die Ereignisse und deren mdgli-
che Reihenfolgen. In den Modellpro-
zessen wird exakt die Logik zur Aktua-
lisierung der Rollenattribute definiert.
Zusammen mit den Modellprozess-
strukturen ist damit automatisch die
Konsistenz der Datenbank sicherge-
stellt. Die Konsistenzregeln miissen
also nicht nachtriglich auf die Daten-
bank aufgepfropft werden. Im Gegen-
satz zu einem Datenmodell kann mit
einem JSD-Modell das dynamische
Verhalten des Systems detailliert dis-
kutiert werden. Fir die meisten An-
wender ist es einfacher, ein Modell an-
hand der Ereignisse und ihrer Reihen-
folgen zu diskutieren, als anhand eines
statischen Datenmodells. Fiir Systeme
ohne grosse Dynamik ist die Daten-
modellierung moglicherweise besser
geeignet.

Zusammenfassend kann gesagt wer-
den, dass die Datenmodellierung eine
wesentliche Ergidnzung zu JSD ist, wo-
bei die Grundlage des Datenmodells
von JSD geliefert wird.

Objektorientierter Ansatz

Der objektorientierte Ansatz (OOA)
ist ein dusserst wirkungsvolles Kon-
zept zur Strukturierung von Software.
Er ist aber noch keine volle Methode.
JSD gibt im Vergleich dazu wesentlich
mehr Fithrung beim Entwicklungspro-
zess. In JSD ist nur die Modellierungs-
phase objektorientiert. Die Funktio-
nen werden in der Netzwerkphase
nicht notwendigerweise wegen ihrer
Objektorientierung ausgewahlt[11].

Der objektorientierte Ansatz be-
trachtet zuerst die Objekte und erst in
zweiter Linie die Operationen (bzw.
Methoden im Sinne des OOA). Bei
JSD ist es genau umgekehrt. Die Er-

fahrung zeigt, dass der JSD-Ansatz,
vor allem bei schwierigeren Fillen,
leichter ist. Ein weiterer Unterschied
zum OOA besteht darin, dass JSD bei
der Modellierung nur Ereignisse be-
trachtet, die den Modellzustand verdn-
dern. Ein JSD-Objekt ist einschrédn-
kender definiert als ein OOA-Objekt.
Nur Objekte, die eine zeitliche Ereig-
nisfolge erleiden oder iiber welche Da-
ten gespeichert werden miissen, sind in
JSD Objekte. Deshalb fithrt JSD auch
auf weniger Objekte als der OOA [11].

Wie der Datenflussansatz, macht
auch der OOA keine Unterscheidung
zwischen dem Modell der Realitdt und
den funktionellen Anforderungen,
d.h. ein Objekt im Sinne des OOA be-
schreibt beides miteinander.

Der OOA ist sehr gut fiir eine Bot-
tom-Up-Entwicklung geeignet. Von da
her ist der OOA eine gute Erginzung
zu JSD, wenn es darum geht, die Ope-
rationen innerhalb eines Funktions-
prozesses zu definieren, insbesondere
bei Standardoperationen, die in ver-
schiedenen Prozessen gebraucht wer-
den.

Im Gegensatz zum OOA ist JSD
nicht gut geeignet fiir abstrakte, ma-
thematische Objekte. JSD-Objekte
sind auch nicht wiederverwendbar,
weil sie genau auf die Realitdt zurecht-
geschneidert sind. Hingegen ldsst sich
die Vererbung von Verhalten mit Hilfe
von Rollen, die zu mehreren Objekten
gehoren, realisieren.

Zustandsdiagramme und
Baumstrukturen

Zustandsdiagramme werden héufig
fir die Entwicklung von Hard- und
Softwaresystemen eingesetzt, vor al-
lem im technischen Bereich. Sie gestat-
ten es, beliebige Strukturen zu definie-
ren und sind einfach verstdndlich. Je-
des Baumdiagramm kann als Zu-
standsdiagramm dargestellt werden.
Die Figur 5 zeigt den Modellprozess
fiir den Liftknopf, wie er in Figur 1 de-
finiert ist. Die zusitzliche Komponen-
te Knopf-Body braucht es, weil durch
Hinzufiigen der Leseoperation R1 eine
Sequenz entsteht. Figur 7 zeigt das zu
Figur 5 4quivalente Zustandsdia-
gramm. Jede Lese-Operation (Rn) ent-
spricht einem Zustand in Figur 7a. Die
Zustandsiibergdnge entsprechen den
Ereignissen mit ihren zugeordneten
Operationen.

Das Zustandsdiagramm kann ver-
einfacht werden, indem die Zustinde
R1 und R4 in den Zustand «frei» und
die Zustinde R2 und R3 in den Zu-

Bulletin SEV/VSE 80(1989)17, 30. August

1075

Driicken / 1

Dricken / 1

Reset/ 2

Driicken / -

b

Reset / 2 . Dricken /1

Dricken / -

Figur7 Zustandsdiagramme
a Aquivalentes Zustandsdiagramm zu Figur 6

R1 Systemstandzustand, in den man nie zuriickkehrt

b Vereinfachtes Zustandsdiagramm

stand «verlangt» zusammengelegt
werden (Fig. 7b). Das vereinfachte Zu-
standsdiagramm erlaubt die gleiche
Folge von Ereignissen wie das Baum-
diagramm, enthilt aber weniger Infor-
mation. Der Begriff Service, als logi-
sche Gruppierung von Ereignissen,
fehlt im Zustandsdiagramm. Das
Baumdiagramm legt genau fest, was
ein «Service» ist und ermdglicht da-
durch eine exaktere Spezifikation von
Funktionen, die auf diesem Begriff ba-
sieren. Beim Zustandsdiagramm miis-
sen solche Begriffe mit zusitzlichen
Mitteln festgelegt werden, was weniger
iibersichtlich und zuverlissig ist. Zu-
dem wird der Entwickler beim Baum-
diagramm dazu angeleitet, sich die
verwendeten Begriffe genau zu iiberle-
gen.

Beim Entwickeln von Systemen for-
dern Zustandsdiagramme dynami-
sches Denken (was muss ich tun, wenn
im Zustand X das Ereignis Y auftritt?).
Baumdiagramme fiithren den Entwick-
ler eher zu einer statischen Sichtweise
(wie sind die Ereignisse logisch geord-
net?) und ermdglichen dadurch ein tie-
feres Verstdndnis. Insbesondere zeigen
Baumdiagramme die Geschichte eines
Objekts oder Prozesses. Fiir Prozesse,
bei denen die Geschichte eine unter-

geordnete Rolle spielt, dirften Zu-
standsdiagramme besser geeignet sein.

Werkzeuge

Eine Methode ist vor allem bei kom-
plexeren Systemen nur praktikabel,
wenn sie durch einen Satz von Werk-
zeugen unterstiitzt ist. Langsam setzt
sich auch die Erkenntnis durch, dass
Werkzeuge auf einer Methode auf-
bauen sollten, nicht umgekehrt! Zu
JSD gibt es einen Satz von Werkzeu-
gen, welche die Modellierung, die
Netzwerkphase und die Code-Produk-
tion unterstiitzen. Diese Werkzeuge
sind genau auf JSD zugeschnitten und
erlauben es, direkt aus der Spezifika-
tion ausfiihrbaren Code und die Do-
kumentation zu erzeugen (z.B. die Fi-
guren 1, 4 und 5 wurden damit er-
zeugt). Die Werkzeuge liberpriifen on-
line die Konsistenz der Spezifikation.

Zu JSD gibt es auch eine passende
Projektmanagementmethode, die aber
bis jetzt noch nicht werkzeugunter-
stiitzt ist.

Erfahrungen mit JSD

Die Erfahrung zeigt, dass die konse-
quente Anwendung von JSD ein ver-

tieftes Verstdndnis sowohl des zu ent-
wickelnden Systems wie auch des Ent-
wicklungsvorganges bewirkt. Die kla-
re und knappe Dokumentation, ein
zwingendes Nebenprodukt der Ent-
wicklung, ist ein ausgezeichnetes Mit-
tel zur Kommunikation und Teamar-
beit. Schwierigkeiten ergeben sich vor
allem aus dem zu anderen Verfahren
unterschiedlichen Denkansatz. Die
meisten Entwickler sind sich gewohnt,
in Implementationen zu denken, was
die Implementationsunabhidngigkeit
der Spezifikation gefdhrden kann.
Diese Schwierigkeit ist bei entspre-
chender Praxis und guter Betreuung
durch erfahrene JSD-Entwickler ohne
weiteres zu liberwinden.

Als Schlussfolgerung kann gesagt
werden, dass JSD ein gangbarer und
praktisch erprobter Weg ist, den ope-
rationellen Ansatz mit all seinen Vor-
teilen in die Praxis umzusetzen.

Literatur

[1] M. A. Jackson: System development. Engle-
wood Cliffs/N.J., Prentice-Hall, 1983.

[2] J. R. Cameron: JSP and JSD: The Jackson
approach to software development. IEEE-
Tutorial 516. Silver Spring/MD, IEEE Com-
puter Society Press, 1983 (second edition
1989).

[3] J. R. Cameron: An overview of JSD. IEEE
Trans. Software Engineering SE-12(1986)2,
p. 222...240.

[4] J. R. Cameron: The modelling phase of JSD.
Information and Software Technology
30(1988)6, p. 373...383.

[5] A. Renold: Jackson system development for
real time systems. Scientia Electrica
34(1988)2, p. 3..44.

[6] A. Renold: Designing a music synthesizer
with the JSD method. Scientia Electrica
34(1988)4, p 3...46.

[7]1 T. DeMarco: Structured analysis and system
specification. Yourdon Press, New York,
1978.

[8] E.Yourdon and L. L. Constantine: Structured
design: fundamentals of a discipline of com-
puter program and systems design. Engle-
wood Cliffs/N. J., Prentice-Hall, 1978.

P. Zave: The operational versus the conven-

tional approach to software development.

Communications of the ACM (Association

for Computing Machinery) 27(1984)2,

p. 104...118.

[10] M. Vertter: Strategie der Anwendungssoft-
ware-Entwicklung, Planung, Prinzipien,
Konzepte. Stuttgart, Teubner, 1988.

[11] A. Birchenough and J. R. Cameron: JSD and
Object-oriented design. SI-Informationen
15(1989)23, p. 7...11

19

1076

Bulletin ASE/UCS 80(1989)17, 30 aotit

	JSD : eine wirkungsvolle Methode zur Entwicklung von Softwaresystemen

