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Messtechnik

Statistische Sicherheit von Messresultaten

1. Teil: Statistische Auswertung von Messresultaten

U. Feller

Bei der Durchfihrung und Aus-
wertung von Messungen stellt
sich immer wieder die Frage
nach der Genauigkeit des Mess-
resultates. Der vorliegende Auf-
satz will die Grundlagen vermit-
teln, die notig sind, um die Mess-
unsicherheiten von industriellen
Mess- und Kalibriersystemen
bestimmen zu konnen. In einem
ersten Teil sind die mathema-
tisch-statistischen Grundlagen
zusammengestellt, in einem
zweiten Teil werden die wichtig-
sten Begriffe erlautert und die
Vor- und Nachteile der verschie-
denen mathematischen Ansatze
diskutiert.

Lors de I'exécution et du
dépouillement de mesures, on
est toujours confronté a la ques-
tion de la précision des résultats
de mesure. L’article donne les
bases qui sont nécessaires pour
déterminer les incertitudes des
systemes de mesure et de cali-
brage industriels. Une premiéere
partie réunit les bases mathéma-
tiques et statistiques; dans une
deuxieme on explique les
notions essentielles ainsi que les
avantages et inconvénients des
différentes approches mathéma-
tiques.

Der zweite Teil dieses Beitrags folgt in der
Ausgabe 17/89.

Adresse des Autors

Dr. U. Feller, Dipl. Phys.,

Eidg. Amt fiir Messwesen,

Sektionschef Elektrizitdt, Akustik und Zeit,
Lindenweg 50, 3084 Wabern.

Fiir die Auswertung von Messresul-
taten ist die Kenntnis elementarer sta-
tistischer Begriffe und Methoden uner-
lasslich. Da der Messwert im allgemei-
nen zufilligen Schwankungen unter-
liegt, stellt sich die Aufgabe, aus einer
Reihe von Messwerten einen Schétz-
wert fur den wahren Wert der Mess-
grosse zu berechnen und die statisti-
sche Sicherheit dieser Abschidtzung
zu beurteilen. Die mathematischen
Grundlagen dazu sind im folgenden
Kapitel zusammengestellt.

Oft ist die Messgrosse eine Funktion
von mehreren Einflussgrossen, die ih-
rerseits mit Unsicherheiten behaftet
sind. Wie sich solche Unsicherheiten
auf das Messresultat auswirken, wird
im Kapitel «Fortpflanzung der Mess-
unsicherheiten» behandelt. Der funk-
tionale Zusammenhang zwischen
Messgrosse und Einflussgrossen ist in
anspruchsvolleren Messsystemen héu-
fig nicht unmittelbar gegeben. Zur Er-
mittlung des Zusammenhangs muss
das Messsystem in einem mathemati-
schen Modell nachgebildet werden.
Dieses Modell bildet den Ausgangs-
punkt zur Ermittlung der Messunsi-
cherheit des Systems. Anhand eines
Beispiels aus dem elektrischen Kali-
brierwesen wird gezeigt, wie mit Hilfe
eines solchen Modells der funktionale
Zusammenhang zwischen Messgrosse
und Einflussfaktoren in der Praxis
hergeleitet werden kann.

Mathematische
Voraussetzungen

Bei der Messung einer physikali-
schen Grosse erhdlt man den wahren
Wert der Grosse nie exakt. Je nach
dem gewdihlten Messverfahren, den
verwendeten Messgerdten und je nach
Beobachter weicht der Messwert mehr
oder weniger stark vom wahren Wert
ab. Sofern die Auflésung der Messap-
paratur gross genug ist, wird jede

Wiederholung der Messung einen
leicht anderen Messwert ergeben. Das
Messresultat ist somit keine konstante
Grosse, sondern hingt in nicht vorher-
sehbarer Weise von zufilligen Einfliis-
sen wie thermischen Schwankungen,
Feuchtigkeits- und Drucksschwankun-
gen, elektromagnetischen Einfliissen,
Lichteinwirkung, Konzentrations-
schwankungen usw. ab. Eine Grosse,
die in nicht vorhersehbarer Weise von
zufilligen Einfliissen abhdngt, nennt
man eine Zufallsgrosse oder Zufalls-
variable. Die mathematische Grundla-
ge fiir die Beschreibung zufélliger Vor-
ginge ist die Wahrscheinlichkeitstheo-
rie. Die mathematische Statistik ist
eine Anwendung dieser Theorie auf
zufillige Vorgidnge und Gegebenhei-
ten im praktischen Alltag.

Nach diesen Ausfithrungen ist klar,
dass Messresultate teilweise in den Be-
reich der Wahrscheinlichkeitstheorie
und der mathematischen Statistik fal-
len und dass eine ernsthafte Diskus-
sion iiber Messresultate und ihre Unsi-
cherheit nicht ohne ein paar elementa-
re Kenntnisse dieser Disziplinen ge-
flihrt werden kann. Im folgenden wer-
den die fiir die Auswertung von Mess-
resultaten wesentlichsten Grundlagen
erlautert [1;...;4].

Ein Experiment oder eine Messung
kann - zumindest gedanklich - belie-
big oft durchgefiihrt werden. Jedesmal
erhdlt man fiir die Zufallsvariable X
einen ganz bestimmten Wert x;. Die
Menge aller moglichen Ergebnisse {x}
nennt man die Grundgesamtheit, ein
einzelner Wert daraus eine Realisie-
rung der Zufallsvariablen X. Zur
Kennzeichnung werden Zufallsvaria-
blen im folgenden mit Grossbuchsta-
ben, einzelne Werte davon mit Klein-
buchstaben geschrieben.

Zu einer Zufallsvariablen gehort im-
mer eine Verteilungsfunktion: Thre
Existenz muss vorausgesetzt werden.
Sie ist folgendermassen definiert:
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Figur 1
Werten xy,...,X;,...,x n.

F(x) = P(X<x). (1)

P(X<x) ist die Wahrscheinlichkeit,
fiir die Zufallsvariable X einen Wert
kleiner als x zu finden. Entsprechend
dieser Definition leuchten die folgen-
den Eigenschaften der Verteilungs-
funktion unmittelbar ein:
Fl—w) = 0, F(+w) = 1. 2

In Worten: Die Wahrscheinlichkeit,
dass X einen Wert kleiner als —« an-
nimmt, ist null, die Wahrscheinlich-
keit, dass X einen Wert kleiner als +
annimmt, ist .

Zwei Fille sind fiir die Anwendung
besonders wichtig:

Nimmt die Zufallsvariable X nur
endlich viele Werte X, ..., x, mit den
Wahrscheinlichkeiten p,, ..., p, an, so
ist F(x) eine Treppenfunktion (Figur
1), die an der Stelle x=x; (1LiLn) je-
weils um p; zunimmt [1;2]. Die Summe
aller zugehorigen Wahrscheinlichkei-
ten p; ist 1:

Ist F(x) stetig differenzierbar, so exi-
stiert die Ableitung von F(x):

fx) = 4F (3)

f(x) heisst Wahrscheinlichkeitsdichte
oder Dichtefunktion von X.

f(x)dx ist die Wahrscheinlichkeit, X
im Intervall [x, x+ dx] zu finden.
Umgekehrt ist

F(x) = P(X<x) = fo(t)dt. )

©

Verteilungsfunktion einer Zufallsgrosse mit endlich vielen

Das bekannteste Beispiel einer
Dichtefunktion ist die Normalvertei-
lung (Gaussverteilung):

X — )2
) =—L_.¢ 277 )
o \2r
Mit der Substitution ¢t = (x—u)/o
kann diese Funktion mittels der Bezie-
hung f(t)dt = f(x)dx) in Normalform
(£=0,0 = 1) gebracht werden:
] — l t2
flt) = e 2 (6)
27

Die zugehorige Verteilungsfunktion

d(x) =

L J:eTZ di 0]

m 00

findet man in den meisten Statistikbii-
chern tabelliert vor. Die Dichtefunk-
tion der Normalverteilung hat die be-
kannte Glockenform mit dem Maxi-
mum bei p und den Wendepunkten
bei x = py+ound x = u—o (Fig.2). o
ist ein Mass fiir die Breite der Kurve, o
=® (x’) ist die schraffierte Fliche un-
ter der Kurve zwischen - und x'. Die
Kurve ist symmetrisch zur Geraden x
= u. Die gesamte Fldche unter der
Kurve betrdgt 1. Die Wahrscheinlich-
keit, dass X in ein Intervall zwischen a
und b zu liegen kommt, ist

b b

J f(x)dx = J f(x)dx - Jaf(x)dx,

a -0 =

= P(X<b) - P(X<a)
= P(asX<b),

= &(b) — ¥(a). (8)

Figur2 Wabhrscheinlichkeitsdichte der Normalverteilung

Bei einer normalverteilten Zufalls-
variablen liegen im statistischen Mittel
zwischen

u—ac und g + ¢ 68,3 % ,
p—19 ¢ undp+ 1,96 ¢ 95 %,
w—2a0 und 4 + 2 o 954 %
pw—2570 und p+ 2570 99 %,
w—3a und g + 3 ¢ 99,7 % .

aller Beobachtungen.

Viele zuféllige Grossen in der Natur
und in der mathematischen Statistik
haben eine Normalverteilung als
Wabhrscheinlichkeitsdichte. Eine ma-
thematische Begriindung dafiir liefert
der zentrale Grenzwertsatz. Dieser sagt
aus, dass unter bestimmten, recht all-
gemeinen Bedingungen die Summe X
von unabhingigen Zufallsgrossen X,
. 6

n

X=X +..+X,

fir grosse n eine Normalverteilung
besitzt, und zwar unabhingig von der
Art der Verteilung der X;.

In der Praxis ist die explizite Kennt-
nis der Verteilungsfunktion oft nicht
nétig: Man begniigt sich mit einigen
Kennwerten, die einen qualitativen
Hinweis iiber Lage und Form der Ver-
teilung geben. Die wichtigsten Kenn-
werte (Parameter) sind der Mittelwert
(Erwartungswert), die Varianz und die
Standardabweichung.

Die Definitionen von Mittelwert
und Varianz sind in Tabelle I angege-
ben. Allgemein wird fiir den Mittel-
wert u einer Zufallsvariablen X oft die
Schreibweise

u=E(X), ©)

948
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gewihlt. Wie man leicht zeigt, folgt
daraus:
o?=E(X-E(X))? (11)

Die Standardabweichung o ist die
positive Wurzel aus der Varianz.

Es ist eine der Aufgaben der Stati-
stik, anhand von Stichproben! Schidtz-
werte fiir die Parameter der zugrunde-
liegenden Verteilung der Zufallsgrosse
zu ermitteln. So werden zum Beispiel
aus n Wiederholungsmessungen die
Messwerte X, ,..., X, ermittelt. Aus die-
sen Messwerten erhélt man die Schitz-
werte X und s? fur den Mittelwert u
und die Varianz ¢® nach den bekann-
ten Formeln

%=L Hm, (12a)
o=y
& = hf_IL (xi — % (12b)

Die Varianz ist nach dieser Defini-
tion der Mittelwert der quadrierten
Abweichungen x; — X der Einzelmes-
sungen x; vom Mittelwert X. Dabei ist
zu beachten, dass durch die Zahl n—1
der voneinander unabhingigen Ab-
weichungen dividiert wird. Diese Zahl
nennt man den Freiheitsgrad®.

Es ist klar, dass bei Entnahme einer
zweiten Stichprobe mit den Werten x/,
.., X/ der Mittelwert X’ und die Va-
rianz s’? dieser zweiten Stichprobe
von den Werten der ersten Stichprobe
abweichen. Die Parameter einer Stich-
probe (wie Mittelwert oder Varianz
usw.) sind deshalb ihrerseits Zufalls-
grossen mit einer eigenen Verteilungs-
funktion. Sie sind Schitzwerte der ent-
sprechenden Parameter (1, o usw.)
der Grundgesamtheit.

Zwischen diesen Parametern, wel-
che die Grundgesamtheit charakteri-
sieren und den Parametern, die eine
Stichprobe charakterisieren (X, s?

! Eine Stichprobe vom Umfang n ist eine Teil-
menge der Grundgesamtheit mit » Elementen,
die der Untersuchung unterzogen werden.

2 Da die Summe aller Abweichungen

n J—

X (xi—X)
i=1
gleich Null ist, sind die n Abweichungen x;—Xx
voneinander linear abhingig.

3Man konnte sie, wenn alle Elemente der
Grundgesamtheit bekannt wéren, ausrechnen.

Stetige Zufallsvariable

Mittelwert:

(Erwartungs-
wert)

b= rx f(x) dx

©

Varianz:

02 = r(x - )2 f(x) dx (10c)

Diskrete Zufallsvariable

(10a) (10b)

n
02 = ¥ (xi = )2 pi. (10d)
=i

Tabelle I

usw.), besteht ein wesentlicher Unter-
schied. Jede Grosse, die eine Grundge-
samtheit charakterisiert, ist determi-
niert’ (1 und o der normalverteilten
Grundgesamtheit z.B. sind feste Wer-
te), wahrend jede Grosse, die eine
Stichprobe charakterisiert, eine Funk-
tion von n unabhingigen Zufallsva-
riablen X, ..., X, und damit ebenfalls
eine Zufallsgrosse ist. Schreibt man
namlich die Werte von verschiedenen
Stichproben schén geordnet unterein-
ander,

1. Stichprobe: x/{, x{, ... X,,
2. Stichprobe: x/, x4, ... X,
3. Stichprobe: x{/”, x5, ... X}”,

so kann jede Stichprobe als Reali-
sierung eines Zufallsvektors X mit n
Komponenten aufgefasst werden: X =
(X, ---» X,,). Die Komponenten X, X;,
...,X, sind Zufallsvariablen, welche die
gleiche Verteilung haben wie die
Grundgesamtheit. Die Parameter von
Stichproben sind Funktionen dieser
Zufallsvariablen.

Fiir einige in der Praxis wichtige Zu-
fallsgrossen sind in Tabelle 11 die zu-
gehorigen Verteilungsfunktionen auf-
gefiihrt. Dabei wird vorausgesetzt,
dass die Grundgesamtheit eine Nor-
malverteilung mit Mittelwert y, und
Standardabweichung o, besitzt. Mit
Hilfe des zentralen Grenzwertsatzes
kann gezeigt werden, dass die normal-
verteilten Zufallsgrossen in dieser Zu-
sammenstellung bei grossem Stichpro-
benumfang auch dann einer Normal-
verteilung folgen, wenn die Grundge-
samtheit selbst keine Normalvertei-
lung aufweist. Die Werte der aufge-
fiihrten Verteilungen findet man in
vielen mathematischen Handbiichern
tabelliert vor.

Die in Tabelle II angegebenen Zu-
fallsgrossen haben eine grosse prakti-
sche Bedeutung: Es ist ndmlich unge-

Definition fiir Mittelwert und Varianz

niigend, nach einer Serie von Messun-
gen einfach Mittelwert und Standar-
dabweichung zu berechnen und sie
ohne weitere Information iiber die Zu-
verlassigkeit als Resultat anzugeben.
Man weiss dann nicht, wie gross die
zufdlligen  Schwankungen  dieser
Schitzwerte sind, das heisst wie zuver-
lassig das Resultat ist. Mit Hilfe der
oben aufgefithrten Zufallsgrossen ist
es moglich, zusdtzlich Vertrauensberei-
che zu berechnen. Diese Vertrauensbe-
reiche sind Intervalle, die den wahren,
aber unbekannten Parameter mit einer
vorgegebenen Wahrscheinlichkeit
1 — o enthalten. Die Endpunkte dieser
Intervalle werden als Vertrauensgren-
zen, 1 — «a als Vertrauenswahrschein-
lichkeit (statistische Sicherheit, Ver-
trauensniveau), « als Irrtumswahr-
scheinlichkeit (Signifikanzniveau) ber-
zeichnet. Gewohnlich wird a = 0,01,
0,02 oder 0,05 angenommen, was einer
Wabhrscheinlichkeit von 99%, 98% oder
95% entspricht, dass der wahre Wert in
dem aus der Stichprobe berechneten
Vertrauensbereich liegt.

Die drei ersten der in Tabelle II auf-
gefilhrten Zufallsgrossen erlauben,
solche Vertrauensbereiche fiir den
Mittelwert einer Messreihe zu berech-
nen. Die y2-Funktion ermdglicht die
Berechnung von Vertrauensbereichen
des Schétzwertes der Standardabwei-
chung. Die beiden letzten Funktionen
konnen fiir den Vergleich von empiri-
schen Mittelwerten und Standardab-
weichungen zweier Stichproben her-
angezogen werden. Damit kann bei-
spielsweise gepriift werden, ob sich die
Messbedingungen (statistisch ausge-
driickt: die Grundgesamtheit) zwi-
schen den beiden Stichprobenentnah-
men verdndert haben.

Bevor anhand einiger Beispiele er-
lautert wird, wie in der Praxis Ver-
trauensbereiche berechnet werden,
muss man sich vergewissern, ob denn
die Voraussetzung dazu, nidmlich die
Normalverteilung der zugrundeliegen-
den Grundgesamtheit, liberhaupt ge-
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wihrleistet ist. Dazu gibt es mehrere
Moglichkeiten, die hier kurz erwdhnt
werden sollen:

1. Aufzeichnung einer Hiufigkeits-
verteilung: Die Messwerte werden
nach Messintervall klassiert und die
Anzahl Messwerte jeder Klasse iiber
diesen Intervallen aufgetragen. Die
Klasseneinteilung hat eindeutig zu er-
folgen; es ist klar festzulegen, in wel-
cher Klasse Werte auf der Intervall-
grenze zu zdhlen sind.

Dies soll an dem Beispiel einer Tem-
peraturmessung (Fig. 3) illustriert wer-
den. Wenn sich durch das Histogramm
der Messwerte anndhernd eine Glok-
kenkurve zeichnen lésst, liegt die Ver-
mutung nahe, dass die Messwerte nor-
mal verteilt sind. Obwohl klar ist, dass
dieses Kriterium mathematischen An-
forderungen nicht zu geniigen vermag,
ist es fiir eine rasche Orientierung
trotzdem niitzlich. Wird die Anzahl
Messwerte n; jeder Klasse durch den
Umfang n der Stichprobe dividiert
und der Quotient n,/n iiber den Mess-
intervallen aufgezeichnet, ergibt das
Histogramm eine Néherung fiir die
Wahrscheinlichkeitsdichte der Stich-
probe.

2. Aufzeichnung der Summenhdufig-
keit: Anstelle der Klassenhiufigkeit n;
kann man sukzessive die Summen n,,
ny+n,, .., nj+n,+...+n, der Klassen-
hdufigkeiten iiber den Messintervallen
aufzeichnen (Fig. 4). Dabei gilt:

K
Ynp=n
i=1

bei k Klassen aus n Messwerten. Wer-

Zufallsgrosse

1
Il
=
W Ms
o

=3

Ax :}1—?{2

Verteilung (Wahrscheinlichkeitsdichte)

Normalverteilung mit den Parametern

p=po, 0=00/{0’

Normalverteilung mit den Parametern

u=0, o=1

Studentsche t-Verteilung mit n—I

Freiheitsgraden

Chi-Quadrat—Verteilung mit v=n-I

Freiheitsgraden

Normalverteilung mit den Parametern

Ny N
=0. o= J—‘——-
2 T=a N2

F-Verteilung mit vy=ny-1I,

vo=n>—1 Freiheitsgraden

den diese Summenhéaufigkeiten durch

Tabelle I1

Verteilung einiger Zufallsgrossen einer Stichprobe

lr\ni
164 .
T
12+ F et
(4 \
\
81 // N
n, e+— \
4+ & ..
ne—2 N
+f 1’,/ ) ] T ' .
21 22 23 24 25 26 27 28 ¢l°C]

21 22 23 24 25 26 27 28 §[°C]

Figur 3 Hiufigkeitsverteilung einer Anzahl Temperaturmesswerte

n;  Anzahl Messwerte der i-ten Klasse
9 Temperatur

Figur4 Summenhiufigkeitsverteilung einer Anzahl Temperatur-

messwerte

Hj
n
9

Summenhéufigkeit n; +...+n;
Anzahl Messwerte

Temperatur

950
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0,98 4
0,9

21 22 23 24 25 26 27 9[°C]

T 1(xo)

a/2

| -
gi %o

Figur5 Normierte Summenhiufigkeit einer normalverteilten Mess-
grosse, dargestellt auf Wahrscheinlichkeitspapier

H; Summenhéufigkeit
n Anzahl Messwerte
3 Temperatur

n dividiert, so erhalten wir in unserem
Beispiel annihernd die Wahrschein-
lichkeit dafiir, einen Messwert kleiner
als 22°C, 23°C, ..., 27°C zu finden.
Das Summenhaufigkeitsdiagramm
stellt daher eine Ndherung an die Ver-
teilungsfunktion der Messgrosse dar.
Die Summenhdéufigkeit ist eine be-
sonders geeignete Grosse, um die Zu-
fallsgrosse auf Normalverteilung zu
priifen. Dazu benutzt man die im Han-
del erhaltlichen Wahrscheinlichkeits-
papiere, bei denen die Ordinate in der
Weise skaliert ist, dass die Verteilungs-
funktion bei normalverteilter Grund-
gesamtheit zu einer Geraden wird:
Fiihrt diese Darstellung der Messwerte
anndhernd auf eine Gerade, so ist die

Annahme einer normalverteilten
Grundgesamtheit gerechtfertigt
(Fig. 5).

3. Neben diesen graphischen Prii-
fungen gibt es mathematische Tests,
mittels derer die Richtigkeit der An-
nahme einer beliebigen theoretischen
Verteilung gepriift werden kann. Dazu
sei auf die Literatur verwiesen [2; 4].

Hat man sich iiber die Richtigkeit
der Annahme einer Normalverteilung
mit einer der oben angegebenen Me-
thoden Klarheit verschafft, ist die Be-
rechnung der Vertrauensgrenzen recht
einfach:

1. Beispiel: Der Messwert einer
Messanordnung sei normal verteilt mit
einem unbekannten Mittelwert 4 = m
und der bekannten Standardabwei-
chung o (o kann zum Beispiel auf
Grund fritherer Messungen oder theo-
retischer Uberlegungen bekannt sein).
Fir den unbekannten Wert m der

Figur 6 Normalverteilung des empirischen, auf Null reduzierten
Mittelwertes X = (x - m) Vn/ & einer ebenfalls normalverteilten Mess-

grosse
X  empirischer Mittelwert a  Irrtumswahrscheinlichkeit
m  unbekannter Mittelwert n  Anzahl Messwerte

o  Standardabweichung

Messgrosse soll der Vertrauensbereich
berechnet werden, der den Wert mit
einer  Vertrauenswahrscheinlichkeit
von 95% (1 —a = 0,95) enthilt. Dazu
werden n Messungen ausgefiihrt, wel-
che die Messwerte X, ,..., X, ergeben.
Die Grosse

% = XM

folgt einer Normalverteilung mit Mit-
telwert 0 und Standardabweichung 1
(Tabelle IT). Nach Gleichung (8) ist die
nichtschraffierte Flache unter der Kur-
ve in Fig.6 die Wahrscheinlichkeit,
dass X, einen Wert zwischen den
Grenzen —k und +k besitzt. Bestimmt
man den Wert von k so, dass diese
Wahrscheinlichkeit 95% (1 — a = 0,95)
betrigt, so ist

PRSI <4k)=l-a. (132)

Daraus folgt durch Umformung

P-kZL<mx+k-L)=1-aq, (13b)
[

o n

d.h. mit der Wahrscheinlichkeit von
95% befindet sich der gesuchte Mittel-
wert m mit Intervall

x-k-Z, x+k-%)
{n! {n

Da X, n und o bekannt sind, konnen
die Vertrauensgrenzen

berechnet werden. Nach (8) ist ndm-
lich
P(-kSE <+k)=® (+k)-0(-k),  (14)
wobei ®(x) die Verteilungsfunktion
(7) der normierten Normalverteilung
ist. Da die Normalverteilung mit Mit-
telwert O beziiglich des Nullpunkts
symmetrisch ist, folgt
® (-k) =1 - @ (+k). (15)
Setzt man (14) und (15) in (13a) ein,
folgt
o (+k) = 1 -5 (16)
k bestimmt man aus einer Tabelle
fiir @ (Normalverteilung), wo der
Wert 1,96 abgelesen wird.
Der Vertrauensbereich fiir den un-
bekannten Mittelwert m (Erwartungs-
wert 1 der Grundgesamtheit = «wah-

rer» Messwert) ist bei einer Irrtums-
wahrscheinlichkeit von a = 0,05 daher

(x-19 L, x+ 1,96 L), 17
I o (17)

das heisst mit einer Wahrscheinlich-
keit von 95% ist

m=3X#% 1,96 - (18)
{n
2. Beispiel: In den meisten Fillen ist
die Standardabweichung o der Mess-
grosse nicht bekannt. In diesem Falle
verwendet man die Grosse
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in der anstelle der Standardabwei-
chung o ihr Schitzwert s steht. Die
Wahrscheinlichkeitsdichte von 7 ist die
Studentsche ¢-Funktion g,_,(f) (Tabel-
le II), die dhnlich aussieht wie die Not-
malverteilung mit (u = 0, o = 1), aber
etwas breiter und flacher ist [3]. Die
breitere Verteilung ist eine Folge der
zusdtzlichen Unsicherheit, die der Er-
satz des genauen Wertes o in X, durch
die Zufallsvariable s zur Folge hat. Da
fiir grosse n s gegen o strebt, streben
auch die ¢-Verteilungen g, ;(f) mit
wachsendem n gegen die Normalver-
teilung.

Die Berechnung des Vertrauensbe-
reiches, in dem sich der wahre Wert m
mit einer vorgegebenen Wahrschein-
lichkeit 1 — a befindet, verlduft nun
gleich wie im Beispiel 1: Die Grenzen
k,(v = n — 1) sind so zu bestimmen,
dass der Wert der Zufallsgrosse ¢ mit
der Wahrscheinlichkeit 1 — a in den
Bereich [—k,, k,] zu liegen kommt

Pk S <tk )=1-a. (192)

Die Grenze k, ist aus einer Tabelle
der r-Verteilung fiir v = n — 1 Frei-
heitsgrade abzulesen. Aus der obigen
Gleichung folgt

k s

k s
P(x- {—f—<m§<+ -

)=1-a. (19b)

n n

Damit sind die Vertrauensgrenzen
k s

= v

x =+
ﬁ'l

bestimmt. Graphisch (Fig. 7) liegen
die Verhéltnisse dhnlich wie in Bei-
spiel 1. Es ist

X - m

P (-k, ¢ == {n' < +k,) =
k, -k,
J g,(t)dt — J g, (t)dt,

= T(+k)- T (k)=1-a (20)

Wegen der Symmetrie von g, (r)
folgt wiederum T,(—k,) =1 — T, (+k,)
und daraus

_ 47
T(+k)=1-%

2 21

Fir @« = 0,02 und n = 10 findet man
beispielsweise in einer Tabelle der
t-Verteilung mit v = n — 1 = 9 den
Wert k, = 2,821. Der wahre Wert m
der Messgrosse liegt demnach mit
einer  Vertrauenswahrscheinlichkeit
von 98% im Intervall
X - 2821 S— | x + 2,821 5.
(x e W) (22)

Mit einer Wahrscheinlichkeit von
98% betragt der wahre Wert somit

m=Xx=z+ 282 - 5
{n

(23)

r g, (t)

a/2 )

Idealerweise sollte ein aus mehreren
Wiederholungsmessungen ermitteltes
Messresultat m wie folgt angegeben
werden

m = Ba g, i (24)
{n'
X Mittelwert der Messwerte
s Schitzwert der
Standardabweichung
a  Signifikanzniveau (oder
Vertrauens-

wahrscheinlichkeit | — )

n  Anzahl Messwerte

Faktor der t-Verteilung fiir v=
n-1 Freiheitsgrade und
vorgegebenes Signifikanz-
niveau a.

Nach den gleichen Uberlegungen, wie
sie fiir Mittelwerte angestellt wurden,
kann man auch fiir Varianzen und
Standardabweichungen Vertrauensbe-
reiche bestimmen:

3. Beispiel: Anhand von n = 10 Mes-
sungen ist die empirische Varianz s2
(Schitzwert der wahren Varianz o?) zu
0,37 berechnet worden. Gesucht ist die
obere Schranke, unterhalb derer sich
der wahre Wert o2 mit einer Wahr-
scheinlichkeit von 95% befindet.

Man betrachtet die Grosse y2=vs2/02,
die nach einer Chi-Quadrat-Verteilung
mit v = n —1 Freiheitsgraden verteilt
ist (Fig. 8).

Da nur nach einer oberen Grenze fiir
o? gefragt wird, fiihrt man den Test
einseitig durch: Man sucht die Grenze
k, so, dass der Wert x2 = vs2/0? mit
einer Wahrscheinlichkeit von 95% («
= 0,05) tiber der Grenze k, liegt:

1 Cy (x2)

i
-ky

Figur7 Studentsche t-Verteilung des empirischen, auf Null redu-
zierten Mittelwerts t = (X - m) \/n/s einer normalverteilten Mess-

3 2
>

18 20

8 10 12 14 16

Figur8 Chi-Quadrat-Verteilung der Grosse x> = v s?/ o?
s empirische Standardabweichung

%l‘OSSQ o . o unbekannte Standardabweichung

X  empirischer Mittelwert a  Irrtumswahrscheinlichkeit v Freiheitsgrad

m  unbekannter Mittelwert ¥ Freiheiiyd a  Irrtumswahrscheinlichkeit

s empirische Standardabweichung n  Anzahl Messwerte
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2
PEyr>k)=1-a,

= ["e,00)-d0e).

k
v

25)

Aus einer Integraltafel der y2-Vertei-
lung fiir v = n - 1 = 9 Freiheitsgrade
sucht man den Wert fiir k, heraus, der
dem Integral den Wert 1 - a = 0,95
verleiht: k, = 3,33. Mit einer Wahr-
scheinlichkeit von 95% ist somit vs2/
02>3,33, und als obere Schranke von
o? erhilt man mit der gleichen statisti-
schen Sicherheit von 95% daraus

vs:_ 9037
02<—Fu'~ 3’33 ~ 1.

(26)

Anhand der Figuren in den Beispielen
1 bis 3 erkennt man folgenden Zusam-
menhang zwischen Vertrauenswahr-
scheinlichkeit 1 — « und Vertrauens-
bereich:

Eine hohe statistische Sicherheit der
Aussage, das heisst eine hohe Ver-
trauenswahrscheinlichkeit 1 — o be-
dingt, dass die schraffierte Fliche o
klein und somit das Vertrauensinter-
vall gross ist. Ein kleiner Vertrauens-
bereich (schraffierte Flache a gross)
bedeutet umgekehrt, dass die Ver-
trauenswahrscheinlichkeit | — « und
damit die statistische Sicherheit des
Messresultates klein wird. Diese lasst
sich natiirlich durch Erh6hung der An-
zahl Messwerte verbessern.

Fortpflanzung der
Messunsicherheiten

Die Konzepte der Statistik, die im
vorhergehenden Kapitel beschrieben
werden, basieren auf der Annahme der
Existenz einer Grundgesamtheit, aus
der, mindestens gedanklich, eine zufil-
lige Stichprobe entnommen werden
kann. In einer Messung ist die zu be-
stimmende Messgrosse hdufig jedoch
nicht direkt zugdnglich. Die Messgros-
se wird beispielsweise von einem Fiih-
ler erfasst, das Signal anschliessend in
einer Messkette aufbereitet und zuletzt
zur Anzeige gebracht. Das angezeigte
Resultat X hdngt im allgemeinen von
mehreren Grdssen X; ab, die von un-
bekannten Stérungen iiberlagert sein
kénnen, im statistischen Sinne also
Zufallsvariablen sind. Das Messresul-
tat kann deshalb als Funktion der Zu-
fallsvariablen X; aufgefasst werden. Es
stellt sich die Frage, welches der wahr-
scheinlichste Wert des Resultates ist
und mit welchen Unsicherheiten dieses

Resultat behaftet ist. Die erste einge-
hende Behandlung dieser Fragestel-
lung geht auf Gauss zuriick [2]. Im fol-
genden werden mehrere Moglichkei-
ten dikutiert, ausgehend von einer vor-
gegebenen Funktion fir die gesuchte
Messgrosse ihren wahrscheinlichsten
Wert und die zugehdrige Messunsi-
cherheit zu ermitteln.

Unabhingig davon, ob die Grossen
X, um einen allfélligen systematischen
Fehler korrigiert wurden, kann fir
eine differenzierbare Funktion X =
f(X,, ..., X,) um die Mittelwerte X; her-
um eine Taylorentwicklung angesetzt
werden. Sofern die Abweichungen
AX, klein genug sind, dass Terme ho-
herer Ordnung vernachlidssigt werden
konnen, ist

X (Xl, ceny Xn) =

= & Of .
f ()_(1, iy Xn) +i§1 X {}}} AX;.

@7
ar |
;| {x3} sind die partiellen Ab-
leitungen von f an der Stelle X, = X,
X, =X

hn ne,

Als Resultat dieser Entwicklung er-
hélt man fiir X in erster Naherung
xi= I \(Xiy o (28)

; Xn),

und fiir die Abweichungen davon
die Beziehung

T -
AX —El BX; {Xi} A)\, (29)

Fiir die Abweichungen A X; der ein-
zelnen Zufallsvariablen X; vom Mittel-
wert X; muss ein Schatzwert eingesetzt
werden. Es ist klar, dass diese Rech-
nung fiir die Unsicherheit des Resulta-
tes X nur einen groben Schitzwert lie-
fert. Insbesondere sind keine weiteren
Aussagen iiber die statistische Zuver-
lassigkeit dieser Schitzung moglich.
Fiir die Abschdtzung der Messun-
sicherheiten im industriellen Mess-
und Kalibrierwesen kommt eine sol-
che Berechnungsweise deshalb nicht in
Frage.

Eine Moglichkeit, zu einer Informa-
tion iiber die statistische Zuverléssig-
keit des Resultates X = X zu gelangen,
bietet die Ungleichung (Summation
der Betrige)

n
AX <X
i=1

af .
Il gy A% (30)

Soweit die Messfehler von Messin-
strumenten herrithren, sind dafir

meist Abschitzungen in Form von
Spezifikationen verfiigbar. Diese Spe-
zifikationen konnen oft als Fehler-
grenzen (s. Kap. «Begriffe und Defini-
tionen») interpretiert werden.

Fiir Messfehler, iiber die keine An-
gaben vorliegen, sind Vertrauensberei-
che mit einer entsprechend hohen Ver-
trauenswahrscheinlichkeit zu ermit-
teln (s. Kap. «Bestimmung der Mess-
unsicherheiten im elektrischen Kali-
brierdienst»). Falls  systematische
Komponenten im Resultat nicht korri-
giert werden, sind sie in der Abschit-
zung Ax; der entsprechenden Messab-
weichung A X; einzubeziehen. Auf die-
se Weise gelangt man fiir die Messun-

sicherheit von ¥ = f (X, ..., X,) zu der
Abschitzung
2af
= — : 1
Ax =E 5% | (x) A% Gy
die eine hohe Vertrauenswahr-

scheinlichkeit von nahezu 100% be-
sitzt.

Im industriellen Kalibrierwesen ist
die Abschitzung der Messsunsicher-
heit mittels Summation der Unsicher-
heitsbetrdge (nach GI. 31) weit verbrei-
tet. Es sei aber noch einmal darauf hin-
gewiesen, dass diese Berechnungswei-
se nur dann zu einer Information iiber
die Zuverlidssigkeit des Messresultates
fihrt, wenn die Abschitzungen der
einzelnen Messfehler allesamt eine
Vertrauenswahrscheinlichkeit von na-
hezu 100% besitzen. Der Preis, den
man fiir diese Information zahlt, ist
eine grosse Messunsicherheit.

Gegen diese Art der Berechnung
wird vor allem von wissenschaftlicher
Seite eingewendet, dass die Messunsi-
cherheit dadurch iiberschitzt wird. Da
es unwahrscheinlich ist, dass in einem
komplizierten Messsystem alle Fehler
das gleiche Vorzeichen haben und sich
addieren, ist die Gefahr der Uber-
schiatzung besonders bei ldngeren
Messketten mit vielen Fehlerbeitrdgen
vorhanden. Bei dieser Argumentation
wird jedoch vergessen, dass zu einer
Messunsicherheit immer auch eine
Angabe liber die statistische Sicherheit
(Vertrauenswahrscheinlichkeit) ge-
hort. Die Frage ist also nicht allein, ob
die Messunsicherheit iiberschitzt wird
oder nicht, sondern auch, auf was
mehr Wert gelegt wird, auf eine kleine
Messunsicherheit oder auf eine grosse
statistische Sicherheit.

Vom mathematischen Standpunkt
aus die befriedigendste Art der Fehler-
abschétzung besteht darin, alle fehler-
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behafteten Grossen zuerst um die sy-
stematischen Fehler zu korrigieren (in
der Praxis ist dies leider kaum je exakt
durchfiihrbar). Alle Einflussgrossen X,
sind dann reine Zufallsvariablen mit
Erwartungswert m, Lésst sich die
Funktion X = f(X|, ..., X,) in eine Tay-
lorreihe um den festen Wert im Punkte

X, =my, ..., X, = m, entwickeln,
X = f(my, ..., my)
nogf ..
+i¥l BX; {ml} AAI -+ FRET) (32)

so kann die Reihe nach dem Term
erster Ordnung abgebrochen werden,
sofern die Abweichungen AX; genii-
gend klein sind. In diesem Falle 1asst
sich die Varianz o2 von X berechnen
[2,4]:

Es gilt allgemein (die Funktion f
darf nicht mit der Dichtefunktion ver-
wechselt werden)

E(X) = X = f(my, ..., mp) (33)
und
ot = E[x - Bx)|" =
E Lil ol o Axl] (34)

Wenn die Zufallsvariablen X; von-
einander unabhingig sind, sind die Er-
wartungswerte E (AX; - AX)) in (34)
fiir i = j gleich Null und E (AX,)> = E
(X; — m)? = o0}, Die Varianz (34) er-
hédlt dann die einfache Form

s _ B [8f)2 g
E, 155 lma (33)
und die Standardabweichung von X
lautet

1
& [9f )2
% = JE (55 [my 7%~ 00
Da die wahren Erwartungswerte m;,
der Zufallsvariablen X; nicht bekannt
sind, rechnet man an ihrer Stelle mit

ihren Schétzwerten, also statt mit (33),
(35), (36) mit

X = f(xt, -y *n), (37)
- % [9L])? 38
%= 2 5 % e

Figur 9
Blockschema eines
Kalibriersystems zur Spannungs— | | Kelvin—Varley | Null- Fest—
Erzeugung referenz Divider detektor teiler
hochgenauer Vn Tv TF
Gleichspannungen l
Vv Spannungs—
¢ kalibrator
\%
c

w8 B lm s o

Die Formel (39) ist das bekannte
Gausssche Fortpflanzungsgesetz fiir
zufillige Fehler. Die Messunsicherheit
Ax wird hier durch den Schéitzwert der
Standardabweichung ausgedriickt. Es
gilt, wie oben erwihnt, nur dann,
wenn die einzelnen Fehlerkomponen-
ten voneinander unabhingig sind. Es
ist bemerkenswert, dass zu seiner Her-
leitung keine Annahme iiber die Art
der Verteilung der Zufallsvariablen X;
getroffen werden muss. Durch die Ad-
dition der mittleren Fehlerquadrate in
(39) wird die Messunsicherheit s, deut-
lich kleiner, als wenn Fehlergrenzen
wie in (31) betragsméssig addiert wer-
den. Es ist aber zu beachten, dass die
Voraussetzungen, die zur Herleitung
der beiden Formeln gemacht werden
miissen, verschieden sind, so dass ein
solcher Vergleich nicht ohne weiteres
vorgenommen werden darf.

Zur Illustration des Gaussschen
Fortpflanzungsgesetzes werden mei-
stens Beispiele aufgefiihrt, in denen
der funktionale Zusammenhang f
durch eine mathematische oder physi-
kalische Beziehung gegeben ist (Bei-
spiel: Bestimmung des Volumens eines
quaderformigen Gefdsses durch Mes-
sung der drei Seiten). Dieser einfache
Fall ist im elektrischen Mess- und Ka-
librierwesen praktisch nie gegeben,
und es stellt sich die Frage, wie die
Funktion fermittelt werden soll.

Mathematische Beschreibung
des Messsystems

Zur Herleitung des funktionalen
Zusammenhanges zwischen der Mess-
grosse und ihren Einflussgréssen muss
fir das Messsystem ein mathemati-
sches Modell aufgestellt werden. An-
hand eines Beispiels aus der elektri-
schen Kalibiertitigkeit soll das Vorge-
hen erldutert werden. Wir betrachten

ein Kalibriersystem, mit dem, je nach
Teilerverhiltnis des Festteilers, hoch-
genaue Gleichspannungen zwischen
1 Vund 1000 V erzeugt werden konnen
(Fig. 9).

Vr sei die Referenzspannung, Ty
das Teilerverhiltnis des variablen Kel-
vin-Varley-Dividers, T das Teilerver-
hidltnis des Festteilers, V. die Priif-
spannung, mit der ein Spannungs-
messgerit gepriift werden soll. Uber
den Festteiler und den Nulldetektor
wird die Priifspannung mit dem hoch-
genauen Wert einer elektronischen
Spannungsreferenz verglichen. Der
Kalibrator dient einzig als Spannungs-
quelle.

Unter Vernachlidssigung aller Stor-
einfliisse und Ungenauigkeiten ldsst
sich der funktionale Zusammenhang
zwischen Vi und V; leicht angeben.
Es ist (mathematisch wird der Nullde-
tektor durch das Gleichheitszeichen
dargestellt):

(40)

In Wirklichkeit sind sowohl die
Referenzspannung V, als auch die
Teilerverhiltnisse Ty, Ty und der
Nulldetektor mit Unsicherheiten be-
haftet. Zudem kdnnen weitere Einfliis-
se wie Thermospannungen und Span-
nungsabfille in den Verbindungslei-
tungen den Spannungsvergleich beein-
trachtigen. Das System wird deshalb
besser durch eine Gleichung vom fol-
genden Typ beschrieben:

! =T V!
VR TV+Vm+VN w Vg

oder

_ 1

[V'T +Vth+V}
p LRV N

(41)
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mit Vi = ke+ Ve und Vi = kg V.
Die Konstanten k. und kg beriicksich-
tigen die systematischen Fehler, die
durch den Spannungsabfall in den
Verbindungsleitungen zwischen Span-
nungsquelle und Teiler auftreten. Die
Teilerverhdltnisse und Spannungen
sind mit zufélligen Stérungen behaftet.
Die Grossen selber konnen deshalb als
Zufallsvariablen betrachtet werden.
Vi, ist die Thermospannung im Aus-
gang des mit vielen Kontakten verse-
henen Kelvin-Varley-Teilers, V be-
schreibt die Messunsicherheit des
Nulldetektors: Bedingt durch Rausch-
spannungen im System, ist ein voll-
stindiger Nullabgleich nicht mdoglich.
Welcher Seite man Vy zuschlégt, spielt
keine Rolle. V,;, und Vg konnen als
Grossen mit Mittelwert 0 angesehen
werden: V', = 0und ¥V = 0. Mit{X;}
={V4, Tyund Ty} folgt aus (37) und
(41).

(42)

Durch Anwendung der Gleichung
(31) auf (41) ethalten wir:

b
T
AV! = | BV AT | 4| X AV
C T2 F T R
F F
V! d 1
+|R AT |+|— AV |+|— AV |,
T Vi T T N
F F F

(43)

und mit (39)
vie 12 T2
s2, = R Vg 4 Vg
Yo T T T2 W
VAl 52 52
i R 2+ Vith * _ N
T2 TV T2 T2 (44)
F F

Haufig ist nicht der Absolutwert der
Messunsicherheit gesucht, sondern ihr
Relativwert. Dazu wird (43) durch V¢
und (44) durch V{2 dividiert. Zusam-
men mit (42) folgt

AV! AT AV AT
—C = | B4R
! T V! T
c F R v
AV AV
+ thi N
Vi Ol Ve T
(45)
und
52, 52 52, 52
T . D
AP T2 vie T2
o TF R \
52 52
Vth v
ot X
veerT vierT
RV v (46)

Der Relativwert der Messunsicher-
heit der gesuchten Kalibrierspannung

ist gleich der Summe der Relativwerte
der einzelnen Unsicherheitskompo-
nenten. Dies ist das bekannte Fort-
pflanzungsgesetz fiir Produkte und
Quotienten von fehlerbehafteten
Grossen. Die Stdrspannungen am
Nulldetektor erscheinen im Vergleich
zur Unsicherheit der Referenzspan-
nung um den Faktor 1/ T, verstarkt.

Ist das mathematische Modell (in
unserem Beispiel gegeben durch die
Gleichung (41)) einmal aufgestellt, ist
die Berechnung der Messunsicherheit
nach (31) oder (39) im Prinzip eine
Fleissarbeit, die unter anderem auch
das Zusammentragen der einzelnen
Unsicherheitsbeitrdge beinhaltet: Er-
stellen einer statistischen Datenbasis,
Zusammentragen der Gerdtespezifika-
tionen, Abschitzen von Fehlerkompo-
nenten, die auf andere Weise ermittelt
werden miissen.
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