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Messtechnik

Statistische Sicherheit von Messresultaten
1. Teil: Statistische Auswertung von Messresultaten

U. Feller

Bei der Durchführung und
Auswertung von Messungen stellt
sich immer wieder die Frage
nach der Genauigkeit des
Messresultates. Der vorliegende Aufsatz

will die Grundlagen vermitteln,

die nötig sind, um die
Messunsicherheiten von industriellen
Mess- und Kalibriersystemen
bestimmen zu können. In einem
ersten Teil sind die
mathematisch-statistischen Grundlagen
zusammengestellt, in einem
zweiten Teil werden die wichtigsten

Begriffe erläutert und die
Vor- und Nachteile der verschiedenen

mathematischen Ansätze
diskutiert.

Lors de l'exécution et du
dépouillement de mesures, on
est toujours confronté à la question

de la précision des résultats
de mesure. L'article donne les
bases qui sont nécessaires pour
déterminer les incertitudes des
systèmes de mesure et de
calibrage industriels. Une première
partie réunit les bases mathématiques

et statistiques; dans une
deuxième on explique les
notions essentielles ainsi que les
avantages et inconvénients des
différentes approches mathématiques.

Der zweite Teil dieses Beitrags folgt in der
Ausgabe 17/89.

Adresse des Autors
Dr. U. Feller, Dipl. Phys.,
Eidg. Amt für Messwesen,
Sektionschef Elektrizität, Akustik und Zeit,
Lindenweg 50, 3084 Wabern.

Für die Auswertung von Messresultaten

ist die Kenntnis elementarer
statistischer Begriffe und Methoden uner-
lässlich. Da der Messwert im allgemeinen

zufälligen Schwankungen unterliegt,

stellt sich die Aufgabe, aus einer
Reihe von Messwerten einen Schätzwert

für den wahren Wert der Mess-
grösse zu berechnen und die statistische

Sicherheit dieser Abschätzung
zu beurteilen. Die mathematischen
Grundlagen dazu sind im folgenden
Kapitel zusammengestellt.

Oft ist die Messgrösse eine Funktion
von mehreren Einflussgrössen, die
ihrerseits mit Unsicherheiten behaftet
sind. Wie sich solche Unsicherheiten
auf das Messresultat auswirken, wird
im Kapitel «Fortpflanzung der
Messunsicherheiten» behandelt. Der
funktionale Zusammenhang zwischen
Messgrösse und Einflussgrössen ist in
anspruchsvolleren Messsystemen häufig

nicht unmittelbar gegeben. Zur
Ermittlung des Zusammenhangs muss
das Messsystem in einem mathematischen

Modell nachgebildet werden.
Dieses Modell bildet den Ausgangspunkt

zur Ermittlung der Messunsicherheit

des Systems. Anhand eines

Beispiels aus dem elektrischen
Kalibrierwesen wird gezeigt, wie mit Hilfe
eines solchen Modells der funktionale
Zusammenhang zwischen Messgrösse
und Einflussfaktoren in der Praxis
hergeleitet werden kann.

Mathematische
Voraussetzungen

Bei der Messung einer physikalischen

Grösse erhält man den wahren
Wert der Grösse nie exakt. Je nach
dem gewählten Messverfahren, den
verwendeten Messgeräten und je nach
Beobachter weicht der Messwert mehr
oder weniger stark vom wahren Wert
ab. Sofern die Auflösung der Messapparatur

gross genug ist, wird jede

Wiederholung der Messung einen
leicht anderen Messwert ergeben. Das
Messresultat ist somit keine konstante
Grösse, sondern hängt in nicht
vorhersehbarer Weise von zufälligen Einflüssen

wie thermischen Schwankungen,
Feuchtigkeits- und Drucksschwankungen,

elektromagnetischen Einflüssen,
Lichteinwirkung, Konzentrationsschwankungen

usw. ab. Eine Grösse,
die in nicht vorhersehbarer Weise von
zufälligen Einflüssen abhängt, nennt
man eine Zufallsgrösse oder
Zufallsvariable. Die mathematische Grundlage

für die Beschreibung zufälliger
Vorgänge ist die Wahrscheinlichkeitstheorie.

Die mathematische Statistik ist
eine Anwendung dieser Theorie auf
zufällige Vorgänge und Gegebenheiten

im praktischen Alltag.
Nach diesen Ausführungen ist klar,

dass Messresultate teilweise in den
Bereich der Wahrscheinlichkeitstheorie
und der mathematischen Statistik fallen

und dass eine ernsthafte Diskussion

über Messresultate und ihre
Unsicherheit nicht ohne ein paar elementare

Kenntnisse dieser Disziplinen
geführt werden kann. Im folgenden werden

die für die Auswertung von
Messresultaten wesentlichsten Grundlagen
erläutert [1;...;4].

Ein Experiment oder eine Messung
kann - zumindest gedanklich - beliebig

oft durchgeführt werden. Jedesmal
erhält man für die Zufallsvariable X
einen ganz bestimmten Wert x,. Die
Menge aller möglichen Ergebnisse (x,l
nennt man die Grundgesamtheit, ein
einzelner Wert daraus eine Realisierung

der Zufallsvariablen X. Zur
Kennzeichnung werden Zufallsvariablen

im folgenden mit Grossbuchstaben,

einzelne Werte davon mit
Kleinbuchstaben geschrieben.

Zu einer Zufallsvariablen gehört
immer eine Verteilungsfunktion: Ihre
Existenz muss vorausgesetzt werden.
Sie ist folgendermassen definiert:
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1-

Pi

I

F(x)

Figur 1 Verteilungsfunktion einer Zufallsgrösse mit endlich vielen Figur 2 Wahrscheinlichkeitsdichte der Normalverteilung
Werten x\

F(x) P(X<x). (1)

P(X<x) ist die Wahrscheinlichkeit,
für die Zufallsvariable X einen Wert
kleiner als x zu finden. Entsprechend
dieser Definition leuchten die folgenden

Eigenschaften der Verteilungsfunktion

unmittelbar ein:

F(-oo) 0, F(+ao) 1.

rt \ dFf(x) TT (3)

F(x) P(X<x) | f(t)dt. (4)

Das bekannteste Beispiel einer
Dichtefunktion ist die Normalverteilung

(Gaussverteilung):

(x - ß)
f(x)

a \ 2n'
(5)

(2)

In Worten: Die Wahrscheinlichkeit,
dass X einen Wert kleiner als — °°
annimmt, ist null, die Wahrscheinlichkeit,

dass X einen Wert kleiner als + °o

annimmt, ist 1.

Zwei Fälle sind für die Anwendung
besonders wichtig:

Nimmt die Zufallsvariable X nur
endlich viele Werte x,, xn mit den
Wahrscheinlichkeiten px, pn an, so
ist F(x) eine Treppenfunktion (Figur
1), die an der Stelle x=x,
jeweils um Pi zunimmt [1;2]. Die Summe
aller zugehörigen Wahrscheinlichkeiten

pj ist 1 :

E Pi 1.
i 1

Ist F(x) stetig differenzierbar, so
existiert die Ableitung von F(x):

Mit der Substitution t (x-p)/o
kann diese Funktion mittels der Beziehung

f(t)dt f(x)dx) in Normalform
(p 0,a 1) gebracht werden:

f(t)
- t2
2

1

(2?
(6)

Die zugehörige Verteilungsfunktion

12? J-„

"-it2
dt (7)

/(x) heisst Wahrscheinlichkeitsdichte
oder Dichtefunktion von X.

f(x)dx ist die Wahrscheinlichkeit, X
im Intervall [x, x+ dx] zu finden.

Umgekehrt ist

findet man in den meisten Statistikbüchern

tabelliert vor. Die Dichtefunktion
der Normalverteilung hat die

bekannte Glockenform mit dem Maximum

bei p und den Wendepunkten
bei x ,u-I-ct und x p-a (Fig. 2). a
ist ein Mass für die Breite der Kurve, a
=® (x') ist die schraffierte Fläche unter

der Kurve zwischen -oo und x'. Die
Kurve ist symmetrisch zur Geraden x

p. Die gesamte Fläche unter der
Kurve beträgt 1. Die Wahrscheinlichkeit,

dass X in ein Intervall zwischen a
und b zu liegen kommt, ist

b a

f(x)dx f(x)dx - f(x)dx,

P(X<b) - P(X<a)

P(a<X<b),

$(b) - $(a).

Bei einer normalverteilten
Zufallsvariablen liegen im statistischen Mittel
zwischen

ß - er und ß + er 68,3 %

ß - 1,96 a und ß + 1,96 er 95 %

ß - 2 a und ß + 2 er 95,4 %

ß - 2,57 a und ß + 2,57 a 99 %

ß - 3 a und ß + 3 a 99,7 %

aller Beobachtungen.
Viele zufällige Grössen in der Natur

und in der mathematischen Statistik
haben eine Normalverteilung als
Wahrscheinlichkeitsdichte. Eine
mathematische Begründung dafür liefert
der zentrale Grenzwertsatz. Dieser sagt
aus, dass unter bestimmten, recht
allgemeinen Bedingungen die Summe X
von unabhängigen Zufallsgrössen Vj,

y

X xt +... + xn,

für grosse n eine Normalverteilung
besitzt, und zwar unabhängig von der
Art der Verteilung der Xt.

In der Praxis ist die explizite Kenntnis

der Verteilungsfunktion oft nicht
nötig: Man begnügt sich mit einigen
Kennwerten, die einen qualitativen
Hinweis über Fage und Form der
Verteilung geben. Die wichtigsten Kennwerte

(Parameter) sind der Mittelwert
(Erwartungswert), die Varianz und die
Standardabweichung.

Die Definitionen von Mittelwert
und Varianz sind in Tabelle I angegeben.

Allgemein wird für den Mittelwert

p einer Zufallsvariablen X oft die
Schreibweise

(8) ß=E(X), (9)

948 Bulletin ASE/UCS 80(1989)15, 5 août
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Stetige Zufallsvariable Diskrete Zufallsvariable

Mittelwert:
g fx f(x) dx (10a) g S x; pi (10b)

(Erwartungsi 1

wert)

Varianz: a2 f (x - g)2 f(x) dx (10c) a2 S (x; - g)2 pi. (lOd)
i 1

Tabelle I Definition für Mittelwert und Varianz

gewählt. Wie man leicht zeigt, folgt
daraus:

a2=E(X-E(X))2 (11)

Die Standardabweichung a ist die

positive Wurzel aus der Varianz.
Es ist eine der Aufgaben der Statistik,

anhand von Stichproben1 Schätzwerte

für die Parameter der zugrundeliegenden

Verteilung der Zufallsgrösse
zu ermitteln. So werden zum Beispiel
aus n Wiederholungsmessungen die
Messwerte x,,..., x„ ermittelt. Aus diesen

Messwerten erhält man die Schätzwerte

x und s2 für den Mittelwert ß
und die Varianz er2 nach den bekannten

Formeln

X I s Xi (12a)
11 i= 1

S2
* Ë(Xi-x)2. (12b)

n~J i 1

Die Varianz ist nach dieser Definition

der Mittelwert der quadrierten
Abweichungen xf - x der Einzelmessungen

x, vom Mittelwert x. Dabei ist
zu beachten, dass durch die Zahl n— 1

der voneinander unabhängigen
Abweichungen dividiert wird. Diese Zahl
nennt man den Freiheitsgrad2.

Es ist klar, dass bei Entnahme einer
zweiten Stichprobe mit den Werten x{,

x,[ der Mittelwert x' und die
Varianz s'2 dieser zweiten Stichprobe
von den Werten der ersten Stichprobe
abweichen. Die Parameter einer
Stichprobe (wie Mittelwert oder Varianz
usw.) sind deshalb ihrerseits Zufalls-
grössen mit einer eigenen Verteilungsfunktion.

Sie sind Schätzwerte der
entsprechenden Parameter (ß, a2 usw.)
der Grundgesamtheit.

Zwischen diesen Parametern, welche

die Grundgesamtheit charakterisieren

und den Parametern, die eine
Stichprobe charakterisieren (x, s2

1 Eine Stichprobe vom Umfang n ist eine
Teilmenge der Grundgesamtheit mit n Elementen,
die der Untersuchung unterzogen werden.

2 Da die Summe aller Abweichungen

n

X (xi - x)
i= 1

gleich Null ist, sind die n Abweichungen x,—x
voneinander linear abhängig.

3 Man könnte sie, wenn alle Elemente der
Grundgesamtheit bekannt wären, ausrechnen.

usw.), besteht ein wesentlicher
Unterschied. Jede Grösse, die eine Grundgesamtheit

charakterisiert, ist determiniert3

(ß und g der normalverteilten
Grundgesamtheit z.B. sind feste Werte),

während jede Grösse, die eine

Stichprobe charakterisiert, eine Funktion

von n unabhängigen Zufallsvariablen

X,, X„ und damit ebenfalls
eine Zufallsgrösse ist. Schreibt man
nämlich die Werte von verschiedenen
Stichproben schön geordnet untereinander,

1. Stichprobe: x,', x2',... xn,
2. Stichprobe: xj', x'2',... x'n',

3. Stichprobe: x,'", x2"',... x£",

so kann jede Stichprobe als
Realisierung eines Zufallsvektors X mit n

Komponenten aufgefasst werden: X
(Xj,..., X„). Die Komponenten X,, X2,
...,Xn sind Zufallsvariablen, welche die
gleiche Verteilung haben wie die
Grundgesamtheit. Die Parameter von
Stichproben sind Funktionen dieser
Zufallsvariablen.

Für einige in der Praxis wichtige Zu-
fallsgrössen sind in Tabelle II die
zugehörigen Verteilungsfunktionen
aufgeführt. Dabei wird vorausgesetzt,
dass die Grundgesamtheit eine
Normalverteilung mit Mittelwert ß0 und
Standardabweichung a0 besitzt. Mit
Hilfe des zentralen Grenzwertsatzes
kann gezeigt werden, dass die
normalverteilten Zufallsgrössen in dieser
Zusammenstellung bei grossem
Stichprobenumfang auch dann einer
Normalverteilung folgen, wenn die Grundgesamtheit

selbst keine Normalverteilung

aufweist. Die Werte der
aufgeführten Verteilungen findet man in
vielen mathematischen Handbüchern
tabelliert vor.

Die in Tabelle II angegebenen
Zufallsgrössen haben eine grosse praktische

Bedeutung: Es ist nämlich unge¬

nügend, nach einer Serie von Messungen

einfach Mittelwert und
Standardabweichung zu berechnen und sie
ohne weitere Information über die
Zuverlässigkeit als Resultat anzugeben.
Man weiss dann nicht, wie gross die
zufälligen Schwankungen dieser
Schätzwerte sind, das heisst wie zuverlässig

das Resultat ist. Mit Hilfe der
oben aufgeführten Zufallsgrössen ist
es möglich, zusätzlich Vertrauensbereiche

zu berechnen. Diese Vertrauensbereiche

sind Intervalle, die den wahren,
aber unbekannten Parameter mit einer
vorgegebenen Wahrscheinlichkeit
1 - a enthalten. Die Endpunkte dieser
Intervalle werden als Vertrauensgrenzen,

1 - a als Vertrauenswahrscheinlichkeit

(statistische Sicherheit,
Vertrauensniveau), a als
Irrtumswahrscheinlichkeit (Signifikanzniveau) ber-
zeichnet. Gewöhnlich wird a 0,01,
0,02 oder 0,05 angenommen, was einer
Wahrscheinlichkeit von 99%, 98% oder
95% entspricht, dass der wahre Wert in
dem aus der Stichprobe berechneten
Vertrauensbereich liegt.

Die drei ersten der in Tabelle II
aufgeführten Zufallsgrössen erlauben,
solche Vertrauensbereiche für den
Mittelwert einer Messreihe zu berechnen.

Die ^-Funktion ermöglicht die
Berechnung von Vertrauensbereichen
des Schätzwertes der Standardabweichung.

Die beiden letzten Funktionen
können für den Vergleich von empirischen

Mittelwerten und Standardabweichungen

zweier Stichproben
herangezogen werden. Damit kann
beispielsweise geprüft werden, ob sich die
Messbedingungen (statistisch
ausgedrückt: die Grundgesamtheit)
zwischen den beiden Stichprobenentnahmen

verändert haben.
Bevor anhand einiger Beispiele

erläutert wird, wie in der Praxis
Vertrauensbereiche berechnet werden,
muss man sich vergewissern, ob denn
die Voraussetzung dazu, nämlich die
Normalverteilung der zugrundeliegenden

Grundgesamtheit, überhaupt ge¬

Bulletin SEV/VSE 80(1989)15, 5. August 949
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währleistet ist. Dazu gibt es mehrere
Möglichkeiten, die hier kurz erwähnt
werden sollen:

1. Aufzeichnung einer Häufigkeitsverteilung:

Die Messwerte werden
nach Messintervall klassiert und die
Anzahl Messwerte jeder Klasse über
diesen Intervallen aufgetragen. Die
Klasseneinteilung hat eindeutig zu
erfolgen; es ist klar festzulegen, in
welcher Klasse Werte auf der Intervallgrenze

zu zählen sind.
Dies soll an dem Beispiel einer

Temperaturmessung (Fig. 3) illustriert werden.

Wenn sich durch das Histogramm
der Messwerte annähernd eine Glok-
kenkurve zeichnen lässt, liegt die
Vermutung nahe, dass die Messwerte normal

verteilt sind. Obwohl klar ist, dass
dieses Kriterium mathematischen
Anforderungen nicht zu genügen vermag,
ist es für eine rasche Orientierung
trotzdem nützlich. Wird die Anzahl
Messwerte «, jeder Klasse durch den
Umfang n der Stichprobe dividiert
und der Quotient n/n über den
Messintervallen aufgezeichnet, ergibt das
Histogramm eine Näherung für die
Wahrscheinlichkeitsdichte der
Stichprobe.

2. Aufzeichnung der Summenhäufigkeit:
Anstelle der Klassenhäufigkeit n,

kann man sukzessive die Summen n],
n,+n2, «i +n2 + ...+nk der
Klassenhäufigkeiten über den Messintervallen
aufzeichnen (Fig. 4). Dabei gilt:

k
S Iii Ii

i 1

bei k Klassen aus n Messwerten. Werden

diese Summenhäufigkeiten durch

Zufallsgrösse

- l n

* =5,5,"

*0
X - Po

<70

t 4^ (Fi

V s2

w

Ax Xl - X2

- Sr

Verteilung ("Wahrscheinlichkeitsdichte)

Normalverteilung mit den Parametern

ß=po, o-oo/W

Normalverteilung mit den Parametern

p=0, <7=1

Studentsche t-Verteilung mit n-1

Freiheitsgraden

Chi-Quadrat-Verteilung mit v=o-l

Freiheitsgraden

Normalverteilung mit den Parametern

p=0. a=<
n i n 2

F-Verteilung mit vi=m-1,

v-i=n-2-l Freiheitsgraden

Tabelle II Verteilung einiger Zufallsgrössen einer Stichprobe

16

12-

8-

4-

•-/— \/ \
/ \— n;

/ \
/ x

/ \
n2 »-y— \

/ „ \
/

21 22 23 24 25 26 27 28 i?[°C]

3
Eni

i 1

2
E n;

i 1

F-if
21 22 23 24 25 26 27 28 tf[°C]

Figur 3 Häufigkeitsverteilung einer Anzahl Temperaturmesswerte Figur 4 Summenhäufigkeitsverteilung einer Anzahl Temperatur-
rij Anzahl Messwerte der i-ten Klasse

S Temperatur

messwerte

Hj Summenhäufigkeit n\ +... + n7

n Anzahl Messwerte

S Temperatur
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Figur 5 Normierte Summenhäufigkeit einer normalverteilten Mess-

grosse, dargestellt auf Wahrscheinlichkeitspapier

Hj Summenhäufigkeit

n Anzahl Messwerte

S Temperatur

Figur 6 Normalverteilung des empirischen, auf Null reduzierten
Mittelwertes x (x- m) sin/ er einer ebenfalls normalverteilten Mess-
grösse

x empirischer Mittelwert « Irrtumswahrscheinlichkeit

m unbekannter Mittelwert n Anzahl Messwerte

a Standardabweichung

n dividiert, so erhalten wir in unserem
Beispiel annähernd die Wahrscheinlichkeit

dafür, einen Messwert kleiner
als 22 °C, 23 °C, 27 °C zu finden.
Das Summenhäufigkeitsdiagramm
stellt daher eine Näherung an die
Verteilungsfunktion der Messgrösse dar.

Die Summenhäufigkeit ist eine
besonders geeignete Grösse, um die Zu-
fallsgrösse auf Normalverteilung zu
prüfen. Dazu benutzt man die im Handel

erhältlichen Wahrscheinlichkeitspapiere,

bei denen die Ordinate in der
Weise skaliert ist, dass die Verteilungsfunktion

bei normalverteilter
Grundgesamtheit zu einer Geraden wird:
Führt diese Darstellung der Messwerte
annähernd auf eine Gerade, so ist die
Annahme einer normalverteilten
Grundgesamtheit gerechtfertigt
(Fig. 5).

3. Neben diesen graphischen
Prüfungen gibt es mathematische Tests,
mittels derer die Richtigkeit der
Annahme einer beliebigen theoretischen
Verteilung geprüft werden kann. Dazu
sei auf die Literatur verwiesen [2; 4].

Hat man sich über die Richtigkeit
der Annahme einer Normalverteilung
mit einer der oben angegebenen
Methoden Klarheit verschafft, ist die
Berechnung der Vertrauensgrenzen recht
einfach:

1. Beispiel: Der Messwert einer
Messanordnung sei normal verteilt mit
einem unbekannten Mittelwert p m
und der bekannten Standardabweichung

a (er kann zum Beispiel auf
Grund früherer Messungen oder
theoretischer Überlegungen bekannt sein).
Für den unbekannten Wert m der

Messgrösse soll der Vertrauensbereich
berechnet werden, der den Wert mit
einer Vertrauenswahrscheinlichkeit
von 95% (1 —a 0,95) enthält. Dazu
werden n Messungen ausgeführt, welche

die Messwerte x, xn ergeben.
Die Grösse

x - m r—i
x0 —— \ n1

folgt einer Normalverteilung mit
Mittelwert 0 und Standardabweichung 1

(Tabelle II). Nach Gleichung (8) ist die
nichtschraffierte Fläche unter der Kurve

in Fig. 6 die Wahrscheinlichkeit,
dass x0 einen Wert zwischen den
Grenzen -k und + k besitzt. Bestimmt
man den Wert von k so, dass diese
Wahrscheinlichkeit 95% (1 — a 0,95)
beträgt, so ist

P(-k<^iF <+k)=l-a. (13a)

Daraus folgt durch Umformung

P(x-k-^—<m<x+k-^—)=l-a, (13b)
jri1 JIT1

d.h. mit der Wahrscheinlichkeit von
95% befindet sich der gesuchte Mittelwert

m mit Intervall

(x-k-2—, x+k-^—)
ÜF ÜF

Da x, n und a bekannt sind, können
die Vertrauensgrenzen

berechnet werden. Nach (8) ist nämlich

P(-kö|iF <+i)=$(+k)-$(-k), (14)

wobei O(x) die Verteilungsfunktion
(7) der normierten NormalVerteilung
ist. Da die NormalVerteilung mit
Mittelwert 0 bezüglich des Nullpunkts
symmetrisch ist, folgt

$ (-k) 1 - $ (+k). (15)

Setzt man (14) und (15) in (13a) ein,
folgt

4> (+k) 1 - (16)

k bestimmt man aus einer Tabelle
für O (Normalverteilung), wo der
Wert 1,96 abgelesen wird.

Der Vertrauensbereich für den
unbekannten Mittelwert m (Erwartungswert

p der Grundgesamtheit «wahrer»

Messwert) ist bei einer
Irrtumswahrscheinlichkeit von a 0,05 daher

(x - 1,96 —, X + 1,96 —)
ÜF ÜF

(17)

das heisst mit einer Wahrscheinlichkeit

von 95% ist

m x ± 1,96 —.
ÜF

(18)

x ± k
ÜF

2. Beispiel: In den meisten Fällen ist
die Standardabweichung a der
Messgrösse nicht bekannt. In diesem Falle
verwendet man die Grösse
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in der anstelle der Standardabweichung

a ihr Schätzwert s steht. Die
Wahrscheinlichkeitsdichte von / ist die
Studentsche /-Funktion g,Hl(/) (Tabelle

II), die ähnlich aussieht wie die
Normalverteilung mit (u 0, er 1), aber
etwas breiter und flacher ist [3], Die
breitere Verteilung ist eine Folge der
zusätzlichen Unsicherheit, die der
Ersatz des genauen Wertes er in x0 durch
die Zufallsvariable 5 zur Folge hat. Da
für grosse n s gegen a strebt, streben
auch die /-Verteilungen g„_, (/) mit
wachsendem n gegen die Normalverteilung.

Die Berechnung des Vertrauensbereiches,

in dem sich der wahre Wert m
mit einer vorgegebenen Wahrscheinlichkeit

1 — a befindet, verläuft nun
gleich wie im Beispiel 1: Die Grenzen
/q,(v n — 1) sind so zu bestimmen,
dass der Wert der Zufallsgrösse / mit
der Wahrscheinlichkeit 1 - a in den
Bereich [~kv, kv] zu liegen kommt

P(-ku<^n <+kv)=)-a. (19a)

Die Grenze kv ist aus einer Tabelle
der /-Verteilung für v n — 1

Freiheitsgrade abzulesen. Aus der obigen
Gleichung folgt

P(x- <m<x I v )=l-a. (19b)
In1 lä1

Damit sind die Vertrauensgrenzen

bestimmt. Graphisch (Fig. 7) liegen
die Verhältnisse ähnlich wie in
Beispiel 1. Es ist

P (~kv < ^ JF < +ku)

ku ~ku
\ gjt)dt - J gjt)dt,

—00 —00

V+V - Tv(-M 1 - * (2°)

Wegen der Symmetrie von gv(t)
folgt wiederum Tv(-kv) 1 - Tv(+fcv)
und daraus

V+V 1 - (21)

Für a 0,02 und n 10 findet man
beispielsweise in einer Tabelle der
t-Verteilung mit v n — 1 9 den
Wert kv 2,821. Der wahre Wert m
der Messgrösse liegt demnach mit
einer Vertrauenswahrscheinlichkeit
von 98% im Intervall

fx - 2,821 -2— x + 2,821
jTÖ1 (W (ll>

Mit einer Wahrscheinlichkeit von
98% beträgt der wahre Wert somit

m x ± 2,821 —. (23)
(ïï1

Idealerweise sollte ein aus mehreren
Wiederholungsmessungen ermitteltes
Messresultat m wie folgt angegeben
werden

m x ± k SC, (24)
"(Z1

x Mittelwert der Messwerte
s Schätzwert der

Standardabweichung
a Signifikanzniveau (oder

Vertrauenswahrscheinlichkeit 1 — a)

n Anzahl Messwerte
kr Faktor der /-Verteilung für v

n-1 Freiheitsgrade und
vorgegebenes Signifikanzniveau

a.

Nach den gleichen Überlegungen, wie
sie für Mittelwerte angestellt wurden,
kann man auch für Varianzen und
Standardabweichungen Vertrauensbereiche

bestimmen:
3. Beispiel: Anhand von n 10

Messungen ist die empirische Varianz s2

(Schätzwert der wahren Varianz er2) zu
0,37 berechnet worden. Gesucht ist die
obere Schranke, unterhalb derer sich
der wahre Wert er2 mit einer
Wahrscheinlichkeit von 95% befindet.
Man betrachtet die Grösse x2 vs2/a2,
die nach einer Chi-Quadrat-Verteilung
mit v n — 1 Freiheitsgraden verteilt
ist (Fig. 8).
Da nur nach einer oberen Grenze für
CT2 gefragt wird, führt man den Test
einseitig durch: Man sucht die Grenze
kv so, dass der Wert %2 vs2/ct2 mit
einer Wahrscheinlichkeit von 95% (a

0,05) über der Grenze kv liegt:

Figur 7 Studentsche t-Verteilung jles empirischen, auf Null
reduzierten Mittelwerts t (ï - m) Vn/s einer normalverteilten
Messgrösse

x empirischer Mittelwert a Irrtumswahrscheinlichkeit

m unbekannter Mittelwert v Freiheitsgrad

s empirische Standardabweichung n Anzahl Messwerte

Figur 8 Chi-Quadrat-Verteilung der Grösse x2 vs2/ a2

s empirische Standardabweichung
er unbekannte Standardabweichung
v Freiheitsgrad

a Irrtumswahrscheinlichkeit
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P(^>_ku) l~a, (25)

r^HW).
k

V

Aus einer Integraltafel der ^-Verteilung

für v n - 1 =9 Freiheitsgrade
sucht man den Wert für kv heraus, der
dem Integral den Wert 1 - a 0,95
verleiht: kv 3,33. Mit einer
Wahrscheinlichkeit von 95% ist somit us2/
er2>3,33, und als obere Schranke von
er2 erhält man mit der gleichen statistischen

Sicherheit von 95% daraus

> ^ v s2 9 • 0,37a K ~H~ 3,33 ~ L (26)

Anhand der Figuren in den Beispielen
1 bis 3 erkennt man folgenden
Zusammenhang zwischen Vertrauenswahrscheinlichkeit

1 - a und Vertrauensbereich:

Eine hohe statistische Sicherheit der
Aussage, das heisst eine hohe
Vertrauenswahrscheinlichkeit 1 — a
bedingt, dass die schraffierte Fläche a
klein und somit das Vertrauensintervall

gross ist. Ein kleiner Vertrauensbereich

(schraffierte Fläche a gross)
bedeutet umgekehrt, dass die
Vertrauenswahrscheinlichkeit 1 - a und
damit die statistische Sicherheit des
Messresultates klein wird. Diese lässt
sich natürlich durch Erhöhung der
Anzahl Messwerte verbessern.

Fortpflanzung der
Messunsicherheiten

Die Konzepte der Statistik, die im
vorhergehenden Kapitel beschrieben
werden, basieren auf der Annahme der
Existenz einer Grundgesamtheit, aus
der, mindestens gedanklich, eine zufällige

Stichprobe entnommen werden
kann. In einer Messung ist die zu
bestimmende Messgrösse häufig jedoch
nicht direkt zugänglich. Die Messgrösse

wird beispielsweise von einem Fühler

erfasst, das Signal anschliessend in
einer Messkette aufbereitet und zuletzt
zur Anzeige gebracht. Das angezeigte
Resultat X hängt im allgemeinen von
mehreren Grössen X, ab, die von
unbekannten Störungen überlagert sein
können, im statistischen Sinne also
Zufallsvariablen sind. Das Messresultat

kann deshalb als Funktion der
Zufallsvariablen X, aufgefasst werden. Es
stellt sich die Frage, welches der
wahrscheinlichste Wert des Resultates ist
und mit welchen Unsicherheiten dieses

Messtechnik

Resultat behaftet ist. Die erste
eingehende Behandlung dieser Fragestellung

geht auf Gauss zurück [2]. Im
folgenden werden mehrere Möglichkeiten

dikutiert, ausgehend von einer
vorgegebenen Funktion für die gesuchte
Messgrösse ihren wahrscheinlichsten
Wert und die zugehörige Messunsicherheit

zu ermitteln.
Unabhängig davon, ob die Grössen

X, um einen allfälligen systematischen
Fehler korrigiert wurden, kann für
eine differenzierbare Funktion X

f(X,,..., Xn) um die Mittelwerte x,- herum

eine Taylorentwicklung angesetzt
werden. Sofern die Abweichungen
AXj klein genug sind, dass Terme
höherer Ordnung vernachlässigt werden
können, ist

meist Abschätzungen in Form von
Spezifikationen verfügbar. Diese
Spezifikationen können oft als
Fehlergrenzen (s. Kap. «Begriffe und
Definitionen») interpretiert werden.

Für Messfehler, über die keine
Angaben vorliegen, sind Vertrauensbereiche

mit einer entsprechend hohen
Vertrauenswahrscheinlichkeit zu ermitteln

(s. Kap. «Bestimmung der
Messunsicherheiten im elektrischen
Kalibrierdienst»). Falls systematische
Komponenten im Resultat nicht korrigiert

werden, sind sie in der Abschätzung

ÄXj der entsprechenden
Messabweichung AXj einzubeziehen. Auf diese

Weise gelangt man für die
Messunsicherheit von x /(x,, xn) zu der
Abschätzung

Xn)

h + Ixi|{xi} AX;'

Ax E

(27)
8f I -üXi | {x,} sjn(j partiejjen

Ableitungen von / an der Stelle X, x,,
V; Xn.

Als Resultat dieser Entwicklung
erhält man für X in erster Näherung

X [ (xi, xn),

und für die Abweichungen davon
die Beziehung

AX %c\ {xi} AXi' (29)

Für die Abweichungen AX, der
einzelnen Zufallsvariablen X, vom Mittelwert

x, muss ein Schätzwert eingesetzt
werden. Es ist klar, dass diese Rechnung

für die Unsicherheit des Resultates

x nur einen groben Schätzwert
liefert. Insbesondere sind keine weiteren
Aussagen über die statistische
Zuverlässigkeit dieser Schätzung möglich.
Für die Abschätzung der
Messunsicherheiten im industriellen Mess-
und Kalibrierwesen kommt eine solche

Berechnungsweise deshalb nicht in
Frage.

Eine Möglichkeit, zu einer Information

über die statistische Zuverlässigkeit
des Resultates X x zu gelangen,

bietet die Ungleichung (Summation
der Beträge)

d{ I AX-Mj|{xi} AXl

df I Ax-3Xj|{xi} Ax> (31)

(28)

(30)AX < S
i 1

Soweit die Messfehler von
Messinstrumenten herrühren, sind dafür

die eine hohe Vertrauenswahrscheinlichkeit

von nahezu 100%
besitzt.

Im industriellen Kalibrierwesen ist
die Abschätzung der Messsunsicherheit

mittels Summation der
Unsicherheitsbeträge (nach Gl. 31) weit verbreitet.

Es sei aber noch einmal daraufhingewiesen,

dass diese Berechnungsweise
nur dann zu einer Information über

die Zuverlässigkeit des Messresultates
führt, wenn die Abschätzungen der
einzelnen Messfehler allesamt eine
Vertrauenswahrscheinlichkeit von
nahezu 100% besitzen. Der Preis, den
man für diese Information zahlt, ist
eine grosse Messunsicherheit.

Gegen diese Art der Berechnung
wird vor allem von wissenschaftlicher
Seite eingewendet, dass die Messunsicherheit

dadurch überschätzt wird. Da
es unwahrscheinlich ist, dass in einem
komplizierten Messsystem alle Fehler
das gleiche Vorzeichen haben und sich
addieren, ist die Gefahr der
Überschätzung besonders bei längeren
Messketten mit vielen Fehlerbeiträgen
vorhanden. Bei dieser Argumentation
wird jedoch vergessen, dass zu einer
Messunsicherheit immer auch eine
Angabe über die statistische Sicherheit
(Vertrauenswahrscheinlichkeit)
gehört. Die Frage ist also nicht allein, ob
die Messunsicherheit überschätzt wird
oder nicht, sondern auch, auf was
mehr Wert gelegt wird, auf eine kleine
Messunsicherheit oder auf eine grosse
statistische Sicherheit.

Vom mathematischen Standpunkt
aus die befriedigendste Art der
Fehlerabschätzung besteht darin, alle fehler-

Bulletin SEV/VSE 80(1989)15, 5. August 953



Messtechnik

behafteten Grössen zuerst um die
systematischen Fehler zu korrigieren (in
der Praxis ist dies leider kaum je exakt
durchführbar). Alle Einflussgrössen X,
sind dann reine Zufallsvariablen mit
Erwartungswert m,. Lässt sich die
Funktion X f(Xj,X„) in eine
Taylorreihe um den festen Wert im Punkte
X, mx,Xn m„ entwickeln,

X f(mh mn)

y 9 f I

a y. _i_

+5?! Milfffli} AAl +

E(X) x f(mi, mn)

und

<7» E[x - E(X)]2

(33)

dfE E ^4- r AXjLi=1dXj|{mi} (34)

Wenn die Zufallsvariablen X,
voneinander unabhängig sind, sind die
Erwartungswerte E (AXj • AXj) in (34)
für i * j gleich Null und E (AXj)2 E
(Xj — rrij)2 er2.. Die Varianz (34)
erhält dann die einfache Form

<t2 £ df ]2
cTXTj | {rrii} x;' (35)

und die Standardabweichung von X
lautet

£ (d f 121

,V, [SXjJ |{mi} ffx, (36)

Da die wahren Erwartungswerte m,
der Zufallsvariablen Xt nicht bekannt
sind, rechnet man an ihrer Stelle mit
ihren Schätzwerten, also statt mit (33),
(35), (36) mit

X f(xj, xn), (37)

(38)

Figur 9

Blockschema eines

Kalibriersystems zur
Erzeugung
hochgenauer
Gleichspannungen

(32)

so kann die Reihe nach dem Term
erster Ordnung abgebrochen werden,
sofern die Abweichungen AXt genügend

klein sind. In diesem Falle lässt
sich die Varianz al von X berechnen
[2,4]:

Es gilt allgemein (die Funktion /
darf nicht mit der Dichtefunktion
verwechselt werden)

i?i Kl' t*il (39)

Die Formel (39) ist das bekannte
Gausssche Fortpflanzungsgesetz für
zufällige Fehler. Die Messunsicherheit
Ax wird hier durch den Schätzwert der
Standardabweichung ausgedrückt. Es

gilt, wie oben erwähnt, nur dann,
wenn die einzelnen Fehlerkomponenten

voneinander unabhängig sind. Es
ist bemerkenswert, dass zu seiner
Herleitung keine Annahme über die Art
der Verteilung der Zufallsvariablen X,
getroffen werden muss. Durch die
Addition der mittleren Fehlerquadrate in
(39) wird die Messunsicherheit sx deutlich

kleiner, als wenn Fehlergrenzen
wie in (31) betragsmässig addiert werden.

Es ist aber zu beachten, dass die
Voraussetzungen, die zur Herleitung
der beiden Formeln gemacht werden
müssen, verschieden sind, so dass ein
solcher Vergleich nicht ohne weiteres
vorgenommen werden darf.

Zur Illustration des Gaussschen
Fortpflanzungsgesetzes werden
meistens Beispiele aufgeführt, in denen
der funktionale Zusammenhang /durch eine mathematische oder
physikalische Beziehung gegeben ist
(Beispiel: Bestimmung des Volumens eines
quaderförmigen Gefässes durch Messung

der drei Seiten). Dieser einfache
Fall ist im elektrischen Mess- und
Kalibrierwesen praktisch nie gegeben,
und es stellt sich die Frage, wie die
Funktion/ermittelt werden soll.

Mathematische Beschreibung
des Messsystems

Zur Herleitung des funktionalen
Zusammenhanges zwischen der Mess-
grösse und ihren Einflussgrössen muss
für das Messsystem ein mathematisches

Modell aufgestellt werden.
Anhand eines Beispiels aus der elektrischen

Kalibiertätigkeit soll das Vorgehen

erläutert werden. Wir betrachten

ein Kalibriersystem, mit dem, je nach
Teilerverhältnis des Festteilers,
hochgenaue Gleichspannungen zwischen
1 V und 1000 V erzeugt werden können
(Fig. 9).

Fr sei die Referenzspannung, Tv
das Teilerverhältnis des variablen Kel-
vin-Varley-Dividers, TF das Teilerverhältnis

des Festteilers, Vc die
Prüfspannung, mit der ein Spannungsmessgerät

geprüft werden soll. Über
den Festteiler und den Nulldetektor
wird die Prüfspannung mit dem
hochgenauen Wert einer elektronischen
Spannungsreferenz verglichen. Der
Kaiibrator dient einzig als Spannungsquelle.

Unter Vernachlässigung aller
Störeinflüsse und Ungenauigkeiten lässt
sich der funktionale Zusammenhang
zwischen Vc und FR leicht angeben.
Es ist (mathematisch wird der Nulldetektor

durch das Gleichheitszeichen
dargestellt):

V T T V
R V FC

oder

T
V

c U
v

(40)

In Wirklichkeit sind sowohl die
Referenzspannung FR als auch die
Teilerverhältnisse Tv, TF und der
Nulldetektor mit Unsicherheiten
behaftet. Zudem können weitere Einflüsse

wie Thermospannungen und
Spannungsabfälle in den Verbindungsleitungen

den Spannungsvergleich
beeinträchtigen. Das System wird deshalb
besser durch eine Gleichung vom
folgenden Typ beschrieben:

V'T + Vth + V T V,
R V N FC

oder

V L-
c ^ K TV + V* + VN (41)
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mit V'c kc - Vc und V'R kR - VR.

Die Konstanten kc und kR berücksichtigen

die systematischen Fehler, die
durch den Spannungsabfall in den
Verbindungsleitungen zwischen
Spannungsquelle und Teiler auftreten. Die
Teilerverhältnisse und Spannungen
sind mit zufälligen Störungen behaftet.
Die Grössen selber können deshalb als
Zufallsvariablen betrachtet werden.

ist die Thermospannung im
Ausgang des mit vielen Kontakten
versehenen Kelvin-Varley-Teilers, FN

beschreibt die Messunsicherheit des

Nulldetektors: Bedingt durch
Rauschspannungen im System, ist ein
vollständiger Nullabgleich nicht möglich.
Welcher Seite man KN zuschlägt, spielt
keine Rolle. Fth und VN können als
Grössen jnit Mittelwert 0 angesehen
werden: Vth 0 und VN 0. Mit {x;}

{ Fr, Tv und Tf} folgt aus (37) und
(41).

und mit (39)

y IJ J? J2
S2 v S2 + _v S2

VC T4 Tf T2 Vr
r r

V 2

+ _R s2

J2 T.

F

S2
V th+

v T2
F

S2
V..

rp2

F

(44)

Häufig ist nicht der Absolutwert der
Messunsicherheit gesucht, sondern Ihr
Relativwert. Dazu wird (43) durch V 'c

und (44) durch V 'c2 dividiert. Zusammen

mit (42) folgt

AV AT AV AT
ç F + R + v

V T V' T
c F R v

AV AV
t h + N

y ' t y ' tR V R v

ist gleich der Summe der Relativwerte
der einzelnen Unsicherheitskomponenten.

Dies ist das bekannte
Fortpflanzungsgesetz für Produkte und
Quotienten von fehlerbehafteten
Grössen. Die Störspannungen am
Nulldetektor erscheinen im Vergleich
zur Unsicherheit der Referenzspannung

um den Faktor 1/TV verstärkt.
Ist das mathematische Modell (in

unserem Beispiel gegeben durch die
Gleichung (41)) einmal aufgestellt, ist
die Berechnung der Messunsicherheit
nach (31) oder (39) im Prinzip eine
Fleissarbeit, die unter anderem auch
das Zusammentragen der einzelnen
Unsicherheitsbeiträge beinhaltet:
Erstellen einer statistischen Datenbasis,
Zusammentragen der Gerätespezifikationen,

Abschätzen von Fehlerkomponenten,

die auf andere Weise ermittelt
werden müssen.

(45)

V T
V' —5 -c y (42)

Durch Anwendung der Gleichung
(31 auf (41 efhalten wir:

V

V T T
— R v AT + -V AV

rp2 F Y R
=• F

1 1

AT + — A Vth + — AV
V T rp N

F F

und

S 2, S 2 S 2

vc _ Jz
v 2

c
J2

F

S2
Vth

+ + _y 2 T2
R V

s2
V,

y'2 j2 y'2 y2
R V R V

V

(46)

(43)
Der Relativwert der Messunsicherheit

der gesuchten Kalibrierspannung
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