
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 80 (1989)

Heft: 15

Artikel: Neurale Netzwerke : eine Übersicht

Autor: Leber, J.-F. / Matthews, M. B.

DOI: https://doi.org/10.5169/seals-903696

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903696
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Neuronale Netzwerke

Neurale Netzwerke: eine Übersicht
J.-F. Leber und M.B. Matthews

In der Computerwissenschaft
forscht man nach neuen Methoden,

die das menschliche Gehirn
zum Vorbild nehmen. Diese
versprechen vor allem dort Vorteile,
wo es um die Erkennung von
Bild und Sprache geht. Im
vorliegenden Beitrag werden vier der
wichtigsten Neuralen Netzwerke
beschrieben und die aktuellen
Trends auf diesem
zukunftsträchtigen Gebiet zusammen-
gefasst.

La science informatique recherche

de nouvelles méthodes qui
s'orientent au cerveau humain
pour reconnaître l'image et la
parole. Cet article résume les
concepts actuels dans ce
domaine d'avenir.

Adresse der Autoren :

J.-F. Leber. Dipl. El.-Ing. ETH, und
M.B. Matthews, MSEE, Institut für Signal- und
Informationsverarbeitung, ETH Zentrum,
8092 Zürich.

Künstliche Neurale Netzwerke
gehören zur Kategorie der verteilten
technischen Systemen. Sie bestehen
aus vielen Elementarrechnern, die
nach einem je nach Typ verschiedenen
Muster oder einer Struktur miteinander

verbunden sind. Charakteristisch
für alle Neuralen Netzwerke ist, dass
alle ihre Elementarrechner (Neuronen)

identisch sind und eine
verhältnismässig einfache (lokale) Funktion
ausüben. Erst das Netzwerk als
Gesamtheit aller Bausteine bewirkt ein
interessantes Verhalten.

Zur Entwicklungsgeschichte dieses
modernen Forschungsgebiets lässt sich
sagen, dass Menschen sich schon seit
langer Zeit fragen, wie das biologische

Nervensystem wohl funktioniert,
das für verschiedene Lebewesen eine
mehr oder weniger intelligente, jedenfalls

aber gewaltige Signalverarbeitungsleistung

vollbringt. Wie gewaltig
diese Leistung ist, zeigt sich vor allem
dem, der das Auge oder Ohr nachzubilden

versucht. Von den zahllosen
technischen Anwendungen (zu denen
auch Probleme der künstlichen Intelligenz

zählen) sind die Erkennung von
Bild und Sprache besonders zu erwähnen;

sie gehören zu den
herausforderndsten aktuellen Forschungsgebieten.

Obwohl der digitale Computer weit
schneller und genauer als ein Mensch
rechnen kann und vielerorts Dienste
leistet, die nicht mehr wegzudenken
sind (Beispiele Taschenrechner, Medizin,

Kommunikationstechnik, Finanzwesen,

Verkehrsmittel, Compact Disc,
Simulationen), gibt es eine ganze Reihe

von Problemen, deren Lösung
unerwartet harzig vorangeht. Diesen
Problemkindern ist meist eines gemeinsam:

Nicht algorithmisch erfassbare
(d.h. nicht algebraisch modellierbare)
Signale müssen in einer Trainingsphase

kennengelernt, zum Speichern
dargestellt und beim Wiedervorkommen

erkannt werden. Die Hauptschwierigkeit
liegt bei der Erkennung.

Andererseits kann bereits ein
dreijähriges Kind recht gut sehen und
hören, stehen, laufen usw.; sein ganzes
Leben lang wird es auf Lernen und
Erkennen angewiesen sein, um in unserer
komplexen Umwelt zu überleben. Diese

Feststellung motivierte die
Forscher, vom biologischen Nervensystem

zu lernen, um Teile seiner
Funktionen für technische Anwendungen
einzusetzen. In diesem Artikel werden
die Grundkonzepte vorgestellt, zu
denen neben vielen anderen vor allem
vier Forscher beigetragen haben; Ru-
melhart, Hopfield, Kohonen und Grossberg.

Das Neuron -
Baustein aller Neuralen
Netzwerke

Bevor einige der heute im Vordergrund

stehenden NetzWerkstrukturen
behandelt werden, müssen die
Eigenschaften des Neurons, das - wie bereits
gesagt - für alle Netzwerke gleich ist,
vorgestellt werden. Jedes Neuron bildet

eine Funktion f (•) der Summe
jedes seiner Eingänge Xj (Gl. 1), von
denen jeder mit einem Gewichtsfaktor
(auch Synapse genannt) m, multipliziert

wird.
Der lineare Teil ist damit eine

Linearkombination der Eingänge und
kann als Skalarprodukt des Eingangsvektors

xT [x,, x2,..., xN] und
Gewichtsvektor mT [m,, m2, -, mN]1
geschrieben werden (Fig. 1):

v / X nijXj
J- i

f(mTx) (1)

1 Alle Vektoren sind Kolonnenvektoren. Der
Exponent T bezeichnet die Transponierung.
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Figur 1 Funktion jedes Neurons
Jedes Neuron v, bildet die nichtlineare Funktion
/() der Summe seiner Eingänge Xj multipliziert
mit dem Gewicht der Synapse my:

vi =f(.Zlj.,'nijXj).

a f(E)
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Schwel 1e

b f(
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5

Schwel 1e

«4-
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U

/Figur 2 Schwellenfunktion
Die nichtlineare Funktion /(Ç) kann treppenför-
mig (a), sigmoidförmig (b) oder linear (c) gewählt
werden. Die exakte mathematische Formulierung
ist nicht wesentlich.

Der nichtlineare Teil in / variiert je
nach Modell zwischen treppenförmig,
sigmoidförmig oder linear, wie in
Figur 2 illustriert wird. Für die meisten
Modelle ist wesentlich, dass der
Ausgang jedes Neurons durch zwei
Sättigungen begrenzt wird, wodurch drei
Zustandsgebiete geschaffen werden:
Ist das Skalarprodukt viel grösser als
die Schwelle zwischen beiden
Sättigungen, wird der Neuronausgang 1; ist
das Skalarprodukt viel kleiner als die
Schwelle, wird der Neuronausgang 0;
bewegt sich das Skalarprodukt um die
Schwelle herum, bewegt sich der
Neuronausgang zwischen 0 und 1 im qua-
si-linearen Bereich.

In der Literatur findet man zwei
leicht unterschiedliche Interpretationen

eines Neurons. Bei den Percep-
trons z.B. wird es als trennende Hyperebene,

beim Kohonennetzwerk und
anderen als Schloss dargestellt.

Die Funktion der trennenden Hyperebene2

soll am Beispiel eines Neurons
mit zwei Eingängen x,, x2 (Eingangsvektor

x) und dem Gewichtsvektor m
(m,, m2) erklärt werden (Fig. 3a).

Jeder Wert von x kann als Punkt auf
einer zweidimensionalen Fläche
interpretiert werden. Der zweidimensionale
Gewichtsvektor definiert eine zu ihm
senkrechte Gerade3 g. Bei einer trep-
penförmigen Schwelle wird der
Neuronausgang den Wert 1 annehmen für
alle Punkte von x, die auf der einen
Seite der Geraden liegen, und den
Wert 0 für alle Punkte, die auf der
anderen Seite der Geraden liegen.

v + m2 x2) (2)

1, m\X\ + m2x2 > Schwelle

0<v<l, mix* + m2x2 — Schwelle
0, m\X\ + m2x2< Schwelle

(3)

Dieses Verhalten lässt sich auf eine
beliebige Dimension der Eingangsund

Gewichtsvektoren verallgemeinern.

Das Neuron entscheidet stets,
auf welcher Seite der Hyperebene -
die, wie gesagt, immer senkrecht zum
Gewichtsvektor steht - der aktuelle

2 Eine Hyperebene ist ein (w-l)-dimensionaler
Raum, der den übergeordneten n-dimensionalen
Raum in zwei Teilräume auftrennt. Eine Ebene
z.B. trennt den 3dimensionalen euklidischen
Raum auf, eine Gerade den 2dimensionalen.

3 Die Geradengleichung lautet nämlich mT-x
const.

Eingangsvektor liegt, oder gibt im
quasi-linearen Bereich die Nähe zur
Schwelle an.

Bei der zweiten Art, die Funktion
eines einzelnen Neurons zu interpretieren

(z.B. bei den Kohonennetzwer-
ken) wird die Einschränkung gemacht,
dass alle Eingangsvektoren normiert

Figur 3 Mögliche Interpretationen der
Neuronenfunktion
a. Jedes Neuron wirkt als Hyperebene (eine Gerade

im zweidimensionalen Fall), welche den
Eingangsvektorraum in zwei Hälften trennt, wobei
der Neuronenausgang auf der einen Seite 1 und
auf der anderen Seite 0 ist.

b. Wenn die euklidsche Länge aller Eingangsvektoren

gleich ist, unterscheiden sie sich nur durch
ihren Winkel.

c. Im normierten Fall öffnet das Neuron wie ein
Schloss zu einem passenden Schlüssel, wobei das
Skalarprodukt von Eingangsvektor und
Gewichtsvektor gross genug, bzw. ihre euklidsche
Distanz klein genug sein muss.
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Neuronale Netzwerke

sind, d.h. dass ihre euklidsche Länge
(Betrag)

konstant (z.B. 1) ist. Die einzelnen
Vektoren unterscheiden sich, wie
Figur 3b zeigt, nur durch ihren Winkel.
Der Gewichtsvektor und die Schwelle
können dann, wie in Figur 3c
veranschaulicht, so gewählt werden, dass
der Neuronausgang dann und nur
dann 1 ist, wenn der Eingangsvektor
in einem engen Winkelbereich um den
(senkrecht zur Hyperebene liegenden)
Gewichtsvektor liegt. Dann wirkt das

Neuron, bzw. sein Gewichtsvektor,
wie ein Schloss, das der passende
Schlüssel (Eingangsvektor) öffnet
(Ausgang wird l)4.

Zusammenfassend kann gesagt werden,

dass die lokale Funktion aller
Bausteine eines Neuralen Netzwerks
als einfaches Skalarprodukt anzusehen

ist, das mit Hilfe der nichtlinearen
Schwelle entscheiden kann, ob der
lokale Eingangsvektor zum Schloss

passt oder auf welcher Seite der Hyperebene

er steht. Dieses Konzept findet
man durchwegs durch alle Modelle,
auch wenn diese in den Einzelheiten
davon abweichen. Versuche haben
bestätigt, dass das Netzwerk viel
bedeutungsvoller ist als die Details der
Implementation ihrer Einzelbausteine.

In den folgenden Abschnitten werden

einige Strukturen vorgestellt, die
Neuronen derart vernetzen und ihre
Parameter trainieren, dass ein interessantes

Verhalten entsteht.

Multilayer-Perceptron
- assoziative Abbildung
Funktionsweise

Eine heute sehr beliebte Neurale-
Netzwerk-Struktur ist das Multilayer
(Mehrschichten)-Perceptron. Dieses
besteht aus einer Anzahl aufeinanderfolgender

Schichten von Neuronen,
innerhalb deren keine Verbindungen
bestehen. Wie am Beispiel eines

3-Schichten-Perceptrons in Figur 4
gezeigt wird, wird jedes Neuron einer
Schicht von allen Neuronen der vorigen

Schicht gespeist. Schicht 0
repräsentiert die Eingangssignale, Schicht 3

die Ausgangssignale. Jedem Pfeilende
lässt sich ein Gewicht zuordnen, allen
Pfeilenden, die auf ein bestimmtes
Neuron treffen, ein Gewichtsvektor.
Die Notation T\ (3,1) steht für das
Gewicht einer Verbindung, die von
Schicht 2, Neuron 1 herkommt und

v3(i)

î|(i,j)
V2(i)

T^(i ,j)
V,(i)

Tg(i • J

Figur 4 Die Neurale-Netzwerk-Struktur
des 3-Schichten-Perceptrons
Jedes Neuron einer Schicht wird von allen Neuronen

der vorigen Schicht gespeist. Schicht 0
repräsentiert die Eingangssignale, Schicht 3 die
Ausgangssignale.

Figur 5 Funktion des Mehrschichten-Per-
ceptrons
Der Ausgang des Neurons Vi ist nur dann 1,

wenn sich der Eingangsvektor x im überlappenden
Gebiet derjenigen Seiten aller Hyperebenen

(hier 3) der Neuronen der ersten Schicht befindet,
die lokal mit einer 1 antworten (UND-Funktion).

zum Neuron 3 der dritten Schicht
führt.

Die globale Funktion dieses
Netzwerks kann - wie im folgenden gezeigt
wird - als assoziative Abbildung5 des

Eingangsvektors auf den Ausgangsvektor

bezeichnet werden. Legt man
bei einem solchen Netzwerk einen
bestimmten Vektor an den Eingang, so
wird sich nach einer kurzen
Durchlaufzeit der assoziierte Vektor am
Ausgang einstellen. Der Zusammenhang
zwischen Ein- und Ausgangsvektor
liegt in den einzelnen Gewichten
verborgen und kann folgendermassen
erklärt werden: Jedes Neuron der ersten
Schicht arbeitet, wie im vorigen Kapitel

beschrieben, als trennende Hyperebene,

d.h., sein Ausgang ist 0 oder 1

abhängig davon, ob der Eingangsvektor
auf der einen oder anderen Seite

der Hyperebene liegt. Jedes Neuron
der zweiten Schicht kombiniert nun
die Ergebnisse der einzelnen Neuronen

der vorhergehenden Schicht. Sein
Gewichtsvektor und seine Schwelle
können z.B. so eingestellt werden, dass
sein Ausgang nur dann 1 ist, wenn
jeder seiner Eingänge 1 ist (logisches
UND) oder 1, wenn ein oder mehrere
Eingänge gleich 1 sind (logisches
ODER). Es kann gezeigt werden, dass
ein Neuron die meisten logischen
Grundoperationen erzeugen kann,
auch solche, die Negationen enthalten.
Wenn nun ein Neuron der zweiten
Schicht als UND funktioniert, bedeutet

dies, dass sein Ausgang nur dann 1

ist, wenn der System-Eingangsvektor
in einem Raumgebiet liegt, das für alle
Hyperebenen der Neuronen der ersten
Schicht positiv ist, d.h. wo diese lokal
mit einer 1 antworten (Fig. 5).

Ein Neuron der dritten Schicht
(Ausgangsneuron) kann nun z.B. eine
ODER-Verknüpfung der Neuronen-
ausgänge der zweiten Schicht
durchführen. Falls diese - wie vorhin
beschrieben - UND-Funktionen
ausüben, wird das Ausgangsneuron eine 1

erzeugen, sobald der Eingangsvektor
in eines der in der zweiten Schicht
definierten positiven Gebiete zu liegen
kommt. Eine tiefere Analyse zeigt,
dass jedes Ausgangsneuron auf ein
beliebiges, möglicherweise
unzusammenhängendes Gebiet des
Eingangsvektorraums selektiv gemacht werden
kann. Und weil dies für jedes
Ausgangsneuron einzeln gilt, kann ein und
dasselbe Netzwerk auf jeden beliebigen

Eingangsvektor aus einem
vorgegebenen Satz von P assoziativen Paaren

von Vektoren (Fß, p — 1...P,
den gewünschten (assoziierten)
Ausgangsvektor hervorrufen, sofern
genug Neuronen vorhanden sind, um die
gewünschten Gebiete zu erzeugen. Mit
anderen Worten: Das Netzwerk kann
die allgemeinste assoziative Abbildung

durchführen6.

4 Die Analogie zum Schloss ist nicht perfekt,
da das Neuron wegen des quasilinearen Bereichs
mit einer gewissen Fehlertoleranz zu öffnen
vermag.

5 Unter Assoziation versteht man die Verknüpfung

zweier oder mehrerer Informationen (Vektoren).

Im vorliegenden Fall werden benachbarte
Vektoren der Eingangsseite in benachbarte
Vektoren der Ausgangsseite transformiert, im
Spezialfall der perfekten Identifikation in denselben
Vektor.

6 Sind die Eingangssignale binär, genügen
sogar zwei Schichten Neuronen für die allgemeinste
assoziative Abbildung.
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Neuronale Netzwerke

Als Beispiel für eine Anwendung
kann eine Reihe von Bildern mit einer
Reihe von Namen assoziiert werden.
Jeder Bildpunkt wird durch eine
Komponente des Eingangsvektors dargestellt

und jeder Buchstabe entsprechend

durch ein Element (1 Ausgangsneuron)

des Ausgangsvektors.
In einem anderen Beispiel könnte

eine Reihe von Bildern mit sich selbst
assoziiert werden. Dann besteht die
Aufgabe des Multilayers-Perceptrons
darin, ein verrauschtes oder sonst
defektes Bild zu rekonstruieren. Die
Rekonstruktionsfähigkeit eines Neuralen
Netzwerks ist üblicherweise recht
hoch. Darauf einzugehen würde den
Rahmen dieses Beitrags sprengen; es
sei jedoch erwähnt, dass die
Rekonstruktionsfähigkeit einerseits durch die
Verteilung der Information auf die vielen

Gewichte der vielen Neuronen und
andererseits durch die Weichheit
der sigmoidförmigen Nichtlinearität
(Fangbereich) bedingt ist7.

Training und Lernen
Nun stellt sich die Frage, wie man

ein Multilayer-Perceptron trainieren
kann, damit es den vorgegebenen Satz
von Assoziationen möglichst
beherrscht8.

Kohonen [1] hat gezeigt, dass im Fall
des 1-Schichten-Perceptrons die
Gewichte und Schwellen (welche im
linearen Fall wegfallen) direkt mit Hilfe
der Matrizenrechnung berechnet werden

können. Rumelhart [2] und andere
haben den folgenden Backpropaga-
tion-Algorithmus eingeführt, der
bestrebt ist, den Totalfehler, d.h. die
Quadratsumme aller Abweichungen
der erzielten von den gewünschten
Ausgangsvektoren über alle
Assoziationspaare zu minimieren. Dieser
Algorithmus lautet:

1. Wähle ein Assoziationspaar (V0n,
Vn) zufällig aus dem (vorgegebenen)

Satz von Assoziationen.
2. Lege den Eingangsvektor ans Netzwerk

und registriere den erhaltenen
Ausgangsvektor Vn.

3. Berechne komponentenweise (In¬
dex /) aus dem gewünschten
Ausgangsvektor Dn und dem tatsächlich

erhaltenen Vektor Vn die
Fehlerkoeffizienten9:

8„(0 V„(i) • (1- K(0) •

(D„(i)~ (4)

4. Modifiziere die Gewichte TjG ge¬
mäss:

AT//-, (i,j) a • ô„(/) • V„-, (j) (5)

5. Berechne die Fehlerkoeffizienten
der nächstunteren Schicht als
gewichtete Summe aller Fehlerkoeffizienten

derjenigen Neuronen der
oberen Schicht, die vom betrachteten

Neuron gespeist werden10.

5„-,(i)= £ S„(/c). Tg-i(k,i) (6)
allek

6. Fahre mit der Modifizierung der
Gewichte gemäss Punkt 4 fort
bis hinunter zur 1. Schicht; dann
gehe zurück zu Punkt 1.

Es ist zu erwähnen, dass meist ein
recht langes Training nötig ist, bis der
ganze vorgegebene Satz von Assoziationen

genügend genau reproduziert
wird. Die Konvergenz ist nicht
gewährleistet, wenn das Netzwerk zuwenig

Neuronen oder weniger als 3

Schichten besitzt. Die Anzahl benötigter
Neuronen hängt von der Anzahl

der Trainingsvektoren und der
Komplexität ihrer Ähnlichkeitsbeziehungen

ab. Sie stellt stets ein Kompromiss
dar, da zu viele Neuronen die Konvergenz

ebenfalls verschlechtern
können". Nach dem Training ist das Neu-

7 Mehrere Schichten und/oder Rückkopplungen
können die Rekonstruktionsfähigkeit

drastisch erhöhen, weil ein Neuron seine tolerante
Entscheidung dann auf die toleranten Entscheidungen

seiner Vorgänger gründen kann.
8 «Möglichst» weist darauf hin, dass ein Netzwerk

gegebener Grösse nach noch so langem
Training nicht unbedingt fähig ist, jede assoziative

Abbildung exakt oder innerhalb eines gewissen
Toleranzbereichs richtig durchzuführen.

9 Die Gleichung gilt für den Fall, dass die Sig-
moidfunktion als

definiert ist. Sie wird hier nicht weiter erklärt.
10 Das betrachtete Neuron erhält somit dann

einen grossen Fehlerkoeffizienten, wenn es grosse
Fehler auf der nächsthöheren Schicht verursacht
hat.

11 Ein solches von Natur aus überwachtes
(supervised) Training ergibt die oben erwähnte
«UND» - «ODER»-Struktur nicht unbedingt;
jene wird nur verwendet, um zu beweisen, dass 3

Schichten prinzipiell genügen, um jede beliebige
Abbildung durchzuführen.

12 Eine Schwelle wird zu Trainingszwecken wie
ein Gewicht behandelt, das stets mit 1 gespeist
wird. Ein Neuron fester Schwelle mit einem
solchen Zusatzgewicht verhält sich equivalent zu
einem Neuron variabler Schwelle ohne Zusatzgewicht.

rale Netzwerk ein Modell für den
vorgegebenen Satz von Assoziationen
geworden, deren Information in den
Gewichten und Schwellen12 verteilt
beinhaltet ist. Hier wäre noch darauf
hinzuweisen, dass Vergessen in engem
Zusammenhang zu Training und Lernen

steht, da Training frühere Muster
allmählich überschreibt.

Ein interessantes Experiment mit
einem Stück schriftlicher englischer
Sprache als Eingangsvektor und den
gewünschten Sprechmuskelpositionen
als Ausgangsvektor hat gezeigt, dass
schon ein relativ kleines Multilayer-
Perceptron (Grössenordnung 100

Neuronen) in der Lage ist, gar nicht so
schlecht lesen zu lernen. Das Neurale
Netzwerk hat also die Sprechregeln,
die in den vorgeführten Beispielen
implizit enthalten sind, extrahiert und
kann recht gut verallgemeinern, d.h.
neue (noch nicht erfahrene) Sätze mit
unerwartet wenig Fehlern vorlesen [3].

Figur 6 Hopfield-Netzwerk
Beispiel einer dreidimensionalen Energiefläche
(a) und der zugehörigen Trajektorienschar (b).
Der Systemzustand konvergiert stets entlang einer
Trajektorie zu einem Minimum der Energiefunktion.
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Hopfield-Netzwerk :

assoziativer Speicher
Prinzip

In der Systemtheorie ist bekannt,
dass ein stabiles und dynamisches
System eine Menge von Anziehungspunkten

(sogenannte Punkt-Attrakto-
ren) im Zustandsvektorraum besitzt,
gegen die das System strebt, um die
gesamte Energie des Systems zu
minimieren. Im zweidimensionalen Fall
entsprechen die Punkt-Attraktoren
den Minima einer Energiefläche
(Fig. 6). Der Zustandsvektorraum ist
ein Vektorraum, der von den verschiedenen

Zustandsvariablen (Grössen,
die das dynamische Verhalten eines
Systems beschreiben) des Systems
aufgespannt ist. Bei Neuralen Netzwerken

sind dies die verschiedenen Neu-
ronenausgänge. Jeder Attraktor im
Zustandsvektorraum besitzt sein eigenes

Einzugsgebiet. Gegen welchen dieser

Attraktoren der Systemzustand
konvergiert, hängt davon ab, in
welchem Einzugsgebiet sich das System
beim Prozessstart befindet. Die
entsprechende Trajektorie des Systemzustandes

vom Anfangspunkt bis zum
Attraktor kann oft sehr vielfältig und
kompliziert sein. Die Figur 6a zeigt ein
Beispiel einer Energiefläche und Figur
6b eine Schar von Trajektorien,
entlang welcher der Systemzustand auf
ein Minimum der Energiefunktion
konvergiert.

Ausserdem kann es auch eigenartige
Attraktoren (sog. Strange Attractors)
geben, die mit einer chaotischen, sich
nicht wiederholenden Trajektorie
verknüpft sind. Es ist jedoch durchaus
möglich, ein dynamisches System zu
konstruieren, das nur regelmässig
plazierte Attraktoren beinhaltet und
deren Trajektorien von einem bestimmten

Anfangspunkt aus immer gegen
den nächstliegenden Attraktor
streben, in welchem das System stabil
wird. Ein solches System stellt eine
interessante Art Informationspeicher dar.
Ein einziger Attraktor kann beispielsweise

ein komplettes Muster im Zu-
standsraum repräsentieren und sein
zugehöriges Einzugsgebiet entsprechend

eine Menge unvollständiger
oder verrauschter Muster. Mehrere
komplette Muster können in ein einziges

System eingebaut werden, da dieses

mehrere Attraktoren besitzen kann.
Von einem unvollständigen Muster
(als Anfangsbedingung) ausgehend,
setzt sich das System dann auf das am
besten passende vollständige Muster

Neuronale Netzwerke

Figur 7

Hopfield-Netzwerk
a Struktur
b Elektronische

Schaltungsnachbildung
eines Neurons

c Systemdarstellung
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nieder. Solch ein Systemverhalten
nennt man Content Addressable
Memory (CAM), weil die «Adresse» eines
Attraktors seinem Inhalt entspricht.

Das Hopfield-Netzwerk in Figur 7

stellt ein solches CAM-System dar. Es
besteht aus einer Menge einzelner
Neuronen, deren N Ausgänge v, zu
allen Neuronen zurückgeführt sind.
Jedes Neuron empfängt also sämtliche
Ausgänge, welche zum Ausgangsvektor

vT [v,, v2,..., vv] zusammengefasst
werden können, an seinem Eingang
und multipliziert diesen mit seinem
Gewichtsvektor m, [m,,,..., miN], Das
Resultat wird über eine nichtlineare
Funktionf (•) zum Ausgang v, geleitet.
Jedes Neuron besitzt einen weiteren
(skalaren) Eingang der als einstellbare

Schwelle dient. Die gesamte
Übertragungsfunktion eines Neurons
lautet somit:

Vi(t + At)=f | £ mijVj(t) + Ui(t) j
f(mjv(t) + Ui(t)) (7)

In Matrixnotation13:

v(t + At) f{MTv(t) + h(0)

für
M [im, mN]
U [«1 Ü2 UN]T

/(•)
(8)

wobei die gespeicherte Information in
der Rückkoppelungsmatrix M steckt13.

Mittels einer Liapunovfunktion14, die
der Energie des Systems entspricht,
kann man zeigen, dass das Netzwerk
asymptotisch stabil ist, falls M symmetrisch

ist (hinreichende Bedingung).
Hopfield hat nun zwei Netzwerkmo-

delle vorgestellt: ein binäres asynchro-

11 Es ist zu unterscheiden zwischen v,(/ + At)
und v,(r), da sich das System nicht im
eingeschwungenen Zustand befindet.

14 Diese Funktionen spielen eine wichtige Rolle

bei Stabilitätsbetrachtungen dynamischer Pro-
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hardwaremässig realisieren kann. Es
sind bereits Hopfield-CAM-Chips in
den Forschungslabors entwickelt worden,

und mindestens eines davon ist
bereits auf dem Markt!

Speichern der Information
Ist man im Besitze eines solchen

CAM-Systems, so stellt sich die Frage,
wie man die gewünschten Attraktoren
in die Matrix M abspeichert und wieviel

Information (d.h. wie viele stabile
Attraktoren) das Netzwerk als Funktion

der Anzahl Neuron enthalten
kann. Auf der JV-dimensionalen
Energiefläche des Systems sind die stabilen
Attraktoren einfach lokale Minima
der Energiefunktion. Je mehr lokale
Minima nun das System hat, desto
mehr fliessen ihre Einzugsgebiete
ineinander, und zwischen den Minima
entsteht eine gewisse Fehlerfläche. Es
sind verschiedene Möglichkeiten
bekannt, wie man die Muster (Attraktoren)

in der Energiefläche erzeugen
kann. Aus der Art, wie man sie
erzeugt, kann man angenähert schlies-
sen, wie viele zuverlässige Attraktoren
es gibt. Hopfield beispielsweise schlug
vor, M als eine Art Korrelationsmatrix
zu behandeln, die durch eine Menge
von L (abzuspeichernden) Mustern
v(l), v(2),...,v(L) (Spaltenvektoren)
auf folgende Weise gebildet wird:

M= 2 v(k)v(ky
k= 1

(12)

Definiert man eine Matrix Edurch

V— [f (1), v(2),...,r(L)] (13)

mit v(k) als Spaltenvektoren, so kann
man Gl. 12 auch schreiben als

M=[v(l),v(2),...,v(L)].
vr(l)
vr(2)
vr(L)

V- VT

(14)

wobei vT(k) die Zeilenvektoren dar-
stf Jen.

Wenn man nun eines der Muster
v(n) vorgibt, wird der Ausgang zu

xi Mv(n) (EE7) • v(n)

: n v(/c)| v(k)T-v(n)
k- 1

kann, wird, falls alle Vektoren
r(l),...,r(L) senkrecht aufeinanderstellen,

d.h. völlig unkorreliert sind, am
Ausgang x, v(n) erscheinen. Je
korrelierter aber die Muster sind, desto
mehr tauchen Unzuverlässigkeiten
(als zusammengeschmolzene Punkt-
Attraktoren) und verschiedene
periodische und chaotische Attraktoren
(d.h. kein stabiler Punkt) auf. Hopfield
selbst gab eine empirische Kapazitätsschätzung

von L 0,15 N an, wobei N
die Zahl der Ausgänge (Vektordimension)

angibt. Später wurde gezeigt,
dass die Korrelationsmatrixform von
M eine theoretische obere Grenze von
LZ, N/(4 log N) hat.

Andere, kompliziertere Strukturen
von M ergeben eine Speicherdichte
von LZ N.

Lösung von
Optimierungsproblemen

Geht man von einer bestimmten
Matrix M und einem Anfangszu-
standsvektor jc(0) aus, so wird das
System gemäss der dynamischen
Beschreibung von Gleichung (11)
folgende Energiefunktion (Lyapunov)
minimieren15:

V(x) —2"VtMv- v7ß« +

N V,-

+ X a f fr1 (et) da
;-i g

(16)

Man kann sich nun leicht vorstellen,
dass ein vorgegebenes Optimierungsproblem

derart umformuliert werden
kann, dass die Matrix M die
entsprechenden Optimierungsparameter
beinhaltet. Seinem energieminimierenden
Drang folgend, wird das Netzwerk
gegen eine Lösung des Optimierungsproblems

im Zustandsraum streben und
sich dort stabilisieren. Je nach
Problemformulierung gibt es nun meist
einige lokale Minima, in denen das
System hängenbleiben kann (sie stellen
eine suboptimale Lösung des
Optimierungsproblems dar). In vielen Fällen
aber ist eine solche Lösung eine gute
Nährung des Optimums. Es besteht
auch die Möglichkeit, das System an
mehreren Anfangspunkten zu starten
und die beste resultierende Lösung
auszuwählen. Ein berühmtes Beispiel

(15)

nes Modell und ein kontinuierliches
Modell. Beim binären Modell [4] weisen

sämtliche Nichtlinearitäten /()
eine einstufige Treppenfunktion auf,
wobei

1 ; mj v + m > 0
V'~

0 ; mj v + u,<0
(9)

In diesem ersten Modell prüft jedes
Neuron seinen Eingang auf asynchrone

Weise und ändert seinen Ausgang
entsprechend Gleichung 9. Dieses
asynchrone Verhalten unterscheidet
das Hopfield-Netzwerk von anderen
ähnlichen früheren Modellen wie zum
Beispiel dem vorne beschriebenen Per-
ceptron.

Das zweite kontinuierliche Modell
[5] sieht dem biologischen Gehirn
wahrscheinlich schon ähnlicher; es

arbeitet mit kontinuierlichen elektrischen

Potentialen und kann als
elektronische Schaltung dargestellt werden
(Fig. 7b). Die Kapazität C und der
Widerstand R symbolisieren die
Phasenverschiebung, die alle elektronischen

Verstärker aufweisen. Die Funktion

/(xj wird als kontinuierliche,
monoton steigende oder sigmoidförmige
Funktion angenommen, deren
Eingangspannung x, mittels einer
Differentialgleichung beschrieben werden
kann:

N
1 1

Cxi= X ~ET (Vj-z) - -5-V + Ui (10)
j= 1 Kn K

Xj ist eine Spannungsgrösse, u, eine
Stromgrösse. Die Stabilität dieses
Systems kann mittels einer geeigneten
Liapunovfunktion leicht bewiesen
werden, vorausgesetzt, dass die Neu-
ron-zu-Neuron-Kopplung symmetrisch

ist (d.h. Rjj Rji) und keine
Eigenrückkopplung (ß„ 0) besteht.
Das ganze vernetzte System kann, wie
in der Systemtechnik üblich (Fig. 7c),
durch eine Vektordifferentialgleichung

beschrieben werden:

x ax+ Mv+ B u

y=f(x) (U)

Der Vorteil dieses zweiten Hopfield-
Modells besteht nicht nur darin, dass

man es als dynamisches System
betrachten und mit Hilfe der weitentwik-
kelten Systemtheorie analysieren
kann, sondern, dass man es auch
tatsächlich als elektronische Schaltung

Wie man aus der Betrachtung der
Gleichungen 14 und 15 leicht ersehen

15 Diese Gleichung wird hier ohne nähere
Begründung nur der Vollständigkeit halber
angegeben.
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dafür ist das sogenannte Travelling
Salesman Problem (TSP). Dabei geht
es darum, dass ein reisender Kaufmann

mehrere Städte besuchen muss
und wissen will, welche Reihenfolge
von Städten den kürzesten gesamten
Weg ergibt. Hier wird jedem Ausgang
v, eine bestimmte Stadt zugeordnet, so
dass sich eine Reihenfolge ergibt. Der
Zustandsvektor v entspricht dann
einem bestimmten Weg durch die
Städte. Und in der Matrix M sind die
verschiedenen Distanzen zwischen
den Städten abgespeichert. Bei N Städten

gibt es immer insgesamt NI/2N
mögliche Wege. Hopfield hat gezeigt,
dass das Netzwerk bei der Lösung des

TSP-Problems eine erstaunliche
Leistungsfähigkeit aufweist. Bei 10 Städten

zum Beispiel findet es
durchschnittlich bei jedem zweiten Start den
besten Weg.

Kohonens
selbstorganisierende
Abbildungen

Die Hirnforschung hat in letzter
Zeit viel über die Repräsentation und
Speicherung von Information im
Gehirn gelernt. Man glaubt, dass unser
Gedächtnis im Sinne eines physischen
Speichers zu einem grossen Teil aus
einer Menge vereinfachter Darstellungen

der Aussenwelt auf verschiedenen
Abstraktionsebenen besteht, die auf
zweidimensionale Schichten von
Neuronen im Gehirn abgebildet sind. Diese

dimensionsreduzierten Darstellungen

sind die Folge eines selbstorganisierenden

Verhaltens der im Gehirn
vorhandenen Netzwerkstruktur,
welches damit auf die Eingangssignale
antwortet. Bemerkenswert an dieser
Struktur sind die ausgebreiteten seitlichen

Verbindungen (Lateral
Feedback) zwischen den Neuronen: ein
Neuron hat seitliche Verbindungen
mit bis zu 10 000 benachbarten Neuronen,

wobei die Kopplung anregend
oder hemmend sein kann, was
hauptsächlich von der Distanz abhängt
(Fig. 8); nähere Zellen werden angeregt,

fernere gehemmt.
Man kann sich fragen, ob eine solche

Hirnstruktur bzw. ein solches

selbstorganisierendes Verhalten simuliert

werden könnte, um die damit
verbundene dimensionsreduzierende
Funktion technisch ausnützen zu können.

Dazu hat Kohonen die sogenannte
Topology-preserving Feature Map

(topologiebewahrende Merkmalabbildung)

vorgestellt. Das Kohonen-Netz-

t { Wirkung

J + _l_ \ Seitliche
\ Distanz

0 \ —

Figur 8 Anregung und Hemmung im Koho-
nen-Netzwerk
Die seitliche anregende und hemmende Wirkung
eines aktiven Neurons gleicht einem Mexikanerhut.

Figur 9 Struktur eines zweidimensionalen
Kohonen-Netzwerks

werk besteht aus einer ein- oder
zweidimensionalen Ansammlung (Netz)
linearer Neuronen und hat die
Eigenschaft, dass bestimmte Gebiete von
Neuronen eine Empfindlichkeit
gegenüber bestimmten charakteristischen

Merkmalen des Eingangssignals
entwickeln. So ordnen sich z.B. diese
spezifischen Gebiete in ungefähr
derselben topologischen Ordnung auf
dem Netz an wie die entsprechenden
Signalmerkmale im Merkmalvektorraum:

Ähnliche Eingangssignale werden

also nahe beieinander abgebildet.
In diesem Sinne werden die
entsprechenden topologischen Beziehungen
der Eingangssignale bei der Abbildung

aufs Netzwerk bewahrt.
Das in Figur 9 dargestellte Netzwerk

enthält N lineare Neuronen [77,, 772,...,

tin], Ihnen allen wird derselbe
Eingangvektor x eingeprägt, den sie mit
ihrem Gewichtsvektor mi multiplizieren,

um den Ausgang v, zu produzieren.

Ausserdem besitzt jedes Neuron
ein Einflussgebiet IV, um sich herum,
das die seitliche Kopplung zwischen
Nachbarneuronen bestimmt. Das
selbstorganisierende Verhalten dieses
Netzwerkes entspringt der Regel, dass
ein Neuron, dessen Gewichtsvektor zu

einem bestimmten Eingangsvektor am
besten passt, sowohl seinen eigenen
Gewichtsvektor als auch denjenigen
der im Einflussgebiet liegenden Nachbarn

ändert, um sich dem Eingangsvektor

besser anzupassen. Das am
besten passende Neuron16, sagen wir rjp
ist dasjenige mit der kleinsten euklid-
schen Distanz

ttij min, |[ m, — jc || (17)

Dem Lernalgorithmus17 entsprechend

richten sich trij und alle seine
Nachbarn m„ i e Nj, ein wenig nach x:

nti[k + 1]

m,[k] + a(x[k] — /w,[fc]) ; für ie Nj
nti[k] ; sonst

(18)

Ausserdem nehmen sowohl die
Zeitkonstante a als auch die Grösse der
Nachbarschaft Nj im Laufe der Zeit
ab, um eine zunehmende Verfeinerung
des selbstorganisierenden Verhaltens
zu bewirken.

Es stellt sich nun die Frage, was die
topologische Bewahrung der Merkmale

des Eingangssignales genau bedeutet.

Das Eingangssignal sei beispielsweise

ein A-dimensionaler Zufallspro-
zess, der in einem entsprechenden
Vektorraum verteilt ist. Merkmale dieses

Prozesses betreffen z.B. die Struktur

der Verteilung, wie beispielsweise
die verschiedenen Grössen und
Formen von Gruppierungen (Clusters) im
Vektorraum. Die topologische Bewahrung

der Merkmale auf einem ein-
oder zweidimensionalen Neuralen
Netzwerk kann nun bedeuten, dass

Distanzen und Anordnungen der
Gewichtsvektoren im Netz den Distanzen
und Anordnungen der Merkmale im
ursprünglichen Vektorraum ungefähr
gleich sind.

Als Beispiel zeigt Figur 10 sechs zeitlich

aufeinanderfolgende Trainingsphasen

eines 25x25-Neuronen-Koho-
nen-Netzwerks, das von einem
zweidimensionalen gleichverteilten Zufalls-
prozess angeregt wird. Dargestellt ist
der Raum der Gewichtsvektoren, wo-

16 Man erinnere sich der früher beschriebenen
Schlossfunktion.

17 Man beachte, dass Lernen hier einen etwas
anderen Charakter hat als bei den vorher
beschriebenen Netzwerken.
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bei die Kreuzungen ihre Positionen
bezeichnen. Da die Neuronen durch ihre
Gewichtsvektoren charakterisiert sind,
kann man die Knoten auch den
Neuronen zuordnen. Geometrisch benachbarte

Neuronen kommen auch im
Vektorraum nebeneinander zu liegen.
Wie erwartet, wird die Verteilung
gleichmässig auf das Netzwerk
abgebildet.

Will man ein deterministisches
Signal auf das Netz abbilden, so muss
man dessen Struktur im A-dimensio-
nalen Vektorraum mit einem
gleichverteilten Zufallsprozess abtasten.

Die Figur 11 zeigt ein solches
Beispiel, nämlich die Abbildung eines
lOdimensionalen Simplex18, dessen
Ecken eine Gruppierung von Punkten
beinhalten. Das Simplex wurde von
einem gleichverteilten Zufallsvektor
abgetastet und in das Neurale Netzwerk

eingespeist. Wie man in Figur 11

sehen kann, werden die «Ecken» als
Clusters (gleiche Zahlen) auf die Ebene

abgebildet.

Grossberg-Netzwerk :

Masking Field
Die Neurale Netzwerkstruktur

namens Masking Field ist zur Zeit noch
wenig bekannt. Sie weist wie das Ko-
honen-Netzwerk eine (ein- oder
zweidimensionale) Schicht von Neuronen
auf und ebenfalls seitliche Verbindungen

nach dem Muster des «Mexikanerhuts»,

d.h., unmittelbare Nachbarn
werden gefördert, weitere Nachbarn
werden behindert, und die ferneren
Neuronen werden nicht beeinflusst.

Neu ist hier, dass die einzelnen
Neuronen nicht mehr von allen Systemein-

Figur 10

Beispiel eines
zweidimensionalen

Netzwerks, das mit einem
zweidimensionalen
gleichverteilten
Zufallsprozess
angeregt wird.

gängen gespeist werden, sondern nur
von einer Gruppe davon. Neu ist
ferner, dass die Stärke und Tragweite der
seitlichen Behinderung, die ein Neuron

ausübt, proportional zur Anzahl
seiner Systemeingänge ist19.

Die Figur 12 zeigt diese Zusammenhänge

skizzenhaft auf: Das mittlere
Neuron K,(2) ist das grösste der drei
abgebildeten Neuronen, weil es die
meisten Eingänge (hier drei) kontrolliert.

Das kleinste Neuron K,(3) hingegen

kontrolliert bloss einen Eingang.
Das grösste Neuron übt grössere
«Macht» aus, indem es seine Nachbarn

stärker behindert (durch die Dik-
ke der Rückführungspfade angedeutet)

und dadurch, dass die Reichweite
seiner seitlichen Behinderungsfähigkeit

grösser ist (nicht abgebildet).
Man kann nun die Gesamtheit der

Eingänge nicht mehr als Eingangsvektor
betrachten, da sie für die einzelnen

Figur 11

Die zweidimensionale
Abbildung eines
zehndimensionalen
Simplex.
Ein Simplex ist eine
Struktur, bei der sämtliche

Ecken dieselben
Abstände voneinander
haben. In diesem
Beispiel enthält jede Ecke
eine gleichverteilte
Gruppierung von Punkten

mit einer Varianz
von 0,1. Der Abstand
zwischen den Ecken ist
1,0.

Neuronen unterschiedlich ist. Sie
repräsentiert nun eine Art Muster, das
aus vielen Einzelmustern besteht.
Beispielsweise könnte das Muster ein Bild
darstellen, auf das verschiedene Symbole

geschrieben sind. Nun wird
angenommen, das Netzwerk sei schon (unter

lokaler Anwendung des Lernalgorithmus

der topologischen Abbildung
vom vorigen Kapitel) mit allerlei
Symbolen trainiert worden. Dabei sei ein
grosses Neuron auf das Symbol L
selektiv geworden, d.h., es öffne, wenn
man ein «L» an die Eingänge legt, weil
der Schlüssel sehr gut zu seinem
Schloss passt (siehe das Kapitel über
das Neuron). Es sei aber ein «kleineres»20

Neuron auf das Symbol | und
ein anderes kleines Neuron auf das
Symbol _ selektiv geworden (das L
setzt sich aus den Symbolen | und _
zusammen). Daneben gebe es noch
sehr viele weitere Neuronen, die andere,

mehr oder weniger grosse und mehr
oder weniger zusammenhängende
Bereiche kontrollieren und auf vorkommende

Symbole selektiv geworden
sind.

Wie reagiert nun das Netzwerk,
wenn ein L angelegt wird? Die Figur
13 erläutert die folgenden Zusammenhänge.

Zunächst öffnen drei Schlösser:
auf | _ und L, weil der lokal gesehene

Schlüssel passt. Nun kommen je-

18 Ein Simplex ist eine geometrische Figur, bei
dem sämtliche Distanzen zwischen den Ecken
gleich sind.

19 Bildlich gesprochen gibt es im Netzwerk also
eine Reihe von unterschiedlich grossen (hohen
und breiten) Mexikanerhüten.

20 «Kleiner» deshalb, weil sein Symbol sich
aus weniger Bildpunkten zusammensetzt, es also
weniger Eingänge kontrolliert.
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Figur 12 Die Neurale-Netzwerk-Struktur
des Masking Fields
Ein Neuron, das mehr Eingänge kontrolliert,
bekommt mehr «Macht», d.h. es behindert seine
Nachbarn stärker und über eine grössere Distanz.

doch die seitlichen Behinderungen ins
Spiel. Weil das grössere Neuron mehr
Macht hat, wird es im dynamischen
Konkurrenzkampf, der beweisbar
stets stabil ist und einer Endlösung
zustrebt, siegen. Nach dem Einschwingen

wird nur noch dasjenige Neuron
aktiv sein, das den vollen Buchstaben
dekodiert; diejenigen Neuronen, die
hierarchisch untergeordnete Bestandteile

des Buchstabens dekodieren, werden

nicht mehr aktiv sein.
Die Funktion des Masking Fields

besteht also darin, den höchsten im
Eingangsmuster enthaltenen
Abstraktionsgrad zu erkennen. Diese Neurale
Netzwerk-Struktur ist von grossem
Interesse, weil sie eine Funktion generiert,

die für Lebewesen notwendig ist.
Beispielsweise erkennt ein Mensch,
wenn er die Strasse überqueren will
und ein Auto auf ihn zukommen sieht,
nicht die Einzelheiten des Autos. Wohl
werden diese von den optischen Zellen
erfasst, aber es kommt in diesem Fall
darauf an, das Auto als Ganzes zu
erkennen, damit die richtigen Folgeassoziationen

ausgelöst werden (in diesem
Fall z.B.: Achtung, Gefahr; Warten!).
Weiteres Nachdenken führt zur
Einsicht, dass solche Maskierungsvorgänge,

wie sie das Masking Field erzeugt,
im täglichen Leben nahezu ständig
vorkommen. Natürlich kann ein
Mensch sich auf Einzelheiten konzentrieren;

diese Fähigkeit ist aber auf
Aufmerksamkeitsprozesse zurückzuführen,

welche die vermuteten Masking

Fields im Gehirn steuern.
Grossberg [6] hat biologisch recht

einleuchtende Wachstumsgesetze
aufgestellt, nach denen ein Masking Field
derart aufgebaut werden kann, dass

Neuronen, die mehr Eingänge
kontrollieren, auch grössere seitliche
Behinderungen über eine grössere
Distanz ausüben können. Ob hingegen
ein Masking Field auch topologische
Abbildungen erzeugt, ist unsicher,
weil trotz der grossen Verwandtschaft
der beiden Strukturen nicht jedes Neuron

den ganzen Eingangsvektor sieht,
was bei den topologischen Abbildungen

jedoch vorausgesetzt wird. Weitere
Forschungen sollten untersuchen, ob
Masking Fields nicht eine allgemeinere

Art von topologischen Abbildungen
erzeugen, welche eine zusätzliche
Dimension der Abstraktionstiefe beinhalten.

Zum Beispiel könnte man erwarten,

dass ähnliche Bestandteile der
Abstraktion «Auto» geometrisch nahe
beieinander gespeichert sind und
ähnliche «Autos» als Ganze beieinander.

Zusammenfassung
und Ausblick

Die vorgängig besprochenen vier
Neuralen NetzWerkstrukturen zeigen
die wesentlichen Erkenntnisse auf, die
man bis heute auf diesem relativ jungen

Gebiet gewonnen hat. Multilayer-
Perceptrons eignen sich für assoziative
Abbildungen aller Art, sofern man die
Signale sinnvoll in Eingangs- und
Ausgangsvektoren verpacken kann.
Ein überwachtes Training erlaubt dem
Netzwerk, die in den Lernbeispielen
implizit enthaltenen Regelmässigkeiten

herauszufinden. Hopfield-Netzwerke
eignen sich für inhaltsadressierbare

assoziative Speicher und zur raschen
Lösung von Problemen aller Art,
sofern man das Problem in einer
«energieminimierenden» Form schreiben
kann (Beispiel: Kaufmann, der seine
Städte auf dem kürzesten Weg besuchen

will). Kohonens topologische
Abbildungen ordnen die erfahrenen
Vektoren nach ihrer Ähnlichkeit auf
selbstorganisierende Weise zusammen,

so dass ihre stochastischen
Eigenschaften (Statistik) optimal
erhalten und repräsentiert werden. Masking

Fields erkennen komplexere
Objekte als Ganzes im eingegebenen Muster

und maskieren deren Einzelteile.
Der Vollständigkeit halber werden

hier noch zwei weitere Aspekte
beleuchtet: Der erste Aspekt handelt von
zeitabhängigen Signalen. Die erwähnten

Modelle verarbeiteten vorerst nur
einzelne Vektoren oder Muster. Es
stellt sich nun z.B. die Frage, wie ein
Masking Field zeitabhängige Signale
erkennen könnte. Als Beispiel diene

die Spracherkennung: Wie können die
einzelnen Laute durch ganze Wörter
maskiert werden? Und wie extrahiert
man den Sinn aus einem ganzen Satz?
Offensichtlich sind zeitliche
Maskierungsvorgänge am Werk, wenn der
Mensch die gesprochene Meinung seines

Gegenübers zu erkennen versucht.
Grossberg [6] versucht eine Vorverarbeitung

zu entwickeln, welche die
Zeitachse sozusagen in eine örtliche Achse
abbildet. Dabei geht er aber nicht
davon aus, dass sich zeitlich eingefrorene
Muster in einem sequentiellen Speicher

bewegen würden. Es werden
Aufmerksamkeitsprozesse einbezogen, die
das Muster der aktivierten Schlösser
(Merkmaldetektoren) fortlaufend
beeinflussen. Eine grössere, d.h. weniger
behinderte Aktivität von Neuronen
stellt dann ein aktuelleres (auf der
Zeitachse später auftauchendes)
Signal dar. Die Schwächung früherer
Signale hat natürlich auch etwas mit
Vergessen zu tun.

Der zweite Aspekt betrifft die Stabilität

des Lernvorgangs. Der unüber-
wachte Lernalgorithmus, der im Kapitel

der topologischen Abbildungen
erwähnt ist und auch beim Masking
Field angewendet wird, hat den Nachteil,

dass die Gewichte aller Neuronen,
die auch nur ein wenig aktiv sind,
verändert werden. Es fehlt also ein
Schutzmechanismus, der die Veränderung

eines Schlosses dann verhindert,

t t t

Figur 13 Beispiel einer Masking-Field-
Funktion
Das grösste Neuron, das den vollen Buchstaben
«L» kodiert, bleibt nach der Einschwingphase
aktiv, während die kleineren Neuronen, die
Bestandteile des vollen Buchstabens kodieren,
nur anfänglich aktiv sind und dann durch die
seitlichen Behinderungen gehemmt werden.
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wenn es nicht das zum aktuellen
Schlüssel am besten passende ist. Die
Kernidee von Grossberg [6] ist in
diesem Zusammenhang, Rückkopplungen

vom Schloss zum Schlüssel
einzubauen. Ein aktiviertes Schloss sendet
dabei seinen gelernten Schlüssel an
diejenige Schicht von Neuronen
zurück, die den Schlüssel repräsentieren.
Aufmerksamkeitsprozesse vergleichen
den aktuellen mit dem erwarteten
Schlüssel und lähmen das nicht
passende Schloss blitzschnell. Dies hat zur
Folge, dass ein Schloss, das nicht
genau passt, nicht mehr aktiv bleibt,
was zwei Vorteile einbringt: Einerseits
wird sein Gewichtsvektor vom
nichtpassenden Schlüssel nicht verfälscht,
und andererseits beeinflusst das
falsche Schloss die dynamische Ermittlung

des bestpassenden Schlosses
nicht mehr. Das System schwingt jetzt
in einer Resonanzphase auf das richtige

Schloss ein: Der Schlüssel speist das
Schloss, und das Schloss speist den
Schlüssel. Dabei findet eine Adaptierung

der Gewichtsvektoren von

Schloss und erwartetem Schlüssel statt.
Diesen Mechanismus nennt man
«Adaptive Resonanz-Theorie». Sie
kann z.B. auf ein Masking Field
angewendet werden. Dieses ist damit stets
bereit, neue Informationen zu lernen,
während die alte (in einem anderen
Kontext wesentliche) Information
geschützt bleibt. Im Gegensatz zu Strukturen

ohne Adaptive Resonanz kann
eine neue Erkennungskategorie (ein
selektives Schloss) ohne langwieriges
Wiederholen des Trainingssatzes
direkt eingebaut werden, sofern dem
Schlüssel genügend Aufmerksamkeit
geschenkt wird. Sein Gewichtsvektor
kann sich dann stärker anpassen, als
es bei weniger wichtigen Ereignissen
nötig ist. Eine ähnliche Funktion
haben Hormone wie Adrenalin bei
Lebewesen, welche diese befähigen, unter
Gefahr besonders gut zu lernen und
bei einer späteren erneuten Gefährdung

entsprechend rasch zu reagieren.
So ausgestattete Neurale Netzwerk-
Strukturen können als stabile, lernende

Erkennungsmaschinen bezeichnet

werden, die dem autonomen Nervensystem

der Lebewesen ein gutes Stück
näherkommen dürften.
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