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Neuronale Netzwerke

Neurale Netzwerke: eine Ubersicht

J.-F. Leber und M.B. Matthews

In der Computerwissenschaft
forscht man nach neuen Metho-
den, die das menschliche Gehirn
zum Vorbild nehmen. Diese ver-
sprechen vor allem dort Vorteile,
wo es um die Erkennung von
Bild und Sprache geht. Im vorlie-
genden Beitrag werden vier der
wichtigsten Neuralen Netzwerke
beschrieben und die aktuellen
Trends auf diesem zukunfts-
trdchtigen Gebiet zusammen-
gefasst.

La science informatique recher-
che de nouvelles méthodes qui
s’orientent au cerveau humain
pour reconnaitre I'image et la
parole. Cet article résume les
concepts actuels dans ce
domaine d’‘avenir.

Adresse der Autoren:

J.-F. Leber, Dipl. El.-Ing. ETH, und

M.B. Matthews, MSEE, Institut fiir Signal- und
Informationsverarbeitung, ETH Zentrum,
8092 Zirich.

Kiinstliche Neurale Netzwerke ge-
horen zur Kategorie der verteilten
technischen Systemen. Sie bestehen
aus vielen Elementarrechnern, die
nach einem je nach Typ verschiedenen
Muster oder einer Struktur miteinan-
der verbunden sind. Charakteristisch
fiir alle Neuralen Netzwerke ist, dass
alle ihre Elementarrechner (Neuro-
nen) identisch sind und eine verhélt-
nismassig einfache (lokale) Funktion
ausiiben. Erst das Netzwerk als Ge-
samtheit aller Bausteine bewirkt ein
interessantes Verhalten.

Zur Entwicklungsgeschichte dieses
modernen Forschungsgebiets lédsst sich
sagen, dass Menschen sich schon seit
langer Zeit fragen, wie das biologi-
sche Nervensystem wohl funktioniert,
das fiir verschiedene Lebewesen eine
mehr oder weniger intelligente, jeden-
falls aber gewaltige Signalverarbei-
tungsleistung vollbringt. Wie gewaltig
diese Leistung ist, zeigt sich vor allem
dem, der das Auge oder Ohr nachzu-
bilden versucht. Von den zahllosen
technischen Anwendungen (zu denen
auch Probleme der kiinstlichen Intelli-
genz zdhlen) sind die Erkennung von
Bild und Sprache besonders zu erwih-
nen; sie gehdren zu den heraus-
forderndsten aktuellen Forschungsge-
bieten. :

Obwohl der digitale Computer weit
schneller und genauer als ein Mensch
rechnen kann und vielerorts Dienste
leistet, die nicht mehr wegzudenken
sind (Beispiele Taschenrechner, Medi-
zin, Kommunikationstechnik, Finanz-
wesen, Verkehrsmittel, Compact Disc,
Simulationen), gibt es eine ganze Rei-
he von Problemen, deren Losung un-
erwartet harzig vorangeht. Diesen Pro-
blemkindern ist meist eines gemein-
sam: Nicht algorithmisch erfassbare
(d.h. nicht algebraisch modellierbare)
Signale miissen in einer Trainingspha-
se kennengelernt, zum Speichern dar-
gestellt und beim Wiedervorkommen

erkannt werden. Die Hauptschwierig-
keit liegt bei der Erkennung.

Andererseits kann bereits ein drei-
Jéhriges Kind recht gut sehen und ho-
ren, stehen, laufen usw.; sein ganzes
Leben lang wird es auf Lernen und Er-
kennen angewiesen sein, um in unserer
komplexen Umwelt zu iiberleben. Die-
se Feststellung motivierte die For-
scher, vom biologischen Nervensy-
stem zu lernen, um Teile seiner Funk-
tionen fiir technische Anwendungen
einzusetzen. In diesem Artikel werden
die Grundkonzepte vorgestellt, zu de-
nen neben vielen anderen vor allem
vier Forscher beigetragen haben: Ru-
melhart, Hopfield, Kohonen und Gross-
berg.

Das Neuron -
Baustein aller Neuralen
Netzwerke

Bevor einige der heute im Vorder-
grund stehenden Netzwerkstrukturen
behandelt werden, miissen die Eigen-
schaften des Neurons, das - wie bereits
gesagt - fiir alle Netzwerke gleich ist,
vorgestellt werden. Jedes Neuron bil-
det eine Funktion f (+) der Summe je-
des seiner Eingénge x; (Gl.1), von de-
nen jeder mit einem Gewichtsfaktor
(auch Synapse genannt) m; multipli-
ziert wird.

Der lineare Teil ist damit eine Li-
nearkombination der Eingidnge und
kann als Skalarprodukt des Eingangs-
vektors xI = [x, x,,..., xy] und Ge-
wichtsvektor m” = [m;, m,,..., my]' ge-
schrieben werden (Fig. 1):

N
v=f ( ) m,»x,-)=f(mfx) (1)

! Alle Vektoren sind Kolonnenvektoren. Der
Exponent T bezeichnet die Transponierung.
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iN

Figur 1 Funktion jedes Neurons

Jedes Neuron v; bildet die nichtlineare Funktion
S(+) der Summe seiner Einginge x; multipliziert
mit dem Gewicht der Synapse m:

Vi =f(29’=]m,-jxj).

a f(E)
A
L R —
= E
Schwelle
t) f(E)
A
14+
1 E
Schwelle
C f(E)
A
1__
E

Figur2 Schwellenfunktion

Die nichtlineare Funktion f(§) kann treppenfor-
mig (a), sigmoidformig (b) oder linear (c) gewihlt
werden. Die exakte mathematische Formulierung
ist nicht wesentlich.

Der nichtlineare Teil in f variiert je
nach Modell zwischen treppenférmig,
sigmoidformig oder linear, wie in Fi-
gur 2 illustriert wird. Fiir die meisten
Modelle ist wesentlich, dass der Aus-
gang jedes Neurons durch zwei Satti-
gungen begrenzt wird, wodurch drei
Zustandsgebiete geschaffen werden:
Ist das Skalarprodukt viel grésser als
die Schwelle zwischen beiden Sitti-
gungen, wird der Neuronausgang 1; ist
das Skalarprodukt viel kleiner als die
Schwelle, wird der Neuronausgang 0;
bewegt sich das Skalarprodukt um die
Schwelle herum, bewegt sich der Neu-
ronausgang zwischen 0 und 1 im qua-
si-linearen Bereich.

In der Literatur findet man zwei
leicht unterschiedliche Interpretatio-
nen eines Neurons. Bei den Percep-
trons z.B. wird es als trennende Hyper-
ebene, beim Kohonennetzwerk und
anderen als Schloss dargestellt.

Die Funktion der trennenden Hyper-
ebene? soll am Beispiel eines Neurons
mit zwei Eingéngen x;, x, (Eingangs-
vektor x) und dem Gewichtsvektor m
= (m,, m,) erkldrt werden (Fig. 3a). Je-
der Wert von x kann als Punkt auf
einer zweidimensionalen Fliche inter-
pretiert werden. Der zweidimensionale
Gewichtsvektor definiert eine zu ihm
senkrechte Gerade® g. Bei einer trep-
penférmigen Schwelle wird der Neu-
ronausgang den Wert 1 annehmen fiir
alle Punkte von x, die auf der einen
Seite der Geraden liegen, und den
Wert 0 fiir alle Punkte, die auf der an-
deren Seite der Geraden liegen.

v=f(m x; + my x;) (2)
1, myx) + myx; > Schwelle

v=14 0<v<l, mx + myx;= Schwelle
0, mix; + maxy < Schwelle

3)

Dieses Verhalten ldsst sich auf eine
beliebige Dimension der Eingangs-
und Gewichtsvektoren verallgemei-
nern. Das Neuron entscheidet stets,
auf welcher Seite der Hyperebene -
die, wie gesagt, immer senkrecht zum
Gewichtsvektor steht - der aktuelle

2Eine Hyperebene ist ein (n-1)-dimensionaler
Raum, der den iibergeordneten n-dimensionalen
Raum in zwei Teilriume auftrennt. Eine Ebene
z.B. trennt den 3dimensionalen euklidischen
Raum auf, eine Gerade den 2dimensionalen.

’Die Geradengleichung lautet nimlich m7.x
= const.

Eingangsvektor liegt, oder gibt im
quasi-linearen Bereich die Nihe zur
Schwelle an.

Bei der zweiten Art, die Funktion
eines einzelnen Neurons zu interpre-
tieren (z.B. bei den Kohonennetzwer-
ken) wird die Einschrinkung gemacht,
dass alle Eingangsvektoren normiert

Figur3 Mogliche
Neuronenfunktion

a. Jedes Neuron wirkt als Hyperebene (eine Gera-
de im zweidimensionalen Fall), welche den Ein-
gangsvektorraum in zwei Hilften trennt, wobei
der Neuronenausgang auf der einen Seite | und
auf der anderen Seite 0 ist.

Interpretationen der

b. Wenn die euklidsche Lange aller Eingangsvek-
toren gleich ist, unterscheiden sie sich nur durch
ihren Winkel.

c. Im normierten Fall 6ffnet das Neuron wie ein
Schloss zu einem passenden Schliissel, wobei das
Skalarprodukt von Eingangsvektor und Ge-
wichtsvektor gross genug, bzw. ihre euklidsche
Distanz klein genug sein muss.

924
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sind, d.h. dass ihre euklidsche Linge
(Betrag)

VIN, x?

konstant (z.B.1) ist. Die einzelnen
Vektoren unterscheiden sich, wie Fi-
gur 3b zeigt, nur durch ihren Winkel.
Der Gewichtsvektor und die Schwelle
konnen dann, wie in Figur 3c veran-
schaulicht, so gewéhlt werden, dass
der Neuronausgang dann und nur
dann 1 ist, wenn der Eingangsvektor
in einem engen Winkelbereich um den
(senkrecht zur Hyperebene liegenden)
Gewichtsvektor liegt. Dann wirkt das
Neuron, bzw. sein Gewichtsvektor,
wie ein Schloss, das der passende
Schliissel  (Eingangsvektor) offnet
(Ausgang wird 1)*.

Zusammenfassend kann gesagt wer-
den, dass die lokale Funktion aller
Bausteine eines Neuralen Netzwerks
als einfaches Skalarprodukt anzuse-
hen ist, das mit Hilfe der nichtlinearen
Schwelle entscheiden kann, ob der lo-
kale Eingangsvektor zum Schloss
passt oder auf welcher Seite der Hyper-
ebene er steht. Dieses Konzept findet
man durchwegs durch alle Modelle,
auch wenn diese in den Einzelheiten
davon abweichen. Versuche haben be-
stétigt, dass das Netzwerk viel bedeu-
tungsvoller ist als die Details der Im-
plementation ihrer Einzelbausteine.

In den folgenden Abschnitten wer-
den einige Strukturen vorgestellt, die
Neuronen derart vernetzen und ihre
Parameter trainieren, dass ein interes-
santes Verhalten entsteht.

Multilayer-Perceptron
- assoziative Abbildung

Funktionsweise

Eine heute sehr beliebte Neurale-
Netzwerk-Struktur ist das Multilayer
(Mehrschichten)-Perceptron.  Dieses
besteht aus einer Anzahl aufeinander-
folgender Schichten von Neuronen,
innerhalb deren keine Verbindungen
bestehen. Wie am Beispiel eines
3-Schichten-Perceptrons in Figur 4 ge-
zeigt wird, wird jedes Neuron einer
Schicht von allen Neuronen der vori-
gen Schicht gespeist. Schicht 0 repri-
sentiert die Eingangssignale, Schicht 3
die Ausgangssignale. Jedem Pfeilende
l4sst sich ein Gewicht zuordnen, allen
Pfeilenden, die auf ein bestimmtes
Neuron treffen, ein Gewichtsvektor.
Die Notation T3 (3,1) steht fiir das Ge-
wicht einer Verbindung, die von
Schicht 2, Neuron 1 herkommt und

v, (i)
T3(i4d)
v, (i)
T4(1,4)
v, ()

To(i,4)

Figur4 Die Neurale-Netzwerk-Struktur
des 3-Schichten-Perceptrons

Jedes Neuron einer Schicht wird von allen Neuro-
nen der vorigen Schicht gespeist. Schicht 0 repra-
sentiert die Eingangssignale, Schicht 3 die Aus-
gangssignale.

Figur5 Funktion des Mehrschichten-Per-
ceptrons

Der Ausgang des Neurons V, ist nur dann 1,
wenn sich der Eingangsvektor x im iberlappen-
den Gebiet derjenigen Seiten aller Hyperebenen
(hier 3) der Neuronen der ersten Schicht befindet,
die lokal mit einer 1 antworten (UND-Funktion).

zum Neuron 3 der dritten Schicht
fihrt.

Die globale Funktion dieses Netz-
werks kann - wie im folgenden gezeigt
wird - als assoziative Abbildung® des
Eingangsvektors auf den Ausgangs-
vektor bezeichnet werden. Legt man
bei einem solchen Netzwerk einen be-
stimmten Vektor an den Eingang, so
wird sich nach einer kurzen Durch-
laufzeit der assoziierte Vektor am Aus-
gang einstellen. Der Zusammenhang
zwischen Ein- und Ausgangsvektor
liegt in den einzelnen Gewichten ver-
borgen und kann folgendermassen er-
klart werden: Jedes Neuron der ersten
Schicht arbeitet, wie im vorigen Kapi-
tel beschrieben, als trennende Hyper-
ebene, d.h., sein Ausgang ist 0 oder |
abhingig davon, ob der Eingangsvek-
tor auf der einen oder anderen Seite

der Hyperebene liegt. Jedes Neuron
der zweiten Schicht kombiniert nun
die Ergebnisse der einzelnen Neuro-
nen der vorhergehenden Schicht. Sein
Gewichtsvektor und seine Schwelle
konnen z.B. so eingestellt werden, dass
sein Ausgang nur dann 1 ist, wenn je-
der seiner Eingidnge 1 ist (logisches
UND) oder 1, wenn ein oder mehrere
Eingdnge gleich 1 sind (logisches
ODER). Es kann gezeigt werden, dass
ein Neuron die meisten logischen
Grundoperationen erzeugen kann,
auch solche, die Negationen enthalten.
Wenn nun ein Neuron der zweiten
Schicht als UND funktioniert, bedeu-
tet dies, dass sein Ausgang nur dann 1
ist, wenn der System-Eingangsvektor
in einem Raumgebiet liegt, das fiir alle
Hyperebenen der Neuronen der ersten
Schicht positiv ist, d.h. wo diese lokal
mit einer 1 antworten (Fig. 5).

Ein Neuron der dritten Schicht
(Ausgangsneuron) kann nun z.B. eine
ODER-Verkniipfung der Neuronen-
ausgange der zweiten Schicht durch-
fuhren. Falls diese - wie vorhin be-
schriecben - UND-Funktionen aus-
iiben, wird das Ausgangsneuron eine 1
erzeugen, sobald der Eingangsvektor
in eines der in der zweiten Schicht defi-
nierten positiven Gebiete zu liegen
kommt. Eine tiefere Analyse zeigt,
dass jedes Ausgangsneuron auf ein be-
liebiges, moglicherweise unzusam-
menhingendes Gebiet des Eingangs-
vektorraums selektiv gemacht werden
kann. Und weil dies fiir jedes Aus-
gangsneuron einzeln gilt, kann ein und
dasselbe Netzwerk auf jeden beliebi-
gen Eingangsvektor aus einem vorge-
gebenen Satz von P assoziativen Paa-
ren von Vektoren (Vj, V/, p = 1...P,
den gewiinschten (assoziierten) Aus-
gangsvektor hervorrufen, sofern ge-
nug Neuronen vorhanden sind, um die
gewiinschten Gebiete zu erzeugen. Mit
anderen Worten: Das Netzwerk kann
die allgemeinste assoziative Abbil-
dung durchfiihren®.

4 Die Analogie zum Schloss ist nicht perfekt,
da das Neuron wegen des quasilinearen Bereichs
mit einer gewissen Fehlertoleranz zu 6ffnen ver-
mag.

> Unter Assoziation versteht man die Verkniip-
fung zweier oder mehrerer Informationen (Vekto-
ren). Im vorliegenden Fall werden benachbarte
Vektoren der Eingangsseite in benachbarte Vek-
toren der Ausgangsseite transformiert, im Spe-
zialfall der perfekten Identifikation in denselben
Vektor.

¢ Sind die Eingangssignale binir, geniigen so-
gar zwei Schichten Neuronen fiir die allgemeinste
assoziative Abbildung.
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Als Beispiel fiir eine Anwendung
kann eine Reihe von Bildern mit einer
Reihe von Namen assoziiert werden.
Jeder Bildpunkt wird durch eine Kom-
ponente des Eingangsvektors darge-
stellt und jeder Buchstabe entspre-
chend durch ein Element (1 Ausgangs-
neuron) des Ausgangsvektors.

In einem anderen Beispiel kdnnte
eine Reihe von Bildern mit sich selbst
assoziiert werden. Dann besteht die
Aufgabe des Multilayers-Perceptrons
darin, ein verrauschtes oder sonst de-
fektes Bild zu rekonstruieren. Die Re-
konstruktionsfihigkeit eines Neuralen
Netzwerks ist iiblicherweise recht
hoch. Darauf einzugehen wiirde den
Rahmen dieses Beitrags sprengen; es
sei jedoch erwidhnt, dass die Rekon-
struktionsfahigkeit einerseits durch die
Verteilung der Information auf die vie-
len Gewichte der vielen Neuronen und
andererseits durch die Weichheit
der sigmoidférmigen Nichtlinearitit
(Fangbereich) bedingt ist’.

Training und Lernen

Nun stellt sich die Frage, wie man
ein Multilayer-Perceptron trainieren
kann, damit es den vorgegebenen Satz
von Assoziationen mdglichst be-
herrscht?.

Kohonen [1] hat gezeigt, dass im Fall
des 1-Schichten-Perceptrons die Ge-
wichte und Schwellen (welche im li-
nearen Fall wegfallen) direkt mit Hilfe
der Matrizenrechnung berechnet wer-
den kénnen. Rumelhart [2] und andere
haben den folgenden Backpropaga-
tion-Algorithmus eingefiihrt, der be-
strebt ist, den Totalfehler, d.h. die
Quadratsumme aller Abweichungen
der erzielten von den gewiinschten
Ausgangsvektoren iiber alle Assozia-
tionspaare zu minimieren. Dieser Al-
gorithmus lautet:

1. Wihle ein Assoziationspaar (V,,
V,) zufillig aus dem (vorgegebe-
nen) Satz von Assoziationen.

2. Lege den Eingangsvektor ans Netz-
werk und registriere den erhaltenen
Ausgangsvektor V.

3. Berechne komponentenweise (In-
dex i) aus dem gewiinschten Aus-
gangsvektor D, und dem tatsdch-
lich erhaltenen Vektor V, die Feh-
lerkoeffizienten®:

8u (i) = Wi (i) - (1= V(D)) -
(D (i) = V(i) (4

4. Modifiziere die Gewichte T, ge-
mass:

AT (L) =a-8u(i) - Vaei () (5)

5. Berechne die Fehlerkoeffizienten
der nichstunteren Schicht als ge-
wichtete Summe aller Fehlerkoeffi-
zienten derjenigen Neuronen der
oberen Schicht, die vom betrachte-
ten Neuron gespeist werden!.

Suot (i)=Y, Su(k)- Tii(k,i)  (6)

alle k

6. Fahre mit der Modifizierung der
Gewichte T~} gemiss Punkt 4 fort
bis hinunter zur 1. Schicht; dann
gehe zuriick zu Punkt 1.

Es ist zu erwdhnen, dass meist ein
recht langes Training nétig ist, bis der
ganze vorgegebene Satz von Assozia-
tionen geniigend genau reproduziert
wird. Die Konvergenz ist nicht ge-
wihrleistet, wenn das Netzwerk zuwe-
nig Neuronen oder weniger als 3
Schichten besitzt. Die Anzahl benétig-
ter Neuronen hidngt von der Anzahl
der Trainingsvektoren und der Kom-
plexitdt ihrer Ahnlichkeitsbeziehun-
gen ab. Sie stellt stets ein Kompromiss
dar, da zu viele Neuronen die Konver-
genz ebenfalls verschlechtern kon-
nen!!. Nach dem Training ist das Neu-

7 Mehrere Schichten und/oder Riickkopplun-
gen konnen die Rekonstruktionsfahigkeit dra-
stisch erhohen, weil ein Neuron seine tolerante
Entscheidung dann auf die toleranten Entschei-
dungen seiner Vorgénger griinden kann.

8 «Moglichst» weist darauf hin, dass ein Netz-
werk gegebener Grosse nach noch so langem
Training nicht unbedingt fahig ist, jede assoziati-
ve Abbildung exakt oder innerhalb eines gewissen
Toleranzbereichs richtig durchzufiihren.

° Die Gleichung gilt fiir den Fall, dass die Sig-
moidfunktion als

o= —

T-et
definiert ist. Sie wird hier nicht weiter erklirt.

19 Das betrachtete Neuron erhilt somit dann
einen grossen Fehlerkoeffizienten, wenn es grosse
Fehler auf der nachsthoheren Schicht verursacht

hat.

""Ein solches von Natur aus iiberwachtes
(supervised) Training ergibt die oben erwéhnte
«UND» - «ODER»-Struktur nicht unbedingt;
jene wird nur verwendet, um zu beweisen, dass 3
Schichten prinzipiell geniigen, um jede beliebige
Abbildung durchzufiihren.

12 Eine Schwelle wird zu Trainingszwecken wie
ein Gewicht behandelt, das stets mit | gespeist
wird. Ein Neuron fester Schwelle mit einem sol-
chen Zusatzgewicht verhilt sich equivalent zu
einem Neuron variabler Schwelle ohne Zusatzge-
wicht.

rale Netzwerk ein Modell fiir den vor-
gegebenen Satz von Assoziationen ge-
worden, deren Information in den Ge-
wichten und Schwellen'? verteilt bein-
haltet ist. Hier wire noch darauf hin-
zuweisen, dass Vergessen in engem
Zusammenhang zu Training und Ler-
nen steht, da Training frithere Muster
allmihlich iberschreibt.

Ein interessantes Experiment mit
einem Stiick schriftlicher englischer
Sprache als Eingangsvektor und den
gewlinschten Sprechmuskelpositionen
als Ausgangsvektor hat gezeigt, dass
schon ein relativ kleines Multilayer-
Perceptron  (Gréssenordnung 100
Neuronen) in der Lage ist, gar nicht so
schlecht lesen zu lernen. Das Neurale
Netzwerk hat also die Sprechregeln,
die in den vorgefiihrten Beispielen im-
plizit enthalten sind, extrahiert und
kann recht gut verallgemeinern, d.h.
neue (noch nicht erfahrene) Sidtze mit
unerwartet wenig Fehlern vorlesen [3].

o

Figur 6 Hopfield-Netzwerk

Beispiel einer dreidimensionalen Energiefliche
(a) und der zugehorigen Trajektorienschar (b).
Der Systemzustand konvergiert stets entlang einer
Trajektorie zu einem Minimum der Energiefunk-
tion.
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Hopfield-Netzwerk:

assoziativer Speicher
Prinzip

In der Systemtheorie ist bekannt,
dass ein stabiles und dynamisches Sy-
stem eine Menge von Anziehungs-
punkten (sogenannte Punkt-Attrakto-
ren) im Zustandsvektorraum besitzt,
gegen die das System strebt, um die ge-
samte Energie des Systems zu mini-
mieren. Im zweidimensionalen Fall
entsprechen die Punkt-Attraktoren
den Minima einer Energiefldche
(Fig. 6). Der Zustandsvektorraum ist
ein Vektorraum, der von den verschie-
denen Zustandsvariablen (Grossen,
die das dynamische Verhalten eines
Systems beschreiben) des Systems auf-
gespannt ist. Bei Neuralen Netzwer-
ken sind dies die verschiedenen Neu-
ronenausgiange. Jeder Attraktor im
Zustandsvektorraum besitzt sein eige-
nes Einzugsgebiet. Gegen welchen die-
ser Attraktoren der Systemzustand
konvergiert, hangt davon ab, in wel-
chem Einzugsgebiet sich das System
beim Prozessstart befindet. Die ent-
sprechende Trajektorie des Systemzu-
standes vom Anfangspunkt bis zum
Attraktor kann oft sehr vielfdltig und
kompliziert sein. Die Figur 6a zeigt ein
Beispiel einer Energieflache und Figur
6b eine Schar von Trajektorien, ent-
lang welcher der Systemzustand auf
ein Minimum der Energiefunktion
konvergiert.

Ausserdem kann es auch eigenartige
Attraktoren (sog. Strange Attractors)
geben, die mit einer chaotischen, sich
nicht wiederholenden Trajektorie ver-
kniipft sind. Es ist jedoch durchaus
mdoglich, ein dynamisches System zu
konstruieren, das nur regelmaéssig pla-
zierte Attraktoren beinhaltet und de-
ren Trajektorien von einem bestimm-
ten Anfangspunkt aus immer gegen
den néchstliegenden Attraktor stre-
ben, in welchem das System stabil
wird. Ein solches System stellt eine in-
teressante Art Informationspeicher dar.
Ein einziger Attraktor kann beispiels-
weise ein komplettes Muster im Zu-
standsraum reprdsentieren und sein
zugehoriges Einzugsgebiet entspre-
chend eine Menge unvollstindiger
oder verrauschter Muster. Mehrere
komplette Muster kdnnen in ein einzi-
ges System eingebaut werden, da die-
ses mehrere Attraktoren besitzen kann.
Von einem unvollstindigen Muster
(als Anfangsbedingung) ausgehend,
setzt sich das System dann auf das am
besten passende vollstindige Muster

Figur7
Hopfield-Netzwerk a
a Struktur m

b Elektronische u1
Schaltungsnachbildung
eines Neurons

¢ Systemdarstellung 2

My3_ Mo My

[0y ) B
m m

531 Map [ My .
M3 v

nieder. Solch ein Systemverhalten
nennt man Content Addressable Me-
mory (CAM), weil die «Adresse» eines
Attraktors seinem Inhalt entspricht.

Das Hopfield-Netzwerk in Figur 7
stellt ein solches CAM-System dar. Es
besteht aus einer Menge einzelner
Neuronen, deren N Ausgénge v, zu al-
len Neuronen zuriickgefiihrt sind. Je-
des Neuron empfingt also simtliche
Ausginge, welche zum Ausgangsvek-
tor v = [v|, w,,..., V] zZusammengefasst
werden konnen, an seinem Eingang
und multipliziert diesen mit seinem
Gewichtsvektor m; = [m;,,..., m;y]. Das
Resultat wird iiber eine nichtlineare
Funktion f; (-) zum Ausgang v, geleitet.
Jedes Neuron besitzt einen weiteren
(skalaren) Eingang u;, der als einstell-
bare Schwelle dient. Die gesamte
Ubertragungsfunktion eines Neurons
lautet somit:

N
vi(t+Ar) =f ( 21 m,-»,-v_,-(t)+u,-(t)) =

= film] v(1) + u;(1)) (7

In Matrixnotation!'3:

v(t+At) = f(MTv(t) +u(t))

M = [m,m;,.., my]
fir{ w = [uy,u,..., un]? (8)
SO = i) WOIT

wobei die gespeicherte Information in
der Riickkoppelungsmatrix M steckt'’.
Mittels einer Liapunovfunktion!4, die
der Energie des Systems entspricht,
kann man zeigen, dass das Netzwerk
asymptotisch stabil ist, falls M symme-
trisch ist (hinreichende Bedingung).
Hopfield hat nun zwei Netzwerkmo-
delle vorgestellt: ein bindres asynchro-

3 Es ist zu unterscheiden zwischen v;(t+Arf)
und v;(f), da sich das System nicht im einge-
schwungenen Zustand befindet.

14 Diese Funktionen spielen eine wichtige Rol-
le bei Stabilitdtsbetrachtungen dynamischer Pro-
zesse.
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nes Modell und ein kontinuierliches
Modell. Beim bindren Modell [4] wei-
sen sdmtliche Nichtlinearitidten fi(-)
eine einstufige Treppenfunktion auf),
wobei

1;mlv+u;>0

i
: 0;mlv+u<0

©

In diesem ersten Modell priift jedes
Neuron seinen Eingang auf asynchro-
ne Weise und dndert seinen Ausgang
entsprechend Gleichung 9. Dieses
asynchrone Verhalten unterscheidet
das Hopfield-Netzwerk von anderen
dhnlichen fritheren Modellen wie zum

Beispiel dem vorne beschriebenen Per-
ceptron.

Das zweite kontinuierliche Modell
[5] sieht dem biologischen Gehirn
wahrscheinlich schon #hnlicher; es
arbeitet mit kontinuierlichen elektri-
schen Potentialen und kann als elek-
tronische Schaltung dargestellt werden
(Fig. 7b). Die Kapazitit C und der
Widerstand R symbolisieren die Pha-
senverschiebung, die alle elektroni-
schen Verstirker aufweisen. Die Funk-
tion f'(x;) wird als kontinuierliche, mo-
noton steigende oder sigmoidférmige
Funktion angenommen, deren Ein-
gangspannung x; mittels einer Diffe-
rentialgleichung beschrieben werden
kann:

N
Cx;i= j§1 RLU (v,-—xi) = %x,« +u; (10)
X; ist eine Spannungsgrosse, u; eine
Stromgrosse. Die Stabilitdt dieses Sy-
stems kann mittels einer geeigneten
Liapunovfunktion leicht bewiesen
werden, vorausgesetzt, dass die Neu-
ron-zu-Neuron-Kopplung symme-
trisch ist (d.h. R; = R;) und keine
Eigenriickkopplung (R;; = 0) besteht.
Das ganze vernetzte System kann, wie
in der Systemtechnik iiblich (Fig. 7¢),
durch eine Vektordifferentialglei-
chung beschrieben werden:

x=ax+ Mv+ Bu

v=f(x) (1

Der Vorteil dieses zweiten Hopfield-
Modells besteht nicht nur darin, dass
man es als dynamisches System be-
trachten und mit Hilfe der weitentwik-
kelten  Systemtheorie  analysieren
kann, sondern, dass man es auch tat-
sdchlich als elektronische Schaltung

hardwaremdssig realisieren kann. Es
sind bereits Hopfield-CAM-Chips in
den Forschungslabors entwickelt wor-
den, und mindestens eines davon ist
bereits auf dem Markt!

Speichern der Information

Ist man im Besitze eines solchen
CAM-Systems, so stellt sich die Frage,
wie man die gewiinschten Attraktoren
in die Matrix M abspeichert und wie-
viel Information (d.h. wie viele stabile
Attraktoren) das Netzwerk als Funk-
tion der Anzahl Neuron enthalten
kann. Auf der N-dimensionalen Ener-
gieflache des Systems sind die stabilen
Attraktoren einfach lokale Minima
der Energiefunktion. Je mehr lokale
Minima nun das System hat, desto
mehr fliessen ihre Einzugsgebiete in-
einander, und zwischen den Minima
entsteht eine gewisse Fehlerflache. Es
sind verschiedene Moglichkeiten be-
kannt, wie man die Muster (Attrakto-
ren) in der Energiefliche erzeugen
kann. Aus der Art, wie man sie er-
zeugt, kann man angenéhert schlies-
sen, wie viele zuverlédssige Attraktoren
es gibt. Hopfield beispielsweise schlug
vor, M als eine Art Korrelationsmatrix
zu behandeln, die durch eine Menge
von L (abzuspeichernden) Mustern
v(1), v(2),..,»(L) (Spaltenvektoren)
auf folgende Weise gebildet wird:

L
M= Y v(k)v(K)T (12)
k=1

Definiert man eine Matrix ¥ durch

V=01, »@2),...»(L)] (13)

mit v(k) als Spaltenvektoren, so kann
man GIl. 12 auch schreiben als

vI(1)
v1(2)
vI(L)

M=[»(1),p(2),...,v{L)]- = YT

(14)

wobei v7(k) die Zeilenvektoren dar-
ste den.

Wenn man nun eines der Muster
v(n) vorgibt, wird der Ausgang zu

xi=Mv(n)=(V¥").v(n)=
L

=X V(k)(v(k)T-v(n)) (15)
1

Wie man aus der Betrachtung der
Gleichungen 14 und 15 leicht ersehen

kann, wird, falls alle Vektoren
v(l),...,»(L) senkrecht aufeinanderste-
hen, d.h. vollig unkorreliert sind, am
Ausgang x; = v(n) erscheinen. Je kor-
relierter aber die Muster sind, desto
mehr tauchen Unzuverldssigkeiten
(als zusammengeschmolzene Punkt-
Attraktoren) und verschiedene perio-
dische und chaotische Attraktoren
(d.h. kein stabiler Punkt) auf. Hopfield
selbst gab eine empirische Kapazitits-
schitzung von L~ 0,15 N an, wobei N
die Zahl der Ausginge (Vektordimen-
sion) angibt. Spater wurde gezeigt,
dass die Korrelationsmatrixform von
M eine theoretische obere Grenze von
L < N/(4log N) hat.

Andere, kompliziertere Strukturen
von M ergeben eine Speicherdichte
von L <L N.

Losung von
Optimierungsproblemen

Geht man von einer bestimmten
Matrix M und einem Anfangszu-
standsvektor x(0) aus, so wird das Sy-
stem gemdéss der dynamischen Be-
schreibung von Gleichung (11) fol-
gende Energiefunktion (Lyapunov)
minimieren's:

- ivTMv— vI Bu+

V(ix)= 5

N
+ Y a

i=1

[ (@) da (16)
0

Man kann sich nun leicht vorstellen,
dass ein vorgegebenes Optimierungs-
problem derart umformuliert werden
kann, dass die Matrix M die entspre-
chenden Optimierungsparameter bein-
haltet. Seinem energieminimierenden
Drang folgend, wird das Netzwerk ge-
gen eine Losung des Optimierungspro-
blems im Zustandsraum streben und
sich dort stabilisieren. Je nach Pro-
blemformulierung gibt es nun meist
einige lokale Minima, in denen das Sy-
stem hidngenbleiben kann (sie stellen
eine suboptimale Losung des Optimie-
rungsproblems dar). In vielen Fillen
aber ist eine solche Losung eine gute
Nahrung des Optimums. Es besteht
auch die Moglichkeit, das System an
mehreren Anfangspunkten zu starten
und die beste resultierende Losung
auszuwdhlen. Ein beriihmtes Beispiel

15 Diese Gleichung wird hier ohne ndhere Be-
griindung nur der Vollstindigkeit halber ange-
geben.
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dafiir ist das sogenannte Travelling
Salesman Problem (TSP). Dabei geht
es darum, dass ein reisender Kauf-
mann mehrere Stiddte besuchen muss
und wissen will, welche Reihenfolge
von Stidten den kiirzesten gesamten
Weg ergibt. Hier wird jedem Ausgang
v; eine bestimmte Stadt zugeordnet, so
dass sich eine Reihenfolge ergibt. Der
Zustandsvektor v entspricht dann
einem bestimmten Weg durch die
Stidte. Und in der Matrix M sind die
verschiedenen Distanzen zwischen
den Stidten abgespeichert. Bei N Stad-
ten gibt es immer insgesamt N!/2N
mogliche Wege. Hopfield hat gezeigt,
dass das Netzwerk bei der Losung des
TSP-Problems eine erstaunliche Lei-
stungsfihigkeit aufweist. Bei 10 Stad-
ten zum Beispiel findet es durch-
schnittlich bei jedem zweiten Start den
besten Weg.

Kohonens
selbstorganisierende
Abbildungen

Die Hirnforschung hat in letzter
Zeit viel iiber die Représentation und
Speicherung von Information im Ge-
hirn gelernt. Man glaubt, dass unser
Gedichtnis im Sinne eines physischen
Speichers zu einem grossen Teil aus
einer Menge vereinfachter Darstellun-
gen der Aussenwelt auf verschiedenen
Abstraktionsebenen besteht, die auf
zweidimensionale Schichten von Neu-
ronen im Gehirn abgebildet sind. Die-
se dimensionsreduzierten Darstellun-
gen sind die Folge eines selbstorgani-
sierenden Verhaltens der im Gehirn
vorhandenen Netzwerkstruktur, wel-
ches damit auf die Eingangssignale
antwortet. Bemerkenswert an dieser
Struktur sind die ausgebreiteten seitli-
chen Verbindungen (Lateral Feed-
back) zwischen den Neuronen: ein
Neuron hat seitliche Verbindungen
mit bis zu 10 000 benachbarten Neuro-
nen, wobei die Kopplung anregend
oder hemmend sein kann, was haupt-
sichlich von der Distanz abhingt
(Fig. 8); nahere Zellen werden ange-
regt, fernere gehemmt.

Man kann sich fragen, ob eine sol-
che Hirnstruktur bzw. ein solches
selbstorganisierendes Verhalten simu-
liert werden konnte, um die damit ver-
bundene dimensionsreduzierende
Funktion technisch ausniitzen zu kon-
nen. Dazu hat Kohonen die sogenann-
te Topology-preserving Feature Map
(topologiebewahrende Merkmalabbil-
dung) vorgestellt. Das Kohonen-Netz-

Wirkung
+ Seitliche
+ Distanz
e 0| — i

Figur 8 Anregung und Hemmung im Koho-
nen-Netzwerk

Die seitliche anregende und hemmende Wirkung
eines aktiven Neurons gleicht einem Mexikaner-
hut.

RRLPL

PPROP

Beigegels

Figur9 Struktur eines zweidimensionalen
Kohonen-Netzwerks

werk besteht aus einer ein- oder zwei-
dimensionalen Ansammlung (Netz) li-
nearer Neuronen und hat die Eigen-
schaft, dass bestimmte Gebiete von
Neuronen eine Empfindlichkeit ge-
geniiber bestimmten charakteristi-
schen Merkmalen des Eingangssignals
entwickeln. So ordnen sich z.B. diese
spezifischen Gebiete in ungefahr der-
selben topologischen Ordnung auf
dem Netz an wie die entsprechenden
Signalmerkmale im Merkmalvektor-
raum: Ahnliche Eingangssignale wer-
den also nahe beieinander abgebildet.
In diesem Sinne werden die entspre-
chenden topologischen Beziehungen
der Eingangssignale bei der Abbil-
dung aufs Netzwerk bewahrt.

Das in Figur 9 dargestellte Netzwerk
enthdlt N lineare Neuronen [7;, 7,,...,
nyl- Thnen allen wird derselbe Ein-
gangvektor x eingeprigt, den sie mit
ihrem Gewichtsvektor m; multiplizie-
ren, um den Ausgang v; zu produzie-
ren. Ausserdem besitzt jedes Neuron
ein Einflussgebiet N; um sich herum,
das die seitliche Kopplung zwischen
Nachbarneuronen bestimmt. Das
selbstorganisierende Verhalten dieses
Netzwerkes entspringt der Regel, dass
ein Neuron, dessen Gewichtsvektor zu

einem bestimmten Eingangsvektor am
besten passt, sowohl seinen eigenen
Gewichtsvektor als auch denjenigen
der im Einflussgebiet liegenden Nach-
barn dndert, um sich dem Eingangs-
vektor besser anzupassen. Das am be-
sten passende Neuron's, sagen wir 7);,
ist dasjenige mit der kleinsten euklid-
schen Distanz
m;= min;|| m; — x|| 17
Dem Lernalgorithmus!” entspre-
chend richten sich m; und alle seine
Nachbarn m;, i€ N, ein wenig nach x:

mi[k+ 1]1=

m;[k] + a(x[k] — mi[k]) ; firi€ N;
m;[K] ; sonst

(18)

Ausserdem nehmen sowohl die Zeit-
konstante a als auch die Grosse der
Nachbarschaft N; im Laufe der Zeit
ab, um eine zunehmende Verfeinerung
des selbstorganisierenden Verhaltens
zu bewirken.

Es stellt sich nun die Frage, was die
topologische Bewahrung der Merkma-
le des Eingangssignales genau bedeu-
tet. Das Eingangssignal sei beispiels-
weise ein N-dimensionaler Zufallspro-
zess, der in einem entsprechenden
Vektorraum verteilt ist. Merkmale die-
ses Prozesses betreffen z.B. die Struk-
tur der Verteilung, wie beispielsweise
die verschiedenen Grossen und For-
men von Gruppierungen (Clusters) im
Vektorraum. Die topologische Bewah-
rung der Merkmale auf einem ein-
oder zweidimensionalen Neuralen
Netzwerk kann nun bedeuten, dass
Distanzen und Anordnungen der Ge-
wichtsvektoren im Netz den Distanzen
und Anordnungen der Merkmale im
urspriinglichen Vektorraum ungefdhr
gleich sind.

Als Beispiel zeigt Figur 10 sechs zeit-
lich aufeinanderfolgende Trainings-
phasen eines 25x25-Neuronen-Koho-
nen-Netzwerks, das von einem zwei-
dimensionalen gleichverteilten Zufalls-
prozess angeregt wird. Dargestellt ist
der Raum der Gewichtsvektoren, wo-

16 Man erinnere sich der frither beschriebenen
Schlossfunktion.

17 Man beachte, dass Lernen hier einen etwas
anderen Charakter hat als bei den vorher be-
schriebenen Netzwerken.
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Figur 10

Beispiel eines zweidi-
mensionalen Netz-
werks, das mit einem
zweidimensionalen
gleichverteilten
Zufallsprozess
angeregt wird.
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bei die Kreuzungen ihre Positionen be-
zeichnen. Da die Neuronen durch ihre
Gewichtsvektoren charakterisiert sind,
kann man die Knoten auch den Neu-
ronen zuordnen. Geometrisch benach-
barte Neuronen kommen auch im
Vektorraum nebeneinander zu liegen.
Wie erwartet, wird die Verteilung
gleichmaissig auf das Netzwerk abge-
bildet.

Will man ein deterministisches Si-
gnal auf das Netz abbilden, so muss
man dessen Struktur im N-dimensio-
nalen Vektorraum mit einem gleich-
verteilten Zufallsprozess abtasten.

Die Figur 11 zeigt ein solches Bei-
spiel, nidmlich die Abbildung eines
10dimensionalen Simplex's, dessen
Ecken eine Gruppierung von Punkten
beinhalten. Das Simplex wurde von
einem gleichverteilten Zufallsvektor
abgetastet und in das Neurale Netz-
werk eingespeist. Wie man in Figur 11
sehen kann, werden die «Ecken» als
Clusters (gleiche Zahlen) auf die Ebe-
ne abgebildet.

Grossberg-Netzwerk :
Masking Field

Die Neurale Netzwerkstruktur na-
mens Masking Field ist zur Zeit noch
wenig bekannt. Sie weist wie das Ko-
honen-Netzwerk eine (ein- oder zwei-
dimensionale) Schicht von Neuronen
auf und ebenfalls seitliche Verbindun-
gen nach dem Muster des « Mexikaner-
huts», d.h., unmittelbare Nachbarn
werden gefordert, weitere Nachbarn
werden behindert, und die ferneren
Neuronen werden nicht beeinflusst.

Neu ist hier, dass die einzelnen Neu-
ronen nicht mehr von allen Systemein-

gdngen gespeist werden, sondern nur
von einer Gruppe davon. Neu ist fer-
ner, dass die Starke und Tragweite der
seitlichen Behinderung, die ein Neu-
ron ausiibt, proportional zur Anzahl
seiner Systemeinginge ist'?.

Die Figur 12 zeigt diese Zusammen-
hinge skizzenhaft auf: Das mittlere
Neuron V,(2) ist das grosste der drei
abgebildeten Neuronen, weil es die
meisten Eingédnge (hier drei) kontrol-
liert. Das kleinste Neuron V,(3) hinge-
gen kontrolliert bloss einen Eingang.
Das grosste Neuron iibt grossere
«Macht» aus, indem es seine Nach-
barn starker behindert (durch die Dik-
ke der Riickfiihrungspfade angedeu-
tet) und dadurch, dass die Reichweite
seiner seitlichen Behinderungsfihig-
keit grosser ist (nicht abgebildet).

Man kann nun die Gesamtheit der
Eingédnge nicht mehr als Eingangsvek-
tor betrachten, da sie fur die einzelnen

Neuronen unterschiedlich ist. Sie re-
prédsentiert nun eine Art Muster, das
aus vielen Einzelmustern besteht. Bei-
spielsweise konnte das Muster ein Bild
darstellen, auf das verschiedene Sym-
bole geschrieben sind. Nun wird ange-
nommen, das Netzwerk sei schon (un-
ter lokaler Anwendung des Lernalgo-
rithmus der topologischen Abbildung
vom vorigen Kapitel) mit allerlei Sym-
bolen trainiert worden. Dabei sei ein
grosses Neuron auf das Symbol L se-
lektiv geworden, d.h., es 6ffne, wenn
man ein «L» an die Eingédnge legt, weil
der Schliissel sehr gut zu seinem
Schloss passt (sieche das Kapitel iiber
das Neuron). Es sei aber ein «kleine-
res»?® Neuron auf das Symbol | und
ein anderes kleines Neuron auf das
Symbol _ selektiv geworden (das L
setzt sich aus den Symbolen | und _
zusammen). Daneben gebe es noch
sehr viele weitere Neuronen, die ande-
re, mehr oder weniger grosse und mehr
oder weniger zusammenhédngende Be-
reiche kontrollieren und auf vorkom-
mende Symbole selektiv geworden
sind.

Wie reagiert nun das Netzwerk,
wenn ein L angelegt wird? Die Figur
13 erldutert die folgenden Zusammen-
hdnge. Zunichst 6ffnen drei Schlosser:
auf | , — und L, weil der lokal gese-
hene Schlissel passt. Nun kommen je-

' Ein Simplex ist eine geometrische Figur, bei
dem sdmtliche Distanzen zwischen den Ecken
gleich sind.

1 Bildlich gesprochen gibt es im Netzwerk also
eine Reihe von unterschiedlich grossen (hohen
und breiten) Mexikanerhiiten.

2 «Kleiner» deshalb, weil sein Symbol sich

aus weniger Bildpunkten zusammensetzt, es also
weniger Eingénge kontrolliert.

Figur 11 6 6 6
Die zweidimensionale |; 6
Abbildung eines 6 6 6
zehndimensionalen e 6
Simplex.

Ein Simplex ist eine
Struktur, bei der simt- 3 3
liche Ecken dieselben 3 -
Abstdnde voneinander 3
haben. In diesem Bei- 3
spiel enthilt jede Ecke
eine gleichverteilte
Gruppierung von Punk-
ten mit einer Varianz
von 0,1. Der Abstand 5 5
zwischen den Ecken ist
1,0.
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Figur 12 Die Neurale-Netzwerk-Struktur
des Masking Fields

Ein Neuron, das mehr Eingdnge kontrolliert,
bekommt mehr «Macht», d.h. es behindert seine
Nachbarn starker und iiber eine grossere Distanz.

doch die seitlichen Behinderungen ins
Spiel. Weil das grossere Neuron mehr
Macht hat, wird es im dynamischen
Konkurrenzkampf, der beweisbar
stets stabil ist und einer Endldsung zu-
strebt, siegen. Nach dem Einschwin-
gen wird nur noch dasjenige Neuron
aktiv sein, das den vollen Buchstaben
dekodiert; diejenigen Neuronen, die
hierarchisch untergeordnete Bestand-
teile des Buchstabens dekodieren, wer-
den nicht mehr aktiv sein.

Die Funktion des Masking Fields
besteht also darin, den hochsten im
Eingangsmuster enthaltenen Abstrak-
tionsgrad zu erkennen. Diese Neurale
Netzwerk-Struktur ist von grossem In-
teresse, weil sie eine Funktion gene-
riert, die fiir Lebewesen notwendig ist.
Beispielsweise erkennt ein Mensch,
wenn er die Strasse iberqueren will
und ein Auto auf ihn zukommen sieht,
nicht die Einzelheiten des Autos. Wohl
werden diese von den optischen Zellen
erfasst, aber es kommt in diesem Fall
darauf an, das Auto als Ganzes zu er-
kennen, damit die richtigen Folgeasso-
ziationen ausgeldst werden (in diesem
Fall z.B.: Achtung, Gefahr; Warten!).
Weiteres Nachdenken fiihrt zur Ein-
sicht, dass solche Maskierungsvorgin-
ge, wie sie das Masking Field erzeugt,
im tédglichen Leben nahezu stindig
vorkommen. Natiirlich kann ein
Mensch sich auf Einzelheiten konzen-
trieren; diese Fédhigkeit ist aber auf
Aufmerksamkeitsprozesse zuriickzu-
fiihren, welche die vermuteten Mas-
king Fields im Gehirn steuern.

Grossberg [6] hat biologisch recht
einleuchtende Wachstumsgesetze auf-
gestellt, nach denen ein Masking Field
derart aufgebaut werden kann, dass

Neuronen, die mehr Eingidnge kon-
trollieren, auch grossere seitliche Be-
hinderungen iber eine grossere Di-
stanz ausiiben konnen. Ob hingegen
ein Masking Field auch topologische
Abbildungen erzeugt, ist unsicher,
weil trotz der grossen Verwandtschaft
der beiden Strukturen nicht jedes Neu-
ron den ganzen Eingangsvektor sieht,
was bei den topologischen Abbildun-
gen jedoch vorausgesetzt wird. Weitere
Forschungen sollten untersuchen, ob
Masking Fields nicht eine allgemeine-
re Art von topologischen Abbildungen
erzeugen, welche eine zusitzliche Di-
mension der Abstraktionstiefe beinhal-
ten. Zum Beispiel konnte man erwar-
ten, dass dhnliche Bestandteile der
Abstraktion «Auto» geometrisch nahe
beieinander gespeichert sind und dhn-
liche « Autos» als Ganze beieinander.

Zusammenfassung
und Ausblick

Die vorgingig besprochenen vier
Neuralen Netzwerkstrukturen zeigen
die wesentlichen Erkenntnisse auf, die
man bis heute auf diesem relativ jun-
gen Gebiet gewonnen hat. Multilayer-
Perceptrons eignen sich fiir assoziative
Abbildungen aller Art, sofern man die
Signale sinnvoll in Eingangs- und
Ausgangsvektoren verpacken kann.
Ein iiberwachtes Training erlaubt dem
Netzwerk, die in den Lernbeispielen
implizit enthaltenen Regelmissigkei-
ten herauszufinden. Hopfield-Netzwer-
ke eignen sich fiir inhaltsadressierbare
assoziative Speicher und zur raschen
Losung von Problemen aller Art, so-
fern man das Problem in einer «ener-
gieminimierenden» Form schreiben
kann (Beispiel: Kaufmann, der seine
Stadte auf dem kiirzesten Weg besu-
chen will). Kohonens topologische
Abbildungen ordnen die erfahrenen
Vektoren nach ihrer Ahnlichkeit auf
selbstorganisierende Weise zusam-
men, so dass ihre stochastischen
Eigenschaften (Statistik) optimal er-
halten und représentiert werden. Mas-
king Fields erkennen komplexere Ob-
jekte als Ganzes im eingegebenen Mu-
ster und maskieren deren Einzelteile.

Der Vollstindigkeit halber werden
hier noch zwei weitere Aspekte be-
leuchtet: Der erste Aspekt handelt von
zeitabhdngigen Signalen. Die erwdhn-
ten Modelle verarbeiteten vorerst nur
einzelne Vektoren oder Muster. Es
stellt sich nun z.B. die Frage, wie ein
Masking Field zeitabhidngige Signale
erkennen konnte. Als Beispiel diene

die Spracherkennung: Wie kénnen die
einzelnen Laute durch ganze Worter
maskiert werden? Und wie extrahiert
man den Sinn aus einem ganzen Satz?
Offensichtlich sind zeitliche Maskie-
rungsvorgdnge am Werk, wenn der
Mensch die gesprochene Meinung sei-
nes Gegentlibers zu erkennen versucht.
Grossberg [6] versucht eine Vorverar-
beitung zu entwickeln, welche die Zeit-
achse sozusagen in eine ortliche Achse
abbildet. Dabei geht er aber nicht da-
von aus, dass sich zeitlich eingefrorene
Muster in einem sequentiellen Spei-
cher bewegen wiirden. Es werden Auf-
merksamkeitsprozesse einbezogen, die
das Muster der aktivierten Schlosser
(Merkmaldetektoren) fortlaufend be-
einflussen. Eine grossere, d.h. weniger
behinderte Aktivitdt von Neuronen
stellt dann ein aktuelleres (auf der
Zeitachse spdter auftauchendes) Si-
gnal dar. Die Schwichung fritherer Si-
gnale hat natiirlich auch etwas mit
Vergessen zu tun.

Der zweite Aspekt betrifft die Stabi-
litit des Lernvorgangs. Der uniiber-
wachte Lernalgorithmus, der im Kapi-
tel der topologischen Abbildungen er-
wihnt ist und auch beim Masking
Field angewendet wird, hat den Nach-
teil, dass die Gewichte aller Neuronen,
die auch nur ein wenig aktiv sind, ver-
dndert werden. Es fehlt also ein
Schutzmechanismus, der die Verdnde-
rung eines Schlosses dann verhindert,

Figur 13 Beispiel einer Masking-Field-

Funktion

Das grosste Neuron, das den vollen Buchstaben
«L» kodiert, bleibt nach der Einschwingphase
aktiv, wihrend die kleineren Neuronen, die
Bestandteile des vollen Buchstabens kodieren,
nur anfanglich aktiv sind und dann durch die seit-
lichen Behinderungen gehemmt werden.
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wenn es nicht das zum aktuellen
Schliissel am besten passende ist. Die
Kernidee von Grossberg [6] ist in die-
sem Zusammenhang, Riickkopplun-
gen vom Schloss zum Schliissel einzu-
bauen. Ein aktiviertes Schloss sendet
dabei seinen gelernten Schliissel an
diejenige Schicht von Neuronen zu-
riick, die den Schliissel repriasentieren.
Aufmerksamkeitsprozesse vergleichen
den aktuellen mit dem erwarteten

Schloss und erwartetem Schliissel statt.
Diesen Mechanismus nennt man
«Adaptive Resonanz-Theorie». Sie
kann z.B. auf ein Masking Field ange-
wendet werden. Dieses ist damit stets
bereit, neue Informationen zu lernen,
wihrend die alte (in einem anderen
Kontext wesentliche) Information ge-
schutzt bleibt. Im Gegensatz zu Struk-
turen ohne Adaptive Resonanz kann
eine neue Erkennungskategorie (ein

werden, die dem autonomen Nerven-
system der Lebewesen ein gutes Stiick
ndherkommen diirften.
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