Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 80 (1989)

Heft: 1

Artikel: Programmiertechnik fur die Mechatronik

Autor: Maier, G. E.

DOl: https://doi.org/10.5169/seals-903621

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903621
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Mechatronik

Programmiertechnik fiir die Mechatronik

G. E. Maier

Ausgehend von den Anforderun-
gen, welche an die Software fiir
Mechatroniksysteme gestellt
werden, wird der heutige Stand
von Werkzeugen (Programmier-
sprachen, Echtzeitbetriebs-
systeme) und Lésungskonzepten
aufgezeigt. Neben CASE-Werk-
zeugen, Exception-Behandlung
und voligraphischen Bedie-
nungsschnittstellen wird ein
Forschungsprojekt beschrieben,
das zum Ziele hat, durch
anwendernahe graphische Pro-
grammierung, den Programmie-
rer moglichst weitgehend von
Informatikspezialkenntnissen zu
entlasten.

En partant des exigences posées
aux logiciels pour systemes
mécatroniques, on montre l’état
actuel des outils (langages de
programmation, systemes d’ex-
ploitation en temps réel) et des
concepts de solutions. A cété
des outils CASE, du traitement
exceptionnel et des interfaces
de conduite entierement graphi-
ques, un projet de recherche est
décrit qui a pour but de déchar-
ger le programmeur dans une
large mesure de connaissances
spéciales en informatique par
une programmation graphique
bien applicable.

Adresse des Autors

Dr. Georg E. Maier, Asea Brown Boveri AG,
Forschungszentrum, Abt. Informatik CRBC 2,
5405 Baden-Dattwil.

Ein wesentlicher Faktor fiir den Er-
folg von Mechatroniksystemen ist ihre
Flexibilitat. Durch Austausch von Pro-
grammen kann die Funktionalitét
eines Systems ohne Anpassung der
Hardware innerhalb eines weiten Rah-
mens verdndert werden. Die Software
wird mehr und mehr zum entscheiden-
den Faktor, der die Geschwindigkeit
der technischen Entwicklung, z.B. auf
dem Gebiet der Robotik, weitgehend
bestimmt und begrenzt.

Das Erstellen von Software ist je-
doch alles andere als einfach, und
Kosteniiberschreitungen, mangelhafte
Qualitdt, fehlende Dokumentation
und Probleme bei Erweiterungen sind
fast an der Tagesordnung. Im Gegen-
satz zur raschen Entwicklung der
Hardwareleistung steigt die Program-
mierproduktivitit nur langsam an.
Obwohl Programme fast ohne Auf-
wand vervielfiltigt werden konnen
und im Betrieb kein Verschleiss zu ver-
zeichnen ist, besteht ein wachsender
Bedarf nach neuer Software, der nur
zu einem kleinen Teil durch Wieder-
verwendung gestillt werden kann.

Ziel dieses Artikels ist, die Anforde-
rungen an die Programmierung von
Mechatroniksystemen aufzuzeigen,
den heutigen Stand der angewandten
Programmiertechniken zu beschreiben
und auf einige Trends in Entwicklung
und Forschung einzugehen. Aspekte
der Rechnerkommunikation, der
kiinstlichen Intelligenz und Datenban-
ken koéonnen aus Platzgriinden nicht
beriicksichtigt werden.

Anforderungsanalyse

Funktionalitat

In der Mechatronik tibernimmt die
Software je nach Groésse des Systems
eine oder mehrere der folgenden Auf-
gaben, die oft mit den Funktionen des
Gesamtsystems zusammenfallen oder
sehr eng mit diesen verkniipft sind:

- Erfassen (Ablesen von Sensoren),
Aufbereiten (Filtern), Speichern (in
einer Datenbank), Verarbeiten
(Analyse, Statistik usw.) sowie Aus-
gabe (Ansteuern von Stellgliedern)
von Daten,

- Uberwachung,
Protokollierung,

- quasikontinuierliche und ereignis-
orientierte Steuerungen (Open-
Loop) und Regelungen (Closed-
Loop),

- Modellierung wichtiger Aspekte des
Systems oder seiner Umwelt als
Grundlage fiir die Erfiillung anderer
Aufgaben,

- Bedienungsschnittstelle fiir den Be-
trieb (Darstellung von Daten, z.B.
des Anlagezustands, Bedienung der
Anlage, Unterstiitzung des Bedie-
ners),

- Bedienungsschnittstelle fiir den Un-
terhalt (Engineering: On-line-Pla-
nung, -Konfiguration, -Simulation
und -Programmierung der Anlage').

Alarmierung und

Hardwarenahe Programmierung

Bei der Datenerfassung und -ausga-
be - z.B. beim Ablesen von Sensoren
und beim Ansteuern von Stellgliedern
- wird auf tiefster Stufe direkt auf Ge-
rateregister zugegriffen, die auf abso-
luten Adressen im Hauptspeicher oder
in einem speziellen Input-Output-Be-
reich liegen. Dabei miissen Daten auf
der Stufe einzelner Bit manipuliert
werden kénnen (z.B. Konversion eines
12-Bit-A/D-Wandlerausganges in
eine interne 16-Bit-Darstellung und
umgekehrt). Weiter miissen spezifische

I Beim On-line-Engineering kann das System
wihrend des Betriebes verdndert werden. On-
line-Engineering ist also eine Funktion (Tatig-
keit) des Systems, wihrend Off-line-Engineering
eine Aufgabe der Umgebung ist, in der das
System entwickelt wird.

18

Bulletin ASE/UCS 80(1989)1, 7 janvier

Informatik

Timing-Anforderungen eingehalten
und Interrupts verarbeitet werden
kénnen.

Echtzeit

Im Gegensatz zur kommerziellen
Datenverarbeitung muss die Software
in der Mechatronik den zeitlichen An-
forderungen der betreffenden Anwen-
dung geniigen. Harte, d.h. unbedingt
einzuhaltende Grenzen sind die Ab-
tastzeiten von quasikontinuierlichen
Regelungen und Steuerungen sowie
die maximale Reaktionszeit bei der
Verarbeitung externer Ereignisse. Eine
weitere, harte Grenze fiir die minimale
Rechenleistung kann sich aus der
Menge der Daten ergeben, die iiber
einen ldngeren Zeitraum erfasst, auf-
bereitet, gespeichert und verarbeitet
werden miissen.

Weniger absolut, aber immer noch
strenger als in der kommerziellen EDV
sind die zeitlichen Anforderungen, die
an die Mensch-Maschine-Kommuni-
kation gestellt werden. Die maximalen
Antwortzeiten - z.B. die Zeit, die bend-
tigt wird, um auf Abruf den Zustand
einer Anlage graphisch darzustellen -
miissen typisch im Bereich von 1 bis 3
Sekunden liegen.

Parallelitit

Bereits in kleinen Systemen muss
die Software nicht nur eine, sondern
viele, meist sehr unterschiedliche Auf-
gaben erfilllen. Mit einem sequentiel-
len Programm ist dies kaum mdoglich.
Es muss deshalb mit Multitasking
(parallele Prozesse) gearbeitet werden
konnen.

Software-Engineering

Software-Engineering ist die Inge-
nieurdisziplin, die sich mit der Spezifi-
kation, dem Entwurf, der Realisie-
rung, dem Test, der Wartung und der
Erweiterung von Software befasst.
Viele Mechatroniksysteme miissen
wihrend ihrer Lebensdauer immer
wieder an die Entwicklung oder an
spezielle Aufgaben angepasst werden.
Die Softwarequalitdt und die vorhan-
dene Dokumentation bestimmen dann
weitgehend, wie leicht Korrekturen,
Anderungen und Erweiterungen reali-
siert werden konnen und ob die Pro-
gramme in weiteren Projekten wieder-
verwendet oder neu entwickelt werden
miissen. Angesichts des wachsenden
Anteils der Softwarekosten an den Ge-
samtkosten ist die Wiederverwendbar-
keit von Programmteilen von hoher
wirtschaftlicher Bedeutung. Neben

den Methoden und Werkzeugen, die
direkt der Programmerstellung dienen,
fallen auch Hilfsmittel fiir das Projekt-
management und die Verwaltung ver-
schiedener Versionen und Varianten
ins Gebiet des Software-Engineerings.

Heutiger Stand der
Programmiertechnik

Die heutige Situation stellt hohe An-
forderungen an den Software-Ent-
wickler. Die Produktion effizienter,
qualitativ guter und wiederverwend-
barer Software setzt Kenntnisse und
Erfahrungen auf vielen Gebieten vor-
aus, wie Programmiersprachen, Stan-
dardwerkzeuge (Editor, Compiler,
Linker usw.), Programmierschnittstel-
len von Bibliotheken, parallele Prozes-
se und Synchronisation, Fehlerbe-
handlung, hardwarenahe Program-
mierung und Rechnerkommunikation.
Dieses Wissen hat in der Vergangen-
heit bei vielen Projekten gefehlt. Ko-
steniiberschreitungen, fehlende Doku-
mentation, mangelhafte Leistung und
Probleme bei Erweiterungen und
Wiederverwendung waren immer wie-
der festzustellen. Die Entwicklung von
Echtzeitsoftware gilt deshalb auch
heute noch als schwierig und risiko-
reich.

Wie immer, finden sich auch hier
Ausnahmen, welche die Regel bestiti-
gen. So stehen auf dem Gebiet der
speicherprogrammierbaren Steuerun-
gen heute graphische, PC-basierte Pro-
grammier- und Testwerkzeuge zur
Verfiigung, mit deren Hilfe der An-
wender ein Programm ausschliesslich
auf der Funktionsplanebene (Gra-
phik) manipulieren kann. Im Ver-
gleich zur konventionellen Program-
miertechnik werden wesentlich weni-
ger Spezialkenntnisse bendtigt. Im fol-
genden werden einige heute weitver-
breitete Programmierwerkzeuge und
-methoden niher beschrieben.

Programmiersprachen

Wihrend der letzten Jahre haben
Hochsprachen mit Echtzeitunterstiit-
zung wie Pascal und Modula-2 sowie
neuerdings auch Ada und C die
Assemblersprachen in Echtzeitsyste-
men weitgehend verdrdngt. Die Vortei-
le dieser Entwicklung sind Einfach-
heit, Maschinenunabhingigkeit, Por-
tabilitdt, verbesserte Lesbarkeit, Un-
terstiitzung fiir strukturierte Program-
mierung und Typenchecks durch den
Compiler. Neben diesen gemeinsamen
Vorteilen hat jede dieser Sprachen
auch ihre Eigenheiten:

- Die urspriingliche Definition von
Pascal [1] enthélt keine Konstrukte fiir
Multitasking, Synchronisation, hard-
warenahe Programmierung und Mo-
dularisierung (Aufteilung eines Pro-
grammes in Module mit genau defi-
nierten Schnittstellen). Es entstanden
aber eine ganze Reihe von Pascal-Dia-
lekten, die alle oder einen Teil dieser
Aufgaben unterstiitzen. Diese Erweite-
rungen sind jedoch nicht standardi-
siert und Programme sind nicht mehr
portabel, d.h. sie konnen nicht mehr
ohne Anderung auf ein anderes Sy-
stem gebracht werden.

- Modula-2 [2] unterstiitzt die Modu-
larisierung und die hardwarenahe Pro-
grammierung sehr gut. Weiter erlaubt
das Modulkonzept, Erweiterungen
wie Multitasking und Synchronisation
in Modula-2 zu kodieren. Portabilitit
ist leicht erreichbar, indem die in Mo-
dula-2 kodierten Erweiterungen por-
tiert werden.

- Die Sprache des amerikanischen
Verteidigungsministeriums Ada [3]
unterstiitzt Multitasking, Synchronisa-
tion, Modularisierung und hardware-
nahe Programmierung. Sie wurde spe-
ziell im Hinblick auf die Portabilitit
von Anwendungen in der Mechatro-
nik entwickelt. Im Vergleich mit Mo-
dula-2 ist Ada deutlich komplexer. Die
Ada-Compiler setzen deshalb lei-
stungsfahigere Rechner voraus und
sind wesentlich teurer.

- Die Sprache C[4] verdankt ihre Be-
liebtheit und Verbreitung dem herstel-
lerunabhingigen Betriebssystem
Unix, das sich mehr und mehr zum
Standard fiir Arbeitsstationen entwik-
kelt. Fiir die meisten neuen Prozesso-
ren ist heute zuerst ein C-Compiler
verfiigbar. C ist gut geeignet fiir hard-
warenahe Programmierung und unter-
stiitzt bis zu einem gewissen Masse die
Modularisierung. Nachteile von C
sind die schlechte Lesbarkeit und die
mangelhafte Unterstiitzung von Da-
tentypen. Besonders gravierend sind
diese Nachteile unserer Meinung nach
fiir Ingenieure, die nur gelegentlich
programmieren, und fiir Systeme, die
noch nach Jahren erweitert werden
miissen, wenn der urspriingliche Ent-
wickler ldngst nicht mehr zur Verfii-
gung steht.

Um das Bild der in der Schweiz ver-
wendeten Echtzeitsprachen abzurun-
den, seien hier noch Portal [5] und
Chill [6] erwdhnt. Ahnlich wie Ada
unterstiitzen beide Multitasking, Syn-
chronisation, Modularisierung und
hardwarenahe Programmierung. Chill

Bulletin SEV/VSE 80(1989)1, 7. Januar

19

Mechatronik

wird vor allem in der Telekommunika-
tion eingesetzt.

Multitasking und Echtzeit

Echtzeit-Betriebssysteme sind heute
Bestandteil der eingesetzten Program-
miersprache (Pascal-Dialekte, Ada,
Portal, Chill) oder stehen als Biblio-
thek von Unterprogrammen zur Ver-
fugung (Modula-2, C). Sie unterstiit-
zen Multitasking und Synchronisa-
tion, um die Zusammenarbeit paralle-
ler Prozesse zu koordinieren.

Die Gliederung eines Programmes
in parallele Prozesse ist eine Aufgabe
der Entwurfsphase, fiir die nur wenige
allgemeingiiltige Regeln angegeben
werden konnen:

- Das Echtzeitverhalten kann opti-
miert werden, indem zeitkritische Auf-
gaben von unkritischen getrennt wer-
den. In einem System mit Verdrin-
gung (Preemption) kann mit unter-
schiedlichen Prozesspriorititen er-
reicht werden, dass der Prozessor je-
derzeit der momentan wichtigsten
Aufgabe zugewiesen wird: Die Verar-
beitung eines wichtigen Ereignisses
mit einer maximal tolerierbaren Reak-
tionszeit tg muss eine Berechnung
niedriger Prioritdt verdrdngen, falls
diese ldanger als tr dauert.

- Unabhidngige oder nur schwach mit-
einander gekoppelte Aufgaben werden
mit Vorteil als parallele Prozesse bear-
beitet, um auch eine Entkopplung der
entsprechenden Programmteile zu er-
reichen.

Weiter basiert ein guter Entwurf vor
allem auf Erfahrung. Neben der Rand-
bedingung, dass der Overhead im Be-
triebssystem fiir Prozessumschaltun-
gen und Synchronisation maximal 10
bis 20% der Rechenleistung betragen
darf, muss auch die Korrektheit ge-
wiihrleistet werden. Prozesse diirfen
sich nicht gegenseitig blockieren (was
vorkommen kann, wenn z.B. jeder
wartet, bis ihm ein anderer eine Mel-
dung sendet) und die Konsistenz von
Daten darf nicht verletzt werden (Bei-
spiel: zwei Prozesse modifizieren
gleichzeitig dieselben Daten). Blosses
Testen kann die Korrektheit von Echt-
zeitprogrammen nicht garantieren, da
die Wahrscheinlichkeit des Auftretens
eines vorhandenen Fehlers beliebig
klein sein kann. Es sind deshalb auch
formale Uberlegungen nétig.

Die Synchronisation, das Gewihrlei-
sten zeitlicher Einschridnkungen bei
der Ausfiihrung von Prozessen, glie-
dert man in gegenseitigen Ausschluss
(Mutual Exclusion) und gegenseitiges

Anstossen (Cross Stimulation). Zwi-
schen den beiden Konzepten besteht
ein fliessender Ubergang. Grundsitz-
lich kann jede Art von Synchronisa-
tion sowohl mit gegenseitigem Aus-
schluss beim Zugriff auf globale Daten
als auch durch Austauschen von Mel-
dungen realisiert werden.

Gegenseitiges Anstossen - um z.B.
von einem anderen Prozess eine
Dienstleistung anzufordern - kann mit
einer Mailbox (Briefkasten) realisiert
werden. Mit der Operation Send(mb,
message) wird eine Meldung in den
Briefkasten gelegt, und mit Recei-
ve(mb, message) kann der andere Pro-
zess die Meldung abholen. Falls noch
keine Meldung da ist, wird er in Recei-
veverzogert, bis eine eintrifft.

Gegenseitiger Ausschluss - z.B. um
einen Zugriff auf globale Daten zu
schiitzen - kann ebenfalls mit einer
Mailbox erreicht werden. Zu Beginn
wird im Briefkasten eine Meldung ab-
gelegt, die als Schliissel dient. Jeder
Prozess muss vor einem Zugriff mit
Receive(mb, key) den Schliissel holen
und ihn nachher mit Send(mb, key)
wieder zuriicklegen. Im Konfliktfall
wird der Prozess, welcher den Schliis-
sel verlangt, verzogert, bis dieser ver-
fiigbar ist.

Software-Engineering

Das Lebensphasenmodell (Spezifi-
kation, Entwurf, Realisierung, Test
und Wartung) ist allgemein bekannt,
wie auch die Tatsache, dass Kosten fiir
die Korrektur eines Fehlers um Fakto-
ren zunehmen, je spéter der Fehler ent-
deckt wird. Die praktische Anwen-
dung der Methoden des Software-En-
gineering stdsst aber noch héufig auf
Schwierigkeiten. Es gibt beispielsweise
kaum Unterstiitzung fiir Iterationen,
d.h. fiir nachtrigliche Anderungen der
Spezifikation oder des Entwurfs. Die
Versuchung ist gross, nur den Code zu
korrigieren. Dann aber sind die Spezi-
fikations- und Entwurfsdokumente
nicht mehr mit dem Code konsistent.
Eine weitere Schwierigkeit liegt in der
Ausbildung und Erfahrung. Ein An-
finger lernt zuerst an kleinen Beispie-
len zu programmieren, und erst nach
und nach auch zu entwerfen und zu
spezifizieren. Innerhalb eines Projekts
ist die Reihenfolge jedoch umgekehrt.
Man ist deshalb von bereits gemachten
Erfahrungen abhingig. Die Metho-
den, welche heute in der Spezifika-
tions- und Entwurfsphase eingesetzt
werden, sind Zustandsdiagramme,
Entscheidungstabellen, Petri-Netze,

Struktogramme, Datenflussdiagram-
me und Pseudocode. Die damit erar-
beiteten Resultate werden manuell in
den Code umgesetzt. Als Werkzeuge
stehen Texteditoren, Compiler und
Linker, symbolische Debugger sowie
Versions- und Variantenverwaltungs-
systeme zur Verfiigung.

Tendenzen in der
Entwicklung und Forschung

Nach diesem Uberblick iiber die
heute iiblichen Programmiertechniken
werden nun als Beispiele einige kurz-
und mittelfristige Entwicklungen dis-
kutiert.

CASE-Werkzeuge (kurzfristig)

Rechnergestiitzte Werkzeuge
Computer-Aided-Software- Enginee-
ring stehen vielerorts kurz vor der Ein-
fithrung oder werden bereits versuchs-
weise eingesetzt. Sie unterstiitzen Spe-
zifikations- und Entwurfsmethoden
wie SA/SD (Structured Analysis,
Structured Design). Weitentwickelte
Pakete enthalten Erweiterungen fiir
Echtzeitanwendungen [7]. Die Voraus-
setzung fiir CASE-Werkzeuge sind
graphikfihige Arbeitsstationen. Die
Investitionen pro Arbeitsplatz betra-
gen heute etwa 15 bis 40 000 Franken
fur Hard- und Software.

CASE-Werkzeuge erlauben dem
Anwender, sich auf abstrakter Stufe
mit seinem Problem auseinanderzuset-
zen und nicht auf der Detailstufe einer
Programmiersprache. Die erzeugten
Dokumente sind 16sungsneutraler und
leichter verstandlich als konventionel-
le Programme. Weitere Erleichterun-
gen fiir den Anwender werden sich er-
geben, sobald die Werkzeuge automa-
tisch Code erzeugen konnen und Itera-
tionen, d.h. nachtrigliche Korrekturen
einer Spezifikation oder eines Ent-
wurfs, wirksam unterstiitzen.

fur

Exception-Behandlung (kurzfristig)

Eine Exception ist das Auftreten
einer Bedingung, welche die normale
Beendigung einer zugewiesenen Auf-
gabe verunmoglicht. Beispiele sind die
Detektion von Fehlern durch die
Hardware (illegale Adresse, Division
durch Null) oder von Daten, die ihre
Konsistenzbedingung nicht mehr er-
fiillen. In Systemen ohne Unterstiit-
zung zur Behandlung von Exceptions
ist eine Exception gleichbedeutend mit
einem Programmabsturz, den man mit
IF- und GOTO-Anweisungen zu ver-
meiden sucht. Modernere Sprachen

20

Bulletin ASE/UCS 80(1989)1, 7 janvier

Informatik

(z.B. Ada) oder Betriebssysteme erlau-
ben, Exceptions abzufangen und in
speziellen Programmteilen, den Excep-
tion-Handlern, zu bearbeiten. Dort
sucht man, den Fehler zu beheben
oder zu vertuschen und in den norma-
len Programmfluss zuriickzukehren
(Recovery). Gelingt dies nicht, wird
die Exception an die ndchsthéhere
Stufe weitergereicht. Normale Betriebs-
zustdnde lassen sich so von der Fehler-
behandlung besser trennen. Es ergibt
sich eine einfachere Programmstruk-
tur - z.B. mit weniger IF-Anweisun-
gen.

In Echtzeitsystemen muss die Ex-
ception-Behandlung mit der Synchro-
nisation gekoppelt werden, um Dead-
locks zu verhindern. Muss z.B. ein Pro-
zess, der irgendein Betriebsmittel (z.B.
einen Drucker) reserviert hat, infolge
einer Exception abgebrochen werden,
konnte sich nach und nach das ganze
System blockieren, falls nicht garan-
tiert wird, dass das Betriebsmittel wie-
der freigegeben wird. In [8] wird ein
Exception-Behandlungsmechanismus
fiir Echtzeitsysteme mit integrierter
Objektverwaltung vorgestellt, der die
Realisierung von fehlertoleranten
Synchronisationskonzepten unter-
stiitzt. Thre Semantik ist auch fiir den
Fall von Exceptions klar definiert, und
Zufiélle kdnnen ausgeschlossen wer-
den.

Fiir das Problem des gegenseitigen
Ausschlusses wird ein abstrakter Da-
tentyp Region mit den Operationen
Enter(region) und Exit(region) vorge-
schlagen. Verldsst ein Prozess einen
mit Enter/Exit geschiitzten, kritischen
Programmteil, so wird nicht nur ga-
rantiert, dass der Bereich wieder frei-
gegeben wird, sondern auch, dass die
Konsistenz der geschiitzten Daten
iberpriift werden kann, bevor der
nichste Prozess zugreifen darf. Das
System erlaubt, bestimmte Programm-
teile (z. B. Gruppen von Prozessen) vor
Auswirkungen von Exceptions in an-
deren Programmteilen zu schiitzen.

Die Erfahrung hat gezeigt, dass ein
wichtiger Vorteil darin liegt, dass nach

PickAndPlace PickAndPlace |
uses Gripper, xAxis, IyAxis, LRSensor
Open
Move
Open
15 5l goal done
04 vel pos 4—1
Gripper
fe SetP1
Grasp Servo
0.9 . : -
width gripPos pos
or
LASens vel pos € Move
right rightTouched done
left leftTouched l
Grasp
SetP1 done tooSmall
ool
1.0
SetP2 Move , SetP2
xAXxis
7.0
goal Servo
5.0
> Move
1.0 —» vel pos pos
done
yAxis ‘
Servo Open
P pos done
v \
G b done tooSmall

Figur2 Programm PickAndPlace
a Datenfluss b Kontrollfluss

einer Exception automatisch gewisse
Objekte geloscht werden. Damit ist
beispielsweise jederzeit bekannt, wel-
che der dynamisch gestarteten Prozes-
se noch laufen, und ein Programmteil,
der infolge einer Exception abgebro-
chen wurde, kann ohne weiteres neu
gestartet werden.

Vollgraphische Bedienungs-
schnittstellen (mittelfristig)

In grosseren Systemen wird man
auch in der Mechatronik mehr und
mehr vollgraphische Bedienungs-
schnittstellen, welche auf Fenster- und
Meniitechnik basieren, anbieten. Die-
se stellen dem Beniitzer das Modell der
sogenannten direkten Manipulation

Figur 1
X-Y-Tisch
mit Greifer

Beruihrungssensoren

zur Verfiigung: Objekte werden gra-
phisch dargestellt und koénnen mit
einer Maus direkt selektiert, verscho-
ben, kopiert, geloscht und eingefiigt
werden. In Pull-Down- oder Pop-Up-
Meniis stehen jederzeit alle gerade er-
laubten Befehle zur Verfiigung, und in
Dialogfenstern kann der Beniitzer des
Systems zusdtzlich bendtigte Daten
eingeben.

So einfach eine solche Bedienungs-
schnittstelle erlernt und eingesetzt
wird, so kompliziert ist ihre Realisie-
rung. Der Inhalt eines Fensters muss
beim Verschieben, Verkleinern und
Vergrossern iliberlappender Fenster
sowie beim Scrollen? aufdatiert wer-
den, und die Ereignisse, welche Maus
und Tastatur erzeugen, miissen verar-
beitet werden. Die Programmstruktur
ist heute meist auf die Ereignisverar-
beitung ausgerichtet. Die eigentliche
Aufgabe eines Programms ist dann
nicht mehr so leicht ersichtlich. Weiter

2Scrollen ist der Fachausdruck fiir das Ver-
schieben des sichtbaren Ausschnitts eines Doku-
ments mit dem Ziel, einen anderen Ausschnitt
darzustellen. Scrollen wird fiir grosse Dokumente
gebraucht, die nicht mehr in ihre Fenster passen.

Bulletin SEV/VSE 80(1989)1, 7. Januar

21

Mechatronik

sind die verschiedenen Programmier-
schnittstellen, z.B. auf dem Macintosh
und dem IBM PC (Graphikpaket
GEM), so unterschiedlich, dass eine
Ubertragung eines Programms sehr
aufwendig ist.

Die weitere Entwicklung lduft in
Richtung sogenannter User-Interface-
Management-Systeme, die eine Ent-
kopplung der Anwendung und der
graphischen Bedienungsschnittstelle
zum Ziel haben. Liangerfristig kann
mit einer wesentlichen Vereinfachung
des Entwicklungsaufwands fiir voll-
graphische Bedienungsschnittstellen
gerechnet werden. Ein erster Schritt in
Richtung einer vereinfachten Pro-
grammierschnittstelle und der Portabi-
litdt zwischen verschiedenen Rechnern
ist der optionale Teil des Modula-2
Operating System Standard Interface
OSSI [9], der Graphik, Fenster- und
Meniitechnik unterstiitzt.

Anwendernahe graphische
Programmierwerkzeuge
(mittelfristig)

Beim Programmentwurf werden oft
einzelne Aspekte in Diagrammen ver-
anschaulicht. Darstellungen von Da-
tenfliissen, Abldufen oder der stati-
schen Programmstruktur entsprechen
der Gewohnbheit der Ingenieure, Struk-
turen und Zusammenhdnge sichtbar
zu machen. Es ist deshalb naheliegend,
die Programmiertechnik in diese Rich-
tung zu erweitern. Im Gebiet der
speicherprogrammierbaren Steuerun-
gen sind graphische Programmier-
werkzeuge bereits tiblich [10]. Ein Pro-
gramm kann dort als Funktionsplan
(Datenflussgraph) dargestellt werden,
weil die Spezifikation im wesentlichen
durch eine Abbildung der Einginge
auf die Ausgidnge formuliert werden
kann. Fiir grosse Systeme konnen die-
se Werkzeuge nicht eingesetzt werden,
da die Darstellung des Datenflusses
fir die Ereignisverarbeitung und fiir
die Bearbeitung komplexer Algorith-
men nicht ausreicht.

Die Anwendung graphischer Pro-
grammiersprachen fiir allgemeine
Echtzeitanwendungen mit automati-
scher Codegenerierung wird die An-
forderungen an den Anwendungspro-
grammierer reduzieren, die Dokumen-
tation und Qualitit verbessern sowie
Anderungen und Erweiterungen auf
tiefster Stufe durch den Anwendungs-
ingenieur ermoglichen (z.B. Program-
mierung und Integration eines neuen
Sensors in einen Roboter, inkl. Anpas-
sung der Regelalgorithmen).

Figur 3
Schnittstellen der
Geriitetypen Servo Ser use Servo
und der Funktionen pos
Move und Grasp
a Datenfluss
b Kontrollfluss l
Move
goal Move
— vel pos [@=———>p d(ln 2
Grasp l
—® width gripPos [&——>p
—» vel pos [Grasp .
AighTaLEhad done tooSmall gripperClosed
—» P leftTouched ¢ ‘ ‘
a b

Beispiel eines
anwendernahen
Programmierwerkzeuges

Am Forschungszentrum der Asea
Brown Boveri AG lduft gegenwirtig
ein Projekt, das die Anwendbarkeit
graphischer Programmiertechniken
wesentlich erweitern soll. Die zentrale
Idee ist, sowohl den Datenfluss als
auch den Kontrollfluss eines Pro-
grammteils in zwei unabhidngigen, sich
ergidnzenden Sichten (Daten- und
Kontrollfluss) darzustellen. Die Ziele
bei der Entwicklung dieser Sprache
waren des weitern klar definierte
Schnittstellen und einfache Wieder-
verwendung von Programmteilen, Un-
abhingigkeit vom Zielsystem?®, Eig-

3So soll z.B. die Aufteilung auf parallele Pro-
zesse und ihre Verteilung auf die Knoten eines
Rechnernetzwerkes gegen aussen versteckt wer-
den.

nung fiir Debugging und interpretierte
Ausfithrung.

Diese graphische Programmierspra-
che und ihr Einsatz werden an einem
einfachen Beispiel illustriert: Es steht
ein X-Y-Tisch mit einem Greifer zur
Verfiigung (Fig. 1). Seine Finger wer-
den in X-Richtung geschlossen und
sind mit Beriihrungssensoren bestiickt.
Das Programm PickAndPlace ergreift
ein Objekt im Punkt P1 und legt es im
Punkt P2 wieder ab. Jede der drei Ach-
sen wird liber den Sollwert ihres Lage-
regelkreises (Servo) gesteuert. Die
Funktion Move erlaubt eine koordi-
nierte Bewegung mehrerer Achsen zu
einem beliebigen Ziel, die Funktion
Grasp ein Greifen von Objekten.

Das Hauptprogramm in Figur 2
zeigt im Kontrollfluss die Sequenz der
einzelnen Operationen und im Daten-
fluss die Abhdngigkeiten der beteilig-
ten Gerédte und Funktionen. Die drei
Achsen xAxis, yAxis und Gripper wer-
den durch Instanzen (Tab. I) des Geréa-

Begriffsdefinitionen

fach (auch gleichzeitig) mit verschiedenen

realisierter Peripheriegerite.

Eine Funktion ist ein seiteneffektfreier Algorithmus, der aus den Werten der Funktions-
einginge Werte fiir die Ausgiange der Funktion berechnet. Eine Funktion kann mehr-

Aufruf wird als Funktionsinstanz bezeichnet.

Ein Gerdtetyp (Device Type) ist ein aktiver Datentyp. Seine Schnittstelle besteht aus
Datenfeldern. Wie Funktionen, sind Gerétetypen mehrfach verwendbar. Eine Instanz
eines Geritetyps wird Gerdt (Device) genannt. Im Gegensatz zu den normalen (passi-
ven) Datentypen werden die Werte der Datenfelder eines Gerits intern verarbeitet oder
modifiziert. Die beiden Begriffe entsprechen somit der Vorstellung mittels Software

Das Verhalten einer Funktion (oder eines Geréitetyps) wird durch ihr Interface (Schnitt-
stelle) definiert. Die Implementation (Realisierung) ist von der Schnittstelle getrennt
und ist fiir den Anwender der Funktion (oder des Geritetyps) nicht sichtbar.

Eingangswerten aufgerufen werden. Ein

Tabelle I

22

Bulletin ASE/UCS 80(1989)1, 7 janvier

Informatik

tetyps Servo, welcher das Datenfeld
pos (Positionssollwert) enthélt, model-
liert (Fig. 3). Die Funktion Move wird
sowohl zum Offnen des Greifers als
auch zur Positionierung des X-Y-Ti-
sches eingesetzt. Die Instanz des Geré-
tetyps LRSensor modelliert die zwei
Beriihrungssensoren im Greifer. Der
Geritetyp Servo wird als abgetasteter
PI-Regelkreis realisiert. Er setzt sich
aus dem Lesen der Soll- und Istposi-
tion (Positionssensor), dem Regelalgo-
rithmus und der Ausgabe des Steuer-
werts (Fig. 4) zusammen. Die Sollposi-
tion pos darf nur in kleinen Schritten
verdndert werden, damit die effektive
Position nur wenig davon abweicht.
Beim Starten des Servos wird pos mit
der aktuellen Position initialisiert. Der
Regelkreis arbeitet parallel zum restli-
chen Programm (use Servo).

Die Figur 5 zeigt, wie in der Funk-
tion Move aus dem aktuellen und dem
gewiinschten Positionsvektor die Di-
stanz und Bewegungsrichtung be-
stimmt (Plan) und an die Funktion
GenSetPoint iibergeben werden, die
dann den Ausgangsvektor pos schritt-
weise verandert, bis die Zielposition
goal erreicht ist. Die Funktion Grasp
(Fig. 6) hat die Aufgabe, einen Greifer
zu schliessen, bis das Objekt mit bei-
den Fingern beriihrt wird. Falls einer
der Sensoren zuerst anspricht, muss
mit einer Kompensationsbewegung
der Greiferaufhingung verhindert
werden, dass das Objekt umgestossen
werden konnte. Fiir den allgemeineren
Fall eines drehbaren Greifers muss als
Vorbereitung dessen Orientierung be-
stimmt werden.

Die graphische Programmierspra-
che basiert auf seiteneffektfreien?
Funktionen und Gerédtetypen. Die
Schnittstelle einer Funktion umfasst
im Datenfluss die Ein- und Ausginge,
im Kontrollfluss die verschiedenen
Ereignisse, die eine Ausfithrung been-
den konnen. Grasp z.B. kann erfolg-
reich mit done oder mit den Fehlerbe-
dingungen tooSmall oder gripperClo-
sed enden.

Bei Ein- und Ausgidngen einer
Funktion wird unterschieden, ob pro
Ausfiihrung ein einzelnes Datenobjekt
(einfacher Pfeil) oder ein kontinuierli-
cher Fluss von Datenobjekten (Dop-
pelpfeil) konsumiert oder produziert
wird. Eine einzelne Ausfiihrung von

4d.h. Funktionen, die nur die eigenen Aus-
ginge beeinflussen.

Figur 4 Servo
Implementation des .
Geritetyps Servo InitPos
a Datenfluss PiController Read
b Kontrollfluss pos P desired value T“I pos
Read* Write*
value PP actual u value
a
Servo
InitPos
v i Read", PIController, |20 ms
use Servo§ Write*
N

Move erzeugt aus einer Zielposition
eine Sequenz von neuen Positionssoll-
werten. Eine Funktion, die nur einzel-
ne Datenobjekte bearbeitet, kann mit
dem Operator * repetitiv aufgerufen
werden, um Datenfliisse zu verarbei-
ten (z.B. Read*in Fig. 2).

Skalare Daten werden in der Daten-
flusssicht mit diinnen, strukturierte
Daten (z.B. Vektoren) mit dicken Li-
nien dargestellt. Direkte Signale zwi-
schen Funktionen im Datenfluss be-
stimmen auch die Ausfithrungsreihen-
folge. Im Kontrollfluss erscheint eine
Menge so gekoppelter Funktionen zu-
sammengefasst als einzelne Operation
(z.B. Read*, PIController, Write* in
Fig. 4). Falls die Ausfithrungsreihen-

Figur 5 Move

folge nicht aus dem Datenfluss abge-
leitet werden kann, miissen Variablen
eingefiigt werden (z.B. rightDelta in
Fig. 6). Eine detaillierte Beschreibung
des Beispiels und der graphischen Pro-
grammiersprache ist in [11] zu finden.

Praktisch kann eine derartige Pro-
grammiersprache erst eingesetzt wer-
den, wenn ein syntaxgesteuertes, gra-
phisches Werkzeug mit automatischer
Codegenerierung verfiigbar ist. Die
Konsistenz zwischen Datenfluss und
Kontrollfluss muss vom Werkzeug
dauernd garantiert werden, damit der
Programmierer die Sprachregeln nicht
verletzen kann und sie deshalb auch
nicht in allen Details kennen muss.
Ein solches Werkzeug befindet sich

Implementation der

Funktion Move

Plan
actual

a Datenfluss
b Kontrollfluss

|

desired

GenSetPoint

1 distance

Adiet
aisitance

direction 1 direction

goal

vel

vel

pos

Move

Plan,
GenSetPoint

done

done

Bulletin SEV/VSE 80(1989)1, 7. Januar

23

Mechatronik

gegenwirtig im ABB-Forschungszen-
trum in Entwicklung. Der Prototyp
wird automatisch Modula-2-Quellen-
code generieren, um den Aufwand zur
Einbettung in eine konkrete Umge-
bung minimal zu halten.

Langerfristig muss das Program-
mierwerkzeug in eine Umgebung ein-
gebettet werden, die das Testen von
Programmen erlaubt und Zugriff auf
eine Engineeringdatenbank mit der
Anlagekonfiguration besitzt, um das
Anbinden eines Programms an
1/0-Gerite (Sensoren und Stellglie-
der) und die Verteilung des Pro-
gramms auf mehrere Rechner zu unter-
stutzen.

Im Vergleich zu allgemeinen CASE-
Werkzeugen stellt sich die Frage, ob
bei der Automatisierung technischer
Systeme weiterhin das Modell der pha-
senweisen Software-Erstellung im
Vordergrund stehen wird oder eher ein
Modell, das mehrere orthogonale (d.h.
einander nicht beeinflussende) Tatig-
keiten vorsieht, wie das Erfassen der
Anlagekonfiguration, das Program-
mieren der Funktion und das Abbil-
den der Funktion auf die Konfigura-
tion.

Schlussbetrachtungen

Die heutigen Probleme bei der Er-
stellung von qualitativ hochstehender
Echtzeitsoftware haben ihre Ursache
primdr in den vielfiltigen Anforderun-
gen, die an den Entwickler gestellt
werden und damit in dessen begrenz-
ter Ausbildung und Erfahrung. We-
sentliche Verbesserungen sind nur zu
erwarten, wenn es gelingt, die Summe
aller Anforderungen zu senken. In der
Vergangenheit wie in der Gegenwart
wurde und wird versucht, wiederkeh-
rende Aufgaben nicht immer neu zu
l6sen, sondern Standardsoftware zu
entwickeln und einzusetzen. So wur-
den projektspezifische Losungen zur
Befriedigung von Parallelitdtsanforde-
rungen durch Standard-Echtzeitbe-
triebssysteme abgeldst, und anstelle
von individuellen Mechanismen zur
Fehlerbehandlung werden mehr und
mehr allgemein verwendbare Excep-
tion-Behandlungsmechanismen einge-
setzt. In Zukunft werden - das ldsst
sich bereits heute mit Sicherheit sagen
- Programmiersprachen und Werk-
zeuge verfiigbar sein, welche die heute
iibliche manuelle Aufteilung eines
Programms in parallele Prozesse und
deren Verteilung auf mehrere Rechner
zumindest teilweise automatisieren
werden.

Grasp
CloseGripper
width Move
|
vel goa
vel pos >
gripPos
M1
GripperAxis a'b)
o CompensateRight
pos direction a
rightDelta DMove
) I
maxWidth —# b > T delta
vel pos
right M2
Touched - a'b CompensateLeft
—'———Pbl rig
left 1 a leftDelta
Touched DMove
——p]] lett A—>ib delta
vel pos 2
a pos
Grasp
CASE
width>=gripPos width<gripPos
T
GripperAxis, M1, M2
WAIT
4
left right CloseGripper
- done
CompensateLeft CompensateRight
done done
.| I |
NOT left - NOT right
right AND left
error error
v \ \
b gripperClosed done tooSmall

Figur 6 Implementation der Funktion Grasp

a Datenfluss b Kontrollfluss

Literatur

[11 K. Jensen and N. Wirth: Pascal - User
manual and report. Lecture notes in compu-
ter science, vol. 18. Berlin/Heidelberg,
Springer-Verlag, 1974.

[2] N. Wirth: Programmierung in Modula-2.
Texts and monographs in computer science.
Berlin/Heidelberg, Springer-Verlag, 1982.

[3] Reference manual for the Ada programming
language. ANSI/MIL-Standard 1815A-
1983.

[4] B.W. Kernighan and D.M. Ritchie: The C
programming language. Englewood-Cliffs,
N.J., Prentice-Hall, 1978.

[5] H.H. Nigeli: Programmieren mit Portal.
Eine Einfiilhrung. Zug, Landis & Gyr, 1981.

[6] W. Sammer und H. Schwirtzel: Chill. Eine
moderne Programmiersprache fiir die
Systemtechnik. Berlin/Heidelberg, Springer-
Verlag, 1982.

[71 D.J. Hatley and I.A. Pirbhai: Strategies for
real-time system specification. New York,
Dorset House Publishing Corporation, 1987.
G.E. Maier: Exception-Behandlung und
Synchronisation. Entwurf und Methode.
Informatik-Fachberichte 105. Band. Berlin/
Heidelberg, Springer-Verlag, 1985.

E. Biagioni a.o.: OSSI - A portable operating
system interface and utility library for
Modula-2. ETH-Institut fiir Informatik,
Report 79. Ziirich, ETH, 1987.

R. Giith und J. Kriz: Informatikforschung
in einem Industrieunternehmen. Technische
Rundschau (1986) 27, S. 58-63.

G.E. Maier: Towards graphical program-
ming in control of mechanical systems.
Proceedings of the IUTAM/IFAC Sympo-
sium on Dynamics of Controlled Mechanical
Systems. Berlin/Heidelberg, Springer-Ver-
lag.

(8]

)

[10]

(1]

24

Bulletin ASE/UCS 80(1989)1, 7 janvier

	Programmiertechnik für die Mechatronik

