
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 80 (1989)

Heft: 1

Artikel: Programmiertechnik für die Mechatronik

Autor: Maier, G. E.

DOI: https://doi.org/10.5169/seals-903621

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903621
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Mechatronik

Programmiertechnik für die Mechatronik
G. E. Maier

Ausgehend von den Anforderungen,

welche an die Software für
Mechatroniksysteme gestellt
werden, wird der heutige Stand
von Werkzeugen (Programmiersprachen,

Echtzeitbetriebssysteme)

und Lösungskonzepten
aufgezeigt. Neben CASE-Werk-
zeugen, Exception-Behandlung
und vollgraphischen
Bedienungsschnittstellen wird ein
Forschungsprojekt beschrieben,
das zum Ziele hat, durch
anwendernahe graphische
Programmierung, den Programmierer

möglichst weitgehend von
Informatikspezialkenntnissen zu
entlasten.

En partant des exigences posées
aux logiciels pour systèmes
mécatroniques, on montre l'état
actuel des outils (langages de

programmation, systèmes
d'exploitation en temps réel) et des

concepts de solutions. A côté
des outils CASE, du traitement
exceptionnel et des interfaces
de conduite entièrement graphiques,

un projet de recherche est
décrit qui a pour but de décharger

le programmeur dans une
large mesure de connaissances
spéciales en informatique par
une programmation graphique
bien applicable.

Adresse des Autors
Dr. Georg E. Maier, Asea Brown Boveri AG,
Forschungszentrum, Abt. Informatik CRBC 2,
5405 Baden-Dättwil.

Ein wesentlicher Faktor für den
Erfolg von Mechatroniksystemen ist ihre
Flexibilität. Durch Austausch von
Programmen kann die Funktionalität
eines Systems ohne Anpassung der
Hardware innerhalb eines weiten
Rahmens verändert werden. Die Software
wird mehr und mehr zum entscheidenden

Faktor, der die Geschwindigkeit
der technischen Entwicklung, z.B. auf
dem Gebiet der Robotik, weitgehend
bestimmt und begrenzt.

Das Erstellen von Software ist
jedoch alles andere als einfach, und
Kostenüberschreitungen, mangelhafte
Qualität, fehlende Dokumentation
und Probleme bei Erweiterungen sind
fast an der Tagesordnung. Im Gegensatz

zur raschen Entwicklung der
Hardwareleistung steigt die
Programmierproduktivität nur langsam an.
Obwohl Programme fast ohne
Aufwand vervielfältigt werden können
und im Betrieb kein Verschleiss zu
verzeichnen ist, besteht ein wachsender
Bedarf nach neuer Software, der nur
zu einem kleinen Teil durch
Wiederverwendung gestillt werden kann.

Ziel dieses Artikels ist, die Anforderungen

an die Programmierung von
Mechatroniksystemen aufzuzeigen,
den heutigen Stand der angewandten
Programmiertechniken zu beschreiben
und auf einige Trends in Entwicklung
und Forschung einzugehen. Aspekte
der Rechnerkommunikation, der
künstlichen Intelligenz und Datenbanken

können aus Platzgründen nicht
berücksichtigt werden.

Anforderungsanalyse
Funktionalität

In der Mechatronik übernimmt die
Software je nach Grösse des Systems
eine oder mehrere der folgenden
Aufgaben, die oft mit den Funktionen des

Gesamtsystems zusammenfallen oder
sehr eng mit diesen verknüpft sind:

- Erfassen (Ablesen von Sensoren),
Aufbereiten (Filtern), Speichern (in
einer Datenbank), Verarbeiten
(Analyse, Statistik usw.) sowie
Ausgabe (Ansteuern von Stellgliedern)
von Daten,

- Überwachung, Alarmierung und
Protokollierung,

- quasikontinuierliche und
ereignisorientierte Steuerungen (Open-
Loop) und Regelungen (Closed-
Loop),

- Modellierung wichtiger Aspekte des

Systems oder seiner Umwelt als
Grundlage für die Erfüllung anderer
Aufgaben,

- Bedienungsschnittstelle für den
Betrieb (Darstellung von Daten, z.B.
des Anlagezustands, Bedienung der
Anlage, Unterstützung des Bedie-
ners),

- Bedienungsschnittstelle für den
Unterhalt (Engineering: On-line-Pla-
nung, -Konfiguration, -Simulation
und -Programmierung der Anlage1).

Hardwarenahe Programmierung
Bei der Datenerfassung und -ausgäbe

- z.B. beim Ablesen von Sensoren
und beim Ansteuern von Stellgliedern
- wird auf tiefster Stufe direkt auf
Geräteregister zugegriffen, die auf absoluten

Adressen im Hauptspeicher oder
in einem speziellen Input-Output-Be-
reich liegen. Dabei müssen Daten auf
der Stufe einzelner Bit manipuliert
werden können (z.B. Konversion eines

12-Bit-A/D-Wandlerausganges in
eine interne 16-Bit-Darstellung und
umgekehrt). Weiter müssen spezifische

1 Beim On-line-Engineering kann das System
während des Betriebes verändert werden.
Online-Engineering ist also eine Funktion (Tätigkeit)

des Systems, während Off-line-Engineering
eine Aufgabe der Umgebung ist, in der das

System entwickelt wird.

18 Bulletin ASE/UCS 80(1989)1, 7 janvier

Informatik

Timing-Anforderungen eingehalten
und Interrupts verarbeitet werden
können.

Echtzeit

Im Gegensatz zur kommerziellen
Datenverarbeitung muss die Software
in der Mechatronik den zeitlichen
Anforderungen der betreffenden Anwendung

genügen. Harte, d.h. unbedingt
einzuhaltende Grenzen sind die
Abtastzeiten von quasikontinuierlichen
Regelungen und Steuerungen sowie
die maximale Reaktionszeit bei der
Verarbeitung externer Ereignisse. Eine
weitere, harte Grenze für die minimale
Rechenleistung kann sich aus der
Menge der Daten ergeben, die über
einen längeren Zeitraum erfasst,
aufbereitet, gespeichert und verarbeitet
werden müssen.

Weniger absolut, aber immer noch
strenger als in der kommerziellen EDV
sind die zeitlichen Anforderungen, die
an die Mensch-Maschine-Kommunikation

gestellt werden. Die maximalen
Antwortzeiten - z.B. die Zeit, die benötigt

wird, um auf Abruf den Zustand
einer Anlage graphisch darzustellen -
müssen typisch im Bereich von 1 bis 3

Sekunden liegen.

Parallelität
Bereits in kleinen Systemen muss

die Software nicht nur eine, sondern
viele, meist sehr unterschiedliche
Aufgaben erfüllen. Mit einem sequentiellen

Programm ist dies kaum möglich.
Es muss deshalb mit Multitasking
(parallele Prozesse) gearbeitet werden
können.

Software-Engineering

Software-Engineering ist die
Ingenieurdisziplin, die sich mit der Spezifikation,

dem Entwurf, der Realisierung,

dem Test, der Wartung und der
Erweiterung von Software befasst.
Viele Mechatroniksysteme müssen
während ihrer Lebensdauer immer
wieder an die Entwicklung oder an
spezielle Aufgaben angepasst werden.
Die Softwarequalität und die vorhandene

Dokumentation bestimmen dann
weitgehend, wie leicht Korrekturen,
Änderungen und Erweiterungen realisiert

werden können und ob die
Programme in weiteren Projekten
wiederverwendet oder neu entwickelt werden
müssen. Angesichts des wachsenden
Anteils der Softwarekosten an den
Gesamtkosten ist die Wiederverwendbarkeit

von Programmteilen von hoher
wirtschaftlicher Bedeutung. Neben

den Methoden und Werkzeugen, die
direkt der Programmerstellung dienen,
fallen auch Hilfsmittel für das
Projektmanagement und die Verwaltung
verschiedener Versionen und Varianten
ins Gebiet des Software-Engineerings.

Heutiger Stand der
Programmiertechnik

Die heutige Situation stellt hohe
Anforderungen an den Software-Entwickler.

Die Produktion effizienter,
qualitativ guter und wiederverwendbarer

Software setzt Kenntnisse und
Erfahrungen auf vielen Gebieten voraus,

wie Programmiersprachen,
Standardwerkzeuge (Editor, Compiler,
Linker usw.), Programmierschnittstellen

von Bibliotheken, parallele Prozesse

und Synchronisation,
Fehlerbehandlung, hardwarenahe Programmierung

und Rechnerkommunikation.
Dieses Wissen hat in der Vergangenheit

bei vielen Projekten gefehlt.
Kostenüberschreitungen, fehlende
Dokumentation, mangelhafte Leistung und
Probleme bei Erweiterungen und
Wiederverwendung waren immer wieder

festzustellen. Die Entwicklung von
Echtzeitsoftware gilt deshalb auch
heute noch als schwierig und risikoreich.

Wie immer, finden sich auch hier
Ausnahmen, welche die Regel bestätigen.

So stehen auf dem Gebiet der
speicherprogrammierbaren Steuerungen

heute graphische, PC-basierte
Programmier- und Testwerkzeuge zur
Verfügung, mit deren Hilfe der
Anwender ein Programm ausschliesslich
auf der Funktionsplanebene (Graphik)

manipulieren kann. Im
Vergleich zur konventionellen
Programmiertechnik werden wesentlich weniger

Spezialkenntnisse benötigt. Im
folgenden werden einige heute weitverbreitete

Programmierwerkzeuge und
-methoden näher beschrieben.

Programmiersprachen
Während der letzten Jahre haben

Hochsprachen mit Echtzeitunterstützung

wie Pascal und Modula-2 sowie
neuerdings auch Ada und C die
Assemblersprachen in Echtzeitsystemen

weitgehend verdrängt. Die Vorteile
dieser Entwicklung sind Einfachheit,

Maschinenunabhängigkeit, Por-
tabilität, verbesserte Lesbarkeit,
Unterstützung für strukturierte Programmierung

und Typenchecks durch den
Compiler. Neben diesen gemeinsamen
Vorteilen hat jede dieser Sprachen
auch ihre Eigenheiten:

- Die ursprüngliche Definition von
Pascal [1] enthält keine Konstrukte für
Multitasking, Synchronisation,
hardwarenahe Programmierung und
Modularisierung (Aufteilung eines
Programmes in Module mit genau
definierten Schnittstellen). Es entstanden
aber eine ganze Reihe von Pascal-Dialekten,

die alle oder einen Teil dieser
Aufgaben unterstützen. Diese Erweiterungen

sind jedoch nicht standardisiert

und Programme sind nicht mehr
portabel, d.h. sie können nicht mehr
ohne Änderung auf ein anderes
System gebracht werden.

- Modula-2 [2] unterstützt die
Modularisierung und die hardwarenahe
Programmierung sehr gut. Weiter erlaubt
das Modulkonzept, Erweiterungen
wie Multitasking und Synchronisation
in Modula-2 zu kodieren. Portabilität
ist leicht erreichbar, indem die in
Modula-2 kodierten Erweiterungen por-
tiert werden.

- Die Sprache des amerikanischen
Verteidigungsministeriums Ada [3]
unterstützt Multitasking, Synchronisation,

Modularisierung und hardwarenahe

Programmierung. Sie wurde speziell

im Hinblick auf die Portabilität
von Anwendungen in der Mechatronik

entwickelt. Im Vergleich mit
Modula-2 ist Ada deutlich komplexer. Die
Ada-Compiler setzen deshalb
leistungsfähigere Rechner voraus und
sind wesentlich teurer.

- Die Sprache C [4] verdankt ihre
Beliebtheit und Verbreitung dem
herstellerunabhängigen Betriebssystem
Unix, das sich mehr und mehr zum
Standard für Arbeitsstationen entwik-
kelt. Für die meisten neuen Prozessoren

ist heute zuerst ein C-Compiler
verfügbar. C ist gut geeignet für
hardwarenahe Programmierung und unterstützt

bis zu einem gewissen Masse die
Modularisierung. Nachteile von C
sind die schlechte Lesbarkeit und die
mangelhafte Unterstützung von
Datentypen. Besonders gravierend sind
diese Nachteile unserer Meinung nach
für Ingenieure, die nur gelegentlich
programmieren, und für Systeme, die
noch nach Jahren erweitert werden
müssen, wenn der ursprüngliche
Entwickler längst nicht mehr zur Verfügung

steht.

Um das Bild der in der Schweiz
verwendeten Echtzeitsprachen abzurunden,

seien hier noch Portal [5] und
Chili [6] erwähnt. Ähnlich wie Ada
unterstützen beide Multitasking,
Synchronisation, Modularisierung und
hardwarenahe Programmierung. Chili

Bulletin SEV/VSE 80(1989)1, 7. Januar 19

Mechatronik

wird vor allem in der Telekommunikation
eingesetzt.

Multitasking und Echtzeit

Echtzeit-Betriebssysteme sind heute
Bestandteil der eingesetzten
Programmiersprache (Pascal-Dialekte, Ada,
Portal, Chili) oder stehen als Bibliothek

von Unterprogrammen zur
Verfügung (Modula-2, C). Sie unterstützen

Multitasking und Synchronisation,

um die Zusammenarbeit paralleler
Prozesse zu koordinieren.

Die Gliederung eines Programmes
in parallele Prozesse ist eine Aufgabe
der Entwurfsphase, für die nur wenige
allgemeingültige Regeln angegeben
werden können:

- Das Echtzeitverhalten kann
optimiert werden, indem zeitkritische
Aufgaben von unkritischen getrennt werden.

In einem System mit Verdrängung

(Preemption) kann mit
unterschiedlichen Prozessprioritäten
erreicht werden, dass der Prozessor
jederzeit der momentan wichtigsten
Aufgabe zugewiesen wird: Die
Verarbeitung eines wichtigen Ereignisses
mit einer maximal tolerierbaren
Reaktionszeit tR muss eine Berechnung
niedriger Priorität verdrängen, falls
diese länger als ?r dauert.

- Unabhängige oder nur schwach
miteinander gekoppelte Aufgaben werden
mit Vorteil als parallele Prozesse
bearbeitet, um auch eine Entkopplung der
entsprechenden Programmteile zu
erreichen.

Weiter basiert ein guter Entwurf vor
allem auf Erfahrung. Neben der
Randbedingung, dass der Overhead im
Betriebssystem für Prozessumschaltun-
gen und Synchronisation maximal 10

bis 20% der Rechenleistung betragen
darf, muss auch die Korrektheit
gewährleistet werden. Prozesse dürfen
sich nicht gegenseitig blockieren (was
vorkommen kann, wenn z.B. jeder
wartet, bis ihm ein anderer eine
Meldung sendet) und die Konsistenz von
Daten darf nicht verletzt werden
(Beispiel: zwei Prozesse modifizieren
gleichzeitig dieselben Daten). Blosses
Testen kann die Korrektheit von
Echtzeitprogrammen nicht garantieren, da
die Wahrscheinlichkeit des Auftretens
eines vorhandenen Fehlers beliebig
klein sein kann. Es sind deshalb auch
formale Überlegungen nötig.

Die Synchronisation, das Gewährleisten

zeitlicher Einschränkungen bei
der Ausführung von Prozessen, gliedert

man in gegenseitigen Ausschluss
(Mutual Exclusion) und gegenseitiges

Anstossen (Cross Stimulation).
Zwischen den beiden Konzepten besteht
ein fliessender Übergang. Grundsätzlich

kann jede Art von Synchronisation
sowohl mit gegenseitigem

Ausschluss beim Zugriff auf globale Daten
als auch durch Austauschen von
Meldungen realisiert werden.

Gegenseitiges Anstossen - um z.B.
von einem anderen Prozess eine
Dienstleistung anzufordern - kann mit
einer Mailbox (Briefkasten) realisiert
werden. Mit der Operation Sendfmb,
message) wird eine Meldung in den
Briefkasten gelegt, und mit Recei-
ve(mb, message) kann der andere Prozess

die Meldung abholen. Falls noch
keine Meldung da ist, wird er in Receive

verzögert, bis eine eintrifft.
Gegenseitiger Ausschluss - z.B. um

einen Zugriff auf globale Daten zu
schützen - kann ebenfalls mit einer
Mailbox erreicht werden. Zu Beginn
wird im Briefkasten eine Meldung
abgelegt, die als Schlüssel dient. Jeder
Prozess muss vor einem Zugriff mit
Receive(mb, key) den Schlüssel holen
und ihn nachher mit Send(mb, key)
wieder zurücklegen. Im Konfliktfall
wird der Prozess, welcher den Schlüssel

verlangt, verzögert, bis dieser
verfügbar ist.

Software-Engineering

Das Lebensphasenmodell (Spezifikation,

Entwurf, Realisierung, Test
und Wartung) ist allgemein bekannt,
wie auch die Tatsache, dass Kosten für
die Korrektur eines Fehlers um Faktoren

zunehmen, je später der Fehler
entdeckt wird. Die praktische Anwendung

der Methoden des Software-Engineering

stösst aber noch häufig auf
Schwierigkeiten. Es gibt beispielsweise
kaum Unterstützung für Iterationen,
d.h. für nachträgliche Änderungen der
Spezifikation oder des Entwurfs. Die
Versuchung ist gross, nur den Code zu

korrigieren. Dann aber sind die Spezi-
fikations- und Entwurfsdokumente
nicht mehr mit dem Code konsistent.
Eine weitere Schwierigkeit liegt in der
Ausbildung und Erfahrung. Ein
Anfänger lernt zuerst an kleinen Beispielen

zu programmieren, und erst nach
und nach auch zu entwerfen und zu

spezifizieren. Innerhalb eines Projekts
ist die Reihenfolge jedoch umgekehrt.
Man ist deshalb von bereits gemachten
Erfahrungen abhängig. Die Methoden,

welche heute in der Spezifika-
tions- und Entwurfsphase eingesetzt
werden, sind Zustandsdiagramme,
Entscheidungstabellen, Petri-Netze,

Struktogramme, Datenflussdiagram-
me und Pseudocode. Die damit
erarbeiteten Resultate werden manuell in
den Code umgesetzt. Als Werkzeuge
stehen Texteditoren, Compiler und
Linker, symbolische Debugger sowie
Versions- und Variantenverwaltungssysteme

zur Verfügung.

Tendenzen in der
Entwicklung und Forschung

Nach diesem Überblick über die
heute üblichen Programmiertechniken
werden nun als Beispiele einige kurz-
und mittelfristige Entwicklungen
diskutiert.

CASE-Werkzeuge (kurzfristig)
Rechnergestützte Werkzeuge für

Computer-Aided-Software-Enginee-
ring stehen vielerorts kurz vor der
Einführung oder werden bereits versuchsweise

eingesetzt. Sie unterstützen Spe-
zifikations- und Entwurfsmethoden
wie SA/SD (Structured Analysis,
Structured Design). Weitentwickelte
Pakete enthalten Erweiterungen für
Echtzeitanwendungen [7]. Die Voraussetzung

für CASE-Werkzeuge sind
graphikfähige Arbeitsstationen. Die
Investitionen pro Arbeitsplatz betragen

heute etwa 15 bis 40 000 Franken
für Hard- und Software.

CASE-Werkzeuge erlauben dem
Anwender, sich auf abstrakter Stufe
mit seinem Problem auseinanderzusetzen

und nicht auf der Detailstufe einer
Programmiersprache. Die erzeugten
Dokumente sind lösungsneutraler und
leichter verständlich als konventionelle

Programme. Weitere Erleichterungen

für den Anwender werden sich
ergeben, sobald die Werkzeuge automatisch

Code erzeugen können und
Iterationen, d.h. nachträgliche Korrekturen
einer Spezifikation oder eines
Entwurfs, wirksam unterstützen.

Exception-Behandlung (kurzfristig)
Eine Exception ist das Auftreten

einer Bedingung, welche die normale
Beendigung einer zugewiesenen
Aufgabe verunmöglicht. Beispiele sind die
Detektion von Fehlern durch die
Hardware (illegale Adresse, Division
durch Null) oder von Daten, die ihre
Konsistenzbedingung nicht mehr
erfüllen. In Systemen ohne Unterstützung

zur Behandlung von Exceptions
ist eine Exception gleichbedeutend mit
einem Programmabsturz, den man mit
IF- und GOTO-Anweisungen zu
vermeiden sucht. Modernere Sprachen

20 Bulletin ASE/UCS 80(1989)1,7 janvier

Informatik

(z.B. Ada) oder Betriebssysteme erlauben,

Exceptions abzufangen und in
speziellen Programmteilen, den Excep-
tion-Handlern, zu bearbeiten. Dort
sucht man, den Fehler zu beheben
oder zu vertuschen und in den normalen

Programmfluss zurückzukehren
(Recovery). Gelingt dies nicht, wird
die Exception an die nächsthöhere
Stufe weitergereicht. Normale Betriebs-
zustände lassen sich so von der
Fehlerbehandlung besser trennen. Es ergibt
sich eine einfachere Programmstruktur

- z.B. mit weniger FF-Anweisun-
gen.

In Echtzeitsystemen muss die Ex-
ception-Behandlung mit der Synchronisation

gekoppelt werden, um Deadlocks

zu verhindern. Muss z.B. ein Pro-
zess, der irgendein Betriebsmittel (z.B.
einen Drucker) reserviert hat, infolge
einer Exception abgebrochen werden,
könnte sich nach und nach das ganze
System blockieren, falls nicht garantiert

wird, dass das Betriebsmittel wieder

freigegeben wird. In [8] wird ein
Exception-Behandlungsmechanismus
für Echtzeitsysteme mit integrierter
Objektverwaltung vorgestellt, der die
Realisierung von fehlertoleranten
Synchronisationskonzepten unterstützt.

Ihre Semantik ist auch für den
Fall von Exceptions klar definiert, und
Zufälle können ausgeschlossen werden.

Für das Problem des gegenseitigen
Ausschlusses wird ein abstrakter
Datentyp Region mit den Operationen
Enter(region) und Exit(region)
vorgeschlagen. Verlässt ein Prozess einen
mit Enter/Exit geschützten, kritischen
Programmteil, so wird nicht nur
garantiert, dass der Bereich wieder
freigegeben wird, sondern auch, dass die
Konsistenz der geschützten Daten
überprüft werden kann, bevor der
nächste Prozess zugreifen darf. Das
System erlaubt, bestimmte Programmteile

(z. B. Gruppen von Prozessen) vor
Auswirkungen von Exceptions in
anderen Programmteilen zu schützen.

Die Erfahrung hat gezeigt, dass ein
wichtiger Vorteil darin liegt, dass nach

PickAndPlace PickAndPlace

1.5.
0.1 _

LRSensor

right

left

Open
Move

goal

vel pos

Grasp

width gripPos

vel pos

rightTouched

leftTouched

SetP1

1.0

1.0 ZMU-i
SetP2

7.0

5.0

Move

goal

vel pos

Figur 2 Programm PickAndPlace
a Datenfluss b Kontrollfluss

einer Exception automatisch gewisse
Objekte gelöscht werden. Damit ist
beispielsweise jederzeit bekannt, welche

der dynamisch gestarteten Prozesse

noch laufen, und ein Programmteil,
der infolge einer Exception abgebrochen

wurde, kann ohne weiteres neu
gestartet werden.

Vollgraphische
Bedienungsschnittstellen (mittelfristig)

In grösseren Systemen wird man
auch in der Mechatronik mehr und
mehr vollgraphische
Bedienungsschnittstellen, welche auf Fenster- und
Menütechnik basieren, anbieten. Diese

stellen dem Benützer das Modell der
sogenannten direkten Manipulation

Ep "x 2Greifer

Berührungssensoren

Figur 1

X-Y-Tisch
mit Greifer

Gripper
Servo

xAxis

Servo

pos

yAxis

Servo

uses Gripper, xAxis, yAxis, LRSensor

Open
done

1

SetP1

1 '

Move

done

1 r

Grasp
done tooSmall

SetP2

Move

Open

done

zur Verfügung: Objekte werden
graphisch dargestellt und können mit
einer Maus direkt selektiert, verschoben,

kopiert, gelöscht und eingefügt
werden. In Pull-Down- oder Pop-Up-
Menüs stehen jederzeit alle gerade
erlaubten Befehle zur Verfügung, und in
Dialogfenstern kann der Benützer des

Systems zusätzlich benötigte Daten
eingeben.

So einfach eine solche Bedienungsschnittstelle

erlernt und eingesetzt
wird, so kompliziert ist ihre Realisierung.

Der Inhalt eines Fensters muss
beim Verschieben, Verkleinern und
Vergrössern überlappender Fenster
sowie beim Scrollen2 aufdatiert werden,

und die Ereignisse, welche Maus
und Tastatur erzeugen, müssen verarbeitet

werden. Die Programmstruktur
ist heute meist auf die Ereignisverarbeitung

ausgerichtet. Die eigentliche
Aufgabe eines Programms ist dann
nicht mehr so leicht ersichtlich. Weiter

2 Scrollen ist der Fachausdruck für das
Verschieben des sichtbaren Ausschnitts eines Dokuments

mit dem Ziel, einen anderen Ausschnitt
darzustellen. Scrollen wird für grosse Dokumente
gebraucht, die nicht mehr in ihre Fenster passen.

Bulletin SEV/VSE 80(1989)1, 7. Januar 21

Mechaîronik

a b

sind die verschiedenen Programmierschnittstellen,

z.B. auf dem Macintosh
und dem IBM PC (Graphikpaket
GEM), so unterschiedlich, dass eine
Übertragung eines Programms sehr
aufwendig ist.

Die weitere Entwicklung läuft in
Richtung sogenannter User-Interface-
Management-Systeme, die eine
Entkopplung der Anwendung und der
graphischen Bedienungsschnittstelle
zum Ziel haben. Längerfristig kann
mit einer wesentlichen Vereinfachung
des Entwicklungsaufwands für
vollgraphische Bedienungsschnittstellen
gerechnet werden. Ein erster Schritt in
Richtung einer vereinfachten
Programmierschnittstelle und der Portabi-
lität zwischen verschiedenen Rechnern
ist der optionale Teil des Modula-2
Operating System Standard Interface
OSSI [9], der Graphik, Fenster- und
Menütechnik unterstützt.

Anwendernahe graphische
Programmierwerkzeuge
(mittelfristig)

Beim Programmentwurf werden oft
einzelne Aspekte in Diagrammen
veranschaulicht. Darstellungen von
Datenflüssen, Abläufen oder der
statischen Programmstruktur entsprechen
der Gewohnheit der Ingenieure, Strukturen

und Zusammenhänge sichtbar
zu machen. Es ist deshalb naheliegend,
die Programmiertechnik in diese Richtung

zu erweitern. Im Gebiet der
speicherprogrammierbaren Steuerungen

sind graphische Programmierwerkzeuge

bereits üblich [10]. Ein
Programm kann dort als Funktionsplan
(Datenflussgraph) dargestellt werden,
weil die Spezifikation im wesentlichen
durch eine Abbildung der Eingänge
auf die Ausgänge formuliert werden
kann. Für grosse Systeme können diese

Werkzeuge nicht eingesetzt werden,
da die Darstellung des Datenflusses
für die Ereignisverarbeitung und für
die Bearbeitung komplexer Algorithmen

nicht ausreicht.
Die Anwendung graphischer

Programmiersprachen für allgemeine
Echtzeitanwendungen mit automatischer

Codegenerierung wird die
Anforderungen an den Anwendungsprogrammierer

reduzieren, die Dokumentation

und Qualität verbessern sowie
Änderungen und Erweiterungen auf
tiefster Stufe durch den Anwendungsingenieur

ermöglichen (z.B. Programmierung

und Integration eines neuen
Sensors in einen Roboter, inkl. Anpassung

der Regelalgorithmen).

Figur 3
Schnittstellen der
Gerätetypen Servo
und der Funktionen
Move und Grasp
a Datenfluss
b Kontrollfluss

Beispiel eines
anwendernahen
Programmierwerkzeuges

Am Forschungszentrum der Asea
Brown Boveri AG läuft gegenwärtig
ein Projekt, das die Anwendbarkeit
graphischer Programmiertechniken
wesentlich erweitern soll. Die zentrale
Idee ist, sowohl den Datenfluss als
auch den Kontrollfluss eines
Programmteils in zwei unabhängigen, sich
ergänzenden Sichten (Daten- und
Kontrollfluss) darzustellen. Die Ziele
bei der Entwicklung dieser Sprache
waren des weitern klar definierte
Schnittstellen und einfache
Wiederverwendung von Programmteilen,
Unabhängigkeit vom Zielsystem3, Eig-

3 So soll z.B. die Aufteilung auf parallele
Prozesse und ihre Verteilung auf die Knoten eines
Rechnernetzwerkes gegen aussen versteckt werden.

nung für Debugging und interpretierte
Ausführung.

Diese graphische Programmiersprache
und ihr Einsatz werden an einem

einfachen Beispiel illustriert: Es steht
ein X-Y-Tisch mit einem Greifer zur
Verfügung (Fig. 1). Seine Finger werden

in X-Richtung geschlossen und
sind mit Berührungssensoren bestückt.
Das Programm PickAndPlace ergreift
ein Objekt im Punkt PI und legt es im
Punkt P2 wieder ab. Jede der drei Achsen

wird über den Sollwert ihres
Lageregelkreises (Servo) gesteuert. Die
Funktion Move erlaubt eine koordinierte

Bewegung mehrerer Achsen zu
einem beliebigen Ziel, die Funktion
Graspein Greifen von Objekten.

Das Hauptprogramm in Figur 2

zeigt im Kontrollfluss die Sequenz der
einzelnen Operationen und im Datenfluss

die Abhängigkeiten der beteiligten
Geräte und Funktionen. Die drei

Achsen xAxis, yAxis und Gripper werden

durch Instanzen (Tab. I) des Gerä-

Begriffsdefinitionen
Eine Funktion ist ein seiteneffektfreier Algorithmus, der aus den Werten der Funktionseingänge

Werte für die Ausgänge der Funktion berechnet. Eine Funktion kann mehrfach

(auch gleichzeitig) mit verschiedenen Eingangswerten aufgerufen werden. Ein
Aufruf wird als Funktionsinstanz bezeichnet.

Ein Gerätetyp (Device Type) ist ein aktiver Datentyp. Seine Schnittstelle besteht aus
Datenfeldern. Wie Funktionen, sind Gerätetypen mehrfach verwendbar. Eine Instanz
eines Gerätetyps wird Gerät (Device) genannt. Im Gegensatz zu den normalen (passiven)

Datentypen werden die Werte der Datenfelder eines Geräts intern verarbeitet oder
modifiziert. Die beiden Begriffe entsprechen somit der Vorstellung mittels Software
realisierter Peripheriegeräte.

Das Verhalten einer Funktion (oder eines Gerätetyps) wird durch ihr Interface (Schnittstelle)

definiert. Die Implementation (Realisierung) ist von der Schnittstelle getrennt
und ist für den Anwender der Funktion (oder des Gerätetyps) nicht sichtbar.

Tabelle I

22 Bulletin ASE/UCS 80(1989)1, 7 janvier

Informatik

tetyps Servo, welcher das Datenfeld
pos (Positionssollwert) enthält, modelliert

(Fig. 3). Die Funktion Move wird
sowohl zum Öffnen des Greifers als
auch zur Positionierung des X-Y-Tisches

eingesetzt. Die Instanz des
Gerätetyps LRSensor modelliert die zwei
Berührungssensoren im Greifer. Der
Gerätetyp Servo wird als abgetasteter
PI-Regelkreis realisiert. Er setzt sich
aus dem Lesen der Soll- und Istposition

(Positionssensor), dem Regelalgorithmus

und der Ausgabe des Steuerwerts

(Fig. 4) zusammen. Die Sollposition

pos darf nur in kleinen Schritten
verändert werden, damit die effektive
Position nur wenig davon abweicht.
Beim Starten des Servos wird pos mit
der aktuellen Position initialisiert. Der
Regelkreis arbeitet parallel zum restlichen

Programm (use Servo).
Die Figur 5 zeigt, wie in der Funktion

Move aus dem aktuellen und dem
gewünschten Positionsvektor die
Distanz und Bewegungsrichtung
bestimmt (Plan) und an die Funktion
GenSetPoint übergeben werden, die
dann den Ausgangsvektor pos schrittweise

verändert, bis die Zielposition
goal erreicht ist. Die Funktion Grasp
(Fig. 6) hat die Aufgabe, einen Greifer
zu schliessen, bis das Objekt mit beiden

Fingern berührt wird. Falls einer
der Sensoren zuerst anspricht, muss
mit einer Kompensationsbewegung
der Greiferaufhängung verhindert
werden, dass das Objekt umgestossen
werden könnte. Für den allgemeineren
Fall eines drehbaren Greifers muss als
Vorbereitung dessen Orientierung
bestimmt werden.

Die graphische Programmiersprache
basiert auf seiteneffektfreien4

Funktionen und Gerätetypen. Die
Schnittstelle einer Funktion umfasst
im Datenfluss die Ein- und Ausgänge,
im Kontrollfluss die verschiedenen
Ereignisse, die eine Ausführung beenden

können. Grasp z.B. kann erfolgreich

mit done oder mit den
Fehlerbedingungen tooSmall oder gripperClo-
sed enden.

Bei Ein- und Ausgängen einer
Funktion wird unterschieden, ob pro
Ausführung ein einzelnes Datenobjekt
(einfacher Pfeil) oder ein kontinuierlicher

Fluss von Datenobjekten
(Doppelpfeil) konsumiert oder produziert
wird. Eine einzelne Ausführung von

"d.h. Funktionen, die nur die eigenen
Ausgänge beeinflussen.

Figur 4

Implementation des

Gerätetyps Servo

a Datenfluss
b Kontrollfluss

Servo

Servo

InitPos

rh
i use Servo*

i J

Read*, PIController,
Write*

20 ms

Move erzeugt aus einer Zielposition
eine Sequenz von neuen Positionssollwerten.

Eine Funktion, die nur einzelne

Datenobjekte bearbeitet, kann mit
dem Operator * repetitiv aufgerufen
werden, um Datenflüsse zu verarbeiten

(z.B. Read* in Fig. 2).
Skalare Daten werden in der Daten-

flusssicht mit dünnen, strukturierte
Daten (z.B. Vektoren) mit dicken
Linien dargestellt. Direkte Signale
zwischen Funktionen im Datenfluss
bestimmen auch die Ausführungsreihenfolge.

Im Kontrollfluss erscheint eine
Menge so gekoppelter Funktionen zu-
sammengefasst als einzelne Operation
(z.B. Read*, PIController, Write* in
Fig. 4). Falls die Ausführungsreihen¬

folge nicht aus dem Datenfluss abgeleitet

werden kann, müssen Variablen
eingefügt werden (z.B. rightDelta in
Fig. 6). Eine detaillierte Beschreibung
des Beispiels und der graphischen
Programmiersprache ist in [11] zu finden.

Praktisch kann eine derartige
Programmiersprache erst eingesetzt werden,

wenn ein syntaxgesteuertes,
graphisches Werkzeug mit automatischer
Codegenerierung verfügbar ist. Die
Konsistenz zwischen Datenfluss und
Kontrollfluss muss vom Werkzeug
dauernd garantiert werden, damit der
Programmierer die Sprachregeln nicht
verletzen kann und sie deshalb auch
nicht in allen Details kennen muss.
Ein solches Werkzeug befindet sich

Figur 5

Implementation der
Funktion Move
a Datenfluss
b Kontrollfluss

a

goal

vel

Move

G Plan
actual distance

GenSetPoint
distance

direction

vel pos
pos

< r

Plan,
GenSetPoint

done

done

Bulletin SEV/VSE 80(1989)1, 7. Januar 23

Mechatronik

gegenwärtig im ABB-Forschungszen-
trum in Entwicklung. Der Prototyp
wird automatisch Modula-2-Quellen-
code generieren, um den Aufwand zur
Einbettung in eine konkrete Umgebung

minimal zu halten.
Längerfristig muss das

Programmierwerkzeug in eine Umgebung
eingebettet werden, die das Testen von
Programmen erlaubt und Zugriff auf
eine Engineeringdatenbank mit der
Anlagekonfiguration besitzt, um das
Anbinden eines Programms an
I/O-Geräte (Sensoren und Stellglieder)

und die Verteilung des

Programms auf mehrere Rechner zu
unterstützen.

Im Vergleich zu allgemeinen CASE-
Werkzeugen stellt sich die Frage, ob
bei der Automatisierung technischer
Systeme weiterhin das Modell der
phasenweisen Software-Erstellung im
Vordergrund stehen wird oder eher ein
Modell, das mehrere orthogonale (d.h.
einander nicht beeinflussende)
Tätigkeiten vorsieht, wie das Erfassen der
Anlagekonfiguration, das Programmieren

der Funktion und das Abbilden

der Funktion auf die Konfiguration.

Schlussbetrachtungen
Die heutigen Probleme bei der

Erstellung von qualitativ hochstehender
Echtzeitsoftware haben ihre Ursache
primär in den vielfältigen Anforderungen,

die an den Entwickler gestellt
werden und damit in dessen begrenzter

Ausbildung und Erfahrung.
Wesentliche Verbesserungen sind nur zu
erwarten, wenn es gelingt, die Summe
aller Anforderungen zu senken. In der
Vergangenheit wie in der Gegenwart
wurde und wird versucht, wiederkehrende

Aufgaben nicht immer neu zu
lösen, sondern Standardsoftware zu
entwickeln und einzusetzen. So wurden

projektspezifische Lösungen zur
Befriedigung von Parallelitätsanforderungen

durch Standard-Echtzeitbetriebssysteme

abgelöst, und anstelle
von individuellen Mechanismen zur
Fehlerbehandlung werden mehr und
mehr allgemein verwendbare Excep-
tion-Behandlungsmechanismen eingesetzt.

In Zukunft werden - das lässt
sich bereits heute mit Sicherheit sagen
- Programmiersprachen und Werkzeuge

verfügbar sein, welche die heute
übliche manuelle Aufteilung eines
Programms in parallele Prozesse und
deren Verteilung auf mehrere Rechner
zumindest teilweise automatisieren
werden.

gripperClosed done tooSmall

Figur 6 Implementation der Funktion Grasp

a Datenfluss b Kontrollfluss

Literatur
[1] K. Jensen and N. Wirth: Pascal - User

manual and report. Lecture notes in computer
science, vol. 18. Berlin/Heidelberg,

Springer-Verlag, 1974.

[2] N. Wirth: Programmierung in Modula-2.
Texts and monographs in computer science.
Berlin/Heidelberg, Springer-Verlag, 1982.

[3] Reference manual for the Ada programming
language. ANSI/MIL-Standard 1815A-
1983.

[4] B.W. Kernighan and D.M. Ritchie: The C
programming language. Englewood-Cliffs,
N.J., Prentice-Hall, 1978.

[5] H.H. Nägeli: Programmieren mit Portal.
Eine Einführung. Zug, Landis & Gyr, 1981.

[6] W. Sammer und H. Schwärtzel: Chili. Eine
moderne Programmiersprache für die
Systemtechnik. Berlin/Heidelberg, Springer-
Verlag, 1982.

[7] DJ. Hatley and I.A. Pirbhai: Strategies for
real-time system specification. New York,
Dorset House Publishing Corporation, 1987.

[8] G.E. Maier: Exception-Behandlung und
Synchronisation. Entwurf und Methode.
Informatik-Fachberichte 105. Band. Berlin/
Heidelberg, Springer-Verlag, 1985.

[9] E. Biagioni a.o.: OSSI - A portable operating
system interface and utility library for
Modula-2. ETH-Institut für Informatik,
Report 79. Zürich, ETH, 1987.

[10] R. Giith und J. Kriz: Informatikforschung
in einem Industrieunternehmen. Technische
Rundschau (1986) 27, S. 58-63.

[11] G.E. Maier: Towards graphical program¬
ming in control of mechanical systems.
Proceedings of the IUTAM/IFAC Symposium

on Dynamics of Controlled Mechanical
Systems. Berlin/Heidelberg, Springer-Verlag.

24 Bulletin ASE/UCS 80(1989)1,7 janvier

	Programmiertechnik für die Mechatronik

