Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 80 (1989)

Heft: 3

Artikel: Spezialisierte Hard- und Softwaresysteme fir KI-Anwendungen

Autor: Héanscheid, P.

DOl: https://doi.org/10.5169/seals-903636

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903636
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Expertensysteme

Spezialisierte Hard- und Softwaresysteme
fiir KI-Anwendungen

P. Hanscheid

Der Weg von der Daten- zur Wis-
sensverarbeitung fuhrt von den
konventionellen Sprachen wie
etwa Fortran iiber die KI-
Sprache Lisp und Prolog zur
objektorientierten Programmie-
rung. Zur Unterstiitzung des
KI-Systementwicklers stehen
heute spezialisierte Hard- und
Softwaresysteme zur Verfii-
gung, wie z.B. der Ivory-Chip
und Joshua, die bei Symbolics
Anwendung finden.

La voie allant du traitement des
données a celui des connaissan-
ces conduit des langages classi-
ques comme Fortran a la pro-
grammation orientée objet en
passant par les langages décou-
lant de I'intelligence artificielle
Lisp et Prolog. En vue de soute-
nir le développeur dans le
domaine de I'intelligence artifi-
cielle on dispose actuellement
de systemes matériels et logi-
ciels spécialisés, comme le
Ivory-Chip et Joshua, qui s’utili-
sent a Symbolics.

Adresse des Autors

Dr.-Ing. Peter Hinscheid, Fachbereichsleiter
KI-Consult, Symbolics GmbH,
Mergenthalerallee 77-81, D-6236 Eschborn/Ts.

Immer haufiger werden wissensbasier-
te Systeme (KI-Systeme) in den ver-
schiedensten Branchen der Industrie,
in Universitdten und in Forschungsla-
bors als Intelligenz- und Effizienzver-
stirker bei der Losung komplexer Auf-
gaben, der qualitativen Verbesserung
von Entscheidungsfindungen und in
der Aus- und Weiterbildung einge-
setzt. Die Entwicklung von der Daten-
verarbeitung zur Wissensverarbeitung
begann in den sechziger Jahren mit der
Programmierung isolierter Anwen-
dungsprogramme. Diese waren da-
durch gekennzeichnet, dass alles Wis-
sen liber die zugrundeliegende Anwen-
dung implizit in den Programmen und
Daten eingebettet war (Fig. 1). In den
siebziger Jahren wurde es nun mog-
lich, durch den Einsatz von Daten-
banksystemen Anwendungsprogram-

me datenunabhingig zu machen. Da-
bei wurde nur das Faktenwissen in Da-
tenbanken abgelegt; die Regeln fiir die
Bearbeitung blieben fest im Anwen-
dungsprogramm eingebettet. Damit
bleibt das Programm anwendungsab-
hingig. Zu Beginn der achtziger Jahre
hatte die KI-Forschung Losungen er-
arbeitet, welche die Entwicklung wis-
sensbasierter Systeme moglich mach-
ten. Dabei wird, dhnlich wie bei der
Auslagerung des Faktenwissens in
eine Datenbank, das Regelwissen pro-
grammunabhéngig in einer Wissens-
bank aufgebaut und gepflegt (Fig. 1).
In einem wissensbasierten System ist
demnach das Programm als anwen-
dungsunabhdngiges Steuermodul zu
betrachten.

Die wichtigsten Eigenschaften zwi-
schen der konventionellen Datenver-

Isolierte Anwendungsprogramme §

Datenbanksysteme

Programme
anwendungsabhéangig

Datenban
(Faktenwissen)

Wissensbasierte Systeme

Programme

(anwendungs-
unabhangig)

Wissensbank |
(Regelwissen)

Datenbank

| (Faktenwissen)

Figur 1 Vom Anwendungsprogramm zum wissensbasierten Programm

Von den 60er zu den 80er Jahren

138

Bulletin ASE/UCS 80(1989)3, 4 février

Kl-Werkzeuge

numerischen Daten

symbolischen Ausdriicken

wenige Datentypen, aber
viele Instanzen eines Typs

viele, auch komplizierte
Datenstrukturen, hdufig
wenige Instanzen eines Typs

Fortran, Pascal,

C. Cobol Lisp, Prolog
konventionell explorativ
strukturiert objektorientiert

explizit festgelegt

implizit oder gar nicht

vorgegeben
werden zurlickgewiesen ist méglich
selten haufig

selbstversténdlich

nicht effizient méglich

st

monotonen, klar strukturierten
wobhldefinierten Informations-
verarbeitungsprozessen

hochkomplexen Informa-
tionsstrukturen, inkl. Um-
gang mit diffusem Wissen

bekannt

kognitive Prozesse,
nicht unmittelbar beobachtbar

Massendaten

homogen strukturierten

heterogen strukturierten
Wissenseinheiten

Umfang der Datenmenge

Vielfalt der Wissensstrukturen

prinzipiell méglich bei formaler
Ein/Ausgabespezifikation

i.d.R. nicht m&glich, da Verar-
beitung durch Heuristiken und
mit diffusem Wissen erfolgt

TabelleI Unterscheidungsmerkmale wissensbasierter Systeme

arbeitung und der neuen Technologie
der Wissensverarbeitung sind in Ta-
bellel stichwortartig gegeniiberge-
stellt. Ein wesentliches Merkmal der
Wissensverarbeitung ist - wie man
sieht - die Vielfalt und Komplexitit
der Datenstrukturen. Wissen besteht
eben nicht aus streng strukturierten
numerischen Daten, und Wissensver-
arbeitung ist dementsprechend nicht
einfach Verarbeitung von numeri-
schen Daten, sondern viel mehr Mani-
pulation von Symbolen (Beispiel: ma-
thematische Operationen +, -, X, [,
Verkehrsschilder, Piktogramme usw.).
Hinter einem Symbol kénnen sich ver-
bergen:

- Grundinformationen (Fakten),

- Abstraktion der Grundinformation
zu Sachverhalten (Modelle),

- Informationen iiber Verkniipfungs-
moglichkeiten zu Handlungsplidnen
(Regeln)

Wissensverarbeitung erfordert dem-
nach nicht nur eine einfache Datenver-

arbeitungsanlage, sondern eine Sym-
bolverarbeitungsmaschine.

Lisp - die Programmier-
sprache fiir Wissens-
verarbeitung

Sehr viele wissensbasierte Aktivititen
von Menschen kdnnen als Liste darge-
stellt werden. Eine Anzahl von In-
struktionen, in bestimmter Reihenfol-
ge organisiert, beinhalten Regeln und
Fakten, d.h. Wissen, wie z.B. Kuchen-
rezepte und Mobelbauanleitungen
(auch grafisch oder symbolhaft). Die
Programmiersprache Lisp wurde spe-
ziell fiir die Belange der Wissensverar-
beitung entwickelt und kann bereits
auf einen Erfahrungszeitraum ver-
gleichbar mit dem Fortran zuriickblik-
ken, formulierte doch John McCarthy
1957 schon die erste Lisp-Version. Seit
1960 wurde sie am MIT sténdig weiter-
entwickelt. Der Industriestandard
Common Lisp existiert seit 1984. Der

Basisdatentyp von Lisp ist die Liste
(Lisp steht fiir List-Processing). Dar-
unter ist eine Struktur mit linearer An-
ordnung von Datenelementen zu ver-
stehen, die selber wieder Listen sein
kénnen.

Lisp-Listen bestehen insbesondere
aus den drei Objekttypen:

- Konstanten,
- Variablen,
- Funktionen,

wobei Variable und Funktionen im
allgemeinen iiber Symbole angespro-
chen werden. Symbole haben einen
Namen und konnen wiederum Listen,
d.h. Wissen, reprdsentieren.

Lisp ermdglicht den Aufbau und die
Verarbeitung hochstrukturierter sym-
bolischer Daten und ist somit vorziig-
lich geeignet als Hochsprache fiir die
Wissensverarbeitung. Sdmtliche Da-
tentypen werden als Listen repridsen-
tiert und bediirfen keiner Vereinba-
rung. Beliebig komplexe Datenkon-
strukte konnen erzeugt und selbst wih-
rend der Laufzeit von Programmen
veridndert werden. Lisp bietet die fiir
die Wissensverarbeitung erforderliche
hohe Flexibilitat.

Objektorientierte
Programmierung

Im Gegensatz zu Lisp sind herkdmmli-
che Programmiersprachen sehr stark
auf die sogenannte von-Neumann-Ar-
chitektur der konventionellen Univer-
salrechner zugeschnitten. Die Wir-
kung eines Programms ist hier ein aus
sequentiellen Speichertransformatio-
nen zusammengesetzter Prozess. Fort-
schrittliche KI-Programmiersprachen
orientieren sich an etablierten mathe-
matischen Konzepten, wie dem Funk-
tionsbegriff (bei Lisp) oder dem des lo-
gischen Priddikats (bei Prolog). Viele
Abliufe, die in Fortran oder Pascal als
Aneinanderreihung von Speicher-
transformationen angesehen werden
konnen, sind in Prolog oder Lisp
durch die Konstruktion abstrakter,
komplexer Datentypen zu bewerkstel-
ligen.

Der iibergeordnete Begriff zu diesen
fortschrittlichen Programmierkonzep-
ten ist objektorientierte Programmier-
methodik. Jede Komponente inner-
halb eines mit objektorientierter Pro-
grammierung erstellten Systems ist ein
Objekt, sei es nun eine Variable, eine
Konstante oder eine beliebig komple-
xe Datenstruktur. Ein Objekt model-
liert die Eigenschaften eines Real-
Welt-Objekts einschliesslich seiner

Bulletin SEV/VSE 80(1989)3, 4. Februar

139

Expertensysteme

Funktionalitit, d.h. seinen Kommuni-
kationsmoglichkeiten und Verhaltens-
weisen zu anderen Objekten.

Im Computer werden Objekte nach
bestimmten Aufbaumustern erzeugt.
Derartige Rahmen von Erzeugungsre-
geln nennt man Klassen oder inner-
halb Symbolics Common Lisp auch
Flavors. Flavors sind also abstrakte
Datentypen im New-Flavors-System,
d.h. Objektschablonen, die diejenigen
Eigenschaften und Verhaltensweisen
definieren, die alle Individuen dieser
Klasse gemeinsam haben. Komplexe
Datentypen (z.B. Felder, Pointer)
kannte man auch schon bei herkémm-
lichen Programmiersprachen. In der
objektorientierten = Programmierme-
thodik aber wurden diese Konzepte
konsequent weiterverfolgt und in fort-
schrittlichen Programmiersprachen er-
heblich weiterentwickelt.

Die Erzeugung eines individuellen
Objekts geschieht durch Instanzierung
aus einer Klasse (Objektschablone).
Die Begriffe Objekt und Instanz wer-
den somit synonym gebraucht. Eine
Instanz erbt alle Zustandsvariablen
und auch ihre Verhaltensweisen (Me-
thoden) von ihrer Klasse. Die Bele-
gung der Zustandsvariablen ist indivi-
duell, d.h. eine Instanz bzw. ein Objekt
istin der Objektwelt einmalig.

Nachrichten dienen der Kommuni-
kation zwischen Objekten. Beim emp-
fangenden Objekt 16st eine Nachricht
eine individuelle Reaktion aus (Me-
thode). Eine Reaktion kann beispiels-
weise die Verdnderung einer Zustands-
variablen, die Riickgabe eines Wertes
oder das Abschicken einer Nachricht
an ein drittes Objekt sein (Fig. 2). Die
Moglichkeit der Mehrfachvererbung
des Flavor-Konzeptes erlaubt den
wirtschaftlichen und bequemen Auf-
bau von Objektklassen. Einerseits
wird dabei das hierarchische Verer-
bungskonzept unterstiitzt, das fiir eine
zu definierende Klasse die Eigenschaf-
ten von einer bereits existierenden,
iibergeordneten Klasse (Superklasse)
automatisch iibernimmt, so dass nur
noch die zusétzlichen, weiterdifferen-
zierenden Eigenschaften spezifiziert
werden miissen (Fig. 3), und anderseits
erlaubt diese Technik auch das Mi-
schen von Superklassen zu einer neuen
Klasse (triviales Beispiel: Schiffe-Klas-
se + Automobil-Klasse = Amphibien-
fahrzeug-Klasse).

Dem modernen objektorientierten
Programmierstil trdgt Symbolics
Rechnung mit seiner integrierten Ent-
wicklungs- und Anwendungsumge-
bung Genera, seinen auf Common

,@7 A A,

| Sender

K(-)mnidnvikationsinterfa‘c':é
Empfanger

.

1r

Objektkommunikation/
Nachrichtenaustausch

Figur 2 Funktionalitiiten eines Objektes beim objektorientierten Programmierstil

Lisp aufbauenden Softwarewerkzeu-
gen New Flavors und Joshua (Fig. 4)
und dem objektorientierten Daten-
banksystem Statice. Die letztere er-
laubt, Objekte persistent (nicht fliich-
tig) und mehrbenutzerfahig in einem
Computernetzwerk zu verarbeiten.

Abstraktionsfihigkeit der
natiirlichen Sprache als Ziel

Die gesamte Entwicklung der hheren
Programmiersprachen von Cobol iiber

Fortran, C, Pascal zu Ada hatte immer
schon zum Ziel, Aufgabenstellungen
moglichst problembezogen und ma-
schinenunabhédngig zu formulieren.
Mit den Software-Technologien der
KI und den Programmiersprachen
Lisp und Prolog wird zielgerichtet das
Abstraktionsniveau der natiirlichen
Sprache des Menschen zur Problem-
formulierung angestrebt (Fig. 5). Hier
ist das objektorientierte Programmie-
ren mit New Flavors ein ebenso konse-
quenter weiterer Schritt wie die in Ge-

o NEW FLAVORS

in Common Lisp geschriebenes
im Sourcecode erhéltliches
Werkzeug von Symbolics

Fonbéwegungsmlttell”f;

caoxDaten:

‘Methoden 0

{_Fahrzeuge
Methoden TR

:Daten G Daten
: Flugzeug Schiffe
Methoden ethode

Daten
Automobll
~Methoden

Daten
Elsenbahn eee

Methoden

s Daten
LKW
“Methoden:

Figur3 Entwicklungswerkzeug fiir objektorientiertes Programmieren

140

Bulletin ASE/UCS 80(1989)3, 4 février

KI-Werkzeuge

nera integrierbare KI-Hochsprache
Joshua. Dieses Instrument zum Bau
von Expertensystemen und wissensba-
sierten Applikationen erweitert syn-
taxkonsistent die Funktionalitit von
Genera um Standard-KI-Komponen-
ten (Fig. 4).

Produktivitiit in Entwicklung
und Anwendung

Jeder erfahrene Systementwickler
weiss, dass bei der Entwicklung von
komplexen Programmen erhebliche
Zeit fiir das Testen, Verbessern und
Optimieren des Systems aufzuwenden
ist. Der Begriff der Software-Gaps ist
in aller Munde. Bei wissensbasierten
Systemen richtet sich die zentrale For-
derung fiir Betriebssysteme, Entwick-
lungsumgebungen und Applikationen
auf eine wesentlich leistungsfihigere
Mensch-Maschine-Schnittstelle.

Symbolics Common Lisp wurde
konzipiert, um ein interaktives Multi-
prozess-Umfeld vollstdndig zu unter-
stiitzen. Die Prozesssynchronisation
ist durch gleichzeitige gemeinsame Be-
nutzung des virtuellen Speichers durch
alle Prozesse moglich. Die Kommuni-
kation zwischen den Prozessen kann
so erfolgen, dass gewisse Lisp-Objekte
gemeinsam benutzt werden.

Das Benutzerumfeld - die sehr lei-
stungsfahige Software-Entwicklungs-
umgebung Genera - von Symbolics
macht konsequent von der objekt-
orientierten Programmiermethodik
Gebrauch und umfasst mehr als 1 Mil-
lion Zeilen Lisp-Code. Es bildet die
Grundlage fiir eine ausserordentlich
leistungsfihige Mensch-Maschine-
Schnittstelle. Die Aufteilung des Bild-
schirms in einzelne Fenster, die hoch-
auflosende, schnelle Grafik sowie die
durchgédngig mausgesteuerte Menii-
technik sind zur Selbstverstindlichkeit
geworden. Zur Unterstiitzung der Sy-
stemarbeit kOonnen - gerade bei kom-
plexen Projekten und Anwendungen -
nicht einzelne Werkzeuge, sondern
nur eine konsistente Benutzerumge-
bung die notwendige Hilfe geben.

Um eine hohere Produktivitit in der
Entwicklung und Anwendung zu er-
reichen, muss der Benutzer von allem
entlastet werden, was mit Bedienungs-
spezialitten, Systemabliufen,
Speicherverwaltung, Dokumentation
und weiteren systemtechnisch beding-
ten Details zu tun hat. Die Symbolics-
Workstations wurden fiir komplexe
Aufgaben der Wissensverarbeitung
entwickelt und leisten somit optimale
Unterstiitzung fiir

JOSHUA
auf NEW FLAVORS
und COMMON LISP

aufsetzende
Kl-Hochsprache

JOSHUA KI- und XPS-

defrule
define-predicate

Programmierung

Truth Maintenance System
Inference Protokoll
Wissensbasis

NEW FLAVORS

defflavor
defmethod

Objektorientiertes
Programmieren

Vererbungsmechanismus
Methoden
Objekte

Funktionales

COMMON LISP

defun

Programmieren

NIO®O~0—-030X

X>r—1Z2<0n

Symbolverarbeitung
komplexe Datenkonstrukte
Listen als Basisdatentyp

Figur4 Joshua-Entwicklungswerkzeug fiir KI-Softwareprogrammierung

seman-
tische

| LUCKE

o

AR

| ow—r- zZOZ=ZO0O
N N R NN R
Z20—=X>IH0NT>

Figur5 Ziel: Abstraktionsfihigkeit der natiirlichen Sprache

traditionelle Softwareentwicklung,
objektorientiertes Programmieren,
exploratives Programmieren,

Rapid Prototyping.

Bei Softwareprojekten, die in den
Phasen Problemanalyse, Strukturie-
rung oder Flussdiagrammerstellung
bereits an der Komplexitét scheitern -
hierzu gehoren insbesondere wissens-
basierte Systeme - setzt sich das Kon-
zept des Rapid Prototyping durch, das
dem Endbenutzer schon in sehr frii-
hem Stadium eine Vorstellung von sei-
nem Programm gibt. Durch schrittwei-

se Verfeinerung, orientiert an den An-
gaben des Auftraggebers, entsteht so
mehr oder weniger interaktiv das Pro-
grammsystem.

Die in Genera eingebetteten Hilfs-
mittel und die Moglichkeit des inkre-
mentalen Kompilierens sowie der
Wegfall der Load-Link-Phase ermogli-
chen die effiziente Nutzung dieser
Technik. Ebenso wird das explorative
Programmieren gefordert, bei dem der
Programmierer bewusst spielerisch mit
der Maschine arbeitet, um seine Ge-
danken und Konzepte zu kldaren. Da-

Bulletin SEV/VSE 80(1989)3, 4. Februar

141

Expertensysteme

durch wird ihm ein kreativitits-
forderndes Element (zuriick)gegeben,
das bei der traditionellen Softwareent-
wicklung durch die langen Entwick-
lungszeiten auf der Strecke bleibt.

Hier sollen nicht alle Charakteristi-
ka von Genera diskutiert werden. Er-
wahnt werden muss jedoch, dass es
eine Mehrsprachenumgebung ist. Auf
Lisp basierend, unterstiitzt Genera
eine Reihe weiterer Sprachen ebenso
effizient. Dazu zéhlen Prolog, Fortran,
Pascal, C und Ada. Hier wird Integra-
tion ebenfalls gross geschrieben; denn
die Entwicklungsunterstiitzung dieser
Sprachen ist gleichwertig zu Lisp in
Genera integriert und die Kommuni-
kation der Sprachen untereinander ist
moglich.

Integrierte Software-Entwicklungs-
umgebung bedeutet, dass alle Werk-
zeuge, Programmsysteme, Daten, An-
wendungsprogramme usw. stindig im
virtuellen Speicherbereich vorhanden
sind. In der modellhaften Darstellung
des virtuellen Speichers in Figur 6 sind
beispielhaft einige Pages mit Objekten
belegt. Auf einen einzigen Tasten-
druck hin erscheint in Sekunden-
schnelle das Fenster der angewahlten
Anwendung auf dem hochauflosenden
Grafikbildschirm.

Softwareanforderungen
bestimmen Hardware-
architektur

Aus dem Prinzip des Software first,
aus den speziellen Eigenschaften von

Figur 6 Integrierte Genera-Softwareentwicklungsumgebung
Alle Werkzeuge, Programme und Daten liegen zugriffsbereit im virtuellen Speicher

Lisp und aus dem hohen Komfort der
vorgestellten Hochleistungsentwick-
lungsumgebung ergeben sich spezielle
Anforderungen an die Hardware, um
den Leistungsbedarf fiir die Entwick-
lung komplexer wissensbasierter An-
wendungen abzudecken. Symbolics
verwendet bei Ivory nicht nur eine
Wortbreite von 40 Bit, sondern auch
die heute wohl fortschrittlichste Sym-
bolprozessorarchitektur. Diese ergibt
sich im wesentlichen aus den Softwa-
reanforderungen.

Fiir viele arithmetische Operationen
werden vom IEEE-Standard 754-1985
32-Bit-Daten verlangt, in denen ganze

IVORY-Symbolprozessor

Architektur des Fortschritts

DATENTYPEN, z.B.:
integer
float
bignum
rational
complex
list
array
string
flavor instance
compiled code
Invisible pointers

zahlreiche verschiedene

32-bit INTEGER Format
IEEE FLoATING-PoINT Format

sehr groBer ADRESSRAUM

126MB 1GB 16 GB .
&5 el 6

Figur7 Symbolics Ivory - Tagged Architecture fiir Symbolverarbeitung

Zahlen (Fixnums) oder Gleitkomma-
zahlen von einfacher Genauigkeit
(Flonums) oder auch ganze Zahlen
(Fixnums)untergebracht werden kon-
nen. Zusitzlich zur strikten Einhal-
tung dieser 32-Bit-Datenformate und
der damit sichergestellten Kompatibi-
litdt zu numerischen Koprozessoren,
Standard-Workstations und Stan-
dard-PCs werden 8-Bit paralleles
Tag'-Processing und damit eine Da-
tentyppriifung fiir 64 verschiedene Da-
tentypen (wadhrend der Laufzeit in der
Hardware) ermoglicht sowie eine
kompaktierte Listenreprisentation
(Fig. 7) und eine hardwaregestiitzte
Speicherbereinigung (Garbage Collec-
tion). Die Wortbreite von 40 Bit er-
laubt mit dem hier verwendeten
Zeigerformat eine Adressierung von
16 GByte virtuellen Speichers, die
nach dem Demand-Paging-Verfahren
verwaltet werden. Die Hardwareunter-
stiitzung fiir Objekte und optimierte
Funktionsaufrufe bewirken eine er-
hebliche Effizienzsteigerung bei der
Lisp-Verarbeitung.

Die Datentyp-Bit dienen der Unter-
scheidung zwischen verschiedenen
Datentypen. Diese Bit werden von der
Hardware parallel zu den eigentlichen
Operationen ausgewertet. Ausser den
6 Datentyp-Bit stehen zwei weitere so-
genannte CDR-Bit zur Verfiigung, die
eine kompakte Abspeicherung von Li-
sten erlauben. Bei der Listenspeiche-
rung auf Universalrechnern wird je Li-

! Tag bezeichnet eine Datentypetikette

142

Bulletin ASE/UCS 80(1989)3, 4 février

KI-Werkzeuge

stenelement noch je ein weiterer
Speicherplatz fiir einen Zeiger zum
nédchsten Listenelement verwendet.
Bei Symbolics werden Listen meistens
in kompakter Form abgelegt, die Li-
stenelemente stehen also in konsekuti-
ven Speicherzellen und die zwei
CDR-Bit zeigen diese kompakte Dar-
stellung an. Natiirlich ist die interne
Reprisentation der Listen fiir die Be-
nutzer transparent. Die Vorteile dieses
CDR-Coding sind Speicherersparnis
und erheblich schnellere Zugriffszei-
ten, da das Pagingverhalten sehr giin-
stig beeinflusst wird.

Symbolics hat mit einem eigenen
wissensbasierten VLSI-Design-Werk-
zeug in einer Rekordzeit Ivory, den
40-Bit-Symbolprozessor auf einem
Chip, fertiggestellt. Der Ivory-Chip
wird als Grundbaustein der vierten
Symbolprozessor-Generation von
Symbolics angesehen, die fiir verschie-
dene Aufgaben zum Einsatz kommt:

- als kompakte hochleistungsfahige
Entwicklungsmaschine,

- als KI-Koprozessor fiir Standard-
Workstations,

- als leistungsfihiger KI-Koprozessor
fiir 32-Bit-PCs.

Der Ivory-Prozessor ist zusammen
mit einer Grundausstattung von
Cachespeicher- und Interface-Baustei-
nen auf einer einzigen Steckkarte un-
tergebracht. Zusammen mit einer Me-
morykarte kann die Ivory-Einschub-
karte die komplette Funktionalitiat von
Genera und der darauf entwickelten
Applikationen in verschiedenen Host-
Umgebungen zur Verfiigung stellen.

Figur 8

Symbolics Maclvory,
der kompakte
KI-Computer

des

Die erste Implementation
40-Bit-Symbolprozessors als KI-Ko-
prozessor in einem 32-Bit-PC mit einer
eleganten Software-Integration wurde
im August 1988 mit dem Namen
Maclvory vorgestellt (Fig. 8). Der Be-
nutzer dieses Systems kann neben wis-
sensbasierten Anwendungen unter Ge-
nera die Vielfalt der Apple-Macintosh-
Applikationen benutzen.

Eine VME-Bus-basierte Ivory-Ein-
schubkarte wird - neben dem heutigen
Einsatz in der Symbolics-Workstation
XL400 - auch in die Unix-Betriebssy-
stemumgebungen anderer VME-Bus-
basierter =~ Workstations integriert.
Ebenso wird die 80 386-basierte PC-
Welt fiir Ivory erschlossen werden.
Komplexe KI-Systeme halten damit
Einzug in die Praxis.

Die Firma Symbolics hat die KI-
Forschungsergebnisse der letzten 30
Jahre in die Praxis umgesetzt. Sie bie-
tet heute bereits die 4. Hardware-Ge-
neration sowie die 7. Generation der

Symbolics-Software-Entwicklungs-
umgebung Genera an. Das wesentliche
Merkmal der dedizierten Symbolics-
Hardware ist ihre Fahigkeit, mit hoch-
ster Effizienz Symbolverarbeitung zu
ermoglichen. 1987 stellte Symbolics
mit Ivory den ersten 40-Bit-Symbol-
prozessor auf einem Chip vor. Die zu-
kunftsweisende Architektur und die
zugrundeliegende Strategie zur Einbet-
tung von Ivory in herkémmliche Stan-
dard-Computer brachten dieses Jahr
die KI-Entwicklung einen wesentli-
chen Schritt weiter zum Ziel der Reali-
sierung praxisreifer KI-Applikationen
von beinahe beliebiger Komplexitit.

Bulletin SEV/VSE 80(1989)3, 4. Februar

143

	Spezialisierte Hard- und Softwaresysteme für KI-Anwendungen

