
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 80 (1989)

Heft: 3

Artikel: Spezialisierte Hard- und Softwaresysteme für KI-Anwendungen

Autor: Hänscheid, P.

DOI: https://doi.org/10.5169/seals-903636

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903636
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Expertensysteme

Spezialisierte Hard- und Softwaresysteme
für Kl-Anwendungen
P. Hänscheid

Der Weg von der Daten- zur
Wissensverarbeitung führt von den
konventionellen Sprachen wie
etwa Fortran über die Kl-
Sprache Lisp und Prolog zur
objektorien tierten Programmierung.

Zur Unterstützung des
Kl-Systementwicklers stehen
heute spezialisierte Hard- und
Softwaresysteme zur Verfügung.

wie z.B. der Ivory-Chip
und Joshua, die bei Symbolics
Anwendung finden.

La voie allant du traitement des
données à celui des connaissances

conduit des langages classiques

comme Fortran à la
programmation orientée objet en
passant par les langages découlant

de l'intelligence artificielle
Lisp et Prolog. En vue de soutenir

le développeur dans le
domaine de l'intelligence artificielle

on dispose actuellement
de systèmes matériels et
logiciels spécialisés, comme le
Ivory-Chip et Joshua, qui s'utilisent

à Symbolics.

Adresse des Autors
Dr.-Ing. Peter Hänscheid. Fachbereichsleiter
Kl-Consult, Symbolics GmbH,
Mergenthalerallee 77-81, D-6236 Eschborn/Ts.

Immer häufiger werden wissensbasierte

Systeme (KI-Systeme) in den
verschiedensten Branchen der Industrie,
in Universitäten und in Forschungslabors

als Intelligenz- und Effizienzverstärker

bei der Lösung komplexer
Aufgaben, der qualitativen Verbesserung
von Entscheidungsfindungen und in
der Aus- und Weiterbildung eingesetzt.

Die Entwicklung von der
Datenverarbeitung zur Wissensverarbeitung
begann in den sechziger Jahren mit der
Programmierung isolierter
Anwendungsprogramme. Diese waren
dadurch gekennzeichnet, dass alles Wissen

über die zugrundeliegende Anwendung

implizit in den Programmen und
Daten eingebettet war (Fig. 1). In den
siebziger Jahren wurde es nun möglich,

durch den Einsatz von
Datenbanksystemen Anwendungsprogram¬

me datenunabhängig zu machen. Dabei

wurde nur das Faktenwissen in
Datenbanken abgelegt; die Regeln für die
Bearbeitung blieben fest im
Anwendungsprogramm eingebettet. Damit
bleibt das Programm anwendungsabhängig.

Zu Beginn der achtziger Jahre
hatte die KI-Forschung Lösungen
erarbeitet, welche die Entwicklung
wissensbasierter Systeme möglich machten.

Dabei wird, ähnlich wie bei der
Auslagerung des Faktenwissens in
eine Datenbank, das Regelwissen
programmunabhängig in einer Wissensbank

aufgebaut und gepflegt (Fig. 1).
In einem wissensbasierten System ist
demnach das Programm als
anwendungsunabhängiges Steuermodul zu
betrachten.
Die wichtigsten Eigenschaften
zwischen der konventionellen Datenver-

60

70

80

Isolierte Anwendungsprogramme

Programme + Daten

Datenbanksysteme

Programme
(anwendungsabhängig)

Datenbank
(Faktenwissen)

Wissensbasierte Systeme j

1 Programme
(anwendungsunabhängig)

Wissensbank
(Regelwissen)

Datenbank j
; (Faktenwissen) 1

Figur 1 Vom Anwendungsprogramm zum wissensbasierten Programm
Von den 60er zu den 80er Jahren

138 Bulletin ASE/UCS 80(1989)3, 4 février

FORMALE konventionelle WISSENS-
KRITERIEN Datenverarbeitung verarbeltung

Verdibeitung von numerischen Daten symbolischen Ausdrücken

Datpntypon wenige Datentypen, aber
viele Instanzen eines Typs

viele, auch komplizierte
Datenstrukturen, häufig

wenige Instanzen eines Typs

Typisch© höhere
Programmiersprachen

Fortran, Pascal,
C, Cobol Lisp, Prolog

Proqiammicr-
mathoden

konventionell
strukturiert

explorativ
objektorientiert

Vararbeitungsablauf explizit festgelegt implizit oder gar nicht
vorgegeben

Verarbeitung unvoll-
standiger Eingaben werden zurückgewiesen ist möglich

Modifikationen selten häufig

Verarbeitung
auf konventioneller
Rechnerarchitektur

selbstverständlich nicht effizient möglich

INHALTLICHE konventionelle WISSENS-
«mmmmm Datenverarbeitung verarbeitung

Automatisierung von monotonen, klar strukturierten
wohldefinierten

Informationsverarbeitungsprozessen

hochkomplexen
Informationsstrukturen, inkl.
Umgang mit diffusem Wissen

: zu: automatisierende :

VorarbçitMng^abi&ufe bekannt
kognitive Prozesse,

nicht unmittelbar beobachtbar

hauptsächlich
Verarbeitung von

homogen strukturierten
Massendaten

heterogen strukturierten
Wissenseinheiten

Umfang der Datenmenge Vielfalt der Wissensstrukturen

korrekth eîtabeweta : : prinzipiell möglich bei formaler
Ein/Ausgabespezifikation

i.d.R. nicht möglich, da
Verarbeitung durch Heuristiken und

mit diffusem Wissen erfolgt

Tabelle I Unterscheidungsmerkmale wissensbasierter Systeme

arbeitung und der neuen Technologie
der Wissensverarbeitung sind in
Tabelle I stichwortartig gegenübergestellt.

Ein wesentliches Merkmal der
Wissensverarbeitung ist - wie man
sieht - die Vielfalt und Komplexität
der Datenstrukturen. Wissen besteht
eben nicht aus streng strukturierten
numerischen Daten, und Wissensverarbeitung

ist dementsprechend nicht
einfach Verarbeitung von numerischen

Daten, sondern viel mehr
Manipulation von Symbolen (Beispiel:
mathematische Operationen +, -, E, J,
Verkehrsschilder, Piktogramme usw.).
Hinter einem Symbol können sich
verbergen:

- Grundinformationen (Fakten),
- Abstraktion der Grundinformation

zu Sachverhalten (Modelle),
- Informationen über Verknüpfungsmöglichkeiten

zu Handlungsplänen
(Regeln)

Wissensverarbeitung erfordert demnach

nicht nur eine einfache Datenver¬

arbeitungsanlage, sondern eine
Symbolverarbeitungsmaschine.

Lisp - die Programmiersprache

für
Wissensverarbeitung

Sehr viele wissensbasierte Aktivitäten
von Menschen können als Liste dargestellt

werden. Eine Anzahl von
Instruktionen, in bestimmter Reihenfolge

organisiert, beinhalten Regeln und
Fakten, d.h. Wissen, wie z. B. Kuchenrezepte

und Möbelbauanleitungen
(auch grafisch oder symbolhaft). Die
Programmiersprache Lisp wurde
speziell für die Belange der Wissensverarbeitung

entwickelt und kann bereits
auf einen Erfahrungszeitraum
vergleichbar mit dem Fortran zurückblik-
ken, formulierte doch John McCarthy
1957 schon die erste Lisp-Version. Seit
1960 wurde sie am MIT ständig
weiterentwickelt. Der Industriestandard
Common Lisp existiert seit 1984. Der

Kt-Werkzeuge

Basisdatentyp von Lisp ist die Liste
(Lisp steht für List-Processing).
Darunter ist eine Struktur mit linearer
Anordnung von Datenelementen zu
verstehen, die selber wieder Listen sein
können.

Lisp-Listen bestehen insbesondere
aus den drei Objekttypen:

- Konstanten,
- Variablen,
- Funktionen,

wobei Variable und Funktionen im
allgemeinen über Symbole angesprochen

werden. Symbole haben einen
Namen und können wiederum Listen,
d.h. Wissen, repräsentieren.

Lisp ermöglicht den Aufbau und die
Verarbeitung hochstrukturierter
symbolischer Daten und ist somit vorzüglich

geeignet als Hochsprache für die
Wissensverarbeitung. Sämtliche
Datentypen werden als Listen repräsentiert

und bedürfen keiner Vereinbarung.

Beliebig komplexe Datenkon-
strukte können erzeugt und selbst während

der Laufzeit von Programmen
verändert werden. Lisp bietet die für
die Wissensverarbeitung erforderliche
hohe Flexibilität.

Objektorientierte
Programmierung
Im Gegensatz zu Lisp sind herkömmliche

Programmiersprachen sehr stark
auf die sogenannte von-Neumann-Architektur

der konventionellen
Universalrechner zugeschnitten. Die
Wirkung eines Programms ist hier ein aus
sequentiellen Speichertransformationen

zusammengesetzter Prozess.
Fortschrittliche KI-Programmiersprachen
orientieren sich an etablierten
mathematischen Konzepten, wie dem
Funktionsbegriff (bei Lisp) oder dem des

logischen Prädikats (bei Prolog). Viele
Abläufe, die in Fortran oder Pascal als

Aneinanderreihung von
Speichertransformationen angesehen werden
können, sind in Prolog oder Lisp
durch die Konstruktion abstrakter,
komplexer Datentypen zu bewerkstelligen.

Der übergeordnete Begriff zu diesen
fortschrittlichen Programmierkonzepten

ist objektorientierte Programmiermethodik.

Jede Komponente innerhalb

eines mit objektorientierter
Programmierung erstellten Systems ist ein
Objekt, sei es nun eine Variable, eine
Konstante oder eine beliebig komplexe

Datenstruktur. Ein Objekt modelliert

die Eigenschaften eines Real-
Welt-Objekts einschliesslich seiner

Bulletin SEV/VSE 80(1989)3,4. Februar 139

f//////////y/y//z7x
Zustandsvariablen

DATEN
s.

z| NAME

internen Zustand ander
Wert liefern

Nachrichten senden

^&///////////> Kommunikationsinterface
Sender Empfänger

METHODEN

*
Objektkommunikation/
Nachrichtenaustausch

Figur 2 Funktionalitäten eines Objektes beim objektorientierten Programmierstil

Expertensysteme

Funktionalität, d.h. seinen
Kommunikationsmöglichkeiten und Verhaltensweisen

zu anderen Objekten.
Im Computer werden Objekte nach

bestimmten Aufbaumustern erzeugt.
Derartige Rahmen von Erzeugungsregeln

nennt man Klassen oder innerhalb

Symbolics Common Lisp auch
Flavors. Flavors sind also abstrakte
Datentypen im New-Flavors-System,
d.h. Objektschablonen, die diejenigen
Eigenschaften und Verhaltensweisen
definieren, die alle Individuen dieser
Klasse gemeinsam haben. Komplexe
Datentypen (z.B. Felder, Pointer)
kannte man auch schon bei herkömmlichen

Programmiersprachen. In der
objektorientierten Programmiermethodik

aber wurden diese Konzepte
konsequent weiterverfolgt und in
fortschrittlichen Programmiersprachen
erheblich weiterentwickelt.

Die Erzeugung eines individuellen
Objekts geschieht durch Instanzierung
aus einer Klasse (Objektschablone).
Die Begriffe Objekt und Instanz werden

somit synonym gebraucht. Eine
Instanz erbt alle Zustandsvariablen
und auch ihre Verhaltensweisen
(Methoden) von ihrer Klasse. Die
Belegung der Zustandsvariablen ist individuell,

d.h. eine Instanz bzw. ein Objekt
ist in der Objektwelt einmalig.

Nachrichten dienen der Kommunikation

zwischen Objekten. Beim
empfangenden Objekt löst eine Nachricht
eine individuelle Reaktion aus
(Methode). Eine Reaktion kann beispielsweise

die Veränderung einer
Zustandsvariablen, die Rückgabe eines Wertes
oder das Abschicken einer Nachricht
an ein drittes Objekt sein (Fig. 2). Die
Möglichkeit der Mehrfachvererbung
des Flavor-Konzeptes erlaubt den
wirtschaftlichen und bequemen Aufbau

von Objektklassen. Einerseits
wird dabei das hierarchische
Vererbungskonzept unterstützt, das für eine
zu definierende Klasse die Eigenschaften

von einer bereits existierenden,
übergeordneten Klasse (Superklasse)
automatisch übernimmt, so dass nur
noch die zusätzlichen, weiterdifferenzierenden

Eigenschaften spezifiziert
werden müssen (Fig. 3), und anderseits
erlaubt diese Technik auch das
Mischen von Superklassen zu einer neuen
Klasse (triviales Beispiel: Schiffe-Klasse

+ Automobil-Klasse
Amphibienfahrzeug-Klasse).

Dem modernen objektorientierten
Programmierstil trägt Symbolics
Rechnung mit seiner integrierten Ent-
wicklungs- und Anwendungsumgebung

Genera, seinen auf Common

Lisp aufbauenden Softwarewerkzeugen
New Flavors und Joshua (Fig. 4)

und dem objektorientierten
Datenbanksystem Statice. Die letztere
erlaubt, Objekte persistent (nicht flüchtig)

und mehrbenutzerfähig in einem
Computernetzwerk zu verarbeiten.

Abstraktionsfähigkeit der
natürlichen Sprache als Ziel
Die gesamte Entwicklung der höheren
Programmiersprachen von Cobol über

Fortran, C, Pascal zu Ada hatte immer
schon zum Ziel, Aufgabenstellungen
möglichst problembezogen und
maschinenunabhängig zu formulieren.
Mit den Software-Technologien der
KI und den Programmiersprachen
Lisp und Prolog wird zielgerichtet das
Abstraktionsniveau der natürlichen
Sprache des Menschen zur
Problemformulierung angestrebt (Fig. 5). Hier
ist das objektorientierte Programmieren

mit New Flavors ein ebenso
konsequenter weiterer Schritt wie die in Ge-

o m\Ew [pL^/œs
in Common Lisp geschriebenes
im Sourcecode erhältliches
Werkzeug von Symbolics

: Daten
—(Fortbewegungsmittel)-

Methoden

Daten tvp;GCM-fn FCTNf.QO?

-(mein-PKW>
Methoden

Daten
-(Fahrzeuge)-

Methoden

Daten
-(Flugzeuge>

Methoden

Daten
Schiffey

Methoden

Daten
-(Automobil)-

Methoden

Daten
-(Eisenbahn)-

Methoden

Daten
-(PKW >
V

Methoden w

r" Daten \
~(LKW >

Methoden

O)
ici
S3:
X3

©
©
>

Figur 3 Entwicklungswerkzeug für objektorientiertes Programmieren

140 Bulletin ASE/UCS 80(1989)3,4 février

Kl-Werkzeuge

JOSHUA
auf NEW FLAVORS
i irrt mMMntJ 1 ISP

optimiertes Laufzeitverhatten
» einheitlicher Zugriff auf

heterogene Wissensbasen
hohe RexJbIMfSt

* IntereraprotokoJI ertaubt intégra-
tion bestehender Systeme <z.b. tmsj

aufsetzende
KI-Hochsprache

JOSHUA
Kl- und XPS-
Programmierung

defrule
define-predicate

S
Y
N
T
A

1

K
0

Truth Maintenance System
Inference Protokoll
Wissensbasis

NEW FLAVORS Objektorientiertes
Programmieren

defflavor
defmethod

s
i

s
t

Vererbungsmechanismus
Methoden
Objekte

COMMON LISP Funktionales
Programmieren

defun
defmacro

X n
z

r

Symbolverarbeitung
komplexe Datenkonstrukte
Listen als Basisdatentyp

Figur 4 Joshua-Entwicklungswerkzeug für KI-Softwareprogrammierung

natürliche Sprache

Maschinensprache COMPUTER

Figur 5 Ziel : Abstraktionsfähigkeit der natürlichen Sprache

nera integrierbare KI-Hochsprache
Joshua. Dieses Instrument zum Bau
von Expertensystemen und wissensbasierten

Applikationen erweitert
syntaxkonsistent die Funktionalität von
Genera um Standard-KI-Komponen-
ten (Fig. 4).

Produktivität in Entwicklung
und Anwendung
Jeder erfahrene Systementwickler
weiss, dass bei der Entwicklung von
komplexen Programmen erhebliche
Zeit für das Testen, Verbessern und
Optimieren des Systems aufzuwenden
ist. Der Begriff der Software-Gaps ist
in aller Munde. Bei wissensbasierten

Systemen richtet sich die zentrale
Forderung für Betriebssysteme,
Entwicklungsumgebungen und Applikationen
auf eine wesentlich leistungsfähigere
Mensch-Maschine-Schnittstelle.

Symbolics Common Fisp wurde
konzipiert, um ein interaktives Multi-
prozess-Umfeld vollständig zu
unterstützen. Die Prozesssynchronisation
ist durch gleichzeitige gemeinsame
Benutzung des virtuellen Speichers durch
alle Prozesse möglich. Die Kommunikation

zwischen den Prozessen kann
so erfolgen, dass gewisse Eisp-Objekte
gemeinsam benutzt werden.

Das Benutzerumfeld - die sehr
leistungsfähige Software-Entwicklungsumgebung

Genera - von Symbolics
macht konsequent von der
objektorientierten Programmiermethodik
Gebrauch und umfasst mehr als 1 Million

Zeilen Lisp-Code. Es bildet die
Grundlage für eine ausserordentlich
leistungsfähige Mensch-Maschine-
Schnittstelle. Die Aufteilung des
Bildschirms in einzelne Fenster, die
hochauflösende, schnelle Grafik sowie die
durchgängig mausgesteuerte
Menütechnik sind zur Selbstverständlichkeit
geworden. Zur Unterstützung der
Systemarbeit können - gerade bei
komplexen Projekten und Anwendungen -
nicht einzelne Werkzeuge, sondern
nur eine konsistente Benutzerumgebung

die notwendige Hilfe geben.
Um eine höhere Produktivität in der

Entwicklung und Anwendung zu
erreichen, muss der Benutzer von allem
entlastet werden, was mit
Bedienungsspezialitäten, Systemabläufen,
Speicherverwaltung, Dokumentation
und weiteren systemtechnisch bedingten

Details zu tun hat. Die Symbolics-
Workstations wurden für komplexe
Aufgaben der Wissensverarbeitung
entwickelt und leisten somit optimale
Unterstützung für

- traditionelle Softwareentwicklung,
- objektorientiertes Programmieren,
- exploratives Programmieren,
- Rapid Prototyping.

Bei Softwareprojekten, die in den
Phasen Problemanalyse, Strukturierung

oder Flussdiagrammerstellung
bereits an der Komplexität scheitern -
hierzu gehören insbesondere wissensbasierte

Systeme - setzt sich das Konzept

des Rapid Prototyping durch, das
dem Endbenutzer schon in sehr
frühem Stadium eine Vorstellung von
seinem Programm gibt. Durch schrittwei¬

se Verfeinerung, orientiert an den
Angaben des Auftraggebers, entsteht so
mehr oder weniger interaktiv das

Programmsystem.
Die in Genera eingebetteten Hilfsmittel

und die Möglichkeit des inkre-
mentalen Kompilierens sowie der
Wegfall der Load-Link-Phase ermöglichen

die effiziente Nutzung dieser
Technik. Ebenso wird das explorative
Programmieren gefördert, bei dem der
Programmierer bewusst spielerisch mit
der Maschine arbeitet, um seine
Gedanken und Konzepte zu klären. Da-

Bulletin SEV/VSE 80(1989)3,4. Februar 141

Expertensysteme

durch wird ihm ein kreativitäts-
förderndes Element (zurück)gegeben,
das bei der traditionellen Softwareentwicklung

durch die langen
Entwicklungszeiten auf der Strecke bleibt.

Hier sollen nicht alle Charakteristika
von Genera diskutiert werden.

Erwähnt werden muss jedoch, dass es
eine Mehrsprachenumgebung ist. Auf
Lisp basierend, unterstützt Genera
eine Reihe weiterer Sprachen ebenso
effizient. Dazu zählen Prolog, Fortran,
Pascal, C und Ada. Hier wird Integration

ebenfalls gross geschrieben; denn
die Entwicklungsunterstützung dieser
Sprachen ist gleichwertig zu Lisp in
Genera integriert und die Kommunikation

der Sprachen untereinander ist
möglich.

Integrierte Software-Entwicklungsumgebung

bedeutet, dass alle
Werkzeuge, Programmsysteme, Daten,
Anwendungsprogramme usw. ständig im
virtuellen Speicherbereich vorhanden
sind. In der modellhaften Darstellung
des virtuellen Speichers in Figur 6 sind
beispielhaft einige Pages mit Objekten
belegt. Auf einen einzigen Tastendruck

hin erscheint in Sekundenschnelle

das Fenster der angewählten
Anwendung auf dem hochauflösenden
Grafikbildschirm.

Softwareanforderungen
bestimmen
Hardwarearchitektur

Aus dem Prinzip des Software first,
aus den speziellen Eigenschaften von

C

LISP
ompile r

Daten Am
P

vendur
rogram

gs-
Ti s

Quelltext Cc mplller
Code

1er F

C

ROLOf
ompile

À

r

Editor DE BUGG ER

E xpertei
system
Shells

DRTRA
iompile

N
r Fi

LISP
nktion ;n

Dok
DNLINE
jmentc tion « OSHU, * \ etzwer

»oftwar
<
> i

Figur 6 Integrierte Genera-Softwareentwicklungsumgebung
Alle Werkzeuge, Programme und Daten liegen zugriffsbereit im virtuellen Speicher

Lisp und aus dem hohen Komfort der
vorgestellten Hochleistungsentwick-
lungsumgebung ergeben sich spezielle
Anforderungen an die Hardware, um
den Leistungsbedarf für die Entwicklung

komplexer wissensbasierter
Anwendungen abzudecken. Symbolics
verwendet bei Ivory nicht nur eine
Wortbreite von 40 Bit, sondern auch
die heute wohl fortschrittlichste
Symbolprozessorarchitektur. Diese ergibt
sich im wesentlichen aus den
Softwareanforderungen.

Für viele arithmetische Operationen
werden vom IEEE-Standard 754-1985
32-Bit-Daten verlangt, in denen ganze

IVORY-Symbolprozessor Architektur des Fortschritts

Wortformat
etikettiert:

2-Dit Kodierung
fur kompakte

LISTEN-

«» 40 bit WÊ

CD 32
CDR
Code

Dalentyp-
etikett

Daten/Adress¬
format

zahlreiche verschiedene
DATENTYPEN, Z.B.:

integer
float

blgnum
rational
complex

list
array
string

flavor instance
compiled code

Invisible pointers

32-bit Integer Format
IEEE Floating-Point Format

sehr großer ADRESSRAUM

128MB 1GB 16 GB

Figur 7 Symbolics Ivory - Tagged Architecture für Symbolverarbeitung

Zahlen (Fixnums) oder Gleitkommazahlen

von einfacher Genauigkeit
(Flonums) oder auch ganze Zahlen
(Fixnums)untergebracht werden können.

Zusätzlich zur strikten Einhaltung

dieser 32-Bit-Datenformate und
der damit sichergestellten Kompatibilität

zu numerischen Koprozessoren,
Standard-Workstations und
Standard-PCs werden 8-Bit paralleles
Tag'-Processing und damit eine
Datentypprüfung für 64 verschiedene
Datentypen (während der Laufzeit in der
Hardware) ermöglicht sowie eine
kompaktierte Listenrepräsentation
(Fig. 7) und eine hardwaregestützte
Speicherbereinigung (Garbage Collection).

Die Wortbreite von 40 Bit
erlaubt mit dem hier verwendeten
Zeigerformat eine Adressierung von
16 GByte virtuellen Speichers, die
nach dem Demand-Paging-Verfahren
verwaltet werden. Die Hardwareunterstützung

für Objekte und optimierte
Funktionsaufrufe bewirken eine
erhebliche Effizienzsteigerung bei der
Lisp-Verarbeitung.

Die Datentyp-Bit dienen der
Unterscheidung zwischen verschiedenen
Datentypen. Diese Bit werden von der
Hardware parallel zu den eigentlichen
Operationen ausgewertet. Ausser den
6 Datentyp-Bit stehen zwei weitere
sogenannte CDR-Bit zur Verfügung, die
eine kompakte Abspeicherung von
Listen erlauben. Bei der Listenspeiche-
rung auf Universalrechnern wird je Li-

1 Tag bezeichnet eine Datentypetikette

142 Bulletin ASE/UCS 80(1989)3, 4 février

Kl-Werkzeuge

stenelement noch je ein weiterer
Speicherplatz für einen Zeiger zum
nächsten Listenelement verwendet.
Bei Symbolics werden Listen meistens
in kompakter Form abgelegt, die
Listenelemente stehen also in konsekutiven

Speicherzellen und die zwei
CDR-Bit zeigen diese kompakte
Darstellung an. Natürlich ist die interne
Repräsentation der Listen für die
Benutzer transparent. Die Vorteile dieses

CDR-Coding sind Speicherersparnis
und erheblich schnellere Zugriffszeiten,

da das Pagingverhalten sehr günstig

beeinflusst wird.
Symbolics hat mit einem eigenen

wissensbasierten VLSI-Design-Werkzeug
in einer Rekordzeit Ivory, den

40-Bit-Symbolprozessor auf einem
Chip, fertiggestellt. Der Ivory-Chip
wird als Grundbaustein der vierten
Symbolprozessor-Generation von
Symbolics angesehen, die für verschiedene

Aufgaben zum Einsatz kommt:

- als kompakte hochleistungsfähige
Entwicklungsmaschine,

- als KI-Koprozessor für Standard-
Workstations,

- als leistungsfähiger KI-Koprozessor
für 32-Bit-PCs.

Der Ivory-Prozessor ist zusammen
mit einer Grundausstattung von
Cachespeicher- und Interface-Bausteinen

auf einer einzigen Steckkarte
untergebracht. Zusammen mit einer
Memorykarte kann die Ivory-Einschub-
karte die komplette Funktionalität von
Genera und der darauf entwickelten
Applikationen in verschiedenen Host-
Umgebungen zur Verfügung stellen.

Die erste Implementation des

40-Bit-Symbolprozessors als

KI-Koprozessor in einem 32-Bit-PC mit einer
eleganten Software-Integration wurde
im August 1988 mit dem Namen
Maclvory vorgestellt (Fig. 8). Der
Benutzer dieses Systems kann neben
wissensbasierten Anwendungen unter
Genera die Vielfalt der Apple-Macintosh-
Applikationen benutzen.

Eine VME-Bus-basierte Ivory-Ein-
schubkarte wird - neben dem heutigen
Einsatz in der Symbolics-Workstation
XL400 - auch in die
Unix-Betriebssystemumgebungen anderer VME-Bus-
basierter Workstations integriert.
Ebenso wird die 80 386-basierte PC-
Welt für Ivory erschlossen werden.
Komplexe Kl-Systeme halten damit
Einzug in die Praxis.

Die Firma Symbolics hat die KI-
Forschungsergebnisse der letzten 30
Jahre in die Praxis umgesetzt. Sie bietet

heute bereits die 4. Hardware-Generation

sowie die 7. Generation der
Symbolics-Software-Entwicklungs-

umgebung Genera an. Das wesentliche
Merkmal der dedizierten Symbolics-
Hardware ist ihre Fähigkeit, mit höchster

Effizienz Symbolverarbeitung zu
ermöglichen. 1987 stellte Symbolics
mit Ivory den ersten 40-Bit-Symbol-
prozessor auf einem Chip vor. Die
zukunftsweisende Architektur und die
zugrundeliegende Strategie zur Einbettung

von Ivory in herkömmliche
Standard-Computer brachten dieses Jahr
die KI-Entwicklung einen wesentlichen

Schritt weiter zum Ziel der
Realisierung praxisreifer KI-Applikationen
von beinahe beliebiger Komplexität.

Bulletin SEV/VSE 80(1989)3, 4. Februar 143

	Spezialisierte Hard- und Softwaresysteme für KI-Anwendungen

