Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 80 (1989)

Heft: 3

Artikel: ART : Automated Reasoning Tool

Autor: Staab, R.

DOl: https://doi.org/10.5169/seals-903633

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903633
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Expertensysteme

ART - Automated Reasoning Tool

R. Staab

Eines der neben KEE und Know-
ledge Craft machtigsten Soft-
ware-Werkzeuge zur Realisie-
rung wissensbasierter Systeme
— ART — wird in diesem Beitrag
beschrieben und durch anschau-
liche Beispiele illustriert. Star-
ken und Schwaéchen in der
Benutzung werden kritisch
beleuchtet, und es werden Ver-
gleiche zu den oben genannten
Konkurrenzprodukten gezogen.

Cet article a pour but de décrire
I’environnement de développe-
ment de systemes a base de con-
naissances ART, I'un des plus
puissants avec KEE et Know-
ledge Craft en l'illustrant
d’examples explicatifs. Ses
points forts et défauts seront
ensuite discutés et I’'on compa-
rera ART a ses concurrents déja
mentionnés.

Adresse des Autors

Richard Staab, Dipl.-Informatiker, Insiders
Gesellschaft fiir angewandte Kinstliche
Intelligenz (BDU), D-6500 Mainz.

ART ist ein Produkt der Inference Cor-
poration. Die folgende Beschreibung
basiert auf der Version 3.0, welche seit
1986 verfiigbar ist. ART ist beeinflusst
durch die klassischen Systeme Hear-
say-1I1 [1] und OPSS5 [2]. Obgleich
ART auch eine Entwicklungsumge-
bung umfasst, muss es in erster Linie
als eine dusserst facettenreiche Sprache
verstanden werden, genauer, als ein
Konglomerat von mehreren Wissens-
reprdsentationssprachen. Dazu geho-
ren etwa Sprachen zur Beschreibung
von Regeln, von semantischen Netzen,
von Frame-Hierarchien und von hy-
pothetischen Welten. Obwohl ART
sehr homogen strukturiert ist, fithrt die
Fiille der sprachlichen Mittel zu einer

(DEFFACTS)
(DEFRULE) Anwendungsfile
erc.
Laden
Dynamische
—-al Fakten / Regel
cEF0 Wissensbasis
Pattern
Matching
Regel- Agenda

instanzen

Auswahl einer
Regelinstanz

Regelaktionen

Sonstige
Modifikation der Aktionen

Wissensbasis

Figur 1 Reasoning-Zyklus von ART

hohen Komplexitdt. Wie auch bei den
anderen hier besprochenen Werkzeu-
gen ist die sprachliche Basis Lisp.

Fakten und Regeln

Wie aus der Figur 1 ersichtlich, wird
die dynamische Wissensbasis durch
Fakten und Regeln (Tab. I) gebildet.
Die Fakten, die in ihrer Gesamtheit
den «Weltausschnitt» der Anwendung
darstellen, werden in der Form

(RELATION-NAME (1)
VALUE 1 VALUE?2...)

gespeichert. Im Ausdruck
(stellung weisse-dame D 4) 2)

zum Beispiel ist Stellung ein Rela-
tionsname (Relation Name) und weis-
se-dame, D und 4 sind Werte (Values).
Die Inferenzmaschine ermittelt die
auszufithrenden Regeln iiber einen

Pattern-Matching-Prozess. Als Bei-
spiel diene die Regel

(DEFRULE drucke- 3)
gefdhrdete-figuren

(stellung ?figur ?x ?y)
(bedroht ’figur)

=

(printout t t ** Figur ** 2figur **
in Stellung ** ?x ?y))!

Das Schliisselwort DEFRULE, ge-
folgt vom Regelnamen, leitet die Defi-
nition der Regel ein. Es handelt sich
um eine Vorwiértsregel mit der Bedeu-
tung: Wenn Zfigur sich in Stellung ’x
?ybefindet und bedroht ist, dann druk-
ke entsprechende Meldung aus. (stel-
lung...)und (bedroht...)sind hier Pat-

!'Die Fragezeichen kennzeichnen Variablen,
und DEF in DEFRULE weist auf «Definition»
hin.

Bulletin SEV/VSE 80(1989)3, 4. Februar

129

Expertensysteme

terns, die auf mogliche Matches mit
Fakten der dynamischen Wissensbasis
hin tiberpriift werden. In unserem Bei-
spiel passt das erste Pattern auf obiges
Faktum, wobei die Platzhalter ?figur,
?x und ?y an weisse-dame, D und 4 ge-
bunden werden. Danach muss ein
Faktum (bedroht weisse-dame) zum
Match gefunden werden, und die Re-
gel kann mit dieser Platzhalterbele-
gung in einer Agenda zum Feuern be-
reitgestellt werden. Wenn mehrere
Matches mit unterschiedlichen Bele-
gungen moglich sind, werden mehrere
Instanzen der Regel bereitgestellt.
Nach der prioritatsgesteuerten Aus-
wahl einer Regelinstanz kommt deren
Aktionsteil schliesslich zur Ausfiih-
rung. Hier kdnnen Objekte der Wis-
sensbasis erzeugt, modifiziert und ge-
16scht oder beliebige sonstige ART-
bzw. Lispfunktionen gerufen werden.
Im Beispiel wird die ART-eigene
Druckroutine printout aufgerufen (die
ersten beiden Argumente ¢ t beziehen
sich auf das Ausgabemedium und das
Druckformat).

Der gesamte beschriebene Vorgang
vom Pattern Matching bis zum Feuern
wiederholt sich, bis die Agenda ir-
gendwann leer ist. Die Beispielregel
druckt auf diese Weise der Reihe nach
alle bedrohten Figuren aus. Es bleibt
noch anzumerken, dass eine Regel na-
tiirlich nicht zweimal auf der Basis der
gleichen Faktenkombination feuern
kann, sonst wiirde die Agenda nie leer
werden und das System niemals stop-
pen. Das obige Beispiel offenbart nur
einen winzigen Ausschnitt der Mog-
lichkeiten der machtigen Pattern-Mat-
ching-Sprache von ART, die auch Exi-
stenzquantoren und Iterationen um-
fasst. Wie gezeigt wurde, ergibt sich
die Dynamik des Systems in erster Li-
nie durch iteratives Feuern von Vor-
wirtsregeln (Forward Chaining).

In diesen Prozess konnen Phasen
von Backward Chaining eingebettet
sein. Dazu werden Riickwirtsregeln
definiert, die bestimmte Fakten ablei-
ten, wenn Vorwartsregeln sie zur Veri-
fizierung ihres Bedingungteils brau-
chen. ART fiihrt fiir das Backward
Chaining iibrigens keinen eigenen
Inferenzmechanismus ein, sondern
«simuliert» den Vorgang durch Vor-
wirtsregeln hoher Prioritét, angestos-
sen durch besondere Fakten (Goal
Facts).

Das Pattern Matching erfolgt in
ART mittels einer weiter beschleunig-
ten Version des an sich schon schnel-
len Rete-Algorithmus. Dies ist einer
der Griinde fiir die bekannten Perfor-

Glossar

Agenda: Liste von feuerbereiten Regelinstanzen

Browsing: Bléttern in einer Wissensbasis

Demon: im Hintergrund ablaufende Operation, die bei bestimmten
Zustinden der Wissensbasis aktiv wird

Faktum: atomare Wissenseinheit, z.B. (Farbe Auto Blau)

Fokussierung: Beschrinkung der Regelanwendung auf einen Teil der Regelbasis

Frame: Biindelung von Fakten zu einer semantischen Einheit (vergleichbar
mit einem Record in Pascal)

Message: Nachricht an ein Objekt (objektorientierte Programmierung)

Methode: zu einem Objekt gehdrende Kodeeinheit, welche die Reaktion auf
eine Message definiert (objektorientierte Programmierung)

Objektorientierte Programmierform, bei der nachrichtenaustauschende Objekte im

Programmierung: Mittelpunkt stehen

Pattern die Abgleichung der Regelbedingungen auf die sich in der

Matching: Wissensbasis befindenden Fakten

Reasoning: Schlussfolgerungsprozess liber einer Wissensbasis

Regelinstanz: Auspriagung einer Regel, bei der nach erfolgreichem Pattern
Matching die variablen Teile an die entsprechenden Fakten
gebunden wurden

Schema: ART-typisches Konstrukt zur Darstellung von Frames

Taxonomie: hierarchische Gliederungsform fiir Wissensbereiche mit
baumartiger Begriffsstruktur (z.B. Fauna)

Uncertainties: Unsicherheiten, mit denen Wissenseinheiten behaftet sein kénnen
(z.B. «Daumenregeln»)

Tabelle I

mance-Qualititen von ART, bewirkt
aber umgekehrt erhéhten Zeitaufwand
beim initialen Laden der Wissensba-
sis, weil der Algorithmus auf einer
Kompilierung der Regelbedingungen
in Netzwerke beruht. Die Version 3.0
erlaubt es, Regelfiles zunéchst in Bi-
néarfiles zu kompilieren, welche dann
um ein Vielfaches schneller geladen
werden konnen.

Schemata und Relationen

Die meisten Anwendungen erfordern
eine Biindelung der Fakten zu seman-
tischen Einheiten, die hdufig auch als
Frames bezeichnet werden. In ART
werden diese Strukturen als Schemata
(Tab. I) bezeichnet. Das folgende Bei-
spiel beschreibt ein UND-Gatter.

(DEFSCHEMA and-gate @)
(is-a gate)
(number-of-inputs 2)
(number-of-outputs 1)
(function logical-and))

And-gate ist der Name des hier be-
schriebenen Objektes, wihrend die
einzelnen Slots die Eigenschaften be-
schreiben. Solche Schemata werden
von ART in gewdhnliche Fakten iiber-
setzt und in die Wissensbasis eingetra-
gen, im Beispiel in die Fakten

(SCHEMA and-gate is-a gate), 5)
(SCHEMA and-gate
(number-of-inputs 2) usw.

Auf diese Weise wird die frame-
orientierte Wissensreprisentation
konzeptionell voll in den Pattern-Mat-
ching-Mechanismus integriert. Die
Relationen in semantischen Netzwer-
ken werden in ART durch die Slots re-
prasentiert. Ein bestimmtes UND-
Gatter a2 einer Schaltung konnte etwa
folgendermassen definiert sein:

(DEFSCHEMA a2 (6)
(instance-of and-gate)
(connected-with al ol n2))

Der Slot instance-of etabliert eine
Beziehung zu dem oben definierten
Schema and-gate. In ART gibt es 9
vordefinierte Relationen. Zu ihnen ge-
horen etwa is-a, instance-of, ele-
ment-of, subset-of sowie die jeweiligen
inversen Relationen. Daneben kann
der Entwickler beliebige eigene Rela-
tionen definieren, im Beispiel etwa
connected-with. Dies erfolgt wieder
durch die Definition eines Schemas,
denn ART beschreibt die Eigenschaf-
ten von Slots und Relationen selbst
wieder in Schemata. Connected-with
konnte folgendermassen definiert wer-
den:

(DEFSCHEMA connected-with 7
(instance-of relation)
(inverse connected-with))

Die Definition einer inversen Rela-
tion (hier ebenfalls connected-with) be-

130

Bulletin ASE/UCS 80(1989)3, 4 février

ART

wirkt den automatischen Eintrag des
gegenlaufigen Slots beim verbundenen
Objekt. al, ol und n2 wiirden im Bei-
spiel durch ART den Eintrag (connect-
ed-with a2) erhalten. Daneben gibt es
die Moglichkeit, Transitivitidt bei Re-
lationen zu verankern.

Die Vererbung von Objekteigen-
schaften innerhalb von Begriffshierar-
chien (Taxonomien) erfolgt in ART
entlang besonderer INH-Relationen
(INH = inheritance). Die vordefinier-
te Relation is-a ist eine INH-Relation.
Daher wiirden im Beispiel Eigenschaf-
ten von gate automatisch auf die Aus-
prigung and-gate Ubertragen werden.
Der Entwickler kann das Vererbungs-
verhalten bei vordefinierten und
selbstdefinierten Relationen steuern,
insbesondere was den Konfliktfall
mehrerer unterschiedlicher vererbter
Werte (bei mehreren Oberbegriffen)
angeht.

Es sei in diesem Zusammenhang
noch auf einen subtilen Unterschied zu
KEE hingewiesen. ART unterscheidet
nicht zwischen Klassen und Instanzen.
Beides sind in ART Schemata. Seman-
tische Unterschiede ergeben sich nur
iber die Eigenschaften der Relationen
is-a (Unterklasse) und instance-of (In-
stanz), auch dies ein Beispiel fiir die
Bestrebung nach konzeptioneller Ge-
schlossenheit.

Zur Darstellung (Browsing) seman-
tischer Netze bietet ART eine graphi-
sche Oberflache an.

Objektorientierte
Programmierung und
Active Values

Seit Version 3.0 erlaubt ART die ob-
jektorientierte Programmierung. Ob-
jekte sind die besprochenen Schemata
(Frames). Die Methoden werden
durch ein Konstrukt DEFACTION in
Lisp-Syntax definiert. Messages erfol-
gen syntaktisch wie Aufrufe von Lisp-
funktionen und integrieren sich gut in
die Regelsprache. Eine Erweiterung
des bekannten Flavor-Konzeptes sind
Multi Methods, die fiir eine beliebige
Kombination von Objekten definiert
werden kénnen.

Unter Active Values versteht man
den automatischen Anstoss von Aktio-
nen bei bestimmten Operationen auf
Slots, sie werden in ART objektorien-
tiert realisiert. Es stehen fiir acht Arten
des Slotzugriffs Varianten bereit. Be-
liebig viele Active Values konnen an
einen Slot gebunden werden, und sie
werden mit ihm vererbt.

Viewpoints

In vielen Applikationen ist eine Tei-
lung der Wissensbasis in verschiedene
hypothetische Welten sinnvoll. Hier-
fiir bietet ART den Viewpoint-Mecha-
nismus an. Die Wissensbasis wird da-
bei in Form eines Netzwerkes von
Kontexten gesehen. In jedem Kontext
gelten bestimmte Fakten. Beim Uber-
gang in eine neue Hypothese bleiben
im allgemeinen die meisten Fakten
giiltig, so dass sie vom Vaterkontext
geerbt werden konnen (Effizienz). Die
Giiltigkeit eines Faktums in einem be-
stimmten Kontext wird in ART durch
eine raffinierte Indizierung des Fak-
tums reprisentiert, so dass es nach wie
vor nur eine Wissensbasis gibt. Regeln
konnen in ihren Aktionen auf be-
stimmte Kontexte fokussiert werden,
aber auch global agieren (Metaregeln).
Jedoch verlangen sowohl die Naviga-
tion im Netzwerk als auch das subtile
Vererbungsverhalten (Kontexte kon-
nen auch wieder verschmelzen) einen
erfahrenen Entwickler, auch wenn die
graphische Aufbereitung des Netzwer-
kes eine gute Unterstiitzung bietet. Mit
dem Konstrukt DEFCONTRADIC-
TION konnen Demons definiert wer-
den, die logisch inkonsistente Kontex-
te verbieten.

Eine andere typische Anwendung
ist das Reasoning in Time (z.B. in Pla-
nungsproblemen). Hier reprasentiert
ein Kontext einen Weltausschnitt zu
einem bestimmten Zeitpunkt. Der Ver-
erbungsmechanismus hilft hier bei der
Losung des bekannten Framepro-
blems [3]. Viewpoints konnen auch in
mehreren Ebenen benutzt werden,
wenn etwa in verschiedenen Hypothe-
sen eines Diagnoseprozesses zeitliche
Ablaufe simuliert werden sollen. ART
unterstiitzt dies in beliebiger hierarchi-
scher Tiefe, obgleich die Anwendung
von mehr als zwei Ebenen schwer vor-
stellbar wird.

Truth Maintenance

Beim Nonmonotonic Reasoning ist
zur Wahrung einer konsistenten Wis-
sensbasis nach Loschen eines Faktums
X oft eine Loschung aller von X abge-
leiteten Fakten erwiinscht. Dies erfor-
dert eine Buchhaltung des Systems
iiber die gegenseitigen logischen Ab-
hingigkeiten der Fakten [4]. ART er-
laubt die Kennzeichnung beliebiger
Bedingungen einer Regel als LOGI-
CAL, wodurch Abhingigkeiten zwi-
schen triggernden und erzeugten Fak-
ten der Regel verbucht werden. Bei

spaterem LoOschen eines der triggern-
den Fakten leitet ART dann automa-
tisch die Loschung aller abgeleiteten
Fakten ein. Dieser Mechanismus be-
zieht sich nur auf erzeugte Fakten, d.h.,
durch eine Regel geloschte Fakten
werden nicht erneut instanziert, wenn
die triggernden Fakten ungiiltig wer-
den.

Fehlende Wissens-
reprisentationsformen

ART bietet keine direkte Unterstiit-
zung fir Reasoning mit Uncertainties
(unsicherem Wissen) an. Es liegen
zwar Beispiele vor, wie bekannte Kon-
zepte (Bayesian Probabilities, Fuzzy
Set Theory, Dempster-Shafer, Emycin
Model) in ART angewandt werden
konnen [5], jedoch erfordert das einen
versierten Entwickler.

Weiterhin steht kein direktes Mittel
zur Fokussierung auf gewisse Teile der
Regelbasis bereit, was aber leicht liber
Steuerfakten emuliert werden kann.

Graphische Fahigkeiten

Basis der Graphik in ART sind Icons,
die ebenfalls als Schemata definiert
sind. ART beinhaltet eine beliebig er-
weiterbare Graphikbibiliothek. Der
Gebrauch, insbesondere die Ansteue-
rung von Graphiken aus den Regeln
heraus, basiert auf dem oben beschrie-
benen Schema-Mechanismus. Zur
schnellen Kreation einer graphischen
Oberflache (inklusive Bitmap-Graphi-
ken) dient der Icon Editor ARTIST.
Der Entwickler hat iiber das Kon-
strukt DEFICON die Moglichkeit, die
Graphikbibliothek (und damit auch
ARTIST) um selbstdefinierte Icons zu
erweitern, jedoch muss er sich dazu in
Lispgefilde begeben. Die Animation
der Graphiken kann mit Version 3.0
bequem liber Active Values erfolgen.

Insgesamt sind die Graphikmog-
lichkeiten in ART bescheidener als in
KEE, geniigen jedoch im allgemeinen
zur Schaffung geeigneter Benutzer-
oberfliachen.

Schnittstellen

Schnittstellen zu anderen Program-
men und Systemen miissen vom Ent-
wickler selbst in Lisp programmiert
werden. Dabei hilft die gute Einbet-
tung von Lisp in die Regelsyntax, aber
auch eine funktional reich ausgestatte-
te Lisp-Oberflache von ART. Alle we-
sentlichen Operationen in ART (z.B.
RESET der Wissensbasis) sind von

Bulletin SEV/VSE 80(1989)3, 4. Februar

131

Expertensysteme

Lisp aus moglich, insbesondere auch
Operationen auf der Wissensbasis
selbst. So konnen in Realzeitanwen-
dungen etwa Lisp-Programme dem si-
multan laufenden ART asynchron
Fakten zuspielen, die dort unmittelbar
das Systemverhalten beeinflussen.

Dennoch wiren Schnittstellen so-
wohl zu prozeduralen Sprachen als
auch zu Datenbanksystemen wiin-
schenswert.

Die Entwicklungsoberfliche

Die Entwicklungsoberfliche von ART
ist fiir kleine bis mittelgrosse Anwen-
dungen funktional und ergonomisch
voll ausreichend. Hervorzuheben sind
hier Dinge wie inkrementelle Kompi-
lation, gute Browsing- und Trace-
Moéglichkeiten und Hilfe bei der Lei-
stungsverbesserung von Anwendun-
gen.

Wird aber die Wissensbank im Lau-
fe einer Entwicklung wirklich gross,
werden bekannte Probleme des Soft-
ware-Engineerings spiirbar, gerade bei
einem Werkzeug, welches als Pro-
grammiersprache verstanden werden
muss. Der Aufbau einer Applikation
erfolgt derzeit zum grossten Teil durch
Eintippen der Definitionen im
ZMACS-Editor. Effizienter wire die
Eingabe iiber vorgegebene Masken
(etwa bei Schemata und Regeln). Fiir
Knowledge-Engineering-Zwecke soll-
te unbedingt auch Platz fiir deskriptive
Nebeninformation zur Verfiigung ste-
hen (z.B. Quellenangaben). Auch der
schnelle Zugriff auf zu editierende Ob-
jekte ist zu verbessern. Konsistenzprii-
fungen iiber der Wissensbasis werden
nicht direkt unterstiitzt. In [6] wird al-
lerdings eine umfassende Konsistenz-
priifungskomponente speziell fiir ART
beschrieben.

Kein Garbage

Ein besonderes Problem von Werk-
zeugen auf Lispmaschinen ist das
nicht vorhersehbare Laufzeitverhalten.
Dies liegt daran, dass durch laufende
Programme im Speicher i.a. fortwih-
rend Garbage erzeugt wird, der durch
einen speziellen Hintergrundprozess
(Garbage Collection) simultan wieder
abgebaut werden muss. Da dieser Pro-
zess der eigentlichen Applikation Re-
chenzeit entzieht, ist es schwierig,
Reaktionszeiten zu garantieren. Wenn
dariiber hinaus mehr Garbage produ-
ziert als abgerdumt wird, kann die
Applikation durch «Seitenflattern» im
virtuellen Speicher praktisch zum
Stillstand kommen. Dies war nach un-
seren Erfahrungen auch bei ART 2.0
moglich. Es ist daher von grosster Be-
deutung, dass ART ab Version 3.0
durch eine eigene Verwaltung der
Speicherressourcen praktisch garbage-
frei ist.

Zusammenfassung

Den Entwicklern von ART ist es er-
staunlich gut gelungen, die unter-
schiedlichsten Methoden, die die KI-
Forschung in den letzten zehn Jahren
hervorgebracht hat, auf eine konzep-
tionelle Schiene zu bringen. ART ist
sehr homogen, kein Feature der Spra-
che wirkt improvisiert oder unausge-
reift. Auch Dokumentation und Schu-
lungsmaterialien sind solide. Eine
wirkliche Nutzung der Méglichkeiten
von ART setzt aber einen erfahrenen
Knowledge Engineer mit guten Lisp-
kenntnissen voraus. Auch um das
nicht immer einfache Verhalten der
Inferenzmaschine zu verstehen, sollte
er fundierte Kenntnisse auf dem Ge-
biet der KI besitzen. Fiir viele Anwen-
dungen (Realzeit) kann die unerreich-

te Schnelligkeit in Verbindung mit der
Garbagefreiheit von grosser Bedeu-
tung sein. Bei grossen Wissensbasen
wird dem Entwickler eine disziplinier-
te Arbeitsweise abverlangt, insbeson-
dere was die Strukturierung und die
Dokumentation angeht.

Zur Unterstiitzung bei der Einbin-
dung in die konventionelle Datenver-
arbeitung muss noch einiges getan
werden. Auch beziiglich der Portie-
rung auf andere Hardwareplattformen
hinkt ART seinem Konkurrenten
KEE hinterher.

Zusammenfassend kann ART als
schnelles, elegantes aber auch komple-
xes Werkzeug bezeichnet werden, be-
sonders geeignet zur Losung schwieri-
ger Problemstellungen, bei denen eine
ausgepragte Dynamik mit hohen An-
forderungen an das Regelverhalten
und nicht so sehr die statische Repri-
sentation grosser Wissensbereiche im
Vordergrund steht.

Literatur

[1] C.L. Forgy: The OPSS5 user’s manual. Tech-
nical Report CMU-CS-81-135. Pitts-
burgh/Pa, Carnegie-Mellon University,
Computer Science Department, 1981.

[2] L.D. Erman, P.E. London and S.F. Fickas:
The design and an example use of Hearsay-
IT1. Proceedings of the seventh International
Joint Conference on Artificial Intelligence
(IJAI-81) 24..28 August 1981, Vancouver,
Canada. Vol. 1, p. 409...415.

[3] E. Charniak and D. McDermott: Introduc-
tion to artificial intelligence. Reading/Mass.,
Addison-Wesley, 1985.

[4] J. Doyle and P. London: A selected descrip-
tor-indexed bibliography of the literature on
belief revision. Sigart Newsletter -(1980)71,
p.7..23.

[5] M.McFall: Representing uncertainties in
ART. Los Angeles/California, Inference
Corporation.

[6] T.A. Nguyen: ARC: The ART rule checker.
Palo Alto, Lockheed Research & Develop-
ment, Advanced Software Laboratory.

132

Bulletin ASE/UCS 80(1989)3, 4 février

	ART : Automated Reasoning Tool

