
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 80 (1989)

Heft: 3

Artikel: ART : Automated Reasoning Tool

Autor: Staab, R.

DOI: https://doi.org/10.5169/seals-903633

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903633
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Expertensysteme

ART - Automated Reasoning Tool
R. Staab

Eines der neben KEE und Knowledge

Craft mächtigsten
Software-Werkzeuge zur Realisierung

wissensbasierter Systeme
- ART - wird in diesem Beitrag
beschrieben und durch anschauliche

Beispiele illustriert. Stärken

und Schwächen in der
Benutzung werden kritisch
beleuchtet, und es werden
Vergleiche zu den oben genannten
Konkurrenzprodukten gezogen.

Cet article a pour but de décrire
l'environnement de développement

de systèmes à base de
connaissances ART, l'un des plus
puissants avec KEE et Knowledge

Craft en l'illustrant
d'examples explicatifs. Ses

points forts et défauts seront
ensuite discutés et Ton comparera

ART à ses concurrents déjà
mentionnés.

Adresse des Autors
Richard Staab, Dipl.-Informatiker, Insiders
Gesellschaft für angewandte Künstliche
Intelligenz (BDU), D-6500 Mainz.

ART ist ein Produkt der Inference
Corporation. Die folgende Beschreibung
basiert auf der Version 3.0, welche seit
1986 verfügbar ist. ART ist beeinflusst
durch die klassischen Systeme Hear-
say-III [1] und OPS5 [2], Obgleich
ART auch eine Entwicklungsumgebung

umfasst, muss es in erster Linie
als eine äusserst facettenreiche Sprache
verstanden werden, genauer, als ein
Konglomerat von mehreren
Wissensrepräsentationssprachen. Dazu gehören

etwa Sprachen zur Beschreibung
von Regeln, von semantischen Netzen,
von Frame-Hierarchien und von
hypothetischen Welten. Obwohl ART
sehr homogen strukturiert ist, führt die
Fülle der sprachlichen Mittel zu einer

Modifikation der
Wissensbasis

hohen Komplexität. Wie auch bei den
anderen hier besprochenen Werkzeugen

ist die sprachliche Basis Lisp.

Fakten und Regeln
Wie aus der Figur 1 ersichtlich, wird
die dynamische Wissensbasis durch
Fakten und Regeln (Tab. I) gebildet.
Die Fakten, die in ihrer Gesamtheit
den «Weltausschnitt» der Anwendung
darstellen, werden in der Form

(RELATION-NAME (1)
VALUE 1 VALUE 2...)
gespeichert. Im Ausdruck

(Stellung weisse-dame D 4) (2)

zum Beispiel ist Stellung ein
Relationsname (Relation Name) und weis-
se-dame, D und 4 sind Werte (Values).
Die Inferenzmaschine ermittelt die
auszuführenden Regeln über einen
Pattern-Matching-Prozess. Als
Beispiel diene die Regel

(DEFRULE drucke- (3)
gefährdete-figuren

(Stellung ?figur ?x ?y)

(bedroht ?figur)
>

(printout 11 "Figur " ?figur "
in Stellung " ?x ?yJJ1

Das Schlüsselwort DEFRULE.
gefolgt vom Regelnamen, leitet die
Definition der Regel ein. Es handelt sich
um eine Vorwärtsregel mit der Bedeutung:

Wenn ?figur sich in Stellung ?x

?y befindet und bedroht ist, dann druk-
ke entsprechende Meldung aus.
(Stellung.. und (bedroht...) sind hier Pat-

Figur 1 Reasoning-Zyklus von ART

' Die Fragezeichen kennzeichnen Variablen,
und DEF in DEFRULE weist auf «Definition»
hin.

Bulletin SEV/VSE 80(1989)3,4. Februar 129



Expertensysteme

Glossar
Agenda : Liste von feuerbereiten Regelinstanzen
Browsing : Blättern in einer Wissensbasis
Demon: im Hintergrund ablaufende Operation, die bei bestimmten

Zuständen der Wissensbasis aktiv wird
Faktum : atomare Wissenseinheit, z.B. (Farbe Auto Blau)
Fokussierung: Beschränkung der Regelanwendung auf einen Teil der Regelbasis
Frame: Bündelung von Fakten zu einer semantischen Einheit (vergleichbar

mit einem Record in Pascal)
Message : Nachricht an ein Objekt (objektorientierte Programmierung)
Methode: zu einem Objekt gehörende Kodeeinheit, welche die Reaktion auf

eine Message definiert (objektorientierte Programmierung)
Objektorientierte Programmierform, bei der nachrichtenaustauschende Objekte im
Programmierung : Mittelpunkt stehen

Pattern die Abgleichung der Regelbedingungen auf die sich in der
Matching: Wissensbasis befindenden Fakten
Reasoning : Schlussfolgerungsprozess über einer Wissensbasis

Regelinstanz : Ausprägung einer Regel, bei der nach erfolgreichem Pattern
Matching die variablen Teile an die entsprechenden Fakten
gebunden wurden

Schema: ART-typisches Konstrukt zur Darstellung von Frames
Taxonomie: hierarchische Gliederungsform für Wissensbereiche mit

baumartiger Begriffsstruktur (z.B. Fauna)
Uncertainties: Unsicherheiten, mit denen Wissenseinheiten behaftet sein können

(z.B. «Daumenregeln»)

Tabelle I

terns, die auf mögliche Matches mit
Fakten der dynamischen Wissensbasis
hin überprüft werden. In unserem
Beispiel passt das erste Pattern auf obiges
Faktum, wobei die Platzhalter ?figur,
?x und ?y an weisse-dame, D und 4

gebunden werden. Danach muss ein
Faktum (bedroht weisse-dame) zum
Match gefunden werden, und die Regel

kann mit dieser Platzhalterbelegung

in einer Agenda zum Feuern
bereitgestellt werden. Wenn mehrere
Matches mit unterschiedlichen
Belegungen möglich sind, werden mehrere
Instanzen der Regel bereitgestellt.
Nach der prioritätsgesteuerten
Auswahl einer Regelinstanz kommt deren
Aktionsteil schliesslich zur Ausführung.

Hier können Objekte der
Wissensbasis erzeugt, modifiziert und
gelöscht oder beliebige sonstige ART-
bzw. Lispfunktionen gerufen werden.
Im Beispiel wird die ART-eigene
Druckroutine printout aufgerufen (die
ersten beiden Argumente t t beziehen
sich auf das Ausgabemedium und das
Druckformat).

Der gesamte beschriebene Vorgang
vom Pattern Matching bis zum Feuern
wiederholt sich, bis die Agenda
irgendwann leer ist. Die Beispielregel
druckt auf diese Weise der Reihe nach
alle bedrohten Figuren aus. Es bleibt
noch anzumerken, dass eine Regel
natürlich nicht zweimal auf der Basis der
gleichen Faktenkombination feuern
kann, sonst würde die Agenda nie leer
werden und das System niemals stoppen.

Das obige Beispiel offenbart nur
einen winzigen Ausschnitt der
Möglichkeiten der mächtigen Pattern-Mat-
ching-Sprache von ART, die auch Exi-
stenzquantoren und Iterationen um-
fasst. Wie gezeigt wurde, ergibt sich
die Dynamik des Systems in erster
Linie durch iteratives Feuern von
Vorwärtsregeln (Forward Chaining).

In diesen Prozess können Phasen
von Backward Chaining eingebettet
sein. Dazu werden Rückwärtsregeln
definiert, die bestimmte Fakten ableiten,

wenn Vorwärtsregeln sie zur
Verifizierung ihres Bedingungteils brauchen.

ART führt für das Backward
Chaining übrigens keinen eigenen
Inferenzmechanismus ein, sondern
«simuliert» den Vorgang durch
Vorwärtsregeln hoher Priorität, angestos-
sen durch besondere Fakten (Goal
Facts).

Das Pattern Matching erfolgt in
ART mittels einer weiter beschleunigten

Version des an sich schon schnellen

Rete-Algorithmus. Dies ist einer
der Gründe für die bekannten Perfor¬

mance-Qualitäten von ART, bewirkt
aber umgekehrt erhöhten Zeitaufwand
beim initialen Laden der Wissensbasis,

weil der Algorithmus auf einer
Kompilierung der Regelbedingungen
in Netzwerke beruht. Die Version 3.0
erlaubt es, Regelfiles zunächst in
Binärfiles zu kompilieren, welche dann
um ein Vielfaches schneller geladen
werden können.

Schemata und Relationen
Die meisten Anwendungen erfordern
eine Bündelung der Fakten zu semantischen

Einheiten, die häufig auch als
Frames bezeichnet werden. In ART
werden diese Strukturen als Schemata
(Tab. I) bezeichnet. Das folgende
Beispiel beschreibt ein UND-Gatter.

(DEFSCHEMA and-gate (4)
(is-a gate)
(number-of-inputs 2)
(number-of-outputs 1

(function logical-and))

And-gate ist der Name des hier
beschriebenen Objektes, während die
einzelnen Slots die Eigenschaften
beschreiben. Solche Schemata werden
von ART in gewöhnliche Fakten übersetzt

und in die Wissensbasis eingetragen,

im Beispiel in die Fakten

(SCHEMA and-gate is-a gate), (5)
(SCHEMA and-gate
(number-of-inputs 2)usw.

Auf diese Weise wird die
frameorientierte Wissensrepräsentation
konzeptionell voll in den Pattern-Mat-
ching-Mechanismus integriert. Die
Relationen in semantischen Netzwerken

werden in ART durch die Slots
repräsentiert. Ein bestimmtes UND-
Gatter a2 einer Schaltung könnte etwa
folgendermassen definiert sein:

(DEFSCHEMA a2 (6)
instance-ofand-gate)

(connected-with al ol n2))

Der Slot instance-of etabliert eine

Beziehung zu dem oben definierten
Schema and-gate. In ART gibt es 9

vordefinierte Relationen. Zu ihnen
gehören etwa is-a, instance-of, ele-

ment-of, subset-of sowie die jeweiligen
inversen Relationen. Daneben kann
der Entwickler beliebige eigene
Relationen definieren, im Beispiel etwa
connected-with. Dies erfolgt wieder
durch die Definition eines Schemas,
denn ART beschreibt die Eigenschaften

von Slots und Relationen selbst
wieder in Schemata. Connected-with
könnte folgendermassen definiert werden:

(DEFSCHEMA connected-with (7)
(instance-of relation)
(inverse connected-with))

Die Definition einer inversen Relation

(hier ebenfalls connected-with) be-

130 Bulletin ASE/UCS 80(1989)3, 4 février



ART

wirkt den automatischen Eintrag des

gegenläufigen Slots beim verbundenen
Objekt, al, ol und n2 würden im
Beispiel durch ART den Eintrag (connect-
ed-with a2) erhalten. Daneben gibt es

die Möglichkeit, Transitivität bei
Relationen zu verankern.

Die Vererbung von Objekteigenschaften

innerhalb von Begriffshierarchien

(Taxonomien) erfolgt in ART
entlang besonderer INH-Relationen
(INH inheritance). Die vordefinierte

Relation is-a ist eine INH-Relation.
Daher würden im Beispiel Eigenschaften

von gate automatisch auf die
Ausprägung and-gate übertragen werden.
Der Entwickler kann das Vererbungsverhalten

bei vordefinierten und
selbstdefinierten Relationen steuern,
insbesondere was den Konfliktfall
mehrerer unterschiedlicher vererbter
Werte (bei mehreren Oberbegriffen)
angeht.

Es sei in diesem Zusammenhang
noch auf einen subtilen Unterschied zu
KEE hingewiesen. ART unterscheidet
nicht zwischen Klassen und Instanzen.
Beides sind in ART Schemata. Semantische

Unterschiede ergeben sich nur
über die Eigenschaften der Relationen
is-a (Unterklasse) und instance-of
(Instanz), auch dies ein Beispiel für die
Bestrebung nach konzeptioneller
Geschlossenheit.

Zur Darstellung (Browsing) semantischer

Netze bietet ART eine graphische

Oberfläche an.

Objektorientierte
Programmierung und
Active Values
Seit Version 3.0 erlaubt ART die
objektorientierte Programmierung.
Objekte sind die besprochenen Schemata
(Frames). Die Methoden werden
durch ein Konstrukt DEFACTION in
Lisp-Syntax definiert. Messages erfolgen

syntaktisch wie Aufrufe von
Lispfunktionen und integrieren sich gut in
die Regelsprache. Eine Erweiterung
des bekannten Flavor-Konzeptes sind
Multi Methods, die für eine beliebige
Kombination von Objekten definiert
werden können.

Unter Active Values versteht man
den automatischen Anstoss von Aktionen

bei bestimmten Operationen auf
Slots, sie werden in ART objektorientiert

realisiert. Es stehen für acht Arten
des Slotzugriffs Varianten bereit.
Beliebig viele Active Values können an
einen Slot gebunden werden, und sie

werden mit ihm vererbt.

Viewpoints
In vielen Applikationen ist eine
Teilung der Wissensbasis in verschiedene
hypothetische Welten sinnvoll. Hierfür

bietet ART den Viewpoint-Mechanismus

an. Die Wissensbasis wird dabei

in Form eines Netzwerkes von
Kontexten gesehen. In jedem Kontext
gelten bestimmte Fakten. Beim Übergang

in eine neue Hypothese bleiben
im allgemeinen die meisten Fakten
gültig, so dass sie vom Vaterkontext
geerbt werden können (Effizienz). Die
Gültigkeit eines Faktums in einem
bestimmten Kontext wird in ART durch
eine raffinierte Indizierung des
Faktums repräsentiert, so dass es nach wie
vor nur eine Wissensbasis gibt. Regeln
können in ihren Aktionen auf
bestimmte Kontexte fokussiert werden,
aber auch global agieren (Metaregeln).
Jedoch verlangen sowohl die Navigation

im Netzwerk als auch das subtile
Vererbungsverhalten (Kontexte können

auch wieder verschmelzen) einen
erfahrenen Entwickler, auch wenn die
graphische Aufbereitung des Netzwerkes

eine gute Unterstützung bietet. Mit
dem Konstrukt DEFCONTRADIC-
TION können Demons definiert werden,

die logisch inkonsistente Kontexte
verbieten.
Eine andere typische Anwendung

ist das Reasoning in Time (z.B. in
Planungsproblemen). Hier repräsentiert
ein Kontext einen Weltausschnitt zu
einem bestimmten Zeitpunkt. Der
Vererbungsmechanismus hilft hier bei der
Lösung des bekannten Frameproblems

[3]. Viewpoints können auch in
mehreren Ebenen benutzt werden,
wenn etwa in verschiedenen Hypothesen

eines Diagnoseprozesses zeitliche
Abläufe simuliert werden sollen. ART
unterstützt dies in beliebiger hierarchischer

Tiefe, obgleich die Anwendung
von mehr als zwei Ebenen schwer
vorstellbar wird.

Truth Maintenance
Beim Nonmonotonic Reasoning ist
zur Wahrung einer konsistenten
Wissensbasis nach Löschen eines Faktums
X oft eine Löschung aller von X
abgeleiteten Fakten erwünscht. Dies erfordert

eine Buchhaltung des Systems
über die gegenseitigen logischen
Abhängigkeiten der Fakten [4]. ART
erlaubt die Kennzeichnung beliebiger
Bedingungen einer Regel als LOGI-
CAE, wodurch Abhängigkeiten
zwischen triggernden und erzeugten Fakten

der Regel verbucht werden. Bei

späterem Löschen eines der triggernden

Fakten leitet ART dann automatisch

die Löschung aller abgeleiteten
Fakten ein. Dieser Mechanismus
bezieht sich nur auf erzeugte Fakten, d.h.,
durch eine Regel gelöschte Fakten
werden nicht erneut instanziert, wenn
die triggernden Fakten ungültig werden.

Fehlende Wissens-
repräsentationsformen
ART bietet keine direkte Unterstützung

für Reasoning mit Uncertainties
(unsicherem Wissen) an. Es liegen
zwar Beispiele vor, wie bekannte
Konzepte (Bayesian Probabilities, Fuzzy
Set Theory, Dempster-Shafer, Emycin
Model) in ART angewandt werden
können [5], jedoch erfordert das einen
versierten Entwickler.

Weiterhin steht kein direktes Mittel
zur Fokussierung auf gewisse Teile der
Regelbasis bereit, was aber leicht über
Steuerfakten emuliert werden kann.

Graphische Fähigkeiten
Basis der Graphik in ART sind Icons,
die ebenfalls als Schemata definiert
sind. ART beinhaltet eine beliebig
erweiterbare Graphikbibiliothek. Der
Gebrauch, insbesondere die Ansteue-

rung von Graphiken aus den Regeln
heraus, basiert auf dem oben beschriebenen

Schema-Mechanismus. Zur
schnellen Kreation einer graphischen
Oberfläche (inklusive Bitmap-Graphiken)

dient der Icon Editor ARTIST.
Der Entwickler hat über das
Konstrukt DEFICON die Möglichkeit, die
Graphikbibliothek (und damit auch
ARTIST) um selbstdefinierte Icons zu
erweitern, jedoch muss er sich dazu in
Lispgefilde begeben. Die Animation
der Graphiken kann mit Version 3.0

bequem über Active Values erfolgen.
Insgesamt sind die Graphikmöglichkeiten

in ART bescheidener als in
KEE, genügen jedoch im allgemeinen
zur Schaffung geeigneter
Benutzeroberflächen.

Schnittstellen
Schnittstellen zu anderen Programmen

und Systemen müssen vom
Entwickler selbst in Lisp programmiert
werden. Dabei hilft die gute Einbettung

von Lisp in die Regelsyntax, aber
auch eine funktional reich ausgestattete

Lisp-Oberfläche von ART. Alle
wesentlichen Operationen in ART (z.B.
RESET der Wissensbasis) sind von

Bulletin SEV/VSE 80(1989)3, 4. Februar 131



Expertensysteme

Lisp aus möglich, insbesondere auch
Operationen auf der Wissensbasis
selbst. So können in Realzeitanwendungen

etwa Lisp-Programme dem
simultan laufenden ART asynchron
Fakten zuspielen, die dort unmittelbar
das Systemverhalten beeinflussen.

Dennoch wären Schnittstellen
sowohl zu prozeduralen Sprachen als
auch zu Datenbanksystemen
wünschenswert.

Die Entwicklungsoberfläche
Die Entwicklungsoberfläche von ART
ist für kleine bis mittelgrosse Anwendungen

funktional und ergonomisch
voll ausreichend. Hervorzuheben sind
hier Dinge wie inkrementelle Kompilation,

gute Browsing- und Trace-
Möglichkeiten und Hilfe bei der
Leistungsverbesserung von Anwendungen.

Wird aber die Wissensbank im Laufe

einer Entwicklung wirklich gross,
werden bekannte Probleme des
Software-Engineerings spürbar, gerade bei
einem Werkzeug, welches als
Programmiersprache verstanden werden
muss. Der Aufbau einer Applikation
erfolgt derzeit zum grössten Teil durch
Eintippen der Definitionen im
ZMACS-Editor. Effizienter wäre die
Eingabe über vorgegebene Masken
(etwa bei Schemata und Regeln). Für
Knowledge-Engineering-Zwecke sollte

unbedingt auch Platz für deskriptive
Nebeninformation zur Verfügung
stehen (z.B. Quellenangaben). Auch der
schnelle Zugriff auf zu editierende
Objekte ist zu verbessern. Konsistenzprüfungen

über der Wissensbasis werden
nicht direkt unterstützt. In [6] wird
allerdings eine umfassende
Konsistenzprüfungskomponente speziell für ART
beschrieben.

Kein Garbage
Ein besonderes Problem von
Werkzeugen auf Lispmaschinen ist das
nicht vorhersehbare Laufzeitverhalten.
Dies liegt daran, dass durch laufende
Programme im Speicher i.a. fortwährend

Garbage erzeugt wird, der durch
einen speziellen Hintergrundprozess
(Garbage Collection) simultan wieder
abgebaut werden muss. Da dieser Pro-
zess der eigentlichen Applikation
Rechenzeit entzieht, ist es schwierig,
Reaktionszeiten zu garantieren. Wenn
darüber hinaus mehr Garbage produziert

als abgeräumt wird, kann die
Applikation durch «Seitenflattern» im
virtuellen Speicher praktisch zum
Stillstand kommen. Dies war nach
unseren Erfahrungen auch bei ART 2.0
möglich. Es ist daher von grösster
Bedeutung, dass ART ab Version 3.0
durch eine eigene Verwaltung der
Speicherressourcen praktisch garbage-
frei ist.

Zusammenfassung
Den Entwicklern von ART ist es
erstaunlich gut gelungen, die
unterschiedlichsten Methoden, die die KI-
Forschung in den letzten zehn Jahren
hervorgebracht hat, auf eine konzeptionelle

Schiene zu bringen. ART ist
sehr homogen, kein Feature der Sprache

wirkt improvisiert oder unausge-
reift. Auch Dokumentation und
Schulungsmaterialien sind solide. Eine
wirkliche Nutzung der Möglichkeiten
von ART setzt aber einen erfahrenen
Knowledge Engineer mit guten
Lispkenntnissen voraus. Auch um das
nicht immer einfache Verhalten der
Inferenzmaschine zu verstehen, sollte
er fundierte Kenntnisse auf dem
Gebiet der KI besitzen. Für viele Anwendungen

(Realzeit) kann die unerreich¬

te Schnelligkeit in Verbindung mit der
Garbagefreiheit von grosser Bedeutung

sein. Bei grossen Wissensbasen
wird dem Entwickler eine disziplinierte

Arbeitsweise abverlangt, insbesondere

was die Strukturierung und die
Dokumentation angeht.

Zur Unterstützung bei der Einbindung

in die konventionelle Datenverarbeitung

muss noch einiges getan
werden. Auch bezüglich der Portierung

auf andere Hardwareplattformen
hinkt ART seinem Konkurrenten
KEE hinterher.

Zusammenfassend kann ART als
schnelles, elegantes aber auch komplexes

Werkzeug bezeichnet werden,
besonders geeignet zur Lösung schwieriger

Problemstellungen, bei denen eine
ausgeprägte Dynamik mit hohen
Anforderungen an das Regelverhalten
und nicht so sehr die statische
Repräsentation grosser Wissensbereiche im
Vordergrund steht.

Literatur

[1] C.L. Forgy: The OPS5 user's manual. Tech¬
nical Report CMU-CS-81-135. Pitts-
burgh/Pa, Carnegie-Mellon University,
Computer Science Department, 1981.

[2] L.D. Erman, P.E. London and S.F. Fickas:
The design and an example use of Hearsay-
Ill. Proceedings of the seventh International
Joint Conference on Artificial Intelligence
(IJAI-81) 24...28 August 1981, Vancouver,
Canada. Vol. 1, p. 409...415.

[3] E. Charniak and D. McDermott: Introduc¬
tion to artificial intelligence. Reading/Mass.,
Addison-Wesley, 1985.

[4] J. Doyle and P. London: A selected descrip¬
tor-indexed bibliography of the literature on
belief revision. Sigart Newsletter -(1980)71,
p. 7...23.

[5] M.McFall: Representing uncertainties in
ART. Los Angeles/California, Inference
Corporation.

[6] T.A. Nguyen: ARC: The ART rule checker.
Palo Alto, Lockheed Research & Development,

Advanced Software Laboratory.

132 Bulletin ASE/UCS 80(1989)3,4 février


	ART : Automated Reasoning Tool

