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Netzwerktheorie

Chaos in elektrischen Netzwerken

M. Hasler

Chaos ist in der Physik fast zum
Modethema geworden. Dass
Chaos aber auch in der Elektro-
technik eine gewisse Bedeutung
hat, zeigt dieser Beitrag.Die
wesentlichen Merkmale von
chaotischem Verhalten werden
anhand von zwei Vergleichs-
beispielen, einem linearen und
einem nichtlinearen Netzwerk,
erlautert. Die fiir den Ingenieur
relevanten Fragen werden
gestellt, ohne dass jedoch heute
zufriedenstellende Antworten
gegeben werden konnen.

L’étude du chaos est devenu
presqu’une mode en physique.
Le présent article montre que le
chaos intervient également en
électrotechnique. Les propriétés
caractéristiques du comporte-
ment chaotique sont mises en
évidence a I’aide de deux exem-
ples simples, un circuit linéaire
et un circuit non-linéaire. Les
questions pertinentes pour I’in-
génieur sont posées, sans que
I’on puisse donner aujourd’hui
des réponses satisfaisantes.
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Seit etwa 20 Jahren werden in der
wissenschaftlichen Literatur, vor al-
lem in den Zeitschriften der Physik,
Arbeiten tiber Chaos publiziert. Am
Anfang waren es einige wenige For-
scher, die sich mit dem Thema befass-
ten; inzwischen ist es geradezu ein
Modegebiet geworden. Auch die Inge-
nieurwissenschaften sind von dieser
Welle nicht
verschont ge-

blieben. Die Up) =

fache Netzwerke, ein lineares und ein
nichtlineares, als Vergleichsbeispiele
beniitzt. Das erste ist der RLC-
Schwingkreis von Figur 1, welcher von
einer Wechselstromquelle angetrieben
wird. Mit den iiblichen Rechenmetho-
den findet man die Ausgangsspan-
nung u in laplacetransformierter
Form:

E

Grundhal-
tung des In-

LC(p*+ o) [p*+{(R/L)+1/R;C|p +(R;+R)/(R,LC)]

ig+ (p+(R/L))uy,

genieurs ge-
geniiber dem
Stichwort
Chaos ist je-
doch anders als beim Physiker. Dies
lasst sich leicht anhand der verschiede-
nen Berufsaufgaben verstehen.

Der Physiker hat als Naturwissen-
schafter ein natiirliches Interesse an al-
lem Neuen und Exotischen, wihrend
der Ingenieur alle Phdnomene als la-
stig empfindet, welche das korrekte
Funktionieren der von ihm entworfe-
nen Gerite in Frage stellen. Wie alle
Menschen hat er die Tendenz, das Un-
angenehme zu verdrdangen. Daher
steht er dem Phanomen Chaos eher
ungldubig gegeniiber, oder er ist min-
destens iiberzeugt, dass es in seinem
Arbeitsgebiet irrelevant ist.

Der Zweck dieses Artikels ist es, den
Elektroingenieur darauf aufmerksam
zu machen, dass chaotisches Verhalten
in elektrischen Netzwerken sehr wohl
auftreten kann. Das Wissen um die Na-
tur dieser Phinomene kann ihm niitz-
lich sein bei der Interpretation von
iiberraschenden experimentellen Resul-
taten und Computersimulationen.

Zwei Vergleichsnetzwerke

Um die nachfolgende Diskussion
konkret zu gestalten, werden zwei ein-

C[p*+|{(R/L) +1/R,Clp+ (R,+R)/ (R, LO|]

Wobei E die Amplitude und o die
Kreisfrequenz der Quelle, i der
Anfangsstrom in der Spule und uo die
Anfangsspannung im Kondensator
bezeichnen.

Das nichtlineare Netzwerk (Fig. 2)
unterscheidet sich vom linearen der Fi-
gur 1 nur dadurch, dass die Elemente
R, und C durch eine Diode ersetzt sind.
Effektiv wird fiir eine Diode normaler-
weise ein Widerstand und ein parallel-
geschalteter Kondensator als Ersatz-
schaltbild verwendet. Allerdings sind
die zwei Elemente dann nichtlinear
(Fig. 3), mit der Spannungs-Strom-
Kennlinie der Figur 4a fiir den Wider-
stand und der Spannungs-Ladungs-
Kennlinie der Figur 4b fir den Kon-
densator. Wegen dieser Nichtlinearité-
ten kann die Ausgangsspannung nicht
mehr explizit berechnet werden, aber
qualitativ ist die normale Arbeitsweise
des Netzwerkes leicht verstidndlich.
Abgesehen von Einschwingvorgingen
schneidet die Diode im wesentlichen
die Hilfte der sinusformigen Schwin-
gungen ab, wobei die Spule zusédtzlich
noch eine Phasenverschiebung bewirkt
(Fig. 6). Wie wir sehen werden, kann
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Figur 1 Linearer RLC-Schwingkreis

Figur 2 Nichtlinearer Schwingkreis

sich dieser nichtlineare Schwingkreis
aber noch ganz anders verhalten.

Was ist chaotisches
Verhalten?

Merkwiirdigerweise kann vorldufig
keine mathematisch absolut prazise
Antwort auf diese Frage gegeben wer-
den. Dies allein ist schon ein Hinweis
darauf, dass es sehr schwierig ist, fiir
Anwendungen signifikante mathema-
tische Sitze herzuleiten. Anderseits
kann man jedoch einige wesentliche
Eigenschaften von chaotischem Ver-
halten angeben. Deren genaue Defini-
tionen sind jedoch heikel und konnen
auch zu Kontroversen Anlass geben.
Die folgenden Ausfiithrungen sind als
Ansicht des Autors und nicht unbe-
dingt als allgemein akzeptierte Fakten
zu verstehen.

Drei Eigenschaften sind charakteri-
stisch fiir chaotisches Verhalten von
physikalischen Systemen im allgemei-
nen, und von elektrischen Netzwerken
im speziellen:

1. Aperiodizitit - Kontinuierliches

Spektrum
2. Lokale Instabilitét
3. Globale Beschridnktheit.

1. Aperiodizitit

Die Ausgangsspannung des linearen
Schwingkreises von Figur 1 verhélt
sich qualitativ folgendermassen. Aus-
gehend vom Wert up folgt ein Ein-
schwingvorgang. Wenn dieser abge-
klungen ist, nimmt u(f) Sinusform an,
mit der gleichen Periode wie die Quel-
le. Das Frequenzspektrum ist also
ganz auf = ®/2n konzentriert. Diese
Eigenschaften konnen direkt aus der
Laplace- Riicktransformation von (1)
abgelesen werden.

Das Verhalten des nichtlinearen
Schwingkreises von Figur 2 ist nor-
malerweise sehr dhnlich. Nach dem

Einschwingvorgang stellt sich eine pe-
riodische Schwingung mit der gleichen
Periode wie die Quelle (Fig. 5a) ein. Sie
ist jedoch nicht mehr sinusférmig, d.h.
ihr Spektrum ist zwar diskret, aber es
treten nicht nur die Frequenz f, son-
dern auch alle Vielfachen nf auf. Weil
man im nichtlinearen Fall keine expli-
zite Formel wie (1) zur Verfiigung hat,
ist es nicht einfach, diese qualitativen
Eigenschaften auch nachzuweisen. Es
ist sogar sinnlos, einen allgemeinen
Beweis dafiir zu suchen, weil die
Eigenschaften gar nicht immer zutref-
fen. In gewissen Bereichen der Netz-
werkparameter tritt zum Beispiel eine
andersartige periodische Schwingung
auf. Thre Periode ist ein Vielfaches der
Quellenperiode und ihre Grundfre-
quenz dementsprechend f/m ein
Bruchteil der Quellenfrequenz (Fig.
5b). Man nennt sie daher eine subhar-
monische Schwingung. Sie hat eben-
falls ein diskretes Spektrum, welches
auf die Frequenzen nf/m, n =0,1,2,...
konzentriert ist.

Im Prinzip wire auch eine quasipe-
riodische Schwingung maoglich, deren
Spektrum ebenfalls diskret ist, aber
nicht mehr nur aus Vielfachen einer
Grundfrequenz besteht. Dieses Phino-
men wurde jedoch am nichtlinearen
Netzwerk der Figur 2 nicht beobach-
tet. Schliesslich gibt es Parameterberei-
che, wo die Ausgangsspannung iiber-
haupt keine Periodizitit mehr auf-
weist, auch keine quasiperiodische
Schwingung, wie Figur 5c zeigt. Eine
eindriicklichere Darstellung ist in Fi-
gur 6 gegeben, wo der Strom in der
Spule als Funktion der Zeit gegen die
Ladung im Kondensator aufgetragen
ist. Das Spektrum ist in diesem Fall
nicht mehr diskret, sondern kontinu-
ierlich. Das ist das erste Merkmal von
chaotischem Verhalten.

2. Lokale Instabilitit

Im linearen Netzwerk der Figur 1 ist
die Ausgangsspannung immer stabil.

Figur 3
Ersatzschaltbild
fiir die Diode
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Figur 4 Kennlinie der Nichtlinearitiiten

a Nichtlinearer Widerstand
b Nichtlinearer Kondensator

Das bedeutet, dass eine kleine Ande-
rung der Anfangsspannung uo nur eine
kleine Anderung der Spannung u(f),
fir alle Zeiten >0 bewirkt. Nach dem
Einschwingvorgang «vergisst» die
Spannung u(f) sogar diese Anderung,
d.h. die sich einstellende sinusformige
Schwingung hat eine Amplitude und
eine Phase, welche nicht von u und iy
abhidngen. Man spricht von asymptoti-
scher Stabilitdt (fiir t — o).

Dieselbe Eigenschaft trifft auch auf
das normale Verhalten des nichtlinea-
ren Netzwerkes der Figur 2 zu. Treten

gen auf, so ist u(f) nicht mehr in jedem
Fall stabil. Es gibt ndmlich gewisse
Anfangswerte uo, i, bei welchen eine
noch so kleine Variation der Anfangs-
werte eine grosse Abweichung von u(1)
bewirken kann, wenn man geniigend
lange wartet. Diese instabilen Schwin-
gungen sind jedoch die Ausnahme.
Fiir das chaotische Verhalten hinge-
gen ist die Instabilitit aller Span-
nungsverldufe u(f) charakteristisch.
Zwei beliebig nahe beieinanderliegen-
de Wertepaare (uo,ip) und (uo’,ip") er-
zeugen fast immer Schwingungen u({)
und u’(f), welche im Laufe der Zeit
auseinanderstreben. Das ist das zweite
Merkmal von chaotischem Verhalten.

3. Globale Beschrinktheit

Wir haben im Abschnitt «Lokale In-
stabilitit» nicht erwdhnt, dass auch
der lineare Schwingkreis instabiles
Verhalten aufweisen konnte. Dies ist
dann der Fall, wenn gewisse Element-
werte negativ sind, z.B. C. Unter die-
sen Umstidnden wichst jedoch u(t) fast
immer iiber alle Schranken. Die Insta-
bilitdten des nichtlinearen Netzwerkes
von Figur 2 sind jedoch ganz anderer
Art. Zwei nahe beieinanderliegende
Anfangswerte erzeugen zwar zwel aus-
einanderstrebende Spannungen u(?)
und u'(f), die aber nicht gegen unend-
lich streben, sondern beschriankt blei-
ben. Beim linearen Netzwerk sind der
lokale Aspekt und der globale Aspekt
der Instabilitdt gekoppelt, was beim
nichtlinearen Netzwerk nicht mehr der
Fall ist.

Man kann sich leicht vorstellen,
dass das Verhalten eines Netzwerkes
bei welchem alle Spannungsverlaufe
(lokal) instabil und trotzdem be-
schrinkt sind, sehr ungeordnet sein
muss. Intuitiv gesprochen stossen sich

werkgleichungen gegenseitig ab und
sind dennoch gezwungen, in einem be-
grenzten Raum zu bleiben. Dies er-
zeugt Chaos. Analogien zu Gebieten
des menschlichen Lebens seien dem
Leser iiberlassen (Politik,...). Die Be-
schrianktheit der Losungen, oder bes-
ser, deren Kombination mit der allge-
genwirtigen lokalen Instabilitdt, ist
also das dritte Merkmal von chaoti-
schem Verhalten.

Welche Netzwerke konnen
sich chaotisch verhalten?

Diese Frage kann leider noch weni-
ger beantwortet werden, als die friither
gestellte Frage nach dem Wesen des
chaotischen Verhaltens. Wir miissen
uns daher mit Beispielen begniigen.
Eine grosse Anzahl von Netzwerken,
deren chaotisches Verhalten bekannt
ist, sind in [1] beschrieben. Bemerkens-
wert ist dabei, dass es sich, wie in unse-
rem Beispiel, um sehr einfache Netz-
werke handelt. Sie sind fiir das Studi-
um von Chaos speziell geeignet. Man
soll darob nicht vergessen, dass einige
davon Modelle von praktisch verwen-
deten Schaltungen sind, einfach mit et-
was anderen Parameterwerten. Er-
wihnt sei das Modell fiir einen Mess-
transformator in einer Hochspan-
nungsanlage [2], das Modell eines mit
einem Pilotsignal synchronisierten Os-
zillators [3], im speziellen eines PLL
(Phase-Locked Loop) [4], und ein digi-
tales Filter [5]. Wir sind liberzeugt,
dass die Zukunft noch weitere Beispie-
le an den Tag bringen wird.

Wie kann man chaotisches
Verhalten umgehen?
Die Aufzihlung der Beispiele im

jedoch subharmonische Schwingun- die verschiedenen Losungen der Netz-  vorhergehenden ~ Abschnitt  zeigt
s 6.
a® e b > NGy c ° Gy
0.667 AYSNENEN RN ENRYERENE 1.667 ¢ R ® 1 3 @ 2.F ¢ o8 w0
o LI : iimlmlE o 1M
-0.667 H \ 4 | U 1l 1\ -1.667 . . . =, "h . . \
-2.000 -5.000 B
97.82 00.00 102.2104.3 106,5 1087 97.82 00.00 102.2 104.3 106.5 108.7 97.82 00.00 102.2 104.3 106.5 108.7
Zeit Zeit Zeit

Figur5 Verschiedene Netzwerkreaktionen
a Schwingung mit Grundfrequenz

b Subharmonische Schwingung

¢ Chaotische Schwingung
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schon, dass Chaos in ganz verschie-
denartigen Arbeitsgebieten des Elek-
troingenieurs auftreten kann. Weil je-
doch Chaos normalerweise uner-
wiinscht ist, braucht der Ingenieur
Hilfsmittel, welche es ihm erlauben,
chaotisches Verhalten auszuschliessen.

Leider ist heute das einzig generell
verwendbare Hilfsmittel die numeri-
sche Simulation, eine Methode, die so-
wohl aufwendig als auch unzuverlis-
sig ist. Genau genommen miisste man
eine unendliche Anzahl von unendlich
langen Strom- und Spannungsverldu-
fen berechnen, um das chaotische Ver-
halten mit Sicherheit feststellen zu
koénnen. Das kann man natiirlich
nicht, und daher ist die Methode unzu-
verldssig. Wenn man jedoch eine sehr
grosse Anzahl von geniigend langen
und sorgfiltig ausgewidhlten Simula-
tionen durchfiihrt, so kann man von
einer gewissen Zuverlissigkeit der Re-
sultate sprechen. Die Methode ist dann
allerdings sehr aufwendig.

Es besteht also ein Bedarf an mehr
grundlegenden Methoden, welche er-
lauben, diese storenden Phidnomene
auszuschliessen. Als mathematisches
Hilfsmittel bieten sich die Lyapunov-

=56 q

funktionen an. Diese Methode ist ab-
solut zuverldssig, wenn sie zu einem
Resultat fiihrt. Hier ist aber der wunde
Punkt. Die geradlinige Anwendung
der Methode von Lyapunov liefert
sehr oft kein brauchbares Resultat.
Trotzdem ist das Potential dieser Me-
thode noch nicht voll ausgeschopft.
Wesentliche Fortschritte erreicht man
nur mit grosser Intuition. Sie ist fiir
das Auffinden einer giinstigen Lyapu-
novfunktion unerldsslich. Einige An-
wendungen dieses theoretischen Hilfs-
mittels auf Netzwerkprobleme findet
man in [6].

Was kann nun ein Ingenieur tun,
wenn er anhand von numerischen Si-
mulationen oder experimentell festge-
stellt hat, dass seine Schaltung sich
chaotisch verhilt? Er muss die Netz-
werkparameter verdndern bis die sto-
renden Phdnomene verschwinden. In
der Praxis diirfte der Fall jedoch nicht
so klar sein, weil rein dusserlich gese-
hen chaotisches Verhalten von Rau-
schen irgendwelcher Herkunft kaum
zu unterscheiden ist. Numerische Si-
mulationen werden in diesem Falle
nutzlich sein, weil sie erlauben, ver-
schiedene Effekte zu trennen. Es ist

wichtig, das chaotische Verhalten des
Netzwerkmodelles an sich zu identifi-
zieren, weil z.B. im Gegensatz zu ther-
mischem Rauschen ein Kiihlen der

Schaltung kaum Abhilfe schaffen
wird.
Schlussfolgerungen

Elektrische Netzwerke konnen sich
chaotisch verhalten. Dies dussert sich
durch Aperiodizitit trotz periodischer
Quellen, kontinuierliches Spektrum
der Spannungen und Strome sowie
deren generelle Instabilitdt. Diese lo-
kale Instabilitdt ist jedoch von einer
globalen Stabilitit, der Beschranktheit
der Spannungen und Strome, beglei-
tet. Normalerweise kann chaotisches
Verhalten in Netzwerken nicht tole-
riert werden. Hilfsmittel sind daher
vonnoten, um solche Phdnomene aus-
zuschliessen. Leider steht generell nur
die numerische Simulation zur Verfii-
gung, die sehr aufwendig ist, wihrend
die Methode von Lyapunov (noch?) zu
wenige praktisch verwendbare Resul-
tate liefert.
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