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Ne tzwerk théorie

Chaos in elektrischen Netzwerken
M. Hasler

Chaos ist in der Physik fast zum
Modethema geworden. Dass
Chaos aber auch in der Elektrotechnik

eine gewisse Bedeutung
hat, zeigt dieser Beitrag. Die
wesentlichen Merkmale von
chaotischem Verhalten werden
anhand von zwei Vergleichsbeispielen,

einem linearen und
einem nichtlinearen Netzwerk,
erläutert. Die für den Ingenieur
relevanten Fragen werden
gestellt, ohne dass jedoch heute
zufriedenstellende Antworten
gegeben werden können.

L'étude du chaos est devenu
presqu'une mode en physique.
Le présent article montre que le
chaos intervient également en
électrotechnique. Les propriétés
caractéristiques du comportement

chaotique sont mises en
évidence à l'aide de deux exemples

simples, un circuit linéaire
et un circuit non-linéaire. Les
questions pertinentes pour
l'ingénieur sont posées, sans que
l'on puisse donner aujourd'hui
des réponses satisfaisantes.
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Seit etwa 20 Jahren werden in der
wissenschaftlichen Literatur, vor
allem in den Zeitschriften der Physik,
Arbeiten über Chaos publiziert. Am
Anfang waren es einige wenige
Forscher, die sich mit dem Thema befass-
ten; inzwischen ist es geradezu ein
Modegebiet geworden. Auch die
Ingenieurwissenschaften sind von dieser
Welle nicht
verschont
geblieben. Die
Grundhaltung

des
Ingenieurs

gegenüber dem
Stichwort
Chaos ist
jedoch anders als beim Physiker. Dies
lässt sich leicht anhand der verschiedenen

Berufsaufgaben verstehen.
Der Physiker hat als Naturwissenschafter

ein natürliches Interesse an
allem Neuen und Exotischen, während
der Ingenieur alle Phänomene als
lästig empfindet, welche das korrekte
Funktionieren der von ihm entworfenen

Geräte in Frage stellen. Wie alle
Menschen hat er die Tendenz, das
Unangenehme zu verdrängen. Daher
steht er dem Phänomen Chaos eher
ungläubig gegenüber, oder er ist
mindestens überzeugt, dass es in seinem
Arbeitsgebiet irrelevant ist.

Der Zweck dieses Artikels ist es, den
Elektroingenieur darauf aufmerksam
zu machen, dass chaotisches Verhalten
in elektrischen Netzwerken sehr wohl
auftreten kann. Das Wissen um die Natur

dieser Phänomene kann ihm nützlich

sein bei der Interpretation von
überraschenden experimentellen Resultaten

und Computersimulationen.

Zwei Vergleichsnetzwerke
Um die nachfolgende Diskussion

konkret zu gestalten, werden zwei ein¬

fache Netzwerke, ein lineares und ein
nichtlineares, als Vergleichsbeispiele
benützt. Das erste ist der RLC-
Schwingkreis von Figur 1, welcher von
einer Wechselstromquelle angetrieben
wird. Mit den üblichen Rechenmethoden

findet man die Ausgangsspannung

u in laplacetransformierter
Form:

Wobei E die Amplitude und co die
Kreisfrequenz der Quelle, i'o der
Anfangsstrom in der Spule und uo die
Anfangsspannung im Kondensator
bezeichnen.

Das nichtlineare Netzwerk (Fig. 2)
unterscheidet sich vom linearen der
Figur 1 nur dadurch, dass die Elemente
R, und C durch eine Diode ersetzt sind.
Effektiv wird für eine Diode normalerweise

ein Widerstand und ein
parallelgeschalteter Kondensator als
Ersatzschaltbild verwendet. Allerdings sind
die zwei Elemente dann nichtlinear
(Fig. 3), mit der Spannungs-Strom-
Kennlinie der Figur 4a für den Widerstand

und der Spannungs-Ladungs-
Kennlinie der Figur 4b für den
Kondensator. Wegen dieser Nichtlinearitä-
ten kann die Ausgangsspannung nicht
mehr explizit berechnet werden, aber
qualitativ ist die normale Arbeitsweise
des Netzwerkes leicht verständlich.
Abgesehen von Einschwingvorgängen
schneidet die Diode im wesentlichen
die Hälfte der sinusförmigen Schwingungen

ab, wobei die Spule zusätzlich
noch eine Phasenverschiebung bewirkt
(Fig. 6). Wie wir sehen werden, kann

U(p)
LC(p2+co2)[p2 + \(R/L) + \/RtC\p + (Rl + R)/(R] LC)]

(1

i0+ (p+(R/L))u0
C[p2+\(R/L) + 1/R| C\p+ (R, + R)/ (R, LC)|]
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Netzwerktheorie

Figur 2 Nichtlinearer Schwingkreis

Figur 1 Linearer RLC-Schwingkreis

sich dieser nichtlineare Schwingkreis
aber noch ganz anders verhalten.

Was ist chaotisches
Verhalten?
Merkwürdigerweise kann vorläufig

keine mathematisch absolut präzise
Antwort auf diese Frage gegeben werden.

Dies allein ist schon ein Hinweis
darauf, dass es sehr schwierig ist, für
Anwendungen signifikante mathematische

Sätze herzuleiten. Anderseits
kann man jedoch einige wesentliche
Eigenschaften von chaotischem
Verhalten angeben. Deren genaue Definitionen

sind jedoch heikel und können
auch zu Kontroversen Anlass geben.
Die folgenden Ausführungen sind als
Ansicht des Autors und nicht unbedingt

als allgemein akzeptierte Fakten
zu verstehen.

Drei Eigenschaften sind charakteristisch

für chaotisches Verhalten von
physikalischen Systemen im allgemeinen,

und von elektrischen Netzwerken
im speziellen:
1. Aperiodizität- Kontinuierliches

Spektrum
2. Lokale Instabilität
3. Globale Beschränktheit.

1. Aperiodizität
Die Ausgangsspannung des linearen

Schwingkreises von Figur 1 verhält
sich qualitativ folgendermassen.
Ausgehend vom Wert uo folgt ein
Einschwingvorgang. Wenn dieser
abgeklungen ist, nimmt u(t) Sinusform an,
mit der gleichen Periode wie die Quelle.

Das Frequenzspektrum ist also

ganz auf/ co/2n konzentriert. Diese
Eigenschaften können direkt aus der
Laplace- Rücktransformation von (1)
abgelesen werden.

Das Verhalten des nichtlinearen
Schwingkreises von Figur 2 ist
normalerweise sehr ähnlich. Nach dem

Figur 3

Ersatzschaltbild
für die Diode

Einschwingvorgang stellt sich eine
periodische Schwingung mit der gleichen
Periode wie die Quelle (Fig. 5a) ein. Sie
ist jedoch nicht mehr sinusförmig, d.h.
ihr Spektrum ist zwar diskret, aber es

treten nicht nur die Frequenz /,
sondern auch alle Vielfachen nf auf. Weil
man im nichtlinearen Fall keine explizite

Formel wie (1) zur Verfügung hat,
ist es nicht einfach, diese qualitativen
Eigenschaften auch nachzuweisen. Es
ist sogar sinnlos, einen allgemeinen
Beweis dafür zu suchen, weil die
Eigenschaften gar nicht immer zutreffen.

In gewissen Bereichen der
Netzwerkparameter tritt zum Beispiel eine
andersartige periodische Schwingung
auf. Ihre Periode ist ein Vielfaches der
Quellenperiode und ihre Grundfrequenz

dementsprechend f/m ein
Bruchteil der Quellenfrequenz (Fig.
5b). Man nennt sie daher eine
subharmonische Schwingung. Sie hat ebenfalls

ein diskretes Spektrum, welches
auf die Frequenzen nf/m, n =0,1,2,...
konzentriert ist.

Im Prinzip wäre auch eine
quasiperiodische Schwingung möglich, deren
Spektrum ebenfalls diskret ist, aber
nicht mehr nur aus Vielfachen einer
Grundfrequenz besteht. Dieses Phänomen

wurde jedoch am nichtlinearen
Netzwerk der Figur 2 nicht beobachtet.

Schliesslich gibt es Parameterbereiche,

wo die Ausgangsspannung
überhaupt keine Periodizität mehr
aufweist, auch keine quasiperiodische
Schwingung, wie Figur 5c zeigt. Eine
eindrücklichere Darstellung ist in
Figur 6 gegeben, wo der Strom in der
Spule als Funktion der Zeit gegen die
Ladung im Kondensator aufgetragen
ist. Das Spektrum ist in diesem Fall
nicht mehr diskret, sondern kontinuierlich.

Das ist das erste Merkmal von
chaotischem Verhalten.

2. Lokale Instabilität
Im linearen Netzwerk der Figur 1 ist

die Ausgangsspannung immer stabil.
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a Nichtlinearer Widerstand
b Nichtlinearer Kondensator

Das bedeutet, dass eine kleine Änderung

der Anfangsspannung uo nur eine
kleine Änderung der Spannung u(t),
für alle Zeiten t>0 bewirkt. Nach dem
Einschwingvorgang «vergisst» die
Spannung u(t) sogar diese Änderung,
d.h. die sich einstellende sinusförmige
Schwingung hat eine Amplitude und
eine Phase, welche nicht von uo und io

abhängen. Man spricht von asymptotischer

Stabilität (für t — °°).
Dieselbe Eigenschaft trifft auch auf

das normale Verhalten des nichtlinearen
Netzwerkes der Figur 2 zu. Treten

jedoch subharmonische Schwingun-

Figur5 Verschiedene Netzwerkreaktionen
a Schwingung mit Grundfrequenz
b Subharmonische Schwingung
c Chaotische Schwingung

gen auf, so ist a(t) nicht mehr in jedem
Fall stabil. Es gibt nämlich gewisse
Anfangswerte uo, io, bei welchen eine
noch so kleine Variation der Anfangswerte

eine grosse Abweichung von u(t)
bewirken kann, wenn man genügend
lange wartet. Diese instabilen Schwingungen

sind jedoch die Ausnahme.
Für das chaotische Verhalten hingegen

ist die Instabilität aller
Spannungsverläufe u(t) charakteristisch.
Zwei beliebig nahe beieinanderliegende

Wertepaare (uofo) und (uo',io')
erzeugen fast immer Schwingungen u(t)
und u'(t), welche im Laufe der Zeit
auseinanderstreben. Das ist das zweite
Merkmal von chaotischem Verhalten.

3. Globale Beschränktheit

Wir haben im Abschnitt «Lokale
Instabilität» nicht erwähnt, dass auch
der lineare Schwingkreis instabiles
Verhalten aufweisen könnte. Dies ist
dann der Fall, wenn gewisse Elementwerte

negativ sind, z.B. C. Unter diesen

Umständen wächst jedoch u(t) fast
immer über alle Schranken. Die
Instabilitäten des nichtlinearen Netzwerkes
von Figur 2 sind jedoch ganz anderer
Art. Zwei nahe beieinanderliegende
Anfangswerte erzeugen zwar zwei
auseinanderstrebende Spannungen u(t)
und u'(t), die aber nicht gegen unendlich

streben, sondern beschränkt bleiben.

Beim linearen Netzwerk sind der
lokale Aspekt und der globale Aspekt
der Instabilität gekoppelt, was beim
nichtlinearen Netzwerk nicht mehr der
Fall ist.

Man kann sich leicht vorstellen,
dass das Verhalten eines Netzwerkes
bei welchem alle Spannungsverläufe
(lokal) instabil und trotzdem
beschränkt sind, sehr ungeordnet sein
muss. Intuitiv gesprochen stossen sich
die verschiedenen Lösungen der Netz¬

werkgleichungen gegenseitig ab und
sind dennoch gezwungen, in einem
begrenzten Raum zu bleiben. Dies
erzeugt Chaos. Analogien zu Gebieten
des menschlichen Lebens seien dem
Leser überlassen (Politik,...). Die
Beschränktheit der Lösungen, oder besser,

deren Kombination mit der
allgegenwärtigen lokalen Instabilität, ist
also das dritte Merkmal von chaotischem

Verhalten.

Welche Netzwerke können
sich chaotisch verhalten?
Diese Frage kann leider noch weniger

beantwortet werden, als die früher
gestellte Frage nach dem Wesen des
chaotischen Verhaltens. Wir müssen
uns daher mit Beispielen begnügen.
Eine grosse Anzahl von Netzwerken,
deren chaotisches Verhalten bekannt
ist, sind in [1] beschrieben. Bemerkenswert

ist dabei, dass es sich, wie in unserem

Beispiel, um sehr einfache
Netzwerke handelt. Sie sind für das Studium

von Chaos speziell geeignet. Man
soll darob nicht vergessen, dass einige
davon Modelle von praktisch verwendeten

Schaltungen sind, einfach mit
etwas anderen Parameterwerten.
Erwähnt sei das Modell für einen
Messtransformator in einer
Hochspannungsanlage [2], das Modell eines mit
einem Pilotsignal synchronisierten
Oszillators [3], im speziellen eines PLL
(Phase-Locked Loop) [4], und ein
digitales Filter [5], Wir sind überzeugt,
dass die Zukunft noch weitere Beispiele

an den Tag bringen wird.

Wie kann man chaotisches
Verhalten umgehen?
Die Aufzählung der Beispiele im

vorhergehenden Abschnitt zeigt
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schon, dass Chaos in ganz
verschiedenartigen Arbeitsgebieten des

Elektroingenieurs auftreten kann. Weil
jedoch Chaos normalerweise
unerwünscht ist, braucht der Ingenieur
Hilfsmittel, welche es ihm erlauben,
chaotisches Verhalten auszuschliessen.

Leider ist heute das einzig generell
verwendbare Hilfsmittel die numerische

Simulation, eine Methode, die
sowohl aufwendig als auch unzuverlässig

ist. Genau genommen müsste man
eine unendliche Anzahl von unendlich
langen Strom- und Spannungsverläufen

berechnen, um das chaotische
Verhalten mit Sicherheit feststellen zu
können. Das kann man natürlich
nicht, und daher ist die Methode
unzuverlässig. Wenn man jedoch eine sehr

grosse Anzahl von genügend langen
und sorgfältig ausgewählten Simulationen

durchführt, so kann man von
einer gewissen Zuverlässigkeit der
Resultate sprechen. Die Methode ist dann
allerdings sehr aufwendig.

Es besteht also ein Bedarf an mehr
grundlegenden Methoden, welche
erlauben, diese störenden Phänomene
auszuschliessen. Als mathematisches
Hilfsmittel bieten sich die Lyapunov-

Figur 6

Darstellung der
chaotischen
Schwingung im
Zustandsraum

q Ladung des

Kondensators
i L1 Spulenstrom

56 q

funktionen an. Diese Methode ist
absolut zuverlässig, wenn sie zu einem
Resultat führt. Hier ist aber der wunde
Punkt. Die geradlinige Anwendung
der Methode von Lyapunov liefert
sehr oft kein brauchbares Resultat.
Trotzdem ist das Potential dieser
Methode noch nicht voll ausgeschöpft.
Wesentliche Fortschritte erreicht man
nur mit grosser Intuition. Sie ist für
das Auffinden einer günstigen Lyapu-
novfunktion unerlässlich. Einige
Anwendungen dieses theoretischen
Hilfsmittels auf Netzwerkprobleme findet
man in [6].

Was kann nun ein Ingenieur tun,
wenn er anhand von numerischen
Simulationen oder experimentell festgestellt

hat, dass seine Schaltung sich
chaotisch verhält? Er muss die
Netzwerkparameter verändern bis die
störenden Phänomene verschwinden. In
der Praxis dürfte der Fall jedoch nicht
so klar sein, weil rein äusserlich gesehen

chaotisches Verhalten von
Rauschen irgendwelcher Herkunft kaum
zu unterscheiden ist. Numerische
Simulationen werden in diesem Falle
nützlich sein, weil sie erlauben,
verschiedene Effekte zu trennen. Es ist

wichtig, das chaotische Verhalten des

Netzwerkmodelles an sich zu identifizieren,

weil z.B. im Gegensatz zu
thermischem Rauschen ein Kühlen der
Schaltung kaum Abhilfe schaffen
wird.

Schlussfolgerungen
Elektrische Netzwerke können sich

chaotisch verhalten. Dies äussert sich
durch Aperiodizität trotz periodischer
Quellen, kontinuierliches Spektrum
der Spannungen und Ströme sowie
deren generelle Instabilität. Diese
lokale Instabilität ist jedoch von einer
globalen Stabilität, der Beschränktheit
der Spannungen und Ströme, begleitet.

Normalerweise kann chaotisches
Verhalten in Netzwerken nicht toleriert

werden. Hilfsmittel sind daher
vonnöten, um solche Phänomene
auszuschliessen. Leider steht generell nur
die numerische Simulation zur Verfügung,

die sehr aufwendig ist, während
die Methode von Lyapunov (noch?) zu
wenige praktisch verwendbare Resultate

liefert.
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