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Optimierung

Simulated Annealing - eine Optimierungsmethode

aus der statistischen Mechanik
J. Bernasconi

Die Komplikationen, die bei
komplexen Optimierungsproblemen

auftreten, sind eng
verwandt mit denjenigen, die man
in der statistischen Mechanik
von ungeordneten Systemen
antrifft. Diese Analogie hat in
den letzten Jahren zur Entwicklung

einer neuartigen
Optimierungsstrategie geführt, die in
Anlehnung an die Simulation
eines langsamen Abkühlprozesses

«Simulated Annealing»
genannt wird. Entsprechende
Methoden werden heute in
verschiedenen Bereichen der
Wissenschaft und Technik mit
Erfolg angewandt.

Les difficultés, que l'on rencontre
dans les problèmes d'optimisation

complexes, sont étroitement

liées à celles de la mécanique

statistique des systèmes
désordonnés. Cette analogie a
conduit ces dernières années au
développement d'une stratégie
d'optimisation nouvelle, qui
correspond à un processus de
refroidissement lent et qui en
conséquence est appelée «recuit
simulé)). Des méthodes, basées
sur une telle stratégie, sont
aujourd'hui appliquées avec succès

dans divers domaines de la
science et de la technique.

Adresse des Autors
Dr. Jakob Bernasconi, Asea Brown Boveri
Forschungszentrum, 5405 Baden

Viele Probleme der Wissenschaft,
Technik und Wirtschaft lassen sich als

Optimierungsprobleme formulieren.
Diese bestehen darin, das Minimum
einer vorgegebenen Ziel- oder Kosten-
funktion zu suchen, wobei bei realen
Anwendungen oft noch viele
Nebenbedingungen dazukommen. Die
Zielfunktion hängt von einer Anzahl
Variablen ab, welche die möglichen
Zustände oder Realisierungen des zu
optimierenden Systems beschreiben.

Bei komplexen Problemen, die von
vielen Variablen abhängen, kann der
Aufwand, das globale Minimum der
Zielfunktion zu bestimmen, sehr rasch
ins Unermessliche anwachsen. Für
praktische Anwendungen gibt man
sich deshalb oft mit einer fast optimalen

Lösung zufrieden, wenn diese dafür

innert nützlicher Frist gefunden
werden kann. Komplizierte Zielfunktionen

haben in der Regel aber sehr
viele lokale Minima, und diese erhöhen

die Schwierigkeit, eine gute
Lösung zu finden, natürlich beträchtlich.

In den letzten Jahren haben nun
Ideen aus der statistischen Physik zur
Entwicklung von Methoden geführt,
die es erlauben, relativ einfach gute
Lösungen für schwierige nichtlineare
Optimierungsprobleme zu finden. Die
Strategie, die diesen Methoden
zugrunde liegt, wird Simulated Annealing

[1] genannt. Sie entspricht der
Simulation eines langsamen Abkühlprozesses,

wobei die Kostenfunktion des
Problems mit der Energie eines
physikalischen Systems identifiziert wird,
das dann in einen Zustand mit sehr
niedriger Energie einfriert. Simulated-
Annealing-Methoden werden heute
mit Erfolg auf verschiedene komplexe
Optimierungsprobleme angewandt [2].
Beispiele sind das klassische Trave-
ling-Salesman-Problem, Plazierungsund

Verdrahtungsprobleme beim
Design von integrierten Schaltungen,
Probleme der Ablaufplanung und die
Optimierung von Codes. Der vorlie¬

gende Artikel gibt eine kurze Einführung

in die Begründung und
Funktionsweise von Simulated-Annealing-
Methoden und demonstriert deren
Effizienz anhand von zwei illustrativen
Beispielen.

Kombinatorische
Optimierung
Kombinatorische Optimierungsprobleme

sind dadurch ausgezeichnet,
dass die Variablen, von denen die
Zielfunktion abhängt, nur endlich viele
Werte annehmen können. Solche
Probleme treten in den Ingenieur- und
Computerwissenschaften sehr häufig
auf. Man denke etwa an die Optimierung

einer Konfiguration oder einer
Reihenfolge oder an Probleme aus der
Informationstechnik, wo man es
meistens mit binären Variablen zu tun hat.
Bei kombinatorischen Problemen ist
die Zahl der möglichen Zustände oder
Konfigurationen also endlich. Sie
wächst aber ungeheuer rasch an, z.B.
wie N\ oder wie 2N, wenn die Anzahl
N der Variablen zunimmt. Mit
zunehmender Variablenzahl wird es daher
rasch unmöglich, alle Lösungen
durchzuprobieren und dann die beste
auszuwählen.

Aber selbst wenn man sich darauf
beschränkt, statt der besten nur eine

gute Lösung zu finden, stöss't man sehr
oft auf grosse Schwierigkeiten. Wegen
der Inkompatibilität verschiedener
Forderungen treten bei komplizierten
Zielfunktionen nämlich fast immer
sogenannte Frustrationseffekte auf (siehe

weiter unten). Diese führen dazu,
dass das Problem sehr viele Pseudo-
Optima besitzt, von denen vielleicht
nur ein kleiner Bruchteil als gut
bezeichnet werden kann. Konventionelle
Optimierungsstrategien beruhen aber
meistens auf einer iterativen, lokalen
Verbesserung der Zielfunktion und
bleiben deshalb immer im nächstlie-

Bulletin SEV/VSE 79(1988)21, 5. November 1295



Optimierung

genden lokalen Optimum stecken. Bei
komplexen Optimierungsproblemen
(mit sehr vielen lokalen Optima)
liefern solche Methoden dann oft keine
befriedigenden Resultate, auch wenn
das Verfahren mit verschiedenen
Anfangsbedingungen wiederholt wird.

Analoge Schwierigkeiten treten in
der statistischen Mechanik auf, wenn
man für ein komplexes physikalisches
System Zustände mit niedriger Energie

bestimmen will. Entsprechende
Studien haben nun in den letzten Jahren

Methoden aufgezeigt, mit denen
ein Steckenbleiben in schlechten lokalen

Energieminima vermieden werden
kann, und Kirkpalrick et al. [1] haben
als erste realisiert, dass diese Methoden

im Prinzip auf beliebige
Optimierungsprobleme angewandt werden
können.

Spin-Systeme und
Frustration
Die Schwierigkeiten, die bei der

Bestimmung von Zuständen mit
möglichst niedriger Energie auftreten können,

lassen sich sehr anschaulich am
Beispiel eines klassischen Spin-Systems

demonstrieren. Solche Systeme
dienen den Physikern als einfache
Modelle für magnetische Materialien. Ein
magnetisches Atom i wird durch einen
Spin Sj beschrieben, der im einfachsten

Fall nur in zwei Richtungen
zeigen kann, z.B. hinauf (S,= +1) oder
hinunter (S, — 1). Die
Wechselwirkungsenergie zwischen zwei Spins S,
und Sj ist gegeben durch - W:j S, Sj,
wobei Wj als Wechselwirkungskonstante

bezeichnet wird. Die Gesamtenergie

E des Systems erhält man
dann durch Summation über alle
Spin-Paare,

E(S) - S W„S'S\
u.j)

(1)

und die Spin-Konfiguration S (S;,
S:, SN) mit der tiefsten Energie
nennt man Grundzustand.

Um die Energie zu erniedrigen, sollten

zwei Spins S, und Sj also in die
gleiche Richtung zeigen, wenn Wj
positiv ist, und in entgegengesetzte
Richtungen, wenn WtJ negativ ist. In
speziellen Fällen lässt sich der Grundzustand

deshalb sehr einfach bestimmen.
Sind zum Beispiel alle Wt] positiv, so
wird die Energie minimal, wenn alle
Spins in die gleiche Richtung zeigen,
d.h. der Grundzustand ist ferromagne-
tisch. Einer viel schwierigeren Situa-

gegeben ist, wobei die S, jetzt natürlich
beliebige Zustandsvariablen darstellen
können und Z(T) die sogenannte Zu-
standssumme1 bezeichnet, welche die
Wahrscheinlichkeitsfunktion PT auf 1

normiert.

Z T) I, -E(S)/T (3)

Figur 1 Einfaches Beispiel eines «frustrierten»

Spin-Systems

tion begegnet man, wenn die Vorzeichen

der Wechselwirkungskonstanten
zufällig verteilt sind. Dann kann es

nämlich vorkommen, dass die Richtung

eines Spins durch die
Wechselwirkungen mit den andern Spins nicht
festgelegt ist. Dieses Phänomen nennt
man Frustration, und Systeme mit
zufällig verteilten Wj werden als Spin-
Gläser bezeichnet. Ein einfaches
Beispiel ist in Figur 1 dargestellt. Um die
Energie des Systems möglichst klein
zu machen, sollte der Spin unten
rechts einerseits in die gleiche Richtung

zeigen wie sein linker Nachbar,
sich anderseits aber antiparallel zum
darüberliegenden Nachbarspin
einstellen. Er weiss also nicht, was er tun
soll, d.h. er ist frustriert.

Frustrationseffekte treten in vielen
komplexen Systemen auf, nicht nur in
Spin-Gläsern. In grossen Systemen
führen sie dazu, dass es sehr viele lokale

Energieminima gibt, die das Auffinden

von tief-energetischen Zuständen
äusserst schwierig gestalten.

Statistische Mechanik
Die statistische Mechanik

beschreibt die Eigenschaften von
physikalischen Systemen, die aus einer grossen

Anzahl von Teilchen bestehen und
die sich im thermodynamischen
Gleichgewicht befinden. Sie sagt uns
zum Beispiel, dass die Wahrscheinlichkeit

PT (S), ein System mit der
Energiefunktion E(S) bei einer
Temperatur T im Zustand S= |S;, S2, -,
SN| zu finden, durch die Boltzmann-
Verteilung

Aus der Form von Pj(S) ist ersichtlich,

dass sich das System bei
abnehmender Temperatur in Zustände mit
immer niedrigerer Energie begibt. Im
Prinzip sollte es also möglich sein.
Zustände (Konfigurationen) mit sehr tiefer

Energie durch die Simulation eines
langsamen Abkühlprozesses zu
finden.

Metropolis et al. [3] haben schon vor
über 30 Jahren einen Algorithmus
eingeführt, der dazu benutzt werden
kann, die zeitliche Evolution eines
Systems im Konfigurationsraum bei
vorgegebener Temperatur T zu simulieren.

Bei jedem Schritt dieses
Metropolis-Verfahrens wird durch zufällige
Änderung des aktuellen Zustands S
ein neuer Zustand S' erzeugt. Wenn
die Energiedifferenz AE E(S') —

E(S) negativ ist, d.h. wenn der neue
Zustand S1 eine tiefere Energie hat als
der Ausgangszustand S, wird die
Änderung immer akzeptiert, und S' wird
zum Ausgangszustand für den nächsten

Schritt. Hat der Zustand S' hingegen

eine höhere Energie als S(AE>0),
so wird er nur mit einer Wahrscheinlichkeit

p(AE) e -AE/T (4)

PT{S)
1

*-£(S)/r
Z(T)

(2)

akzeptiert. Bei hohen Temperaturen
geht p(AE) gegen Eins. Dann werden
also praktisch alle Zustandsänderun-
gen akzeptiert, d.h. das System wandert

völlig zufällig im Konfigurationsraum
umher. Wenn T klein ist, geht

das System aber nur selten in einen
Zustand mit höherer Energie.

Unter sehr allgemeinen Voraussetzungen

an die zugelassenen Zustands-
änderungen kann man nun zeigen,
dass das Metropolis-Verfahren tat-

1 Aus der Zustandssumme lassen sich alle
thermodynamischen Grössen wie die mittlere
Energie, die spezifische Wärme, die Entropie
usw. berechnen.
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sächlich die Gleichgewichtsverteilung
PT(S) simuliert, wenn es bei gegebener
Temperatur T nur genügend lange
angewandt wird. Durch langsames
Absenken der Temperatur lassen sich mit
dem Verfahren dann also Zustände
(Konfigurationen) mit sehr niedriger
Energie erzeugen. «Langsam» ist dabei

sehr wichtig, damit sich das System
immer in einem Quasi-Gleichgewicht
befindet und nicht in einem relativ
hochenergetischen Zustand einfriert.

Simulated-Annealing-
Strategien
Formal kann man die Zielfunktion

E(S) eines beliebigen Optimierungsproblems

als Energiefunktion eines
physikalischen Systems auffassen. Die
Optimierungsaufgabe entspricht dann
genau dem Problem, Zustände oder
Konfigurationen 5mit möglichst niedriger

Energie zu finden, und die
Überlegungen des letzten Abschnitts haben
gezeigt, dass man solche Zustände
durch Simulation eines langsamen
Abkühlprozesses (Simulated Annealing)
erzeugen kann.

Simulated-Annealing-Strategien
sind also nichts anderes als die
Kombination des Metropolis-Algorithmus
mit einem geeigneten Abkühlfahrplan:

0. Bestimme die Startwerte: T— T0,

S=S0,E E(S0).
1. Erzeuge eine zufällige

Zustandsänderung S=> S'.
2. Berechne die zugehörige Änderung

der Zielfunktion:
AE E(S')-E(S).

3. a. AE^O: Ersetze Sdurch S' und
£ durch E + AE

b. AE> 0: Würfle eine zufällige
Zahl z zwischen Null
und Eins.
Wenn
z<exp (—AE/T),
ersetze S durch S' und
E durch E+ AE,
andernfalls lasse S und E
unverändert.

4. Erniedrige T gemäss Abkühlfahrplan.

5. Beende das Verfahren, wenn ein
Abbruchkriterium erfüllt ist.
Andernfalls gehe zu 1.

Bei allgemeinen Optimierungsproblemen

spielt die «Temperatur» T in
einem solchen Verfahren natürlich
einfach die Rolle eines Kontrollparameters,

und die Effizienz von Simula-

ted-Annealing-Strategien hängt
entscheidend von der Wahl des
entsprechenden «Abkühlgesetzes» ab.

Konventionelle Optimierungsstrategien
entsprechen einem unendlich

schnellen Abkühlen des Systems, d.h.
man setzt sofort T= 0, so dass nur
Schritte mit AE < 0 erlaubt sind. Das
führt natürlich dazu, dass diese
Verfahren unweigerlich im nächstliegenden

lokalen Minimum enden. Beim
Simulated Annealing hingegen wird T
nur sehr langsam erniedrigt. Damit
kann man ein Steckenbleiben in
schlechten lokalen Minima vermeiden,

da bei nicht zu tiefen Temperaturen
immer wieder Schritte mit AE> 0

zugelassen werden.
Im Gegensatz zum Simulated

Annealing konvergieren konventionelle
Verfahren aber sehr rasch und können
daher innerhalb derselben Rechenzeit
für eine grosse Zahl verschiedener
Startkonfigurationen wiederholt werden.

Um die potentiellen Vorteile einer
Annealing-Strategie voll auszunutzen,
müssen die Parameter des Verfahrens,
und insbesondere der Abkühlfahrplan,

möglichst gut dem Problem an-
gepasst werden. Es hat sich gezeigt,
dass die thermodynamischen
Eigenschaften eines Optimierungsproblems
dabei sehr nützliche Hinweise geben
können.

Das Traveling-
Salesman-Problem
Das klassische Problem des

Handlungsreisenden (Traveling Salesman),
der die kürzeste Rundreise durch eine

grosse Anzahl von Städten bestimmen
will, kann als Prototyp eines schwierigen

kombinatorischen Optimierungsproblems

angesehen werden. Es wird
deshalb oft als Testbeispiel für Simula-
ted-Annealing-Strategien benutzt. Die
Figur 2 illustriert das Auffinden einer
(pseudo-)optimalen Rundreise durch
400 Städte im Verlauf eines
entsprechenden Abkühlprozesses.

Man startet mit einer zufällig
ausgewählten Tour, und dann werden
Veränderungen der jeweiligen Tour
gemäss der im letzten Abschnitt
beschriebenen Strategie entweder akzeptiert

oder zurückgewiesen. Die
Zielfunktion E(S) ist hier natürlich die
Länge der Tour, und eine Konfiguration

S repräsentiert die Reihenfolge,
mit der die Städte besucht werden.
Eine solche Konfiguration (z.B. ABC-
DEFGH...) wird dadurch verändert,
dass die Teilstrecke zwischen zwei
zufällig ausgewählten Städten (z.B. C

und F) rückwärts durchlaufen wird
(Fig. 2). In der neuen Tour AB-
FEDCGH... fallen also die Wegstrek-
ken BC und FG weg und werden
durch zwei neue (BF und CG) ersetzt.

Bei hohen «Temperaturen» T werden

fast alle Änderungen akzeptiert,
so dass die erzeugten Touren völlig
zufällig aussehen (Figur 3a). Durch das
Absenken von T startet man den Ein-
frierprozess, und es beginnen sich
gewisse grob optimierte Strukturen
herauszukristallisieren (Figur 3b). Bis
zum vollständigen Einfrieren werden
diese dann nur noch im Detail weiter
optimiert (Figur 3c).

Traveling Salesman und verwandte
Probleme treten in vielen Bereichen
der Technik auf, insbesondere beim
Design von integrierten Schaltungen,
wo Simulated-Annealing-Methoden
heute bereits routinemässig eingesetzt
werden. Simulated-Annealing-Algorithmen

lassen sich sehr einfach
implementieren und führen in vielen Fällen
zu besseren Lösungen als existierende
konventionelle Verfahren [2],

Binäre Sequenzen mit
kleinen Autokorrelationen
Ein weiteres schwieriges Problem,

auf das Simulated-Annealing-Methoden
mit Erfolg angewendet werden

können, ist das Auffinden von langen
binären Sequenzen,

s \sus2,...,sN\, S,= ±1 (5)

Figur 2 Traveling Salesman-Problem
Beispiel für eine elementare Änderung des
Zustandes

Ursprüngliche Teilroute zwischen den
Städten B und G

Geänderte Teilroute
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(a) (b) (c)

Figur 3 Simulated Annealing für ein Traveling Salesman-Problem mit 400 Städten
Gezeigt sind typische Touren während des Abkühlprozesses (Die Berechnungen hat M. Dietiker, ABB-Forschungszentrum, 5405 Baden, durchgeführt.)

mit möglichst kleinen Off-Peak-Auto-
korrelationen Rk, k * 0 [4], d.h. von
Sequenzen, deren Autokorrelationsfunktion

anähernd einer Dirac-Funk-
tion entspricht. Die Autokorrelationsfunktion

N-k

R±k I SiSi+k,k=0,l,...,N-l, (6)

einer solchen Sequenz soll also im
Vergleich zum zentralen Peak R0 N
möglichst kleine Nebenimpulse ergeben.

Binäre Sequenzen mit
entsprechenden Autokorrelationseigenschaften

spielen in vielen kommunikationstechnischen

Anwendungen
(Synchronisierung, Distanzmessung mit gepulstem

Radar usw.) eine wichtige Rolle.
Oft wird die entsprechende Eignung

einer Sequenz mit einem Gütefaktor F
gemessen [4],

F N2 2 I Rk2 (7)

der also möglichst gross sein sollte.
Das führt auf ein Optimierungsproblem

mit einer sehr komplizierten
Zielfunktion

N-1

E(S) X Rk2-
k= I

N-1 N-k N-kIII S,S i+kSjSJ+k (8)
lc-1 i-1 7-1

die zu minimieren ist. Man beachte,
dass E(S) nur die Seitenimpulse be¬

rücksichtigt. Da es 2N verschiedene
binäre Sequenzen der Länge N gibt,
kommt ein Durchprobieren aller
Sequenzen nur für relativ kleine A-Werte
in Frage. Für viele Anwendungen werden

aber lange Sequenzen benötigt
(Ni 100), und dann wird das
Problem, Sequenzen mit grossen F-Werten

zu finden, äusserst schwierig.
Gewisse Abschätzungen deuten darauf

hin, dass der maximal erreichbare
Gütefaktor für sehr lange Sequenzen
bei F 12,32 liegen sollte [4], Tatsächlich

hat man mit konventionellen
Optimierungsverfahren aber keine
Sequenzen der Länge N > 100 gefunden,
deren Gütefaktor wesentlich höher ist
als etwa F= 6,5 [5]. Mit einer Simula-
ted-Annealing-Strategie lassen sich
deutlich bessere Resultate erzielen [6;
7], allerdings nur dann, wenn man das
Abkühlverfahren dem «thermodyna-
mischen» Verhalten des Problems an-
passt. Figur 4 zeigt die T-Abhängigkeit
der mittleren «Energie» <£>, wobei
mit E die Zielfunktion in Gleichung
(8) gemeint ist, und der entsprechenden

«spezifischen Wärme» C.

C
d <E>

dem so gewählt werden, dass das
Verfahren den grössten Teil seiner Zeit in
der Nähe von T^ 0,3 N verbringt, wo
die Fluktuationen von E, die ja durch
die spezifische Wärme gemessen werden,

am grössten sind.
Die Daten in Figur 5 demonstrieren,

dass eine solchermassen angepasste
Annealing-Strategie wesentlich
effizienter ist als ein konventionelles
Suchverfahren, das nur auf lokalen
Verbesserungen der Zielfunktion
beruht. Im für technische Anwendungen

dT T~2[<E2>-<E>2].

(9)

Aus dem Verlauf dieser Grössen
kann man entnehmen, dass der Ein-
frierprozess bei T0,25 N
abgeschlossen ist. Ein Abkühlen unter diese

«Temperatur» würde also nur eine
Verschwendung von Rechenzeit
bedeuten. Das Abkühlgesetz sollte zu¬

Figur 4 «Thermodynamisches» Verhalten
binärer Sequenzen
Die Daten beziehen sich auf Sequenzen der Länge
N 31, sind jedoch so normiert, dass die Kurven
für beliebige N gelten.

< E> Mittelwert der Zielfunktion in Gl. (8)
C spezifische Wärme Gl. (9)

T Temperatur

• 2 <E>/N-
O 2 C/N

1298 Bulletin ASE/UCS 79(1988)21, 5 novembre
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wichtigen Bereich von N ^ 100 beträgt
der Gewinn an Rechenzeit mehr als
einen Faktor 10, wenn man nach
Sequenzen mit F> 6,5 sucht. Mit einer
optimierten Simulated-Annealing-
Strategie lassen sich deshalb leicht
Sequenzen der Länge N > 100 finden, die
einen Gütefaktor zwischen 7 und 8

haben. Der Rekord liegt zurzeit bei
F= 9,56 für eine Sequenz der Länge
N= 103 [7],

Schlussbemerkungen
Simulated Annealing ist ein perfektes

Beispiel dafür, wie Ideen, die in
einem bestimmten Gebiet entwickelt
wurden, plötzlich in ganz anderen
Bereichen grossen und unerwarteten
Nutzen bringen können. Es hat sich
gezeigt, dass man sehr wertvolle
Informationen über die Eigenschaften eines
Optimierungsproblems erhalten kann,
indem man die «statistische Mechanik»

des entsprechenden Systems
studiert. Simulated-Annealing-Strategien
haben sich in vielen Fällen als wesentlich

effizienter erwiesen als konventionelle

Optimierungsverfahren. Für einige

praktische Optimierungsprobleme
existieren zwar spezielle Algorithmen,
die ebenso gute oder sogar bessere
Resultate liefern als die neuen Techniken,
aber solche Methoden sind immer
problemspezifisch, und ihre Entwicklung

1 to'1 to2 to3 to4

Rechenzeit [Sekunden]

Figur 5 Vergleich der Simulated Anneal-
ing-Strategie mit einem konventionellen
Suchverfahren
Die Rechenzeiten beziehen sich auf eine VAX
8600

<F> Mittlerer Gütefaktor von pseudo-optimalen
Sequenzen der Länge N 103

erfordert grosses Spezialwissen und
oft monate- oder gar jahrelange
Arbeit. Simulated Annealing hingegen
stellt eine sehr allgemein anwendbare
Strategie dar und ist zudem sehr
einfach zu implementieren.

Die Liste der erfolgreichen Anwendungen

von Simulated-Annealing-

Strategien ist heute schon sehr lang [2].
Neben verschiedenen Plazierungs-,
Verdrahtungs- und Zuordnungsproblemen

umfasst sie Probleme der
Bildverarbeitung ebenso wie die Konstruktion

von fehlerkorrigierenden Codes
oder die Planung von Bürogebäuden.
Sogar das Zuschneiden von Kleiderstoffen

und die Müllabfuhr von
Grenoble hat man mit Simulated-Annea-
ling-Methoden optimiert.
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