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Optimierung

Simulated Annealing - eine Optimierungs-
methode aus der statistischen Mechanik

J. Bernasconi

Die Komplikationen, die bei
komplexen Optimierungsproble-
men auftreten, sind eng ver-
wandt mit denjenigen, die man
in der statistischen Mechanik
von ungeordneten Systemen
antrifft. Diese Analogie hat in
den letzten Jahren zur Entwick-
lung einer neuartigen Optimie-
rungsstrategie gefuhrt, die in
Anlehnung an die Simulation
eines langsamen Abkiihlprozes-
ses uSimulated Annealing»
genannt wird. Entsprechende
Methoden werden heute in ver-
schiedenen Bereichen der Wis-
senschaft und Technik mit
Erfolg angewandt.

Les difficultés, que I'on rencon-
tre dans les problemes d’optimi-
sation complexes, sont étroite-
ment liées a celles de la mécani-
que statistique des systemes
désordonnés. Cette analogie a
conduit ces derniéres années au
développement d’une stratégie
d’optimisation nouvelle, qui cor-
respond a un processus de
refroidissement lent et qui en
conséquence est appelée urecuit
simulén. Des méthodes, basées
sur une telle stratégie, sont
aujourd’hui appliquées avec suc-
ces dans divers domaines de la
science et de la technique.
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Viele Probleme der Wissenschaft,
Technik und Wirtschaft lassen sich als
Optimierungsprobleme formulieren.
Diese bestehen darin, das Minimum
einer vorgegebenen Ziel- oder Kosten-
funktion zu suchen, wobei bei realen
Anwendungen oft noch viele Neben-
bedingungen dazukommen. Die Ziel-
funktion héngt von einer Anzahl Va-
riablen ab, welche die moglichen Zu-
stinde oder Realisierungen des zu op-
timierenden Systems beschreiben.

Bei komplexen Problemen, die von
vielen Variablen abhidngen, kann der
Aufwand, das globale Minimum der
Zielfunktion zu bestimmen, sehr rasch
ins Unermessliche anwachsen. Fir
praktische Anwendungen gibt man
sich deshalb oft mit einer fast optima-
len Losung zufrieden, wenn diese da-
fir innert niitzlicher Frist gefunden
werden kann. Komplizierte Zielfunk-
tionen haben in der Regel aber sehr
viele lokale Minima, und diese erho-
hen die Schwierigkeit, eine gute Lo-
sung zu finden, natiirlich betrachtlich.

In den letzten Jahren haben nun
Ideen aus der statistischen Physik zur
Entwicklung von Methoden gefiihrt,
die es erlauben, relativ einfach gute
Losungen fiir schwierige nichtlineare
Optimierungsprobleme zu finden. Die
Strategie, die diesen Methoden zu-
grunde liegt, wird Simulated Anneal-
ing [1] genannt. Sie entspricht der Si-
mulation eines langsamen Abkiihlpro-
zesses, wobei die Kostenfunktion des
Problems mit der Energie eines physi-
kalischen Systems identifiziert wird,
das dann in einen Zustand mit sehr
niedriger Energie einfriert. Simulated-
Annealing-Methoden werden heute
mit Erfolg auf verschiedene komplexe
Optimierungsprobleme angewandt [2].
Beispiele sind das klassische Trave-
ling-Salesman-Problem, Plazierungs-
und Verdrahtungsprobleme beim De-
sign von integrierten Schaltungen,
Probleme der Ablaufplanung und die
Optimierung von Codes. Der vorlie-

gende Artikel gibt eine kurze Einfiih-
rung in die Begriindung und Funk-
tionsweise von Simulated-Annealing-
Methoden und demonstriert deren Ef-
fizienz anhand von zwei illustrativen
Beispielen.

Kombinatorische

Optimierung

Kombinatorische Optimierungspro-
bleme sind dadurch ausgezeichnet,
dass die Variablen, von denen die Ziel-
funktion abhidngt, nur endlich viele
Werte annehmen kdnnen. Solche Pro-
bleme treten in den Ingenieur- und
Computerwissenschaften sehr haufig
auf. Man denke etwa an die Optimie-
rung einer Konfiguration oder einer
Reihenfolge oder an Probleme aus der
Informationstechnik, wo man es mei-
stens mit bindren Variablen zu tun hat.
Bei kombinatorischen Problemen ist
die Zahl der moglichen Zustdnde oder
Konfigurationen also endlich. Sie
wichst aber ungeheuer rasch an, z.B.
wie N! oder wie 2N, wenn die Anzahl
N der Variablen zunimmt. Mit zuneh-
mender Variablenzahl wird es daher
rasch unmdglich, alle Ldsungen
durchzuprobieren und dann die beste
auszuwéhlen.

Aber selbst wenn man sich darauf
beschrinkt, statt der besten nur eine
gute Losung zu finden, stdsst man sehr
oft auf grosse Schwierigkeiten. Wegen
der Inkompatibilitdit verschiedener
Forderungen treten bei komplizierten
Zielfunktionen namlich fast immer so-
genannte Frustrationseffekte auf (sie-
he weiter unten). Diese fiihren dazu,
dass das Problem sehr viele Pseudo-
Optima besitzt, von denen vielleicht
nur ein kleiner Bruchteil als gut be-
zeichnet werden kann. Konventionelle
Optimierungsstrategien beruhen aber
meistens auf einer iterativen, lokalen
Verbesserung der Zielfunktion und
bleiben deshalb immer im néchstlie-
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genden lokalen Optimum stecken. Bei
komplexen Optimierungsproblemen
(mit sehr vielen lokalen Optima) lie-
fern solche Methoden dann oft keine
befriedigenden Resultate, auch wenn
das Verfahren mit verschiedenen An-
fangsbedingungen wiederholt wird.

Analoge Schwierigkeiten treten in
der statistischen Mechanik auf, wenn
man fiir ein komplexes physikalisches
System Zustinde mit niedriger Ener-
gie bestimmen will. Entsprechende
Studien haben nun in den letzten Jah-
ren Methoden aufgezeigt, mit denen
ein Steckenbleiben in schlechten loka-
len Energieminima vermieden werden
kann, und Kirkpatrick et al. [1] haben
als erste realisiert, dass diese Metho-
den im Prinzip auf beliebige Optimie-
rungsprobleme angewandt werden
kénnen.

Spin-Systeme und
Frustration

Die Schwierigkeiten, die bei der Be-
stimmung von Zustdinden mit mog-
lichst niedriger Energie auftreten kon-
nen, lassen sich sehr anschaulich am
Beispiel eines klassischen Spin-Sy-
stems demonstrieren. Solche Systeme
dienen den Physikern als einfache Mo-
delle fiir magnetische Materialien. Ein
magnetisches Atom i wird durch einen
Spin S; beschrieben, der im einfach-
sten Fall nur in zwei Richtungen zei-
gen kann, z.B. hinauf (S;= +1) oder
hinunter (S;= —1). Die Wechselwir-
kungsenergie zwischen zwei Spins S;
und S; ist gegeben durch —W; S, S,
wobei W, als Wechselwirkungskon-
stante bezeichnet wird. Die Gesamt-
energie E des Systems erhidlt man
dann durch Summation iber alle
Spin-Paare,

ES)=- &% W,S,S, (1)

s i
(.j)

und die Spin-Konfiguration § = (S,
S, ., Syl mit der tiefsten Energie
nennt man Grundzustand.

Um die Energie zu erniedrigen, soll-
ten zwei Spins S; und §; also in die
gleiche Richtung zeigen, wenn W po-
sitiv ist, und in entgegengesetzte Rich-
tungen, wenn W, negativ ist. In spe-
ziellen Fallen lasst sich der Grundzu-
stand deshalb sehr einfach bestimmen.
Sind zum Beispiel alle W positiv, so
wird die Energie minimal, wenn alle
Spins in die gleiche Richtung zeigen,
d.h. der Grundzustand ist ferromagne-
tisch. Einer viel schwierigeren Situa-

+W

®

1
1
1
W W
}
1
1
]

(15 » )2

Figur 1 Einfaches Beispiel eines «frustrier-
ten» Spin-Systems

tion begegnet man, wenn die Vorzei-
chen der Wechselwirkungskonstanten
zufdllig verteilt sind. Dann kann es
ndmlich vorkommen, dass die Rich-
tung eines Spins durch die Wechsel-
wirkungen mit den andern Spins nicht
festgelegt ist. Dieses Phdnomen nennt
man Frustration, und Systeme mit zu-
fallig verteilten W; werden als Spin-
Gldser bezeichnet. Ein einfaches Bei-
spiel ist in Figur | dargestellt. Um die
Energie des Systems moglichst klein
zu machen, sollte der Spin unten
rechts einerseits in die gleiche Rich-
tung zeigen wie sein linker Nachbar,
sich anderseits aber antiparallel zum
dartiberliegenden Nachbarspin ein-
stellen. Er weiss also nicht, was er tun
soll, d.h. er ist frustriert.

Frustrationseffekte treten in vielen
komplexen Systemen auf, nicht nur in
Spin-Gldsern. In grossen Systemen
fihren sie dazu, dass es sehr viele loka-
le Energieminima gibt, die das Auffin-
den von tief-energetischen Zustidnden
dusserst schwierig gestalten.

Statistische Mechanik

Die statistische Mechanik be-
schreibt die Eigenschaften von physi-
kalischen Systemen, die aus einer gros-
sen Anzahl von Teilchen bestehen und
die sich im thermodynamischen
Gleichgewicht befinden. Sie sagt uns
zum Beispiel, dass die Wahrschein-
lichkeit Py (S), ein System mit der
Energiefunktion E(S) bei einer Tem-
peratur T im Zustand §=1S,;, S,, ..,
Sl zu finden, durch die Boltzmann-
Verteilung

1
Z(T)

e E®)/T )

Pr(S) =

gegeben ist, wobei die S, jetzt natiirlich
beliebige Zustandsvariablen darstellen
konnen und Z(T) die sogenannte Zu-
standssumme' bezeichnet, welche die
Wabhrscheinlichkeitsfunktion P auf |
normiert.

Z(T)= LeES/T, 3)
S

Aus der Form von P(S) ist ersicht-
lich, dass sich das System bei abneh-
mender Temperatur in Zustidnde mit
immer niedrigerer Energie begibt. Im
Prinzip sollte es also moglich sein, Zu-
stinde (Konfigurationen) mit sehr tie-
fer Energie durch die Simulation eines
langsamen Abkiihlprozesses zu fin-
den.

Metropolis et al. [3] haben schon vor
uiber 30 Jahren einen Algorithmus ein-
gefiihrt, der dazu benutzt werden
kann, die zeitliche Evolution eines Sy-
stems im Konfigurationsraum bei vor-
gegebener Temperatur T zu simulie-
ren. Bei jedem Schritt dieses Metropo-
lis-Verfahrens wird durch zufillige
Anderung des aktuellen Zustands §
ein neuer Zustand §' erzeugt. Wenn
die Energiedifferenz AE = E(S8')—
E(S) negativ ist, d.h. wenn der neue
Zustand §' eine tiefere Energie hat als
der Ausgangszustand S, wird die An-
derung immer akzeptiert, und §’ wird
zum Ausgangszustand fiir den nédch-
sten Schritt. Hat der Zustand " hinge-
gen eine hohere Energie als S(AE>0),
so wird er nur mit einer Wahrschein-
lichkeit

P(AE) = ¢ =57 )

akzeptiert. Bei hohen Temperaturen
geht p(AE) gegen Eins. Dann werden
also praktisch alle Zustandsdnderun-
gen akzeptiert, d.h. das System wan-
dert vollig zuféllig im Konfigurations-
raum umher. Wenn T klein ist, geht
das System aber nur selten in einen
Zustand mit hoherer Energie.

Unter sehr allgemeinen Vorausset-
zungen an die zugelassenen Zustands-
dnderungen kann man nun zeigen,
dass das Metropolis-Verfahren tat-

' Aus der Zustandssumme lassen sich alle
thermodynamischen Grossen wie die mittlere
Energie, die spezifische Wirme, die Entropie
usw. berechnen.
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sdchlich die Gleichgewichtsverteilung
P(S) simuliert, wenn es bei gegebener
Temperatur T nur geniigend lange an-
gewandt wird. Durch langsames Ab-
senken der Temperatur lassen sich mit
dem Verfahren dann also Zustinde
(Konfigurationen) mit sehr niedriger
Energie erzeugen. «Langsam» ist da-
bei sehr wichtig, damit sich das System
immer in einem Quasi-Gleichgewicht
befindet und nicht in einem relativ
hochenergetischen Zustand einfriert.

Simulated-Annealing-
Strategien

Formal kann man die Zielfunktion
E(S) eines beliebigen Optimierungs-
problems als Energiefunktion eines
physikalischen Systems auffassen. Die
Optimierungsaufgabe entspricht dann
genau dem Problem, Zustinde oder
Konfigurationen § mit moglichst nied-
riger Energie zu finden, und die Uber-
legungen des letzten Abschnitts haben
gezeigt, dass man solche Zustinde
durch Simulation eines langsamen Ab-
kiihlprozesses (Simulated Annealing)
erzeugen kann.

Simulated-Annealing-Strategien
sind also nichts anderes als die Kom-
bination des Metropolis-Algorithmus
mit einem geeigneten Abkiihlfahrplan:

0. Bestimme die Startwerte: T = T,
§=35,, E= E(S)).

1. Erzeuge eine zufallige
Zustandsidnderung S=> §’.

2. Berechne die zugehorige Anderung
der Zielfunktion:
AE = E(S8")-E(S).

3. a. AEZ0: Ersetze Sdurch $' und

Edurch E+ AE

Wiirfle eine zufillige

Zahl z zwischen Null

und Eins.

Wenn

z<exp (—AE/T),

ersetze S durch §" und

E durch E+ AE, an-

dernfalls lasse S und E

unveriandert.

4. Erniedrige T gemdss Abkiihlfahr-
plan.

5. Beende das Verfahren, wenn ein
Abbruchkriterium erfiillt ist. An-
dernfalls gehe zu 1.

b. AE>0:

Bei allgemeinen Optimierungspro-
blemen spielt die «Temperatur» T in
einem solchen Verfahren natiirlich
einfach die Rolle eines Kontrollpara-
meters, und die Effizienz von Simula-

ted-Annealing-Strategien héngt ent-
scheidend von der Wahl des entspre-
chenden «Abkiihlgesetzes» ab.

Konventionelle Optimierungsstrate-
gien entsprechen einem unendlich
schnellen Abkiihlen des Systems, d.h.
man setzt sofort T=0, so dass nur
Schritte mit AE < 0 erlaubt sind. Das
fihrt natiirlich dazu, dass diese Ver-
fahren unweigerlich im néchstliegen-
den lokalen Minimum enden. Beim Si-
mulated Annealing hingegen wird T
nur sehr langsam erniedrigt. Damit
kann man ein Steckenbleiben in
schlechten lokalen Minima vermei-
den, da bei nicht zu tiefen Temperatu-
ren immer wieder Schritte mit AE > 0
zugelassen werden.

Im Gegensatz zum Simulated An-
nealing konvergieren konventionelle
Verfahren aber sehr rasch und kénnen
daher innerhalb derselben Rechenzeit
fiir eine grosse Zahl verschiedener
Startkonfigurationen wiederholt wer-
den. Um die potentiellen Vorteile einer
Annealing-Strategie voll auszunutzen,
missen die Parameter des Verfahrens,
und insbesondere der Abkiihlfahr-
plan, méglichst gut dem Problem an-
gepasst werden. Es hat sich gezeigt,
dass die thermodynamischen Eigen-
schaften eines Optimierungsproblems
dabei sehr niitzliche Hinweise geben
kénnen.

Das Traveling-
Salesman-Problem

Das klassische Problem des Hand-
lungsreisenden (Traveling Salesman),
der die kiirzeste Rundreise durch eine
grosse Anzahl von Stadten bestimmen
will, kann als Prototyp eines schwieri-
gen kombinatorischen Optimierungs-
problems angesehen werden. Es wird
deshalb oft als Testbeispiel fiir Simula-
ted-Annealing-Strategien benutzt. Die
Figur 2 illustriert das Auffinden einer
(pseudo-)optimalen Rundreise durch
400 Stadte im Verlauf eines entspre-
chenden Abkiihlprozesses.

Man startet mit einer zufillig ausge-
wihlten Tour, und dann werden Ver-
dnderungen der jeweiligen Tour ge-
maiss der im letzten Abschnitt be-
schriebenen Strategie entweder akzep-
tiert oder zuriickgewiesen. Die Ziel-
funktion E(S) ist hier natiirlich die
Linge der Tour, und eine Konfigura-
tion S reprisentiert die Reihenfolge,
mit der die Stddte besucht werden.
Eine solche Konfiguration (z.B. ABC-
DEFGH...) wird dadurch veridndert,
dass die Teilstrecke zwischen zwei zu-
fallig ausgewidhlten Stiddten (z.B. C

und F) riickwirts durchlaufen wird
(Fig. 2). In der neuen Tour AB-
FEDCGH... fallen also die Wegstrek-
ken BC und FG weg und werden
durch zwei neue (BF und CG) ersetzt.

Bei hohen «Temperaturen» T wer-
den fast alle Anderungen akzeptiert,
so dass die erzeugten Touren vollig zu-
fallig aussehen (Figur 3a). Durch das
Absenken von T startet man den Ein-
frierprozess, und es beginnen sich ge-
wisse grob optimierte Strukturen her-
auszukristallisieren (Figur 3b). Bis
zum vollstindigen Einfrieren werden
diese dann nur noch im Detail weiter
optimiert (Figur 3c).

Traveling Salesman und verwandte
Probleme treten in vielen Bereichen
der Technik auf, insbesondere beim
Design von integrierten Schaltungen,
wo  Simulated-Annealing-Methoden
heute bereits routinemaissig eingesetzt
werden. Simulated-Annealing-Algo-
rithmen lassen sich sehr einfach imple-
mentieren und fithren in vielen Fillen
zu besseren Ldsungen als existierende
konventionelle Verfahren [2].

Binire Sequenzen mit
kleinen Autokorrelationen

Ein weiteres schwieriges Problem,
auf das Simulated-Annealing-Metho-
den mit Erfolg angewendet werden
konnen, ist das Auffinden von langen
binidren Sequenzen,

S=[S|,S2,...,SN], S,-=i1, (5)

Figur2 Traveling Salesman-Problem

Beispiel fiir eine elementare Anderung des
Zustandes

Urspriingliche Teilroute zwischen den
Stiadten Bund G

Geinderte Teilroute
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7=0.07 m

7=0.01

(b)

Figur 3 Simulated Annealing fiir ein Traveling Salesman-Problem mit 400 Stiidten
Gezeigt sind typische Touren wihrend des Abkiihlprozesses (Die Berechnungen hat M. Dietiker, ABB-Forschungszentrum, 5405 Baden, durchgefiihrt.)

mit moglichst kleinen Off-Peak-Auto-
korrelationen R,, k=0 [4], d.h. von
Sequenzen, deren Autokorrelations-
funktion andhernd einer Dirac-Funk-
tion entspricht. Die Autokorrelations-
funktion

N-k

Rip= 2SSy k=0,1,... N-1, (6)

i=1

einer solchen Sequenz soll also im Ver-
gleich zum zentralen Peak R;,= N
moglichst kleine Nebenimpulse erge-
ben. Bindre Sequenzen mit entspre-
chenden Autokorrelationseigenschaf-
ten spielen in vielen kommunikations-
technischen Anwendungen (Synchro-
nisierung, Distanzmessung mit gepul-
stem Radar usw.) eine wichtige Rolle.

Oft wird die entsprechende Eignung
einer Sequenz mit einem Gitefaktor F
gemessen [4],

N-1

F= Nz[?_ D sz]_] , (7)

k=1

der also moglichst gross sein sollte.
Das fiihrt auf ein Optimierungspro-
blem mit einer sehr komplizierten Ziel-
funktion
N-1

ES= Y R}=

k=1
N-k  N-k
-1

j=1

SiSuSiSjrk (8)

N-1
k=1
die zu minimieren ist. Man beachte,
dass E(S) nur die Seitenimpulse be-

riicksichtigt. Da es 2V verschiedene bi-
ndre Sequenzen der Lidnge N gibt,
kommt ein Durchprobieren aller Se-
quenzen nur fir relativ kleine N-Werte
in Frage. Fiir viele Anwendungen wer-
den aber lange Sequenzen bendtigt
(N2 100), und dann wird das Pro-
blem, Sequenzen mit grossen F-Wer-
ten zu finden, dusserst schwierig.

Gewisse Abschitzungen deuten dar-
auf hin, dass der maximal erreichbare
Giitefaktor fiir sehr lange Sequenzen
bei F'= 12,32 liegen sollte [4]. Tatsach-
lich hat man mit konventionellen Op-
timierungsverfahren aber keine Se-
quenzen der Liange N > 100 gefunden,
deren Gitefaktor wesentlich hoher ist
als etwa F= 6,5 [5]. Mit einer Simula-
ted-Annealing-Strategie lassen sich
deutlich bessere Resultate erzielen [6;
7], allerdings nur dann, wenn man das
Abkihlverfahren dem «thermodyna-
mischen» Verhalten des Problems an-
passt. Figur 4 zeigt die T-Abhéngigkeit
der mittleren «Energie» <E>, wobei
mit E die Zielfunktion in Gleichung
(8) gemeint ist, und der entsprechen-
den «spezifischen Warme» C,

d<E>
dT

)

Aus dem Verlauf dieser Grossen
kann man entnehmen, dass der Ein-
frierprozess bei T~ 0,25 N abge-
schlossen ist. Ein Abklhlen unter die-
se «Temperatur» wiirde also nur eine
Verschwendung von Rechenzeit be-
deuten. Das Abkiihlgesetz sollte zu-

= T?[<E*>- <E>?].

(c)

dem so gewihlt werden, dass das Ver-
fahren den grossten Teil seiner Zeit in
der Nédhe von T~ 0,3 N verbringt, wo
die Fluktuationen von E, die ja durch
die spezifische Wirme gemessen wer-
den, am grossten sind.

Die Daten in Figur 5 demonstrieren,
dass eine solchermassen angepasste
Annealing-Strategie wesentlich effi-
zienter ist als ein konventionelles
Suchverfahren, das nur auf lokalen
Verbesserungen der Zielfunktion be-
ruht. Im fir technische Anwendungen

06 06
2c | 0 | 2<€>
N A N2
L
04 o \K 7 Hoa
- 0’.\}/‘ -
TS
/
02 ? e - 02
-o---o}"l ~
0 1l IR A S N 0
0O 02 04 06 08 10
T/N
Figur4 «Thermodynamisches» Verhalten

binédrer Sequenzen

Die Daten beziehen sich auf Sequenzen der Lange
N = 31, sind jedoch so normiert, dass die Kurven
fir beliebige N gelten.

<E> Mittelwert der Zielfunktion in GI. (8)

€ spezifische Warme Gl. (9)

T Temperatur

[ 2<E>/N?

o 2C/N
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wichtigen Bereich von N~ 100 betrégt
der Gewinn an Rechenzeit mehr als
einen Faktor 10, wenn man nach Se-
quenzen mit F> 6,5 sucht. Mit einer
optimierten Simulated-Annealing-
Strategie lassen sich deshalb leicht Se-
quenzen der Lidnge N = 100 finden, die
einen Giitefaktor zwischen 7 und 8 ha-
ben. Der Rekord liegt zurzeit bei
F=9,56 fiir eine Sequenz der Linge
N=103[7].

Schlussbemerkungen

Simulated Annealing ist ein perfek-
tes Beispiel dafur, wie Ideen, die in
einem bestimmten Gebiet entwickelt
wurden, plétzlich in ganz anderen Be-
reichen grossen und unerwarteten
Nutzen bringen konnen. Es hat sich
gezeigt, dass man sehr wertvolle Infor-
mationen Uber die Eigenschaften eines
Optimierungsproblems erhalten kann,
indem man die «statistische Mecha-
nik» des entsprechenden Systems stu-
diert. Simulated-Annealing-Strategien
haben sich in vielen Fillen als wesent-
lich effizienter erwiesen als konventio-
nelle Optimierungsverfahren. Fiir eini-
ge praktische Optimierungsprobleme
existieren zwar spezielle Algorithmen,
die ebenso gute oder sogar bessere Re-
sultate liefern als die neuen Techniken,
aber solche Methoden sind immer pro-
blemspezifisch, und ihre Entwicklung
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Figur5 Vergleich der Simulated Anneal-
ing-Strategie mit einem konventionellen
Suchverfahren

Die Rechenzeiten beziehen sich auf eine VAX
8600

< F> Mittlerer Giitefaktor von pseudo-optimalen
Sequenzen der Linge N = 103

erfordert grosses Spezialwissen und
oft monate- oder gar jahrelange Ar-
beit. Simulated Annealing hingegen
stellt eine sehr allgemein anwendbare
Strategie dar und ist zudem sehr ein-
fach zu implementieren.

Die Liste der erfolgreichen Anwen-
dungen von Simulated-Annealing-

Strategien ist heute schon sehr lang [2].
Neben verschiedenen Plazierungs-,
Verdrahtungs- und Zuordnungspro-
blemen umfasst sie Probleme der Bild-
verarbeitung ebenso wie die Konstruk-
tion von fehlerkorrigierenden Codes
oder die Planung von Biirogebduden.
Sogar das Zuschneiden von Kleider-
stoffen und die Miillabfuhr von Gre-
noble hat man mit Simulated-Annea-
ling-Methoden optimiert.
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