Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 79 (1988)

Heft: 19

Artikel: Mittelspannungsleistungsschalter: Stand der Technik und

Einsatzkriterien

Autor: Braun, D. / Morgenthaler, P.

DOI: https://doi.org/10.5169/seals-904084

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Mittelspannungsleistungsschalter: Stand der Technik und Einsatzkriterien

D. Braun, P. Morgenthaler

Im Rahmen des Vergleichs der Schaltprinzipien werden SF₆-Schalter und Vakuumschalter unter betrieblichen Gesichtspunkten und bei kritischen Schaltaufgaben miteinander verglichen. Dabei zeigt sich, dass keine Technik absolut favorisiert werden kann. In den allermeisten Anwendungsfällen sind moderne SF₆- und Vakuumschalter technisch ebenbürtig. In speziellen Anwendungsfällen weist jedoch die eine oder die andere Technik Vorteile auf.

Dans le cadre d'une comparaison des principes de coupure, on a mis en face le disjoncteur à SF_6 et le disjoncteur à vide sous l'optique de l'exploitation et des tâches de coupure critiques. Il s'avère impossible de privilégier l'une des techniques. Dans la majorité des cas d'application, les disjoncteurs à SF_6 et les disjoncteurs à vide sont au même niveau technique. Mais dans des cas particuliers, l'un ou l'autre système peut présenter des avantages.

Adresse der Autoren

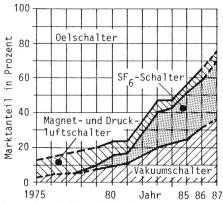
Dieter Braun, Dipl. El.-Ing. ETH und Peter Morgenthaler, Dipl. El.-Ing. ETH, ASEA Brown Boveri AG, Mittelspannungstechnik Schweiz, 8050 Zürich.

1. Einleitung

Weitaus die grösste Zahl der in Mittelspannungsnetzen eingesetzten Leistungsschalter sind Kesselölschalter oder ölarme Schalter und benützen Öl als Lichtbogenlöschmittel. Diese Leistungsschalter haben sich sowohl in Energieversorgungsnetzen als auch in Industrienetzen bewährt. Als nachteilig erweist sich jedoch neben dem brennbaren Löschmittel ihr vergleichsweise hoher Wartungsbedarf.

Schon in den zwanziger Jahren wurde mit der Entwicklung der Druckluftund Magnetschalter versucht, die Nachteile auszuschalten, welche die Verwendung von Öl als Lichtbogenlöschmittel mit sich bringt. Diese Konstruktionen hielten sich über viele Jahre. Heute finden sie aus Kostengründen nur noch in einigen Spezialfällen Anwendung. Mitte der sechziger Jahre traten zwei neue Typen von öllosen Schaltern auf, die SF6-Schalter und die Vakuumschalter. Diese beiden Schaltertechnologien sind seither stetig weiterentwickelt worden und haben inzwischen eine derart dominierende Stellung auf dem Markt gefunden, dass in den nächsten Jahren eine weitgehende Ablösung der anderen Schaltprinzipien erwartet werden kann (s. auch Figur 1).

Im folgenden wird auf die Funktionsweise und Eigenschaften der SF₆und Vakuumschalter eingegangen. Anschliessend wird anhand von verschiedenen Kriterien eine vergleichende Betrachtung dieser beiden Schaltprinzipien vorgenommen.


2. SF₆-Leistungsschalter

Im SF₆-Schalter fliesst der Strom nach der Kontakttrennung über einen Lichtbogen weiter, dessen Plasma aus ionisiertem SF₆-Gas besteht. Während seiner gesamten Dauer wird der Lichtbogen durch eine Gasströmung beblasen, wodurch ihm laufend Wärme-

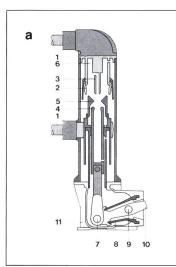
energie entzogen wird. Gelöscht wird er in einem Stromnulldurchgang, wenn infolge des abnehmenden Stroms immer weniger aufgeheizt, durch die gleichmässige Beblasung mit dem Löschmittel aber intensiv gekühlt wird, bis schliesslich die Schaltstrecke entionisiert ist.

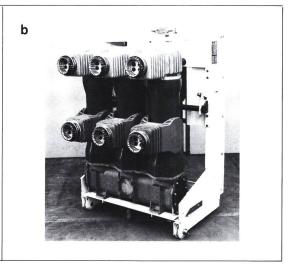
Für eine optimale Löschung ist die Richtung der Beblasung wesentlich, d.h., ob die Löschmittelströmung axial oder quer zur Achse des Lichtbogens verläuft. Als effizientester Löschmechanismus hat sich die axiale Beblasung erwiesen [1], weil dabei im Bereich des Stromnulldurchganges eine turbulente Gasströmung eine starke, konstante Wechselwirkung mit dem Lichtbogenplasma hervorruft und eine intensive Kühlung und Entionisierung bewirkt. Beim Beblasungsprinzip, wo der Lichtbogen in ruhendem SF6-Gas bewegt und dabei quer beblasen wird, ist die Ausschaltfähigkeit starken statischen Schwankungen unterworfen [2].

Um eine axiale Beblasung realisieren zu können, muss der Lichtbogen in einem Gas brennen, welches einen Druckgradienten aufweist. Eine erste

Figur 1 Marktaufteilung der im Mittelspannungsbereich (Nennspannungen von 3,6 kV bis 36 kV) angewandten Schaltprinzinien

Weltmarkt ohne Ostblockstaaten und Volksrepublik China

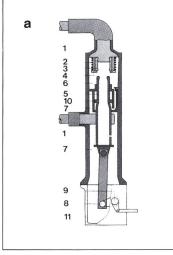

Schaltergeneration verwendete hierzu das schon von den Druckluftschaltern her bekannte Zweidruckprinzip, wo ein Hochdruckreservoir über ein sich im Schaltmoment öffnendes Ventil entleert wird [3]. Auf die dauernde Bereitstellung des Löschdruckes konnte bei der Nachfolgegeneration, den Kolbenschaltern, verzichtet werden. Hier wird der erforderliche Blasdruck mittels eines mit dem beweglichen Kontakt verbundenen Kolbens erzeugt (Fig. 2) [4]. Allerdings wird dazu ein relativ kräftiger Antrieb benötigt. Weder die Zweidruckschalter noch die Kolbenschalter waren von den Kosten her gegenüber den Ölschaltern konkurrenzfähig. Einen Hauptkostenpunkt der Kolbenschalter bildet der Antrieb. Deshalb wurde versucht, die im Lichtbogen umgesetzte Energie für die Ausschaltung nutzbar zu machen, um die Kompressionsleistung nicht mehr mit dem Antrieb aufbringen zu müssen. Dies führte zur Entwicklung des Selbstblasschalters, bei dem Druckaufbau vor der Löschdüse durch eine gezielte Aufheizung des SF₆-Gases durch den Lichtbogen geschieht (Fig. 3) [5]. Zunächst waren bei den Selbstblasschaltern noch Hilfskolben zur Unterbrechung der kleinen Ströme notwendig. Mittlerweilen ist die Entwicklung des Selbstblasprinzips derart fortgeschritten, dass keinerlei Kompressionshilfen mehr erforderlich sind und der Antrieb einzig die Energie zum Bewegen der Kontakte liefern muss (Fig. 4) [6].

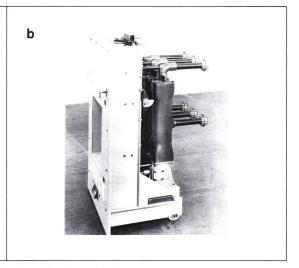

Parallel zu den Selbstblasschaltern entstanden SF₆-Schalter, die nach dem Drehlichtbogenprinzip arbeiten [7]. Bei diesen Schaltern wird der Lichtbogen im stillstehenden Gas bewegt. Die Beblasung des Lichtbogens erfolgt hier also nicht axial zum Lichtbogen wie bei den Selbstblasschaltern, sondern quer dazu. Auch die Drehlichtbogenschalter zeichnen sich durch einen geringen Antriebsenergiebedarf aus. Im folgenden werden aber nur SF₆-Schalter mit axialer Beblasung des Lichtbogens betrachtet.

3. Vakuumleistungsschalter

Im Vakuumschalter fliesst der Strom nach der Kontakttrennung über ein Plasma, das sich aus der Verdampfung von Kontaktmaterial bildet. Die Ladungsträger dieses Plasmas, Elektronen und Metallionen, diffundieren sehr schnell in das ladungsfreie Hochvakuum und rekombinieren an den Metallflächen in der Schaltkammer.

1184


Figur 2 SF₆-Leistungsschalter Typ HC (Kompressionskolbenprinzip)


a Schnitt durch Schaltkammer

- 1 Anschlüsse
- 2 Nennstromkontakt
- 3 Schaltkontakt fest
- 4 Schaltkontakt beweglich
- 5 Isolierdüse
- 6 Auspuffraum
- 7 Übertragungsgestänge
- 8 Stulpendichtung
- 9 Hebeldrehpunkt
- 10 Antriebshebel
- 11 Übertragungsgehäuse

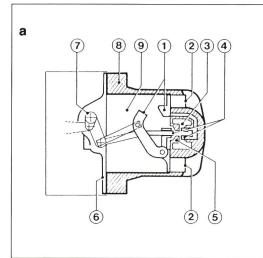
b Schalter montiert auf Fahrwagen. Technische Daten:

Nenn- spannung	Nennstrom	Nennkurzschluss- ausschaltstrom
7,2 kV	bis 4000 A	bis 50 kA
12 kV	bis 4000 A	bis 40 kA
24 kV	bis 2500 A	bis 40 kA
36 kV	bis 2500 A	bis 40 kA

Figur 3 SF₆-Leistungsschalter Typ HB (Selbstblasprinzip)

a Schnitt durch Schaltkammer

- 1 Anschlüsse2 Zylinderspule
- NennstromkontaktSchaltkontakt fest
- 5 Schaltkontakt beweglich
- 6 Schaltkammer
- 7 Auspuffraum
- 8 Polhebel
- 9 Drehwelle mit Drehdichtung
- 10 Hilfskolben
- 11 Übertragungsgehäuse

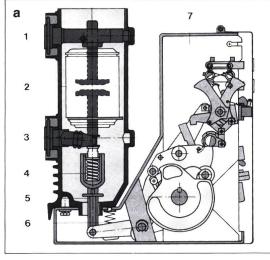

b Schalter montiert auf Fahrwagen. Technische Daten:

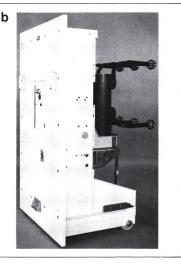
Nenn- spannung	Nennstrom	Nennkurzschluss- ausschaltstrom
7,2 kV	bis 2500 A	bis 50 kA
12 kV	bis 2500 A	bis 40 kA
24 kV	bis 2500 A	bis 25 kA
36 kV	bis 2000 A	bis 25 kA

Die aus dem Vakuumbogen herausdiffundierenden Metallionen werden durch neue Ladungsträger ersetzt, die der Vakumbogen wiederum durch Verdampfen von Elektrodenmaterial in seinen Fusspunkten selbst erzeugt. Da im Bereich des Stromnullgangs die Ladungsträgerbildung aussetzt, die Ladungsträgerverluste jedoch weitergehen, wird die Schaltstrecke sehr schnell entionisiert.

Die Eigenschaften der Vakuumschaltkammer hängen wesentlich vom verwendeten Kontaktmaterial und von der Geometrie der Kontakte ab [8]. Im Verlauf der Entwicklung wurden verschiedene Kontaktwerkstoffe eingesetzt. Heute gilt für Leistungsschalter im Mittelspannungsbereich ein Verbundwerkstoff aus Kupfer und Chrom als optimaler Kontaktwerkstoff. Dieses Material vereinigt günstiges Verhalten bei der Vakuumbogenlöschung (rasche Wiederverfestigung der Schaltstrecke, geringer Abbrand) mit geringer Neigung zum Kontaktverschweissen und einem niedrigen Abreissstromniveau.

Der Vakuumbogen brennt im Stromstärkenbereich unter 10 kA als diffuse Entladung. Bei höheren Stromstärken entsteht eine kontrahierte Entladung. Ein kontrahierter Bogen, der längere Zeit an der gleichen Stelle verharrt, beansprucht die Kontakte thermisch lokal so stark, dass die Wiederverfestigung der Schaltstrecke nach dem Stromnulldurchgang nicht mehr sichergestellt ist. Daher muss durch geeignete Gestaltung der Kontaktstücke dafür gesorgt werden, dass der Bogen unter dem Einfluss eines elektromagnetischen Feldes in eine Rotationsbewegung versetzt und so die Wärme gleichmässig über die Kontakte verteilt wird. Man erreicht dies, indem der Bogen einem quer zu seiner Achse in radialer Richtung wirkenden Magnetfeld ausgesetzt wird. Die entsprechenden Kontaktstücke bezeichnet man als «Radial-Magnetfeld-Elektroden» [8]. Nach diesem Prinzip ist die Mehrzahl der Kammern für Mittelspannungsleistungsschalter konstruiert (Fig. 5). Eine neuere Entwicklung benutzt die Erkenntnis, dass die Bildung eines kontrahierten Bogens verhindert werden kann, wenn man ihn einem Magnetfeld aussetzt, das in seiner Längsachse wirkt. Ein solches Feld kann mit Hilfe einer vom auszuschaltenden Strom durchflossenen Spule ausserhalb der Löschkammer erzeugt werden. Es kann aber auch allein durch entsprechende Gestaltung der Kon-


Figur 4 SF₆-Leistungsschalter Typ HA (Selbstblasprinzip, ohne Kompressionshilfe)


a Schnitt durch Schaltkammer

- 1 Nennstromkontakt
- 2 Anschlüsse
- 3 Schaltkammer4 Schaltkontakt
- 4 Schaitkont
- 5 Isolierdüse
- 6 Deckel aus Aluminium
- 7 Antrieb
- 8 Behälter aus Epoxydharz
- 9 Ausdehnungsgefäss

b Schalter montiert auf Fahrwagen. Technische Daten:

Nenn- spannung	Nennstrom	Nennkurzschluss- ausschaltstrom
12 kV	bis 1250 A	bis 25 kA
24 kV	bis 1250 A	bis 16 kA

Figur 5 Vakuumleistungsschalter Typ VD4

a Schnitt durch Schaltkammer

- 1 Oberer Anschluss
- 2 Schaltkammer 3 Unterer Anschluss
- 4 Kontaktdruckfeder
- 5 Isolier-Koppelstange
- 6 Ausschaltfelder
- 7 Drehfeder-Speicherantrieb

b Schalter montiert auf Fahrwagen. Technische Daten:

o Schaner monner any rum wagen. Teenmisene Da		
Nenn-	Nennstrom	Nennkurzschluss-
spannung		ausschaltstrom
12 kV	bis 2500 A	bis 40 kA
24 kV	bis 2000 A	bis 25 kA

taktstücke erzeugt werden. Solche Kontaktstücke werden als «Axial-Magnetfeld-Elektroden» bezeichnet [8]. Dieses Prinzip bietet Vorteile bei der Beherrschung von Strömen im oberen Teil des Kurzschlussströmbereiches, d.h. bei Kurzschlussströmen über 31,5 kA.

4. Vergleich der Schaltprinzipien SF₆ und Vakuum

Die wichtigsten Eigenschaften der SF₆-Schalter bzw. des SF₆-Gases als Löschmittel und der Vakuumschalter bzw. des Vakuums als Löschmedium sind in der Tabelle I zusammengestellt.

Kriterien	SF6-Se	chalter	Vakuumschalter
	Kolbenprinzip	Selbstblasprinzip	Kontaktmaterial CuCr
Antriebsenergiebedarf	Hoch. Die Energie zur Erzeugung der Löschmittelströmung muss vom Antrieb aufgebracht werden.	Gering. Vergleichsmässig kleine Massen müssen mit mässigen Geschwindigkeiten über kurze Strecken bewegt werden. Die Energie für die Erzeugung der Löschmittelströmung muss nicht vom Antrieb aufgebracht werden.	Gering. Vergleichsmässig kleine Massen müssen mit mässigen Geschwindigkeiten über sehr kurze Strecken bewegt werden.
Schaltarbeit	Gering. Hohe Leitfähigke (Lichtbogenspan		Sehr gering. Sehr kleine Brennspannung des Metalldampfbogens (50-100 V).
Kontaktabbrand	Klein. Geringe Schaltarbeit.		Sehr klein. Sehr geringe Schalt- arbeit, schnelle Bewegung der Bogenfusspunkte auf den Kon- taktoberflächen. Metalldampf schlägt sich nach dem Verlö- schen des Bogens zum grossen Teil wieder auf den Kontakten nieder.
Lichtbogenlöschmittel	SF ₆ weist hervorragende dielektrische Eigenschaften und Lichtbogenlöscheigenschaften auf. Nach der Abkühlung des Schaltlichtbogens rekombinieren die zersetzten SF ₆ -Moleküle wieder nahezu vollständig; praktisch kein Verbrauch des Löschmittels. Druck des Gases kann mit einfachen Mitteln permanent überwacht werden; Kontrolle nicht notwendig bei Schaltkammern «sealed for life».		Kein fremdes Löschmittel not- wendig. Vakuum ist ein nahezu ideales Löschmedium. Schalt- kammern «sealed for life», Überwachung des Vakuums nicht notwendig.
Schaltverhalten	Druckaufbau und Löschmittel- strömung sind stromunabhän- gig. Grosse und kleine Ströme werden mit der gleichen Inten- sität beblasen. Hochfrequente Ausgleichströme werden höch- stens bei kleinen Stromwerten unterbrochen. Wiederverfesti- gung der Schaltstrecke sehr schnell.	Druckaufbau und Löschmittelströmung sind stromabhängig. Grosse Ströme werden intensiv beblasen, kleine nur sanft. Hochfrequente Ausgleichsströme werden im allgemeinen nicht unterbrochen. Wiederverfestigung der Schaltstrecke sehr schnell.	Keine Löschmittelströmung er- forderlich. Extrem schnelle Wiederverfestigung der Schalt- strecke. Hochfrequente Aus- gleichsströme können unter- brochen werden.
Stromabreissverhalten	Höhe des Abreissstromes wird du Lichtbogens bestimmt. Gute Löscheigenschaften von SF ₆ erfordern nur mässige Beblasung, was auch ein mässiges Abreissstromniveau zur Folge hat.	Sanfte Beblasung des Lichtbogens im Bereich der kleinen Ströme führt zu sehr niedrigem Abreissstromniveau.	Höhe des Abreissstromes wird vom Kontaktmaterial be- stimmt. Chrom im Verbund- werkstoff Kupfer-Chrom ge- währleistet niedriges Abreiss- stromniveau.

Tabelle I Eigenschaften der Schaltprinzipien SF₆ und Vakuum

4.1 Wartungsbedarf

Die sehr geringe Beanspruchung der Schaltkammern von Vakuumschaltern bei Ausschaltungen führt zu einer extrem hohen elektrischen Lebensdauer, wie sie von keinem andern Schaltprinzip erreicht wird. Vakuumschaltkammern beherrschen nach heutigem Stand der Technik die folgenden Schaltzahlen:

30- bis 100mal Nennkurzschlussausschaltstrom 10 000- bis 20 000mal Nennbetriebs-

strom

10 000- bis 30 000mal mechanische Schaltungen

Die entsprechenden Werte für die Schaltkammern von SF₆-Schaltern betragen:

10- bis 50mal Nennkurzschlussausschaltstrom
5000- bis 10 000mal Nennbetriebsstrom
5000- bis 20 000mal mechanische Schaltungen

Nach Erreichen dieser Schaltzahlen können die Schaltkammern der SF₆-

Schalter im Gegensatz zu jenen der Vakuumschalter durch eine Revision wieder in den Ausgangszustand versetzt werden. Die praktische Erfahrung zeigt aber, dass im Regelfall die SF₆-Schaltkammern während ihrer gesamten Lebensdauer nicht revidiert werden müssen. Daher geht man auch bei den SF₆-Schaltern teilweise dazu über, die Möglichkeit einer Wartung durch den Betreiber nicht mehr vorzusehen und die Schaltkammern analog zu den Vakuumschaltkammern als «sealed for life» auszuführen.

Eine Wartung des Antriebes ist bei den Vakuumschaltern nach jeweils 10 000 bis 20 000 Schaltungen erforderlich. Der entsprechende Wert für die SF₆-Schalter liegt zwischen 5000 und 20 000 Schaltungen. Wegen ihres höheren Antriebsenergiebedarfs weisen dabei die Kolbenschalter niedrigere Wartungsintervalle auf als nach dem Selbstblasprinzip arbeitende Schalter.

Der tatsächliche Wartungsbedarf eines Schalters ergibt sich aus der Beanspruchung im konkreten Einsatzfall, d.h. der Anzahl Schaltungen pro Zeiteinheit und der Grösse der auszuschaltenden Ströme. Sowohl beim Einsatz von SF₆-Schaltern als auch bei jenem von Vakuumschaltern in Netzen der öffentlichen Energieversorgung und in Industrienetzen wird das Summenstrom-Ausschaltvermögen Schaltkammern normalerweise nicht erreicht. Dies gilt insbesondere für den Einsatz in Kabelnetzen. Aber auch bei Freileitungsnetzen, die, durch wetterumgebungsbedingte Einflüsse verursacht, eine erhöhte Fehlerhäufigkeit aufweisen, wird die Summenstromgrenze der Schaltkammern wegen der im Vergleich zu den Kabelnetzen im allgemeinen geringeren Fehlerströmen in der Regel nicht erreicht. Eine Wiederertüchtigung bzw. ein Austausch der Schaltkammern wird daher nur in Ausnahmefällen erforderlich sein. SF₆-Schalter und Vakuumschalter sind folglich in den allermeisten Einsatzfällen praktisch wartungsfrei. Die Wartungsarbeiten bleiben auf ein turnusgemässes Entfernen von äusserlicher Verschmutzung sowie das Kontrollieren und Fetten des Antriebes samt Auslöser und Hilfsschaltersystem beschränkt. In ganz extremen Einsatzfällen, wie z.B. bei Schaltern für Lichtbogenöfen, weist jedoch die Vakuumtechnik aufgrund des höheren Summenstrom-Ausschaltvermögens Vorteile gegenüber der SF₆-Technik

4.2 Zuverlässigkeit

auf.

Ein weiterer Punkt, der für die Beurteilung eines Leistungsschalters aus betrieblicher Sicht Bedeutung hat, ist die Zuverlässigkeit des Gerätes. Die Zuverlässigkeit eines Betriebsmittels wird durch die Ausfallrate charakterisiert, d.h. durch die Anzahl Ausfälle pro Zeiteinheit.

Heute werden für moderne SF₆-Schalter, wie z.B. Selbstblasschalter, und Vakuumschalter die gleichen Antriebe verwendet. Bezüglich Zuverlässigkeit können demzufolge die Antrie-

be beider Schalter als gleichwertig betrachtet werden. Bei den Schaltkammern besteht dagegen ein Unterschied. Die Zahl der bewegten Teile pro Schaltkammer ist bei den SF₆-Schaltern höher als bei den Vakuumschaltern. Die Zuverlässigkeit von Geräten, welche aus völlig unterschiedlichen Teilen aufgebaut sind, lässt sich jedoch nicht allein aufgrund der Anzahl Teile vergleichen. Sie ist von vielen Einflussfaktoren abhängig. Unter anderem wird sie wesentlich beeinflusst durch die Dimensionierung des Gerätes, die konstruktive Gestaltung, die Materialwahl, die Fertigung und die Massnahmen zur Qualitätssicherung.

Mittlerweile verfügt man sowohl mit SF₆-Schaltern als auch mit Vakuumschaltern über eine grosse Betriebserfahrung. Analysen der Ausfallraten von Schaltern beider Techniken zeigen, dass es keinen signifikanten Unterschied in der Zuverlässigkeit gibt. Vielmehr wird nachgewiesen, dass beide Techniken eine sehr hohe Zuverlässigkeit aufweisen [9; 10].

4.3 Schalten von Kurzschlussströmen

Selbstverständlich beherrschen die SF₆- und Vakuumschalter die Anforderungen der Typenprüfung gemäss den einschlägigen Schaltervorschriften (z.B. IEC-Publ. 56).

Darüber hinaus eignen sich sowohl SF₆-Schalter als auch Vakuumschalter sehr gut für einfache und mehrfache Kurzunterbrechungen, da sie innerhalb kurzer Zeit wieder die volle Schaltbereitschaft erlangen und sich aufgrund der geringen Schaltarbeit nur wenig wärmen.

4.4 Schalten von kleinen induktiven Strömen

Unter dem Begriff kleine induktive Ströme seien hier praktisch rein induktive Ströme verstanden, wie sie von leerlaufenden Transformatoren, anlaufenden oder leerlaufenden Motoren und Drosselspulen aufgenommen werden. Betrachtet man das Verhalten von Schaltern beim Unterbrechen von kleinen induktiven Strömen, so muss zwischen langsamen und schnellen Ausgleichsvorgängen unterschieden werden.

Langsame Ausgleichsvorgänge entstehen unter anderem dadurch, dass der Strom bei einer Ausschaltung vor seinem natürlichen Nulldurchgang abgerissen wird. Bei allen Leistungsschaltern kann es beim Schalten von

Strömen bis zu einigen 100 A durch Instabilwerden des Lichtbogens unmittelbar vor dem Stromnulldurchgang zu einem Abreissen kommen. Man bezeichnet dieses Phänomen als echten Stromabriss. Dabei schwingt die in der Lastinduktivität gespeicherte Energie in die vorhandenen Kapazitäten gegen Erde um (Wicklungskapazitäten, Kabelkapazitäten) und führt dort zu einem Spannungsanstieg. Die Amplitude der entstehenden Überspannung hängt von der Höhe des Abreissstromes ab. Je kleiner der Abreissstrom eines Schaltgerätes, desto kleiner sind auch die auftretenden Schaltüberspannungen.

Ausser von der Art des Schalters ist der Abreissstrom auch von den Netzbedingungen am Einbauort abhängig, nämlich von der Kapazität, die parallel zur Schaltstrecke liegt. Der Abreissstrom von SF₆-Schaltern wird wesentlich von der konstruktiven Ausführung des Schalters bestimmt. Im Bereich der für die Praxis wichtigen Lastkreisdaten liegen die Abreissströme zwischen 0,5 A und 15 A. Speziell günstig verhält sich in dieser Beziehung der SF₆-Selbstblasschalter. Sein Abreissstrom beträgt weniger als 3 A. Dieses «weiche» Schaltverhalten ist neben den physikalischen Eigenschaften des SF₆-Gases den Besonderheiten der Selbstblasprinzips zuzuschreiben (Tab. I)[11].

Das Schalten von kleinen induktiven Strömen galt zu Beginn der Entwicklung von Vakuumschaltkammern wegen der hohen Abreissströme der damals verwendeten Kontaktmaterialien als eines der Hauptprobleme. Das heute vorrangig verwendete Kontaktmaterial Kupfer-Chrom weist Abreissströme zwischen rund 2 A und 5 A auf, so dass die Gefahr unzulässig hoher Schaltüberspannungen infolge Stromabriss als weitgehend ausgeschlossen betrachtet werden kann [8].

Schnelle Ausgleichsvorgänge entstehen, wenn es bei Ein- und Ausschaltungen zu Vor- oder Wiederzündungen über die Schaltstrecke kommt. Überschreitet bei einer Ausschaltung die sich über den Schalterkontakten aufbauende Spannung die momentane elektrische Festigkeit der Schaltstrekke, so erfolgt eine Wiederzündung. Der nach einer Wiederzündung fliessende hochfrequente Ausgleichsstrom kann von einem Schalter nach einem oder mehreren seiner Stromnulldurchgänge wieder gelöscht werden. Danach sind weitere Spannungsanstiege und weitere Wiederzündungen möglich. In diesem Fall spricht man von multiplen Wiederzündungen.

Bei Schaltgeräten, die hochfrequente Ausgleichsströme unterbrechen können, kann es im Zusammenhang mit Wiederzündungen auch zum sogenannten virtuellen Stromabriss kommen. Ein solcher Fall ist möglich,

wenn der durch eine Wiederzündung im erstlöschenden Schalterpol verursachte hochfrequente Ausgleichsstrom in die beiden anderen, noch den betriebsfrequenten Strom führenden Phasen eingekoppelt wird und sich dort dem Laststrom überlagert. Unter Umständen kann der resultierende Strom, auch bei hohem Augenblickswert des Laststromes, einen Stromnulldurchgang aufweisen. Löscht der Schalter in diesem erzwungenen Stromnulldurchgang, entspricht dies einem Stromabriss bei sehr hohem Stromwert. Beim virtuellen Stromabriss können daher viel höhere Mo-

Kriterien	SF6 - Schalter	Vakuumschalter
Summenstrom-Ausschaltvermögen der Schaltkammer	10- bis 50mal Nennkurzschlussausschalt- strom, 5000- bis 10 000mal Nennbetriebs- strom	30- bis 100mal Nennkurzschlussausschalt- strom, 10 000- bis 20 000mal Nennbe- triebsstrom
Mechanische Lebensdauer der Schaltkammer	5000 bis 20 000 Schaltungen pro Wartungsintervall	10 000 bis 30 000 Schaltungen
Schalthäufigkeit bis zur Wartung des Antriebes	5000 bis 20 000 Schaltungen	10 000 bis 20 000 Schaltungen
Wartungszeitraum	Fettung des Antriebes nach 5 bis 10 Jahren	Fettung des Antriebes nach 10 Jahren
Aufwand für Revision der Schaltkammer	Demontage der Schaltkammer mit hohem Zeitaufwand aber geringen Materialko- sten	Kontrolle des Vakuums durch Messung mittels Tester und Austausch der Schalt- kammer im Bedarfsfall; geringer Zeitauf- wand, aber hohe Materialkosten
Zuverlässigkeit von Schaltkammer und Antrieb	sehr hoch	sehr hoch
Überwachungsmöglichkeit der Schaltbereitschaft	Überwachung des SF ₆ -Druckes im Betrieb möglich (Manometer, mit elektr. Druckwächter auch Fernüberwachung möglich)	Überwachung des Vakuums im Betrieb nicht möglich, wegen der angewandten Dichtungstechnologie («sealed for life») aber auch nicht notwendig
Dielektrische Festigkeit der offenen Schaltstrecke	hoch	sehr hoch, aber in stärkerem Masse streu- end als bei SF ₆ (Einfluss des Zustandes der Kontaktoberfläche)
Verhalten im Störungsfall	Platzen der Schaltkammer, frei brennender Lichtbogen leitet dreipoligen Kurzschluss ein	Zerfallen der Schaltkammer, frei brennender Lichtbogen leitet dreipoligen Kurzschluss ein

Tabelle II Vergleich der Schaltprinzipien SF₆ (Selbstblasprinzip) und Vakuum (Kontaktmaterial CuCr): betriebliche Gesichtspunkte

Kriterien	SF ₆ -Schalter	Vakuumschalter
Beherrschen von einfachen und mehrfachen Kurzunterbrechungen	sehr gut geeignet	sehr gut geeignet
Schalten in Freileitungs- und Kabelnetzen	sehr gut geeignet, da rückzündungsfrei	sehr gut geeignet, da rückzündungsfrei
Schalten von Transformatoren	sehr gut geeignet. Überspannungen beim Schalten leerlaufender Transformatoren bleiben i.a. unter 3 p.u., normalerweise keine Überspannungsableiter erforderlich	sehr gut geeignet. Überspannungen beim Schalten leerlaufender Transformatoren bleiben i.a. unter 3 p.u., normalerweise keine Überspannungsableiter erforderlich
Schalten von Motoren	sehr gut geeignet. Überspannungen bleiben i.a. unter 2,5 p.u.; normalerweise keine Massnahmen zur Überspannungsbegrenzung erforderlich	gut geeignet. Unter bestimmten Bedingungen (Anlaufströme unter 600 A) sind wegen der Möglichkeit von virtuellem Stromabriss Massnahmen zur Überspannungsbegrenzung empfehlenswert
Schalten von Kompensationsdrosselspulen	gut geeignet. Überspannungen bleiben i.a. unter 2,5 p.u.; normalerweise keine Mass- nahmen zur Überspannungsbegrenzung erforderlich	gut geeignet. Unter bestimmten Bedingungen (Nennströme unter 600 A) sind wegen der Möglichkeit von virtuellem Stromabriss Massnahmen zur Überspannungsbegrenzung empfehlenswert
Schalten von Kondensatoren	sehr gut geeignet, da rückzündungsfrei	sehr gut geeignet, da rückzündungsfrei
Schalten von Kondensatoren in «Back-to-back»-Anordnung	geeignet. In Spezialfällen sind Drosselspulen zur Reduktion des Inrush-Stromes empfehlenswert	geeignet. In Spezialfällen sind Drosselspulen zur Reduktion des Inrush-Stromes empfehlenswert
Schalten von Lichtbogenöfen	nur geeignet für Anwendungsfälle mit ver- gleichsweise geringer Schalthäufigkeit	geeignet auch für Anwendungsfälle mit hohen Schaltzahlen

Tabelle III Vergleich der Schaltprinzipien SF₆ (Selbstblasprinzip) und Vakuum (Kontaktmaterial CuCr): Schaltaufgaben

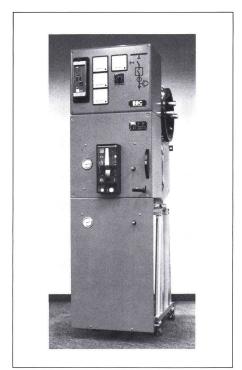
mentwerte des Stromes «abgerissen» werden als dies dem Abreissstromniveau des eingesetzten Schaltgerätes entspricht. In der Folge entstehen auch wesentlich höhere Überspannungen.

Wie umfangreiche Versuche gezeigt haben, weist der SF₆-Selbstblasschalter aufgrund seiner besonderen Eigenschaften bezüglich der schnellen Ausgleichsvorgänge ein günstigeres Verhalten auf als beispielsweise nach dem Kolbenprinzip arbeitende SF₆-Schalter oder Vakuumschalter [11]. Bei Vakuumschaltern wurden Erscheinungen wie multiple Wiederzündungen und virtueller Stromabriss in den vergangenen Jahren eingehend untersucht. Diese Untersuchungen haben gezeigt, dass es zwar zu heftigeren Wiederzündungen und damit verbunden zu höheren Überspannungen kommen kann als bei Schaltern mit anderen Schaltprinzipien [11; 12]. Diese Erscheinungen treten aber nur in speziellen Schaltfällen wie beispielsweise beim Ausschalten von Motoren im Anlauf auf, und dies zudem nur mit geringer statistischer Wahrscheinlichkeit. Die entstehenden Überspannungen lassen sich durch geeignete Beschaltung des Vakuumschalters, z.B. mit Metalloxidableitern, auf ein vertretbares Niveau beschränken.

4.5 Schalten von kapazitiven Strömen

Die Beherrschung des rückzündungsfreien Schaltens von Kondensatoren ist im wesentlichen eine Frage der Geschwindigkeit der dielektrischen Wiederverfestigung der Schaltstrecke nach der Unterbrechung des Stromes. Da sich sowohl die SF₆-Schalter als auch die Vakuumschalter durch eine sehr rasche Wiederverfestigung der Schaltstecke auszeichnen, sind beide Techniken sehr gut zum Schalten von kapazitiven Strömen geeignet.

4.6 Verhalten im Störungsfall


Bei einem Schaltversagen eines SF₆-Schalters zerplatzt die Schaltkammer nach Erreichen der Festigkeitsgrenze. Durch den nun frei brennenden Lichtbogen wird ein dreipoliger Kurzschluss eingeleitet.

Beim Vakuumschalter zerfällt die Schaltkammer, wobei die Metallteile durchschmelzen und die Keramikteile zerstört werden, und durch den frei brennenden Lichtbogen wird in der Folge ebenfalls ein dreipoliger Kurzschluss eingeleitet.

5. Bewertung

Im Sinne einer Zusammenfassung wird in den Tabellen II und III eine Bewertung der Schaltprinzipien SF₆ und Vakuum nach einer Vielzahl von Kriterien vorgenommen. Dem Vergleich wurden als moderne Vertreter SF₆-Technik Selbstblasschalter und der Vakuumtechnik Schalter mit Kupfer-Chrom-Kontakten zugrunde gelegt. Die Tabellen zeigen, dass in den allermeisten Anwendungsfällen die beiden Schalter als technisch ebenbürtig angesehen werden können. Daher werden hauptsächlich wirtschaftliche Argumente oder die Präferenz des Betreibers bzw. eines Landes den Ausschlag zur Wahl geben. In Anwendungsfällen mit besonderen Schaltaufgaben (z.B. Industrienetze oder Kraftwerkseigenbedarfsnetze mit Motoren, Stahlwerke mit Lichtbogenöfen, usw.) weist jedoch die eine oder andere Technik offensichtliche Vorteile auf.

Der Hauptvorteil der beiden Schaltprinzipien SF₆ und Vakuum gegenüber den früheren Schaltprinzipien ist der eindeutig geringere Wartungsbedarf. Als weiterer gemeinsamer Vorteil ist das durch den Wegfall eines brennbaren Lichtbogenlöschmittels vernachlässigbar klein gewordene Brandrisiko zu nennen.

Figur 6 SF₆-gasisoliertes Schaltfeld Typ BE mit fest eingebautem SF₆-Leistungsschalter Typ HA

Dank den hermetisch abgeschlossenen Löschkammern treten weder bei SF₆-Schaltern noch bei Vakuumschaltern bei Schalthandlungen Auswirkungen nach aussen auf. Zudem arbeiten sowohl die SF₆-Schalter als auch die Vakuumschalter völlig lageunabhängig. Zusammen mit ihrem hohen

Summenstrom-Ausschaltvermögen und der daraus resultierenden Wartungsfreiheit ermöglichen diese Eigenschaften neuartige Schaltanlagenbauformen. In Anlagen mit ausziehbaren Schaltern können diese statt auf Wagen auf Einschübe gesetzt werden, und in Festeinbauanlagen können die Schalter in SF₆-Isoliergas anstelle von atmosphärischer Luft angeordnet werden (Fig. 6).

Grundsätzlich lässt sich sagen, dass die beiden neuen öllosen Techniken so überzeugende Vorteile bieten, dass sie sich in Zukunft sicher durchsetzen werden.

Literatur

- [1] W. Hermann a.o.: Investigation on the physical phenomena around current zero in HV gas blast breakers. IEEE Trans. PAS 95(1976)4, p. 1165...1176.
- [2] A. Plessl und L. Niemeyer: Löschen des Lichtbogens unter SF₆-Gas. ETG-Tagung «Moderne Löschtechniken bei Mittelspannungsschaltern», Zürich, 22.9.1988. ETG Band 4a.
- [3] W. Kohler und M. Moebius: Siemens-F-Schalter mit Schwefelhexafluorid für die Reihen 10 bis 30. Siemens Zeitsch. 39(1965)4, S. 326...328.
- [4] R. Schaumann und D. Poole: Das H-System

 eine neue Generation von SF₆-Mittelspannungs-Schaltgeräten. Brown Boveri Mitt. 64(1977)11, S. 628...633.
- [5] T. Jakob, E. Schade und R. Schaumann: Selbstblasung, ein neues wirtschaftliches Schaltprinzip für SF₆-Schalter. Brown Boveri Mitt. 64(1977)11, S. 655...658.
- [6] A. Plessl und D. Poole: Neuer Mittelspannungs-Verteilschalter mit SF₆-Selbstblasprinzip zur Lichtbogenlöschung. Brown Boveri Technik 74(1987)3, S. 150...156.
- [7] C. Duplay: Mittelspannungs-Leistungsschalter. Wirtschaftliche Lösung der SF₆-Technik mit Drehlichtbogen. Elektrizitätswirtschaft 83(1984)1, S. 42...45.
- [8] H. Petry: Vakuum-Leistungsschalter. ETZ 102(1981)26, S. 1382...1387.
- [9] D. Poole: Medium-voltage SF₆ switchgear for power stations, distributions systems and industry. Kuala Lumpur, Swisstec, 1984.
- [10] H. Bettge und G. Sinnecker: Neue Anforderungen und Qualitatssicherungsmethoden beim Prüfen von Vakuumleistungsschaltern. Siemens Energie und Automation 7(1985) Sonderheft «Mittelspannungstechnik» S. 15...18.
- [11] Der Einsatz von SF₆-Selbstblasschaltern zum Schalten von kleinen induktiven Strömen. BBC-Druckschrift Nr. CH-A 519270. Baden, ABB.
- [12] U. Di Marco a. o.: Performances of M.V. circuit-breakers using different quenching media with reference to industrial plant situation. IEEE Trans. PWRD 2(1987)1, p. 117...125.