
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 79 (1988)

Heft: 17

Artikel: Software-Qualitätssicherung : eine Einführung

Autor: Rudin, H.

DOI: https://doi.org/10.5169/seals-904075

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904075
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Qualitätssicherung

Software-Qualitätssicherung -
eine Einführung
H. Rudin

Bereits in den siebziger Jahren
wurden unter dem Sammelbegriff

Software-Engineering
Konzepte für eine ingenieurmässige
Softwareentwicklung erarbeitet.
In der Praxis lässt die Anwendung

dieser Konzepte jedoch
noch einiges zu wünschen übrig.
Hier setzen die modernen
Software-Qualitätssicherungs-
systeme an, die derzeit in vielen
Firmen in Aufbau sind. Diese
können allerdings - wie erste
Erfahrungen zeigen - nur zu
Erfolg führen, wenn sie sorgfältig

eingeführt werden und die
vorhandene Firmenkultur
angemessen berücksichtigen.

C'est déjà dans les années 70

qu'ont été élaborés, sous le
générique ingénierie des
logiciels, les concepts pour une
ingénierie du développement de
logiciels. Dans la pratique,
l'utilisation de ce concept laisse
cependant encore à désirer.
C'est là qu'interviennent les
systèmes d'assurance de la qualité

modernes pour logiciels,
actuellement en voie de mise sur
pied dans de nombreuses
firmes. Comme le démontrent les
premières expériences, ces
systèmes ne peuvent réussir que
s'ils sont introduits soigneusement

et tiennent convenablement

compte de la culture
d'entreprise en place.

Adresse des Autors
Hans Rudin. Dipl. El.-Ing. ETH,
Standard Telephon & Radio AG,
Friesenbergstrasse 75, 8055 Zürich.

Der Anteil am Bruttosozialprodukt
der USA für alle Bereiche der
Datenverarbeitung betrug bereits 1980 5%

und dürfte bis 1990 auf mehr als 12%

steigen. Software ist zu einem wichtigen

Faktor unserer Industriegesellschaft

geworden. So hängen auch
sicherheitsrelevante Systeme, z.B. der
Luftverkehr, zunehmend von Software
ab. Zwischen Bedeutung und Reife der
Softwaretechnologie besteht jedoch
ein Ungleichgewicht. Hinter dem
Schlagwort der Softwarekrise, das
Ende der sechziger Jahre geprägt wurde,

stehen Softwareprodukte, deren
mangelnde Qualität zu teuren Ausfällen

mit enormen Folgekosten führte
sowie Softwareprojekte, die wegen
massiver Kosten- und
Terminüberschreitungen zum Teil nie beendet
wurden. Schätzungen beziffern den
Anteil der abgebrochenen Softwareprojekte

auf 20%.
In den siebziger Jahren suchte man

unter dem Begriff Software-Engineering
die Erstellung komplexer Software

auf eine ingenieurmässige Basis zu
stellen. Software-Engineering beinhaltet

Prinzipien, Methoden und Sprachen

zur systematischen Entwicklung
sowie Wartung von Software. Heute
steht uns ein ganzer Baukasten von
Methoden und Sprachen zur Verfügung,

um Software nach diesen Prinzipien

zu entwickeln. Langsam erscheinen

auch brauchbare Werkzeuge auf
dem Markt, welche diese Methoden
wirksam unterstützen. In der Praxis
aber lässt die Anwendung des

Software-Engineering zu wünschen übrig.
Zwar herrscht Einigkeit, dass man
nach den Methoden des Software-
Engineering vorgehen müsste, aber im
Projektalltag unter Termindruck, sich
ändernden Anforderungen und
fehlender Unterstützung durch Werkzeuge

werden diese guten Vorsätze nur
allzuoft fallen gelassen. Genau hier setzt
die Qualitätssicherung an. In Figur 1

ist die Entwicklung dieser Disziplin in

vier Stufen nach Godfrey [1] dargestellt.

Qualität und Software
Nach DIN 55 350 ist Qualität die

Gesamtheit von Eigenschaften und
Merkmalen eines Produktes oder einer Tätigkeit,

die sich auf die Eignung zur Erfüllung

gegebener Erfordernisse beziehen.

Diese Definition lässt sich auch auf
Software anwenden, und zwar sowohl
auf die Tätigkeit der Softwareentwicklung

als auch auf deren Resultat, das
Softwareprodukt.

Die Erfordernisse, welche ein
Softwareprojekt zu erfüllen hat, sind
neben der Einhaltung von Terminen und
Kosten das Erreichen der Sachziele,
d.h. die Erfüllung der Produktanforderungen.

Ein Mass dafür ist die
Produktqualität. Dieser Zusammenhang
zwischen Projekt- und Produktqualität
ist in Figur 2 veranschaulicht.

Unter Software verstehen wir nach
[4] die Gesamtheit der notwendigen
Programme, Daten, Abläufe, Regeln
und jeglicher dazugehöriger Dokumen-

4. Qualität durch Design

Konstruktive Umsetzung der
Q-Merkmale in Produkteigenschaften

(Qualitätsmodelle)

3. Qualitätsverbesserung

Systematische Analyse von
Problemursachen. Verbesserungen durch
Feedback

2. Qualitätskontrolle

Prüfungen im Verlauf der ganzen
Produktentstehung

1. Qualitätsinspektion

Prüfung des fertigen Produktes

Figur 1 Die Entwicklungsstufen der
Qualitätssicherung nach Godfrey [11

1050 Bulletin ASE/UCS 79(1988)17, 2 septembre

Software

tation für die Nutzung eines Rechnersystems.

Die Qualität eines Softwareproduktes
wird neben der Erfüllung von

funktionalen Anforderungen, Mengen-
und Leistungsanforderungen durch
Merkmale bestimmt wie:

- Korrektheit
- Zuverlässigkeit
- Sicherheit
- Benutzerfreundlichkeit
- Wartbarkeit
- Wiederverwendbarkeit
- Flexibilität
- Portabilität

Will man eine objektive Aussage
über die Qualität eines Softwareproduktes

machen, so müssen diese Merkmale

in den Produktanforderungen
spezifiziert werden, und zwar in Form
von messbaren Kenngrössen (vergleiche

Abschnitt über Messbare
Kenngrössen für Software-Qualitätsmerkmale.

Software ist immateriell

Die Qualität von Software wird vor
allem durch ihre immaterielle Natur
beeinflusst. Software gehorcht keinerlei

physikalischen Gesetzen (wie z.B.
der Schwerkraft). Daraus folgt eine
Reihe von Eigenheiten:

1. Software kann wie alle immateriellen

Güter Nutzen nur durch
Kommunikation entfalten. Dabei muss
Software sowohl mit dem Menschen
(Entwicklungsingenieur, Benutzer) als
auch mit der Maschine (Computer)
kommunizieren. Die Wahl geeigneter
Sprachen zur Spezifikation, Beschreibung,

Codierung und zur Gestaltung
der Benutzeroberfläche ist ein wichtiger

Einflussfaktor der Softwarequalität.

2. Die Funktion von Software ist
nicht stetig. Eine Brücke, die das
Gewicht von zehn Lokomotiven trägt,
wird unter der Last von drei Lokomotiven

nicht zusammenbrechen. Erzeugt
ein Programm bei zwei Eingabewerten
korrekte Ausgaben, so ist nicht bewiesen,

dass ein dazwischenliegender
Wert auch ein korrektes Resultat
erzeugt. Interpolation und Extrapolation

sind bei Software nicht ohne
weiteres möglich. Daraus folgt: Software
ist - ausser in trivialen Fällen - nicht
vollständig prüfbar. Wohl muss man
Software testen, um Fehler zu Finden
und Aussagen über die Qualität zu
machen, aber einen Beweis für die Kor-

Projektqualität

Termine Kosten Sachziele=Produktean-
^ forderungen

Produktqualitat

Attribut Funktionen

Mengen Leistung Merkmale

Figur 2 Zusammenhang zwischen Projekt-
und Produktqualität nach Friihauf |2]

rektheit kann man damit nicht antreten,

denn testen lässt sich immer nur
ein geringer Bruchteil aller möglichen
Fälle. Dieser Sachverhalt hat zur
Erkenntnis geführt, dass man Qualität
nicht in ein Softwareprodukt «hineintesten»

kann, sondern dass sie hinein
entwickelt werden muss. Die
Qualitätssicherung von Software hat also
bei der Entwicklung anzusetzen.

3. Die Replikation von Software ist
trivial. Ein einfacher Vorgang erzeugt
eine Kopie, die vom Original nicht zu
unterscheiden ist. Das führt zu
Konsistenzproblemen. Konfigurationsmanagement

ist daher ein wichtiger
Bestandteil der Software-Qualitätssicherung,

aber das traditionelle Gebiet der
Qualitätssicherung, die Produktion,
hat bei Software keine entsprechende
Bedeutung. Software ist ein
Entwicklungsprodukt.

4. Software unterliegt keiner Abnutzung.

Ausfälle sind immer die Folge
von Fehlern. Unglücklicherweise hat
sich der Begriff Wartung auch für
Software eingebürgert. Wartung bei
Software ist aber nie ein Wiederherstellen
des ursprünglichen Zustandes,
sondern die Korrektur von Fehlern, die
schon immer im Produkt vorhanden
waren. Üblicherweise werden unter
den Begriff Wartung auch Verbesserungen

und Anpassungen des

Programmes subsummiert. Als Faustregel
gilt, dass für alle Belange der Wartung
eines Softwareproduktes ein doppelt
so hoher Aufwand zu leisten ist, wie
für dessen Entwicklung.

Auch der Begriff der Zuverlässigkeit
macht bei Software Schwierigkeiten.
Software verhält sich deterministisch.
Erst die Benutzung zusammen mit
statistisch verteilten Eingabewerten
erlaubt Aussagen über die Zuverlässig¬

keit einer Softwareanwendung, nicht
aber der Software an und für sich.

Software-Qualitätssiche-
rung ist kein Sonderfall!

Trotz dieser Eigenheiten weisen
Softwareprodukte mehr Gemeinsamkeiten

als Unterschiede mit anderen
Produkten menschlicher Tätigkeiten
auf. Es gibt daher keinen Grund, in
der Qualitätssicherung von Software
die Grundsätze der traditionellen
Qualitätssicherung ausser acht zu lassen
und dabei die diskutierten Charakteristika

als Entschuldigung heranzuziehen.

Messbare Kenngrössen für
Software-Qualitätsmerk-
male
Da geeignete Kenngrössen (Metriken)

fehlen, ist die Messung von
Qualitätsmerkmalen ein Problem. Objektive

Aussagen über Softwarequalität
sind aber nur durch Messungen zu
erhalten.

Was man nicht messen
kann, das kennt man nicht!
(Kelvin)

In den letzten Jahren wurde viel
Aufwand getrieben, geeignete
Kenngrössen für die Komplexität von
Software zu entwickeln. Ein Beispiel dafür
ist die Zyklometrische Zahl V(G) nach
McCabe [7]:

V(G) E-n + 2p

mit Anzahl Kanten E, Anzahl Knoten
n und Anzahl verbundener Komponenten

p. Sie repräsentiert die Anzahl
linear unabhängiger Wege durch den
Kontrollflussgraphen G eines
Programmes.

Messungen von Kenngrössen sollte
man nicht auf das Produkt beschränken;

es ist auch sinnvoll, Kenngrössen
des Projektes zu messen. Eine einfache
Art von Messungen sind Zählungen:
Eine Kenngrösse für das Qualitätsmerkmal

Portabilität eines
Softwareproduktes ist zum Beispiel der Anteil
der Module, welche Betriebssystemaufrufe

enthalten. Für das Projekt ist der
Anteil der Dokumente, die einer
Review unterzogen wurden, eine
Kenngrösse für das Qualitätsmerkmal Frühe
Fehlererkennung.

Bulletin SEV/VSE 79(1988)17, 2. September 1051

Qualitä tssicherung

In der Literatur wird das Thema
Metriken viel diskutiert; dem steht eine
sehr bescheidene Anwendung in der
Praxis gegenüber. Die Weiterentwicklung

der Software-Qualitätssicherung
hängt aber massgeblich davon ab, wieweit

es gelingt, die Qualität von
Softwareprodukten und -projekten zu
messen.

Software-Qualitätssicherung
durch planerische und

analytische Massnahmen
im Projekt
Solange jedes Softwareprojekt nach

eigenen Regeln abgewickelt wird, ist
schwierig festzustellen, was die Qualität

beeinflusst und wie sie zu kontrollieren

ist. Ein naheliegender Ansatz
zur Software-Qualitätssicherung
konzentriert sich daher auf das Projekt.
Ein nach Richtlinien der Qualitätssicherung

ablaufender Entwicklungs-
prozess soll in der Folge die Qualität
des Softwareproduktes sicherstellen.
In Figur 3 sind vier Grundelemente
dieser projektorientierten Software-
Qualitätssicherung skizziert und werden

im folgenden kurz beschrieben.
Für eine ausführliche Diskussion sei
auf [5; 6] verwiesen.

Software- Lebensphasenmodell
Die Unterteilung eines Softwareprojektes

in zeitlich aufeinanderfolgende
Phasen verfolgt das Ziel, den Entwick-
lungsprozess überschaubar und prüfbar

zu halten. Für jede Phase sind die
zu erbringenden Resultate im voraus
festzulegen, und am Ende ist in einer
Phasenreview zu überprüfen, ob diese
Ziele erreicht wurden. Hier ist das
Management angesprochen. Seine Aufgabe

ist, über die Fortsetzung des Projektes

bzw. über eine Kurskorrektur zu
entscheiden.

In letzter Zeit wird unter Stichworten

wie Rapid Prototyping, Successive
Versions ModeI[7] und Continuous
Delivery Kritik am klasischen Phasenmodell

geübt. Meiner Ansicht nach stehen
die neuen Konzepte nicht wirklich im
Widerspruch zum Prinzip des
Phasenmodells. Der Gegensatz ist vielmehr
auf dessen zu enge Interpretation
zurückzuführen. In der Regel werden die
Phasen nach ihren Haupttätigkeiten
benannt, was aber nicht heissen soll,
dass entsprechende Aktivitäten nicht
auch in anderen Phasen notwendig
sind. Rückgriffe auf Haupttätigkeiten
früherer Phasen sind in der Praxis
nicht zu vermeiden. Ziel ist aber, diese

Lebensphasenmodell

Review der
Anforderungen

Qualit

Phasenreview
(Qualitätsbeurteilung)

Review des

Systementwurfs

Review X
des

Detailentwurfs

Modultest J

ätsprüfungen
Change-
Control *

Projektd
QS-Plan, E

Dkumentat
twicklungs-, C

ion
[Dokumentation

okumentations-, Konfiguration managementplan
und Prüfplan

Produktd
Anforderungsd

Ent wur fs-
beschrei bung

Be

okumenta
ef in it ion

ion

nutzerhandbucl)

Konfig
Dokumente

jrationsmanagement
Sourcecode

Figur 3 Grundelemente der projektorientierten Software-Qualitätssicherung in vereinfachter

Darstellung

Rückgriffe möglichst auf die benachbarte

Phase einzuschränken, ihre
Anzahl zu begrenzen und sie in einem
geordneten Verfahren abzuwickeln.
Anpassungen des Phasenmodells an
das Anwendungsgebiet, die eingesetzte
Technologie und die Firmenkultur
sind in der Praxis unumgänglich.

Qualitätsprüfungen
Hier geht es nicht nur um das

Testen, d.h. die Prüfung des Codes durch
seine Ausführung, sondern um die
Überprüfung von Tätigkeiten und
Arbeitsergebnissen während des ganzen
Entwicklungsprozesses. Neben
Messungen, die im Abschnitt Kenngrössen
behandelt wurden, sind technische
Reviews ein wirksames Instrument der

Qualitätssicherung. Statistiken zeigen,
dass sich der Aufwand für Reviews im
Durchschnitt mit einer Ersparnis vom
doppelten Betrage bei der Fehlerkorrektur

auszahlt. Je früher ein Fehler im
Lebenszyklus entdeckt wird, desto
kleiner sind die Kosten, um diesen
Fehler zu beheben. Reviews sind daher
insbesondere in der Analyse- und
Systementwurfsphase von grossem Nutzen.

Erfolgreich sind Reviews nur, wenn
gewisse Spielregeln eingehalten werden:

In einer gut vorbereiteten
Reviewsitzung mit kompetenten Teilnehmern

wird der Reviewgegenstand unter

der Leitung eines Moderators
Schritt für Schritt besprochen. Dabei
werden alle Fehler, Probleme und Un-

1052 Bulletin ASE/UCS 79(1988)17, 2 septembre

Software

Systemelement Wichtige Anforderungen in Stichworten

Führungsaufgaben
Organisation

QS-Handbuch

Software-QS-Audit

Verbesserungsmassnahmen

Projekt-QS-Plan

QS-Ablaufregelungen
Produktanforderungen

Entwicklung

Konfigurationsverwaltung

SW-Dokumentation

Prüfungen

Regeln, Richtlinien und
Verfahren

Beistellungen vom
Auftraggeber
Zulieferungen

Behandlung von Fehlern

Qualitätsnachweise

QS-Organisation festgelegt. Von Produktentstehung
unabhängiger Qualitätsleiter mit direktem Zugang zur
Geschäftsleitung.
QS-System nach Handbuch eingeführt und aktualisiert.
Erklärung der Geschäftsleitung zur Einhaltung der
Norm, QS-Organigramm, QS-Ablaufregelungen
gemäss dieser Tabelle, Audit-Plan.
Auf der Grundlage des Auditplans, der die zu überprüfenden

Funktionen und die Häufigkeit der Auditdurch-
führung festhält, werden in den Audits die Einhaltung
und die Zuverlässigkeit des QS-Systems überprüft.
Systematische Analyse und Behebung von Fehlerursachen

und Überprüfung der Verbesserungsmassnahmen
auf ihre Wirksamkeit.
Er ist vor der Entwicklung zu erstellen. Änderungen
unterliegen der Genehmigungspflicht. Er muss Ent-
wicklungs-, Konfigurations-, Dokumentations- und
Prüfplan enthalten.

Vertragsprüfung unter Mitwirkung der SW-Entwick-
lung. Detaillierte Spezifikation der Funktionsanforderungen

und Merkmale.
Gemäss Entwicklungsplan. Aufteilung in kontrollierbare

Arbeitspakete. Darstellung des SW-Lebenszyklus.
SWQS für zugekaufte SW.

Regelungen zur Identifikation und Verwaltung von
SW-Komponenten und deren Versionen. Rückverfolg-
barkeit. Änderungsverfahren und Zugriffsschutz.
Vollständig und aktuell gemäss Dokumentationsplan.
Festlegung der Verantwortung für Erstellung, Prüfung,
Freigabe und Änderung von Dokumenten.
Nach Prüfplan in geeigneter, validierter Testumgebung
mit Bewertung der Resultate.

Für Entwicklung, Dokumentation und Prüfung mit
Überwachung und Anpassung an ihre Anwendung.
Geeignete QS-Massnahmen und Verantwortlichkeiten.

SW-Ersteller ist verantwortlich, dass zugelieferte SW
den spezifizierten Anforderungen entspricht. Er überprüft

QS-System des Unterlieferanten.
Dokumentation und Behebung von Fehlern in allen
SW-Komponenten unter Konfigurationsverwaltung.
Zeigen, dass spezifizierte Anforderungen erfüllt und
QS-Massnahmen durchgeführt sind. Regelung der
Aufbewahrung.

Tabelle I Zusammenstellung von QS-Anforderungselementen (Stufe A) aus SAQ 222 [4]

klarheiten protokolliert, ohne dass

Lösungsmöglichkeiten ausdiskutiert werden

oder dass sich der Autor zu verteidigen

hätte. Wichtig ist, dass der
Reviewgegenstand und nicht der Autor
kritisch geprüft wird. Die Weiterbearbeitung

der gefundenen Fehler muss in
der Folge geregelt sein.

Dokumentation
Die im Verlaufe der Softwareentwicklung

entstehende Dokumentation
lässt sich in Projekt- und Produktdokumente

unterteilen. Projektdokumente
dienen der Planung und Abwicklung

des Softwareprojektes, ihre
Gültigkeit ist auf die Projektdauer
beschränkt. Produktdokumente beschreiben

das entstehende Softwareprodukt.
Nach unserer Definition sind sie
integraler Bestandteil der Software.

Dokumentationsnormen mit
Musterdokumenten für Produkt- und
insbesondere Projektdokumente helfen
den Software-Entwicklungsprozess zu
standardisieren und übersichtlich zu
halten; sie haben die Funktion von
Checklisten. Auch Vorgaben, wann
ein Dokument im Lebensphasenmodell

zu entstehen hat, leisten einen
Beitrag zur Qualitätssicherung. Erarbeitet
man zum Beispiel den Qualifikations-
testplan bereits beim Festlegen der
Anforderungen, so führt dies zu messbaren

Spezifikationen und hilft Lücken
in der Anforderungsdefinition zu
Finden.

Speziell zu erwähnen ist noch der
Qualitätssicherungsplan, der alle
qualitätssichernden Massnahmen mit
zugehörigen Verantwortlichkeiten in einem
Projekt festlegt. Eine brauchbare Vorlage

für einen solchen Plan bietet die
IEEE Norm 730 [3].

Konfigurationsmanagement
Softwarepakete setzen sich aus einer

Vielzahl von Elementen (Module,
Dokumente) zusammen, die untereinander

konsistent sein müssen. Änderungen

sind zwar rasch durchgeführt, die
Gefahr des Konsistenzverlustes aber
ist dabei gross. Darum ist jedes
Element in eine Konfigurationsverwaltung

aufzunehmen. Der Einsatz von
Softwarewerkzeugen ist dabei sehr zu
empfehlen. Im Konfigurationsplan
muss festgelegt werden, welche
Elemente (Dokumente, Sourcecode) zu
welchem Zeitpunkt in die
Konfigurationsverwaltung aufgenommen werden

und wie bei Änderungen vorzugehen
ist.

Software-Qualitätssicherungssysteme

Ein Qualitätssicherungssystem um-
fasst die Integration der ersten drei
Stufen im Entwicklungsschema der
Figur 1. Es hat zum Ziel, für die systematische

Anwendung der beschriebenen
Grundelemente in einer Firma zu
sorgen. Zu einem Qualitätssicherungssystem

gehören noch weitere Elemente.
Insbesondere muss die Wirksamkeit
des Software-Qualitätssicherungssystems

in Systemaudits regelmässig

überprüft werden. Diese werden, im
Gegensatz zu Reviews, immer von
einer unabhängigen Stelle durchgeführt.

In der Schweiz existiert eine
Empfehlung der Schweizerischen
Arbeitsgemeinschaft für Qualitätssicherung
(SAQ), welche Anforderungen an
Software-Qualitätssicherungssysteme

stellt [4], Die Tabelle I führt die
Anforderungselemente in Stichworten
auf. Im Trend der Internationalisie-
rung von Normen wurde darauf ver¬

Bulletin SEV/VSE 79(1988) 17, 2. September 1053

Qualitätssicherung - Software

ziehtet, mit dieser Empfehlung eine
schweizerische Norm anzustreben. In
der ISO (International Standard
Organisation) wird gegenwärtig eine
entsprechende Norm ausgearbeitet, die
inhaltlich sehr ähnliche Forderungen
stellt und sich an die allgemeine
Qualitätssicherungsnorm ISO 9001 anlehnt.

Software-Qualitätssicherung
durch konstruktive

Massnahmen am Produkt
Der projektorientierte Ansatz des

Software-Qualitätssicherungssystems
bildet den Rahmen, welcher durch
planerische Massnahmen Qualität
ermöglicht, bzw. durch analytische
Massnahmen Abweichungen zu erkennen

hilft. Die Mittel, um Qualität
konstruktiv in ein Produkt hineinzuent-
wickeln, sind die Prinzipien, Methoden,

Sprachen und Werkzeuge des

Software-Engineering. Für eine Übersicht

des umfangreichen Gebietes sei

auf das Buch von R. Fairley[7] verwiesen.

Hier sei aus der Sicht der
Software-Qualitätssicherung nur eine
kurze Gegenstandsbestimmung
vorgenommen.

Prinzipien
Im Bereich des Software-Engineerings

haben sich eine ganze Reihe von
allgemeinen Handlungsgrundsätzen
entwickelt, wie zum Beispiel die
hierarchische Modularisierung eines
Softwaresystems, deren Befolgung einen
Beitrag zur Qualitätssicherung leistet.
Dabei ist zu beachten, dass die Prinzipien

des Software-Engineering nicht
unabhängig von der sich rasch entwik-
kelnden Technologie sind. So war zum
Beispiel früher das speichereffiziente
Programmieren ein vorherrschendes
Prinzip, heute hat es seine Bedeutung
zugunsten des übersichtlichen,
strukturierten Programmierens verloren.
Wie man in der Praxis sieht, macht
dieses Umdenken Schwierigkeiten.
Ähnliche Probleme stehen uns beim
vermehrten Einsatz nichtprozeduraler
Sprachen bevor.

Methoden
Methoden sind auf Prinzipien

beruhende Vorgehensweisen zur
Erreichung eines Zieles. Während sich
frühere Software-Engineering-Methoden
vor allem auf den Programmierstil
konzentrierten (z.B. strukturierte
Programmierung), gilt heute das Interesse
der Spezifikation und dem Entwurf
von Softwaresystemen. In der Praxis

wird gerade in diesen frühen Phasen
oft sehr wenig systematisch gearbeitet,
der Grundstein für die Qualität des
resultierenden Produktes wird aber hier
gelegt.

Die Qualitätsmodellierung ist eine
Software-Engineering-Methode, welche

direkt beim Begriff der Qualität
ansetzt. Dabei werden die
Qualitätsmerkmale der Anforderungsdefinition
in quantifizierbare Basiseigenschaften
des Produktes aufgeschlüsselt und für
jede Basiseigenschaft messbare Kenn-
grössen und Zielvorgaben festgelegt.
Die Basiseigenschaften werden im
Entwurf und in der Implementation
explizit in das Produkt hineinentwik-
kelt und die entsprechenden Kenn-
grössen im Verlauf der Entwicklung
gemessen.

Sprachen

Programmiersprachen setzen den

Systementwurf in eine für den Computer

interpretierbare Form um. In der
Anfangszeit waren die Sprachen
maschinenorientiert, und der Mensch
musste sich der Maschine anpassen.
Programmieren und vor allem das
Ändern der schwer durchschaubaren
Programme war eine mühsame,
fehlerträchtige Arbeit. Hier hat sich die
Situation sehr stark gebessert. Moderne
Programmiersprachen, wie zum
Beispiel Modula-II und Ada, haben sich
von der Maschine gelöst, ermöglichen
Algorithmen aus Anwendersicht zu
formulieren und erlauben, ja erzwingen

sogar teilweise die Anwendung
moderner Software-Engineering-Prinzipien.

Weniger entwickelt sind die sprachlichen

Mittel für die früheren Phasen
der Softwareentwicklung. Anforderungen

an Softwaresysteme werden
heute zumeist noch in natürlicher
Sprache festgelegt, und auch
Entwurfsbeschreibungen enthalten neben
einigen informalen Graphiken in der
Regel vor allem Prosa. Natürliche
Sprache ist für diesen Zweck aber zu
unpräzise. Eine Verbesserung der
Situation ist durch den Einsatz von
halbformalen Sprachen zu erwarten, deren
Aufbau und Syntax formalen Regeln
genügt und deren Semantik durch
natürliche Sprachelemente bestimmt
wird.

Werkzeuge
Werkzeuge dürfen nie die Kenntnis

und das Verständnis der zugrundeliegenden

Methoden ersetzen. Ist diese

Voraussetzung erfüllt, leisten nach den

Prinzipien der Qualitätssicherung
ausgewählte Werkzeuge einen wichtigen
Beitrag zur Qualität von Projekt und
Produkt. Insbesondere erlauben
Werkzeuge ohne wesentlichen
Zusatzaufwand die Erfassung von
Qualitätskennzahlen für Projekt und Produkt.
In der Praxis ist die Werkzeugunterstützung

in der Implementationsphase
traditionell stark (Compiler, Linker,
Debugger). Eine Qualitätsverbesserung

ist heute vor allem durch den
Werkzeugeinsatz in den frühen Phasen
zu erreichen. Seit einiger Zeit sind
auch Werkzeuge zur eigentlichen
Qualitätsprüfung von Software verfügbar.
Statische und dynamische Analysatoren

erlauben die Ermittlung von
Kennzahlen, wie z.B. die Testabdek-
kung.

Software-Qualitäts-
sicherung in der Praxis
Die beiden Ansätze zur Software-

Qualitätssicherung, der Projektansatz
des Qualitätssicherungssystems und
der Produktansatz des Software-Engineering,

sind keine Alternativen. In
der industriellen Praxis müssen beide
Ansätze zur Software-Qualitätssicherung

verfolgt werden. Will man die
Anwendung von Software-Engineering

nicht dem Zufall überlassen, so ist
der Aufbau eines Software-Qualitätssicherungssystems

unabdingbare
Voraussetzung für Softwarequalität.
Anderseits bestimmt letztlich die Anwendung

des Software-Engineering die
Qualität eines Softwareproduktes. Die
Fähigkeit der Software-Ingenieure,
Kreativität in der Anwendung des

Software-Engineerings im systematischen

Rahmen der Qualitätssicherung
zu vollbringen, ist der Weg zu
Qualitätssoftware.

Literatur
[1] A. B. Godfrey: The history and evolution of

quality in AT&T. AT&T Techn. J. 65(1986)2,
p. 9...20.

[2] K. Frühauf: Grundsätze zur Software-Quali¬
tätssicherung. Techn. Rdsch.-(1988)8,
S. 58...63.

[3] Standard for software quality assurance
plans. ANSI/IEEE Standard 730-1984.

[4] Anforderungen an Qualitätssicherungssy¬
steme von Software-Erstellern. SAQ-Emp-
fehlung 222. Bern, Schweizerische
Arbeitsgemeinschaft für Qualitätsförderung, 1987.

[5] Software-Qualitätssicherung - Aufgaben,
Möglichkeiten, Lösungen. DGQ-NTG-
Schrift Nr. 12-51. Berlin/Offenbach, VDE-
Verlag, 1986

[6] K. Frühauf, J. Ludewig und H. Sandmayr:
Software-Projektmanagement und
-Qualitätssicherung. Zürich, Verlag der
Fachvereine an der ETH, 1988.

[7] R. Fairley: Software engineering concepts.
New York a.o., McGraw-Hill, 1985.

1054 Bulletin ASE/UCS 79(1988)17, 2 septembre

	Software-Qualitätssicherung : eine Einführung

