Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 79 (1988)

Heft: 17

Artikel: Software-Qualitatssicherung : eine Einfiihrung

Autor: Rudin, H.

DOl: https://doi.org/10.5169/seals-904075

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904075
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Qualitatssicherung

Software-Qualititssicherung -
eine Einfiihrung

H. Rudin

Bereits in den siebziger Jahren
wurden unter dem Sammelbe-
griff Software-Engineering Kon-
zepte fiir eine ingenieurméssige
Softwareentwicklung erarbeitet.
In der Praxis liasst die Anwen-
dung dieser Konzepte jedoch
noch einiges zu wiinschen (brig.
Hier setzen die modernen Soft-
ware-Qualitatssicherungs-
systeme an, die derzeit in vielen
Firmen in Aufbau sind. Diese
konnen allerdings — wie erste
Erfahrungen zeigen — nur zu
Erfolg fithren, wenn sie sorgfal-
tig eingefiihrt werden und die
vorhandene Firmenkultur ange-
messen berucksichtigen.

C’est déja dans les années 70
qu’ont été élaborés, sous le
générique ingénierie des logi-
ciels, les concepts pour une
ingénierie du développement de
logiciels. Dans la pratique, I’utili-
sation de ce concept laisse
cependant encore a désirer.
C’est la qu’interviennent les
systémes d’assurance de la qua-
lite modernes pour logiciels,
actuellement en voie de mise sur
pied dans de nombreuses fir-
mes. Comme le démontrent les
premiéres expériences, ces
systemes ne peuvent réussir que
s’ils sont introduits soigneuse-
ment et tiennent convenable-
ment compte de la culture
d’entreprise en place.

Adresse des Autors

Hans Rudin, Dipl. EL.-Ing. ETH,
Standard Telephon & Radio AG,
Friesenbergstrasse 75, 8055 Ziirich.

Der Anteil am Bruttosozialprodukt
der USA fiir alle Bereiche der Daten-
verarbeitung betrug bereits 1980 5%
und diirfte bis 1990 auf mehr als 12%
steigen. Software ist zu einem wichti-
gen Faktor unserer Industriegesell-
schaft geworden. So hidngen auch
sicherheitsrelevante Systeme, z.B. der
Luftverkehr, zunehmend von Software
ab. Zwischen Bedeutung und Reife der
Softwaretechnologie besteht jedoch
ein Ungleichgewicht. Hinter dem
Schlagwort der Softwarekrise, das
Ende der sechziger Jahre gepragt wur-
de, stehen Softwareprodukte, deren
mangelnde Qualitdt zu teuren Ausfél-
len mit enormen Folgekosten fiihrte
sowie Softwareprojekte, die wegen
massiver Kosten- und Terminiiber-
schreitungen zum Teil nie beendet
wurden. Schétzungen beziffern den
Anteil der abgebrochenen Software-
projekte auf 20%.

In den siebziger Jahren suchte man
unter dem Begriff Software-Engineer-
ing die Erstellung komplexer Software
auf eine ingenieurmdssige Basis zu
stellen. Software-Engineering beinhal-
tet Prinzipien, Methoden und Spra-
chen zur systematischen Entwicklung
sowie Wartung von Software. Heute
steht uns ein ganzer Baukasten von
Methoden und Sprachen zur Verfii-
gung, um Software nach diesen Prinzi-
pien zu entwickeln. Langsam erschei-
nen auch brauchbare Werkzeuge auf
dem Markt, welche diese Methoden
wirksam unterstiitzen. In der Praxis
aber ldsst die Anwendung des Soft-
ware-Engineering zu wiinschen iibrig.
Zwar herrscht Einigkeit, dass man
nach den Methoden des Software-
Engineering vorgehen miisste, aber im
Projektalltag unter Termindruck, sich
dndernden Anforderungen und feh-
lender Unterstiitzung durch Werkzeu-
ge werden diese guten Vorsitze nur all-
zuoft fallen gelassen. Genau hier setzt
die Qualitdtssicherung an. In Figur 1
ist die Entwicklung dieser Disziplin in

vier Stufen nach Godfrey [1] darge-
stellt.

Qualitit und Software

Nach DIN 55 350ist Qualitdtdie Ge-
samtheit von Eigenschaften und Merk-
malen eines Produktes oder einer Tdtig-
keit, die sich auf die Eignung zur Erfiil-
lung gegebener Erfordernisse beziehen.

Diese Definition ldsst sich auch auf
Software anwenden, und zwar sowohl
auf die Tétigkeit der Softwareentwick-
lung als auch auf deren Resultat, das
Softwareprodukt.

Die Erfordernisse, welche ein Soft-
wareprojekt zu erfiillen hat, sind ne-
ben der Einhaltung von Terminen und
Kosten das Erreichen der Sachziele,
d.h. die Erfillung der Produktanforde-
rungen. Ein Mass dafiir ist die Pro-
duktqualitdt. Dieser Zusammenhang
zwischen Projekt- und Produktqualitit
ist in Figur 2 veranschaulicht.

Unter Software verstehen wir nach
[4] die Gesamtheit der notwendigen
Programme, Daten, Abldufe, Regeln
und jeglicher dazugehoriger Dokumen-

4. Qualitdt durch Design

Konstruktive Umsetzung der
Q-Merkmale in Produkteigen-
schaften (Qualititsmodelle)

3. Qualitdtsverbesserung

Systematische Analyse von Pro-
blemursachen. Verbesserungen durch
Feedback

2. Qualitdtskontrolle

Priifungen im Verlauf der ganzen
Produktentstehung

1. Qualitdtsinspektion

Priifung des fertigen Produktes

Figur 1 Die Entwicklungsstufen der Quali-
titssicherung nach Godfrey [1]

1050

Bulletin ASE/UCS 79(1988)17, 2 septembre

Software

tation fiir die Nutzung eines Rechner-
systems.

Die Qualitit eines Softwareproduk-
tes wird neben der Erfiillung von funk-
tionalen Anforderungen, Mengen-
und Leistungsanforderungen durch
Merkmale bestimmt wie:

- Korrektheit
- Zuverléssigkeit
- Sicherheit
- Benutzerfreundlichkeit
- Wartbarkeit
- Wiederverwendbarkeit
- Flexibilitat
- Portabilitét

Will man eine objektive Aussage
iber die Qualitdt eines Softwarepro-
duktes machen, so miissen diese Merk-
male in den Produktanforderungen
spezifiziert werden, und zwar in Form
von messbaren Kenngrossen (verglei-
che Abschnitt iiber Messbare Kenn-
grossen flr Software-Qualitdtsmerk-
male.

Software ist immateriell!

Die Qualitdt von Software wird vor
allem durch ihre immaterielle Natur
beeinflusst. Software gehorcht keiner-
lei physikalischen Gesetzen (wie z.B.
der Schwerkraft). Daraus folgt eine
Reihe von Eigenheiten:

1. Software kann wie alle immate-
riellen Giiter Nutzen nur durch Kom-
munikation entfalten. Dabei muss
Software sowohl mit dem Menschen
(Entwicklungsingenieur, Benutzer) als
auch mit der Maschine (Computer)
kommunizieren. Die Wahl geeigneter
Sprachen zur Spezifikation, Beschrei-
bung, Codierung und zur Gestaltung
der Benutzeroberfldche ist ein wichti-
ger Einflussfaktor der Softwarequali-
tat.

2. Die Funktion von Software ist
nicht stetig. Eine Briicke, die das Ge-
wicht von zehn Lokomotiven tragt,
wird unter der Last von drei Lokomo-
tiven nicht zusammenbrechen. Erzeugt
ein Programm bei zwei Eingabewerten
korrekte Ausgaben, so ist nicht bewie-
sen, dass ein dazwischenliegender
Wert auch ein korrektes Resultat er-
zeugt. Interpolation und Extrapola-
tion sind bei Software nicht ohne wei-
teres moglich. Daraus folgt: Software
ist - ausser in trivialen Fillen - nicht
vollstdndig priifbar. Wohl muss man
Software testen, um Fehler zu finden
und Aussagen iiber die Qualitit zu ma-
chen, aber einen Beweis fiir die Kor-

Projektqualitdt

T

Termine Kosten Sachziele=Produktean-
* forderungen

Produktqualitat

A e

Attribut Funktionen

T

Mengen Leistung Merkmale

Figur2 Zusammenhang zwischen Projekt-
und Produktqualitit nach Friihauf [2]

rektheit kann man damit nicht antre-
ten, denn testen ldsst sich immer nur
ein geringer Bruchteil aller moglichen
Falle. Dieser Sachverhalt hat zur Er-
kenntnis gefiihrt, dass man Qualitét
nicht in ein Softwareprodukt «hinein-
testen» kann, sondern dass sie hinein
entwickelt werden muss. Die Quali-
tatssicherung von Software hat also
bei der Entwicklung anzusetzen.

3. Die Replikation von Software ist
trivial. Ein einfacher Vorgang erzeugt
eine Kopie, die vom Original nicht zu
unterscheiden ist. Das fithrt zu Konsi-
stenzproblemen. Konfigurationsma-
nagement ist daher ein wichtiger Be-
standteil der Software-Qualitétssiche-
rung, aber das traditionelle Gebiet der
Qualitatssicherung, die Produktion,
hat bei Software keine entsprechende
Bedeutung. Software ist ein Entwick-
lungsprodukt.

4. Software unterliegt keiner Abnut-
zung. Ausfille sind immer die Folge
von Fehlern. Ungliicklicherweise hat
sich der Begriff Wartungauch fiir Soft-
ware eingebuirgert. Wartung bei Soft-
ware ist aber nie ein Wiederherstellen
des urspriinglichen Zustandes, son-
dern die Korrektur von Fehlern, die
schon immer im Produkt vorhanden
waren. Ublicherweise werden unter
den Begriff Wartung auch Verbesse-
rungen und Anpassungen des Pro-
grammes subsummiert. Als Faustregel
gilt, dass fiir alle Belange der Wartung
eines Softwareproduktes ein doppelt
so hoher Aufwand zu leisten ist, wie
fiir dessen Entwicklung.

Auch der Begriff der Zuverldssigkeit
macht bei Software Schwierigkeiten.
Software verhilt sich deterministisch.
Erst die Benutzung zusammen mit sta-
tistisch verteilten Eingabewerten er-
laubt Aussagen iiber die Zuverldssig-

keit einer Softwareanwendung, nicht
aber der Software an und fir sich.

Software-Qualititssiche-

rung ist kein Sonderfall!

Trotz dieser Eigenheiten weisen
Softwareprodukte mehr Gemeinsam-
keiten als Unterschiede mit anderen
Produkten menschlicher Titigkeiten
auf. Es gibt daher keinen Grund, in
der Qualitdtssicherung von Software
die Grundsitze der traditionellen Qua-
litdtssicherung ausser acht zu lassen
und dabei die diskutierten Charakteri-
stika als Entschuldigung heranzuzie-
hen.

Messbare Kenngrossen fiir
Software-Qualititsmerk-
male

Da geeignete Kenngrossen (Metri-
ken) fehlen, ist die Messung von Qua-
litdtsmerkmalen ein Problem. Objekti-
ve Aussagen iiber Softwarequalitit
sind aber nur durch Messungen zu er-
halten.

Was man nicht messen
kann, das kennt man nicht!
(Kelvin)

In den letzten Jahren wurde viel
Aufwand getrieben, geeignete Kenn-
grossen fir die Komplexitdt von Soft-
ware zu entwickeln. Ein Beispiel dafiir
ist die Zyklometrische Zahl V(G)nach
McCabe [7]:

ViG)=E-n+2p

mit Anzahl Kanten E, Anzahl Knoten
n und Anzahl verbundener Kompo-
nenten p. Sie reprasentiert die Anzahl
linear unabhingiger Wege durch den
Kontrollflussgraphen G eines Pro-
grammes.

Messungen von Kenngrdssen sollte
man nicht auf das Produkt beschrén-
ken; es ist auch sinnvoll, Kenngrdssen
des Projektes zu messen. Eine einfache
Art von Messungen sind Zihlungen:
Eine Kenngrosse fiir das Qualitats-
merkmal Portabilitit eines Software-
produktes ist zum Beispiel der Anteil
der Module, welche Betriebssystemauf-
rufe enthalten. Fiir das Projekt ist der
Anteil der Dokumente, die einer Re-
view unterzogen wurden, eine Kenn-
grosse fiir das Qualitdtsmerkmal Frithe
Fehlererkennung.

Bulletin SEV/VSE 79(1988)17, 2. September

1051

Qualitatssicherung

In der Literatur wird das Thema
Metriken viel diskutiert; dem steht eine
sehr bescheidene Anwendung in der
Praxis gegentiber. Die Weiterentwick-
lung der Software-Qualitdtssicherung
hingt aber massgeblich davon ab, wie-
weit es gelingt, die Qualitdt von Soft-
wareprodukten und -projekten zu
messen.

Software-Qualitatssiche-
rung durch planerische und
analytische Massnahmen
im Projekt

Solange jedes Softwareprojekt nach
eigenen Regeln abgewickelt wird, ist
schwierig festzustellen, was die Quali-
tit beeinflusst und wie sie zu kontrol-
lieren ist. Ein naheliegender Ansatz
zur Software-Qualititssicherung kon-
zentriert sich daher auf das Projekt.
Ein nach Richtlinien der Qualitétssi-
cherung ablaufender Entwicklungs-
prozess soll in der Folge die Qualitat
des Softwareproduktes sicherstellen.
In Figur 3 sind vier Grundelemente
dieser projektorientierten Software-
Qualitétssicherung skizziert und wer-
den im folgenden kurz beschrieben.
Fiir eine ausfiihrliche Diskussion sei
auf[5; 6] verwiesen.

Software-Lebensphasenmodell

Die Unterteilung eines Softwarepro-
jektes in zeitlich aufeinanderfolgende
Phasen verfolgt das Ziel, den Entwick-
lungsprozess iiberschaubar und priif-
bar zu halten. Fiir jede Phase sind die
zu erbringenden Resultate im voraus
festzulegen, und am Ende ist in einer
Phasenreview zu iiberpriifen, ob diese
Ziele erreicht wurden. Hier ist das Ma-
nagement angesprochen. Seine Aufga-
be ist, iiber die Fortsetzung des Projek-
tes bzw. iiber eine Kurskorrektur zu
entscheiden.

In letzter Zeit wird unter Stichwor-
ten wie Rapid Prototyping, Successive
Versions Model[7] und Continuous De-
livery Kritik am klasischen Phasenmo-
dell geiibt. Meiner Ansicht nach stehen
die neuen Konzepte nicht wirklich im
Widerspruch zum Prinzip des Phasen-
modells. Der Gegensatz ist vielmehr
auf dessen zu enge Interpretation zu-
riickzufiihren. In der Regel werden die
Phasen nach ihren Haupttitigkeiten
benannt, was aber nicht heissen soll,
dass entsprechende Aktivititen nicht
auch in anderen Phasen notwendig
sind. Riickgriffe auf Haupttitigkeiten
friiherer Phasen sind in der Praxis
nicht zu vermeiden. Ziel ist aber, diese

okumentation

efinition

Produktd

Anforderungsd

Entwurfs-
beschreibung

maiyse, [—fp Lebensphasenmodell
Definition ¥
| ‘ Phasenreview
X Entwurf (Qualitatsbeurteilung)
Review der ———————
Anforderungen
X Implemen- _>‘
tation ¥
Review des
eSnytS;;in; Integration _,‘
. X X Systemtest 1
Review Codereading
des Detail-
entwurfs Wartung
Modultest X X
Qualifika-
tionstest
e . Change- X
Qualitatsprufungen Cariral
. . Dokumentation
Projektdpkumentation oKuUmeg
QS-Plan, Eftwicklungs-, Dokumentations-, Konfigurationgmanagementplan
und Prifplan

Dokumente

Konfigurationsmanagement

Sourcecode

Releases

Figur 3 Grundelemente der projektorientierten Software-Qualitiitssicherung in vereinfach-

ter Darstellung

Riickgriffe moglichst auf die benach-
barte Phase einzuschrinken, ihre An-
zahl zu begrenzen und sie in einem
geordneten Verfahren abzuwickeln.
Anpassungen des Phasenmodells an
das Anwendungsgebiet, die eingesetzte
Technologie und die Firmenkultur
sind in der Praxis unumgdnglich.

Qualitéitspriifungen

Hier geht es nicht nur um das Te-
sten, d.h. die Priifung des Codes durch
seine Ausfiilhrung, sondern um die
Uberpriifung von Titigkeiten und Ar-
beitsergebnissen wédhrend des ganzen
Entwicklungsprozesses. Neben Mes-
sungen, die im Abschnitt Kenngrossen
behandelt wurden, sind technische Re-
views ein wirksames Instrument der

Qualitétssicherung. Statistiken zeigen,
dass sich der Aufwand fiir Reviews im
Durchschnitt mit einer Ersparnis vom
doppelten Betrage bei der Fehlerkor-
rektur auszahlt. Je frither ein Fehler im
Lebenszyklus entdeckt wird, desto
kleiner sind die Kosten, um diesen
Fehler zu beheben. Reviews sind daher
insbesondere in der Analyse- und Sy-
stementwurfsphase von grossem Nut-
zen.

Erfolgreich sind Reviews nur, wenn
gewisse Spielregeln eingehalten wer-
den: In einer gut vorbereiteten Re-
viewsitzung mit kompetenten Teilneh-
mern wird der Reviewgegenstand un-
ter der Leitung eines Moderators
Schritt fiir Schritt besprochen. Dabei
werden alle Fehler, Probleme und Un-

1052

Bulletin ASE/UCS 79(1988)17, 2 septembre

Software

klarheiten protokolliert, ohne dass Lo-
sungsmoglichkeiten ausdiskutiert wer-
den oder dass sich der Autor zu vertei-
digen hitte. Wichtig ist, dass der Re-
viewgegenstand und nicht der Autor
kritisch gepriift wird. Die Weiterbear-
beitung der gefundenen Fehler muss in
der Folge geregelt sein.

Dokumentation

Die im Verlaufe der Softwareent-
wicklung entstehende Dokumentation
lasst sich in Projekt- und Produktdo-
kumente unterteilen. Projektdokumen-
te dienen der Planung und Abwick-
lung des Softwareprojektes, ihre Giil-
tigkeit ist auf die Projektdauer be-
schrankt. Produktdokumente beschrei-
ben das entstehende Softwareprodukt.
Nach unserer Definition sind sie inte-
graler Bestandteil der Software.

Dokumentationsnormen mit Mu-
sterdokumenten fiir Produkt- und ins-
besondere Projektdokumente helfen
den Software-Entwicklungsprozess zu
standardisieren und ubersichtlich zu
halten; sie haben die Funktion von
Checklisten. Auch Vorgaben, wann
ein Dokument im Lebensphasenmo-
dell zu entstehen hat, leisten einen Bei-
trag zur Qualitdtssicherung. Erarbeitet
man zum Beispiel den Qualifikations-
testplan bereits beim Festlegen der An-
forderungen, so fiihrt dies zu messba-
ren Spezifikationen und hilft Licken
in der Anforderungsdefinition zu fin-
den.

Speziell zu erwidhnen ist noch der
Qualitdtssicherungsplan, der alle quali-
tatssichernden Massnahmen mit zuge-
horigen Verantwortlichkeiten in einem
Projekt festlegt. Eine brauchbare Vor-
lage fiir einen solchen Plan bietet die
IEEE Norm 730 [3].

Konfigurationsmanagement

Softwarepakete setzen sich aus einer
Vielzahl von Elementen (Module, Do-
kumente) zusammen, die untereinan-
der konsistent sein miissen. Anderun-
gen sind zwar rasch durchgefiihrt, die
Gefahr des Konsistenzverlustes aber
ist dabei gross. Darum ist jedes Ele-
ment in eine Konfigurationsverwal-
tung aufzunehmen. Der Einsatz von
Softwarewerkzeugen ist dabei sehr zu
empfehlen. Im Konfigurationsplan
muss festgelegt werden, welche Ele-
mente (Dokumente, Sourcecode) zu
welchem Zeitpunkt in die Konfigura-
tionsverwaltung aufgenommen wer-
den und wie bei Anderungen vorzuge-
hen ist.

Systemelement

Wichtige Anforderungen in Stichworten

Fiithrungsaufgaben
Organisation

QS-Handbuch

Software-QS-Audit

Verbesserungsmassnahmen

Projekt-QS-Plan

QS-Ablaufregelungen

Produktanforderungen

Entwicklung

Konfigurationsverwaltung

SW-Dokumentation

Priifungen

Regeln, Richtlinien und
Verfahren

Beistellungen vom
Auftraggeber

Zulieferungen

Behandlung von Fehlern

QS-Organisation festgelegt. Von Produktentstehung
unabhéngiger Qualitétsleiter mit direktem Zugang zur
Geschiftsleitung.

QS-System nach Handbuch eingefiihrt und aktualisiert.
Erklarung der Geschiftsleitung zur Einhaltung der
Norm, QS-Organigramm, QS-Ablaufregelungen ge-
maéss dieser Tabelle, Audit-Plan.

Auf der Grundlage des Auditplans, der die zu iiberprii-
fenden Funktionen und die Haufigkeit der Auditdurch-
fihrung festhilt, werden in den Audits die Einhaltung
und die Zuverldssigkeit des QS-Systems iiberpriift.

Systematische Analyse und Behebung von Fehlerursa-
chen und Uberpriifung der Verbesserungsmassnahmen
auf ihre Wirksamkeit.

Er ist vor der Entwicklung zu erstellen. Anderungen
unterliegen der Genehmigungspflicht. Er muss Ent-
wicklungs-, Konfigurations-, Dokumentations- und
Priifplan enthalten.

Vertragsprifung unter Mitwirkung der SW-Entwick-
lung. Detaillierte Spezifikation der Funktionsanforde-
rungen und Merkmale.

Gemiss Entwicklungsplan. Aufteilung in kontrollier-
bare Arbeitspakete. Darstellung des SW-Lebenszyklus.
SWQS fiir zugekaufte SW.

Regelungen zur Identifikation und Verwaltung von
SW-Komponenten und deren Versionen. Riickverfolg-
barkeit. Anderungsverfahren und Zugriffsschutz.
Vollstandig und aktuell geméss Dokumentationsplan.
Festlegung der Verantwortung fiir Erstellung, Priifung,
Freigabe und Anderung von Dokumenten.

Nach Priifplan in geeigneter, validierter Testumgebung
mit Bewertung der Resultate.

Fur Entwicklung, Dokumentation und Priffung mit
Uberwachung und Anpassung an ihre Anwendung.

Geeignete QS-Massnahmen und Verantwortlichkeiten.

SW-Ersteller ist verantwortlich, dass zugelieferte SW
den spezifizierten Anforderungen entspricht. Er tiber-
priift QS-System des Unterlieferanten.

Dokumentation und Behebung von Fehlern in allen
SW-Komponenten unter Konfigurationsverwaltung.

Qualitdtsnachweise Zeigen, dass spezifizierte Anforderungen erfillt und
QS-Massnahmen durchgefiihrt sind. Regelung der Auf-
bewahrung.

Tabelle] Zusammenstellung von QS-Anforderungselementen (Stufe A) aus SAQ 222 [4]

Software-Qualititssicherungs-
systeme

Ein Qualitdtssicherungssystem um-
fasst die Integration der ersten drei
Stufen im Entwicklungsschema der Fi-
gur 1. Es hat zum Ziel, fiir die systema-
tische Anwendung der beschriebenen
Grundelemente in einer Firma zu sor-
gen. Zu einem Qualitdtssicherungssy-
stem gehoren noch weitere Elemente.
Insbesondere muss die Wirksamkeit
des Software-Qualitdtssicherungssy-
stems in Systemaudits regelméssig

iberpriift werden. Diese werden, im
Gegensatz zu Reviews, immer von
einer unabhidngigen Stelle durchge-
fihrt.

In der Schweiz existiert eine Emp-
fehlung der Schweizerischen Arbeits-
gemeinschaft fiir Qualitétssicherung
(SAQ), welche Anforderungen an
Software-Qualitdtssicherungssysteme
stellt [4]. Die Tabelle I fiihrt die An-
forderungselemente in Stichworten
auf. Im Trend der Internationalisie-
rung von Normen wurde darauf ver-

Bulletin SEV/VSE 79(1988)17, 2. September

1053

Qualitatssicherung — Software

zichtet, mit dieser Empfehlung eine
schweizerische Norm anzustreben. In
der ISO (International Standard Orga-
nisation) wird gegenwirtig eine ent-
sprechende Norm ausgearbeitet, die
inhaltlich sehr dhnliche Forderungen
stellt und sich an die allgemeine Quali-
tétssicherungsnorm ISO 9001 anlehnt.

Software-Qualitéitssiche-
rung durch konstruktive
Massnahmen am Produkt

Der projektorientierte Ansatz des
Software-Qualitidtssicherungssystems
bildet den Rahmen, welcher durch
planerische Massnahmen Qualitit er-
moglicht, bzw. durch analytische
Massnahmen Abweichungen zu erken-
nen hilft. Die Mittel, um Qualitdt kon-
struktiv in ein Produkt hineinzuent-
wickeln, sind die Prinzipien, Metho-
den, Sprachen und Werkzeuge des
Software-Engineering. Fiir eine Uber-
sicht des umfangreichen Gebietes sei
auf das Buch von R. Fairley[7] verwie-
sen. Hier sei aus der Sicht der Soft-
ware-Qualitdtssicherung nur eine
kurze Gegenstandsbestimmung vorge-
nommen.

Prinzipien

Im Bereich des Software-Engineer-
ings haben sich eine ganze Reihe von
allgemeinen Handlungsgrundsitzen
entwickelt, wie zum Beispiel die hier-
archische Modularisierung eines Soft-
waresystems, deren Befolgung einen
Beitrag zur Qualitdtssicherung leistet.
Dabei ist zu beachten, dass die Prinzi-
pien des Software-Engineering nicht
unabhingig von der sich rasch entwik-
kelnden Technologie sind. So war zum
Beispiel frither das speichereffiziente
Programmieren ein vorherrschendes
Prinzip, heute hat es seine Bedeutung
zugunsten des lbersichtlichen, struk-
turierten Programmierens verloren.
Wie man in der Praxis sieht, macht
dieses Umdenken Schwierigkeiten.
Ahnliche Probleme stehen uns beim
vermehrten Einsatz nichtprozeduraler
Sprachen bevor.

Methoden

Methoden sind auf Prinzipien beru-
hende Vorgehensweisen zur Errei-
chung eines Zieles. Wihrend sich frii-
here Software-Engineering-Methoden
vor allem auf den Programmierstil
konzentrierten (z.B. strukturierte Pro-
grammierung), gilt heute das Interesse
der Spezifikation und dem Entwurf
von Softwaresystemen. In der Praxis

wird gerade in diesen frithen Phasen
oft sehr wenig systematisch gearbeitet,
der Grundstein fiir die Qualitat des re-
sultierenden Produktes wird aber hier
gelegt.

Die Qualitdtsmodellierung ist eine
Software-Engineering-Methode, wel-
che direkt beim Begriff der Qualitét
ansetzt. Dabei werden die Qualitéts-
merkmale der Anforderungsdefinition
in quantifizierbare Basiseigenschaften
des Produktes aufgeschliisselt und fiir
jede Basiseigenschaft messbare Kenn-
grossen und Zielvorgaben festgelegt.
Die Basiseigenschaften werden im
Entwurf und in der Implementation
explizit in das Produkt hineinentwik-
kelt und die entsprechenden Kenn-
grossen im Verlauf der Entwicklung
gemessen.

Sprachen

Programmiersprachen setzen den
Systementwurf in eine fiir den Compu-
ter interpretierbare Form um. In der
Anfangszeit waren die Sprachen ma-
schinenorientiert, und der Mensch
musste sich der Maschine anpassen.
Programmieren und vor allem das An-
dern der schwer durchschaubaren Pro-
gramme war eine mihsame, fehler-
trachtige Arbeit. Hier hat sich die Si-
tuation sehr stark gebessert. Moderne
Programmiersprachen, wie zum Bei-
spiel Modula-II und Ada, haben sich
von der Maschine geldst, ermoglichen
Algorithmen aus Anwendersicht zu
formulieren und erlauben, ja erzwin-
gen sogar teilweise die Anwendung
moderner Software-Engineering-Prin-
zipien.

Weniger entwickelt sind die sprach-
lichen Mittel fiir die fritheren Phasen
der Softwareentwicklung. Anforde-
rungen an Softwaresysteme werden
heute zumeist noch in natiirlicher
Sprache festgelegt, und auch Ent-
wurfsbeschreibungen enthalten neben
einigen informalen Graphiken in der
Regel vor allem Prosa. Natiirliche
Sprache ist fiir diesen Zweck aber zu
unprizise. Eine Verbesserung der Si-
tuation ist durch den Einsatz von halb-
formalen Sprachen zu erwarten, deren
Aufbau und Syntax formalen Regeln
gentigt und deren Semantik durch na-

tirliche Sprachelemente bestimmt
wird.
Werkzeuge

Werkzeuge diirfen nie die Kenntnis
und das Verstdandnis der zugrundelie-
genden Methoden ersetzen. Ist diese
Voraussetzung erfiillt, leisten nach den

Prinzipien der Qualitdtssicherung aus-
gewihlte Werkzeuge einen wichtigen
Beitrag zur Qualitdt von Projekt und
Produkt. Insbesondere erlauben
Werkzeuge ohne wesentlichen Zusatz-
aufwand die Erfassung von Qualitéts-
kennzahlen fiir Projekt und Produkt.
In der Praxis ist die Werkzeugunter-
stiitzung in der Implementationsphase
traditionell stark (Compiler, Linker,
Debugger). Eine Qualitdtsverbesse-
rung ist heute vor allem durch den
Werkzeugeinsatz in den frithen Phasen
zu erreichen. Seit einiger Zeit sind
auch Werkzeuge zur eigentlichen Qua-
litdtsprifung von Software verfiigbar.
Statische und dynamische Analysato-
ren erlauben die Ermittlung von
Kennzahlen, wie z.B. die Testabdek-
kung.

Software-Qualitits-
sicherung in der Praxis

Die beiden Ansitze zur Software-
Qualititssicherung, der Projektansatz
des Qualitdtssicherungssystems und
der Produktansatz des Software-Engi-
neering, sind keine Alternativen. In
der industriellen Praxis miissen beide
Ansitze zur Software-Qualitétssiche-
rung verfolgt werden. Will man die
Anwendung von Software-Engineer-
ing nicht dem Zufall iiberlassen, so ist
der Aufbau eines Software-Qualitéts-
sicherungssystems unabdingbare Vor-
aussetzung fiir Softwarequalitdt. An-
derseits bestimmt letztlich die Anwen-
dung des Software-Engineering die
Qualitét eines Softwareproduktes. Die
Fihigkeit der Software-Ingenieure,
Kreativitit in der Anwendung des
Software-Engineerings im systemati-
schen Rahmen der Qualitdtssicherung
zu vollbringen, ist der Weg zu Quali-
tatssoftware.

Literatur

[1] A. B. Godfrey: The history and evolution of
quality in AT&T. AT&T Techn. J. 65(1986)2,
p.9...20.

[2] K. Friihauf: Grundsitze zur Software-Quali-
titssicherung. Techn. Rdsch.-(1988)8,
S.58..63.

[3] Standard for software quality assurance
plans. ANSI/IEEE Standard 730-1984.

[4] Anforderungen an Qualitédtssicherungssy-
steme von Software-Erstellern. SAQ-Emp-
fehlung 222. Bern, Schweizerische Arbeitsge-
meinschaft fiir Qualititsforderung, 1987.

[5] Software-Qualititssicherung - Aufgaben,
Mbéglichkeiten, Losungen. DGQ-NTG-
Schrift Nr. 12-51. Berlin/Offenbach, VDE-
Verlag, 1986

[6] K. Friihauf, J. Ludewig und H. Sandmayr:
Software-Projektmanagement und -Quali-
tatssicherung. Ziirich, Verlag der Fach-
vereine an der ETH, 1988.

[71 R. Fairley: Software engineering concepts.
New York a.o., McGraw-Hill, 1985.

1054

Bulletin ASE/UCS 79(1988)17, 2 septembre

	Software-Qualitätssicherung : eine Einführung

