Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 79 (1988)

Heft: 17

Artikel: Das Oberon-System

Autor: Gutknecht, J. / Wirth, N.

DOl: https://doi.org/10.5169/seals-904073

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904073
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Software

Das Oberon-System

J. Gutknecht und N. Wirth

Das Betriebssystem Oberon
wurde von den Autoren an der
ETH Ziirich im Laufe der vergan-
genen zweieinhalb Jahre konzi-
piert und verwirklicht. Es han-
delt sich dabei um ein kompak-
tes Einprozess-Multitasking-
System, welches die Einrichtun-
gen und die Leistungsfahigkeit
moderner Arbeitsplatzstationen
soweit wie moglich ausschopft.
Das System ist in einer Sprache
programmiert, die als eine Art
objektorientierte Weiterentwick-
lung von Modula-2 aufgefasst
werden kann.

Le systéeme d’exploitation
Oberon a été concu et réalisé a
I’Institut d‘informatique de
I’EPFZ par les auteurs au cours
des deux années et demi pas-
sées. C’est un systeme compact
de traitement multitiche-mono-
processus qui épuise le plus pos-
sible les équipements et la capa-
cité des stations de postes de
travail modernes. Le systeme
est programmé dans un langage
que I’'on peut considérer comme
un perfectionnement orienté
objet de Modula-2.

Adresse der Autoren

Prof. Dr. Jiirg Gutknecht und

Prof. Dr. Niklaus Wirth,

Institut fiir Informatik, ETH-Zentrum,
8092 Zirich.

Ende 1985 starteten die Autoren die-
ses Aufsatzes ein Projekt, dessen Ziel-
setzung die Entwicklung eines speziell
auf personliche Arbeitsplatzrechner
zugeschnittenen Betriebssystems und
einer Sprache zu seiner Programmie-
rung war. Nach 30 Monaten intensiver
Arbeit liegt das Resultat nun in Form
eines dusserst flexiblen und zuverlassi-
gen Werkzeuges, genannt Oberon, vor.

Das System ist auf dem vom zweit-
genannten Autor und H. Eberle ent-
wickelten Rechner Ceres[1]implemen-
tiert. Der Kern von Ceres ist ein NS-
32032-Mikroprozessor. Als Periphe-
riegerdte dienen eine Tastatur, eine
Maus und ein hochauflésender Bild-
schirm. Zusatzlich lésst sich ein Farb-
monitor gleicher Auflésung anschlies-
sen. Ceres-Stationen sind normaler-
weise in ein lokales Netz einbezogen
und haben Zugang zu Dienstleistun-
gen wie zentraler Massenspeicher,
Laserdrucker und Elektronische Post.

Design-Prinzipien

Zentrales Prinzip beim Design der
Hardware und auch der Software war
das Streben nach Klarheit und Ein-
fachheit. Dies war nétig im Hinblick
auf das winzige Team und den abge-
steckten engen Zeitrahmen. Klarheit
und Einfachheit sind aber ohnehin un-
erldsslich, wenn ein Produkt dem An-
spruch nach Zuverlédssigkeit geniigen
soll. Sie wird am besten durch eine re-
guldre und zweckgerichtete Struktur
erreicht. Eine solche Struktur ist aber
nur moglich, wenn das zugrundelie-
gende Modell gut verstanden, genii-
gend einfach und frei von wider-
spriichlichen Vorgaben ist.

Modell fir Oberon ist ein einzelner
Prozess!, der von einem einzigen Be-

1 Sequenz von logisch zusammengehdrigen
Aktionen.

nutzer durch eine Folge von Befehlen
gesteuert wird. Der Benutzer arbeitet
typischerweise an mehreren Aufgaben
(Tasks) gleichzeitig. Die Aufgaben ma-
nifestieren sich gewdhnlich in Form
von Dokumenten, welche in Bild-
schirmfenstern dargestellt sind (Fig. 1).
Weil sich aufeinanderfolgende Befehle
auf verschiedene Aufgaben beziehen
konnen, lasst sich Oberon als Einpro-
zess-Multitasking-System kennzeich-
nen.

Dieses Modell steht im Gegensatz zu
demjenigen konventioneller Multitask-
ing-Systeme, in denen jede Aufgabe
von einem einzigen Prozess getragen
und ausgefiihrt wird und in denen die
Steuerung prinzipiell an jeder beliebi-
gen Programmstelle vom laufenden
Prozess auf irgendeinen anderen um-
geschaltet werden kann. Die Granula-
ritdt (beziiglich der Linge der atoma-
ren Ablaufseinheiten) ist in Oberon
also viel grober als in konventionellen
Multitasking-Systemen, und die mog-
lichen Umschaltestellen zwischen Auf-
gaben sind im Zeitpunkt der Program-
mierung wohlbekannt. Dies alles tragt
entscheidend zur strukturellen Ein-
fachheit des Systems bei. Aufwendige
Mechanismen zur Speicherung und
Wiederherstellung des Prozesszustan-
des sind ebenso unnétig wie Blockier-
massnahmen zur voriibergehenden
Reservation von Ressourcen durch
einen einzelnen Prozess.

Wihrend der Ausfithrung eines Be-
fehls wird grundsitzlich kein Dialog
mit dem Benutzer gefiihrt. Befehle sind
also atomare Aktionseinheiten in
Oberon. Thre Spezifikation erfolgt
hauptsichlich durch Eingaben iiber
die Maus oder die Tastatur. Besonders
interessant ist die Strategie der Be-
fehlsinterpretation. Jeder Befehl wird
direkt demjenigen Bildschirmfenster
zugefiihrt und zur individuellen Be-
handlung iibergeben, in welchem sich
der Mauszeiger (Cursor) oder die Ein-
fligemarke (Caret)befindet.

Bulletin SEV/VSE 79(1988)17, 2. September

1041

Software

HiLv.urapn

Grapes.Fict

Display.Closs Paint.Copy Paint.Grow

ServerMails24389

Display.Close Edit.Copy Edit.Grow Edit.Locate Edit.Save

des neuen Hochlelstungsrechners organisiert.

Display.Closs Draw.Copy Draw.Grow Draw.Restors Draw.Reset Draw.Delete Draw.Save

Nos. . Nio .

3@»»&@@@@@3

rom ifi.ethz.ch'frei AMon Jun 20 08:28:17 AAET 1988 remota from sthz

f Veranlassung von CAZ wurde eine kurze Einfuehrung und Vorfushrung

Vispiay. 100l

N1t

.Nooa . No2a. . MNo4a . Noéa. . Nosa . Nioa. .Nita . Nzoa. . N32a . N3sa Display.Cose Edit.Copy Edit.Grow Edit.Locate Edit.Save
= Ixo ot T - [System.Directory » Mod
T T T T cst o 13 o - . System.Directory ».Fnt
3 & . 155 Eof 0 x3 % ot - System.Directory «.Pict
. T Jor [] o1 |
233 32 19 ovt 3‘042 o
) Jos ™ o7 1 “Je ar
; 35w ie s 193 af - | [Display.Qose Edit.Copy Edit.Grow Edit.locats Edit.Save
el -3 2. P
- . PR Lo .o ALy . Server.Malibox
N30, N7¢ Nes . . Ni133 . Ni13s Nies . CN151. M1s3 . Nis7 . . |~ [Server.SendMall
Server.StartService
Server.StopService

Display.Close Edit.Copy Edit.Grow Edit.Locate Edit.Save

n Dlsplay.OpenTool
{>D {>° Display.OpenTool Display.Tool
D DD D D D D D D D Display.OpenTool Edit.Tool
Display.OpenTool Draw.Tool
Display.OpenTool System.Tool

Edit.iool

" System.Tool

Server.RecelveFile ~
Server.SendFile ~

ServerMailbox
Display.Close Server.ReceiveMail Server.DeleteMall Edit.Save

524379 14.06 14:51 freiifl.et Naechste Prol.-Sitzung
524336 16.06 19:07 schzerustsﬂusung Editorsnbau Usbun

8 RAY
524392 24.06 03:59 ccmvax'mcv Lzra/Mapls possible connection
524397 27.06 10:57 noack@ceres Video-Mac's

Display.Cose Edit.Copy Edit.Grow Edit.Locate Edit.Save

Msullznrﬁs.Snapshat Display1.Pict Display2.Pict ~

Disherte.Tool
Display.Qose Edit.Copy Edit.Grow Edit.Locate Edit.Save

[|'Diskette.Format
Diskstte.lnitialize

Display.Close Edit.Copy Edit.Grow Edit.Locate Edit.Save

[[TTL0.Graph writing

Figur 1

Beispiel einer Oberon-Bildschirmdarstellung

Die Benutzerspur (links) stellt typischerweise Dokumentenfenster, die Systemspur (rechts) vor allem Tools und Log-Fenster dar. So findet sich z.B. das
Inhaltsverzeichnis der Mailbox in der Systemspur, wihrend die abgerufene Meldung als Dokument in der Benutzerspur erscheint.

Vielleicht der wichtigste Effekt des
geschilderten Ablaufschemas ist der,
dass kein Befehl das Oberon-System in
einem versteckten Zustand (Modus)
hinterldsst. Wiirde die Ausfithrung
eines Befehls einen Dialog zulassen, so
wiirde eine Aufforderung wie z.B.
«type file name>» das System in einen
Modus versetzen, der dem Benutzer
eine ganz bestimmte Aktion auf-
zwingt, ndmlich Eintippen eines File-
namens. Wir glauben, dass Modi und
die damit verbundene zustandsabhin-
gige Behandlung von Eingaben we-
sentlich zur Benutzerunfreundlichkeit
eines Systems beitragen.

Befehle libernehmen ihre Parameter
aus dem globalen Zustand des Sy-

stems, meistens aus einem dargestell-
ten Text. Vielleicht noch wichtiger ist
aber die Tatsache, dass Befehle umge-
kehrt stets nichtfliichtige Ausgabeda-
ten (typischerweise Texte, Grafiken
oder Rasterbilder) in Form von Daten-
strukturen erzeugen. Daraus lassen
sich Bildschirmdarstellungen ableiten
oder Kopien auf Disk herstellen. All-
gemeiner kann eine erzeugte Daten-
struktur als Eingabe fiir irgendeinen
folgenden Befehl verwendet werden.
Beispielsweise ist ein vom Befehl Sy-
stem.Directory erzeugter Auszug aus
dem Inhaltsverzeichnis der Disk ein
editierbarer Text und kann als Para-
meterliste fiir einen weiteren Befehl
verwendet werden. Der Benutzer hat

fir die Vorbereitung der nédchsten Ta-
tigkeit also insbesondere immer die
ganze Vielfalt der am Bildschirm dar-
gestellten Daten zur Verfiigung.

Die allgemeine Form eines Befehls-
namens ist M.P, wobei P der Name
einer Prozedur und M der Name des P
enthaltenden Moduls ist. Befehlsna-
men konnen eingetippt oder, wenn sie
schon auf dem Bildschirm sichtbar
sind, einfach durch Mausklick ange-
wihlt werden. Nur einige wenige sehr
haufig benutzte Befehle sind sozusa-
gen eingebaut und werden nicht iiber
ihren Namen erteilt, sondern durch
Driicken geeigneter Tasten eingeleitet.
Zum Beispiel bedeutet das Nieder-
driicken der mittleren Maustaste, dass

1042

Bulletin ASE/UCS 79(1988)17, 2 septembre

Software

der durch den Cursor angezeigte Text
als Befehlsname zu interpretieren ist.
Diese Aktion dient also gewissermas-
sen als Anker fiir die Eingabe eines all-
gemeinen, nicht fest eingebauten Be-
fehls. Driicken und anschliessendes
Loslassen der rechten Maustaste be-
wirkt, dass der vom Cursor {iberstri-
chene Text markiert und ausgewahlt
wird. Ein drittes Beispiel betrifft die
Tastatur. Das Anschlagen einer Taste
der Tastatur signalisiert, dass das be-
treffende Zeichen am Ort des Caret im
Text eingefiigt werden soll.

Es sei nochmals betont, dass die In-
terpretation einer Eingabe nicht ein
fiir allemal vom Systemkern festgelegt
ist, sondern individuell von dem mit
dem betroffenen Bildschirmfenster
verkniipften Befehlsinterpreter durch-
gefithrt wird. Die im letzten Abschnitt
besprochenen Einzelheiten der Inter-
pretation beziehen sich auf die vorde-
finierte Klasse der sogenannten Text-
fenster. In Grafikfenstern konnte die
Befehlseingabe beispielsweise liber das
Antippen von Symbolen erfolgen.

Das angesprochene allgemeine
Schema der Befehlseingabe durch An-
klicken eines Namens oder eines Sym-
bols beeinflusst die Arbeitsweise mit
dem Oberon-System tiefgreifend. So
zeigt jedes Fenster ein Menu, d.h. eine
Liste von Befehlen, welche sich auto-
matisch auf das betreffende Fenster
beziehen. Noch wichtiger aber ist, dass
der Benutzer individuelle, kurze Texte
oder Grafiken am Bildschirm zur Dar-
stellung bringen kann, welche Listen
von hidufig benutzten Befehlen und
Parametern enthalten (s. Fig. 1, rechte
Spur). Wir nennen sie Tools. Man be-
achte, dass Tools normale editierbare
Dokumente sind und jederzeit auf in-
dividuelle Bediirfnisse und Vorlieben
abgestimmt werden konnen. Die ge-
schilderte Arbeitsweise hat zur Folge,
dass die meisten Aktivititen ohne Ein-
tippen von Text ausgefiihrt werden
konnen.

Zusammenfassend ldsst sich sagen,
dass der Phantasie in der Ausschop-
fung des dargelegten universellen
Schemas zur dezentralen Befehlsinter-
pretation kaum Grenzen gesetzt sind.

Erweiterbarkeit

Ein anderes zentrales Thema im De-
sign von Oberon waren Offenheit und
Erweiterbarkeit. Konventionelle mo-
dulare Systeme [2] unterstiitzen zwar
weitgehend die Erweiterung der Funk-
tionalitdt des Systems, jedoch nicht die
Erweiterung von Objekttypen. Vor-

ausgesetzt es liege eine geeignete Mo-
dulbasis vor, kann beispielsweise je-
derzeit eine Kollektion neuer Editier-
funktionen fiir Texte oder Grafiken in
Form eines neuen Moduls hinzugefiigt
werden. Hingegen ist es nicht moglich,
nachtriglich neue Varianten bestehen-
der Objekte einzufiihren.

Angenommen, ein bestehendes Gra-
fikpaket stelle einen Datentyp zur Be-
schreibung von Linien und Symbolen
samt Funktionen zur Behandlung sol-
cher Objekte zur Verfiigung. Dann
mag es wiinschbar sein, dieses Paket
als Basis fiir einen Editor zur Kon-
struktion elektronischer Schaltungen
zu verwenden. Die neuen Objekte sind
Verbindungen, Widerstdnde, Transi-
storen, Dioden und Tore, also Varian-
ten von Linien und Symbolen mit
einer zusitzlichen Semantik. Leider
gibt es in konventionellen modularen
Sprachen keine Moglichkeit, diese Va-
rianten zu definieren.

Die Entwicklung der Sprache Obe-
ron [3] war grosstenteils durch den
Wunsch nach Erweiterbarkeit von Da-
tentypen im skizzierten Sinne moti-
viert. Das gewidhlte Schema ist dhnlich
zu dem der Klassen und Unterklassen
in objektorientierten Sprachen. Ein
ganz entscheidendes Merkmal von
Oberon ist jedoch die Verbindung die-
ses Schemas mit einem rigorosen Ty-
penpriifsystem. Wir werden auf die
Bedeutung eines zuverldssigen Typen-
systems zuriickkommen.

Dank der wirkungsvollen Erweiter-
barkeit des Oberon-Systems und der
umfassenden Sammlung von Schnitt-
stellen zum Kernsystem ist die Grenze
zwischen Benutzern und Programmie-
rern unscharf. Tatsdchlich werden Be-
nutzer leicht zu Programmierern, so-
bald sie entdecken, dass eine zusatzli-
che Programmfunktion ihre Aufgabe
wesentlich erleichtern wiirde. Wir sind
iiberzeugt davon, dass nur durch eine
solche Betrachtungsweise das Poten-
tial, welches inhdrent im Konzept der
Software steckt, vollstindig ausge-
schopft werden kann.

Systemstruktur

Das Oberon-System ist eine hierar-
chische Sammlung von Modulen
(Fig. 2). Im wesentlichen gibt es keinen
Unterschied zwischen Betriebssystem-
modulen und solchen, die ein Pro-
grammierer spiter hinzugefiigt hat.
Man versteht die Systemstruktur viel-
leicht am besten, wenn man den
Ablauf nach dem Einschalten des
Computers verfolgt.

Zuerst wird die Steuerung an den
Boot Loader iibergeben. Dieses kurze
Programm residiert im nichtfliichtigen
Lesespeicher (ROM) des Computers.
Es liest das Boot File von der eingebau-
ten Hard-Disk. Das Boot File umfasst
den Inneren Kern des Oberon-Sy-
stems, d.h. die Module Kernel, Disk,
FileDir, Files, Modules. Kernel enthélt
alle Funktionen, welche entweder Ge-
brauch von privilegierten Instruktio-
nen machen oder zu geschiitzten Da-
ten zugreifen, ndmlich Routinen fir
die Verwaltung des virtuellen und des
realen Speichers und fiir die Reserva-
tion von Disksektoren. Disk ist der
Driver fiir die Disk, FileDir verwaltet
das Inhaltsverzeichnis der Disk und
Files stellt Operationen auf Files zur
Verfiigung. Modules 1adt Module in
Objektform von der Disk in den Spei-
cher und bringt sie zur Ausfiihrung,

Anschliessend wird der Aussere
Kern geladen, d.h. das Modul Oberon
samt allen importierten Modulen.
Schliesslich verlangt die Initialisierung
des Moduls Oberon das Laden des
Moduls Display, wiederum mit allen
importierten Modulen. Dabei wird das
Display Tool-Fenster geoffnet. Es ent-
hilt Eintrdge zur Erdffnung weiterer
Tools und kann deshalb als Wurzel in
der Hierarchie der Tool-Fenster be-
trachtet werden. Damit ist der Sy-
stemstart abgeschlossen und die Steue-
rung wird der Zentralschleife im
Modul Oberon iibergeben. Diese iiber-
wacht fortwahrend alle Eingabegerite
und leitet Eingaben direkt an die zu-
stindigen Befehlsinterpreter weiter.

Verfolgen wir nun die Ereignisse,
nachdem eine Eingabe, z.B. ein Klick
der mittleren Maustaste, festgestellt
wurde. Zunichst wird das Fensterver-
waltungsmodul Viewerszwecks Identi-
fikation des durch die Maus angezeig-
ten Fensters aufgerufen. Dann wird
die Eingabe dem diesem Fenster zuge-
horigen Befehlsinterpreter gemeldet.
Es ist erwdhnenswert, dass die Mel-
dung einer Eingabe an den Befehls-
interpreter eines Fensters sich von
einem gewdhnlichen Prozeduraufruf
geringfiigig unterscheidet. Der Haupt-
unterschied besteht darin, dass die auf-
gerufene Prozedur als Variable im
Fensterobjekt installiert und somit
ihre genaue Identitit (Implementa-
tion) dem Aufrufenden nicht bekannt
ist. Damit erhélt der Aufruf den Cha-
rakter «Reagiere auf die als Parameter
ibergebene Meldung in irgendeiner
sinnvollen Art und Weise». Dies ist
genau das Paradigma der objektorien-
tierten Programmierung.

Bulletin SEV/VSE 79(1988)17, 2. September

1043

Software

Wenn wir nun annehmen, dass das
angesprochene Fenster ein Textfenster
ist, so wird also der Befehlsinterpreter
der Textfenster aktiviert. Er erhilt die
Meldung «mittlere Maustaste ge-
driickt» und reagiert, indem er mit
Hilfe der Basismodule Texts und
TextFrames das Wort bei der Cursor-
position identifiziert, dieses als Be-
fehlsname M.P interpretiert, das Mo-
dul M l4dt (falls es nicht schon geladen
ist) und die Prozedur P aufruft. Nach
deren Beendigung féllt die Steuerung
wieder an die Zentralschleife zuriick,
und zwar unabhidngig davon, ob P
normal oder abnormal (Exception)
beendet wurde.

In Figur 2 lassen sich drei dhnliche
Triplets von Modulen erkennen:
(Texts, TextFrames, TextViewers),
(Graphics, GraphicFrames, Gra-
phicViewers) und (Pictures, Picture-
Frames, Picture Viewers). Sie zeigen
eine typische modulare Aufteilung
eines thematischen Komplexes. Die
Grundmodule Texts, Graphicsund Pic-
tures verwalten die Texte, Grafiken
und Rasterbilder in Form von Daten-
strukturen und stellen die Grundope-
rationen fiir diese Objektklassen zur
Verfiigung. Die Frame-Module behan-
deln die Darstellung der Objekte in
rechteckigen Feldern (Frames) in Bild-
schirmfenstern. Gewohnlich zerfillt
ein Fenster in genau zwei Frames, ein
Menuframe und ein Hauptframe. Die
Viewer-Module schliesslich steuern
den zur Fensterklasse gehorigen Be-
fehlsinterpreter bei. Aus programm-
technischer Sicht sind sowohl die Ob-
jekttypen Viewer als auch TextFrame,
GraphicFrame und PictureFrame er-
weiterte Varianten des Grundtyps Fra-
me. Dies ist ein gutes Beispiel fiir die
Anwendung des Typenerweiterungs-
mechanismus der Sprache Oberon.

Ressourcenverwaltung

Wir wissen bereits, dass Oberon den
Programmbegriff im konventionellen
Sinne nicht kennt. Damit fehlen dieje-
nigen Instanzen im System, welche
iiblicherweise verantwortlich sind fiir
die Anforderung und Riickgabe von
Speicherressourcen, die fiir die Erfiil-
lung eines bestimmten Auftrages be-
notigt werden. Die Befehlsprozeduren
konnen diese Rolle natiirlich nicht
libernehmen, da, wie wir festgestellt
haben, Hauptspeicherdaten als we-
sentliche Verbindung zwischen aufein-
anderfolgenden Befehlen wirken.

Tool Packages

System Display Diskette Server Edit Draw
LI f
TextViewer GrViewers PicViewers
Assembler
Compiler 11t B i
A
TextFrames GrFrames PicFrames
Outer Core
Graphics Pictures
Oberon
VY 1T
o
Texts
Fonts Viewers Cursors
Inner Core T t
Modules
Net Input Bitmaps

Files
FileDir
Disk
Kernel

Figur2 Struktur des Oberon-Systems

Man beachte die Schalenstruktur, die durch den inneren und dusseren Kern sowie durch die Tool
Packages gebildet wird. Das Modul Oberon enthilt die Zentralschlaufe zur dynamischen Steuerung des
Ablaufs sowie die Parameter der Systemkonfiguration.

Die Verwaltung des Hauptspeichers
ist in Oberon einem systemweit agie-
renden Mechanismus, einem soge-
nannten Garbage Collector, iibertra-
gen. Er durchlduft periodisch den
Speicher und markiert dabei simtliche
noch bendtigten Blocke2. Die nicht-
markierten Speicherblécke gibt er an-
schliessend zur Wiederbenutzung frei.
Die Korrektheit und Zuverldssigkeit

dieses Mechanismus hédngt entschei-
dend von der intakten Typeninforma-
tion in den einzelnen Speicherblocken
ab. Deshalb ist das rigorose Typensy-

2 Nach dem Prinzip der Zugreifbarkeit, ausge-
hend von globalen Wurzeln.

1044

Bulletin ASE/UCS 79(1988)17, 2 septembre

Software

stem der Sprache Oberon, das auch in
der erschwerten Situation von Typen-
erweiterungen wirksam ist, nicht bloss
Luxus, sondern Notwendigkeit.

Nicht der ganze Hauptspeicher wird
durch den Garbage Collector verwal-
tet. Der Modulspeicher unterliegt
einer eigenen Verwaltung. Module
werden in Oberon verzogert geladen,
d.h. wenn sie das erste Mal aufgerufen
werden. Diese Methode steht im Ge-
gensatz zum Ladevorgang in iiblichen
Systemen, bei welchem mit einem Mo-
dul alle direkt und indirekt importier-
ten Module unmittelbar mitgeladen
werden. Das verzogerte Laden ist dann
besonders gewinnbringend, wenn von
einem statisch grossen Programmpa-
ket bei normaler Anwendung nur ein
kleiner Teil der beteiligten Module tat-
siachlich benoétigt wird. Also etwa
wenn ein Dokumentenverarbeitungs-
system, das normalerweise nur fiir das
Editieren von gewohnlichem Text ver-
wendet wird, Teile zur Bearbeitung
von Formeln und Tabellen enthalt®.

Neben dem Hauptspeicher ist der
Plattenspeicher eine wichtige Ressour-

3Zur Realisierung des verzdgerten Ladens
wird Gebrauch von der virtuellen Adressierung
gemacht.

ce des Oberon-Systems. Er ist in Files
gegliedert, die als Bytefolgen zu verste-
hen sind. Ein wichtiges Merkmal des
Oberon-File-Systems ist die konzep-
tuelle Trennung von File und Zugriffs-
mechanismus. Jeder Schreib- oder Le-
sezugriff zu einem File wird von einem
sogenannten Rider geleitet. Fiir ein ge-
gebenes File konnen mehrere Riders
gleichzeitig gedffnet sein, beispielswei-
se einer pro aktive Aufgabe. Files kon-
nen benannt oder anonym sein. An-
onyme Files existieren nur bis zum
nichsten Systemstart, der deshalb als
eine Art Garbage Collector auf Disk-
Stufe betrachtet werden kann. Anony-
me Files werden hauptsédchlich zur
voriibergehenden Speicherung von
eingegebenem oder wihrend der Aus-
fliihrung von Befehlen automatisch er-
zeugtem Text verwendet.

Schlusswort

Das Design sowohl der Sprache als
auch des Betriebssystems Oberon war
vom Bestreben begleitet, den Com-
puterbenutzer von kiinstlichen Ein-
schriankungen, wie sie in traditionellen
Systemen héufig vorhanden sind, zu
befreien. Dies erforderte Mut zum Ex-
periment, der durch die iiberwiltigen-
de Leistungsfahigkeit moderner Hard-
ware deutlich gestdarkt wurde. Leider

wird diese Leistungsfdhigkeit bei der
Konstruktion von konventionellen Sy-
stemen oft als Einladung zum unbe-
schrankten Vergrossern missverstan-
den. Wir glauben, dass sie tatsidchlich
viel eher eine Herausforderung zu
innovativem Gebrauch darstellt.
Oberon unterscheidet sich in seinem
Umfang um eine Grossenordnung von
vergleichbaren Systemen. Samt Com-
piler, Text- und Grafikeditor, Hilfs-
mittel fiir die Benutzung von Disk und
Diskette und Werkzeugen zum Zugriff
auf Dienstleistungen wie Laserdrucker
und Elektronische Post besteht das Sy-
stem aus etwa 15000 Zeilen Quellen-
code. Die Grosse in Maschinenform
betragt ungefihr 150 Kilobytes, und
die Ubersetzung dauert 5 Minuten. So-
wohl in Quellen- als auch in Maschi-
nenform findet das System leicht auf
einer einzigen 3,5 Zoll-Diskette Platz!

Literatur

[1] H. Eberle: Entwicklung eines 32-bit-Arbeits-
platzrechners. Bull. SEV/VSE 78(1987)21,
S. 1328...1332.

[2] J. Gutknecht: Modulare Programmierung
mit Modula-2. Bull. SEV/VSE 78(1987)1,
S.8..14.

[3] N. Wirth: The programming language
Oberon. Software - Practice and Experience
18(1988)7, S. 671...690.

Bulletin SEV/VSE 79(1988)17, 2. September

1045

	Das Oberon-System

