
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 79 (1988)

Heft: 17

Artikel: Das Oberon-System

Autor: Gutknecht, J. / Wirth, N.

DOI: https://doi.org/10.5169/seals-904073

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904073
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Software

Das Oberon-System
J. Gutknecht und N. Wirth

Das Betriebssystem Oberon
wurde von den Autoren an der
ETH Zürich im Laufe der vergangenen

zweieinhalb Jahre konzipiert

und verwirklicht. Es handelt

sich dabei um ein kompaktes

Einprozess-Multitasking-
System, welches die Einrichtungen

und die Leistungsfähigkeit
moderner Arbeitsplatzstationen
soweit wie möglich ausschöpft.
Das System ist in einer Sprache
programmiert, die als eine Art
objektorientierte Weiterentwicklung

von Modula-2 aufgefasst
werden kann.

Le système d'exploitation
Oberon a été conçu et réalisé a
l'Institut d'informatique de
l'EPFZ par les auteurs au cours
des deux années et demi
passées. C'est un système compact
de traitement multitâche-mono-
processus qui épuise le plus
possible les équipements et la capacité

des stations de postes de
travail modernes. Le système
est programmé dans un langage
que l'on peut considérer comme
un perfectionnement orienté
objet de Modula-2.

Adresse der Autoren
Prof. Dr. Jürg Gutknecht und
Prof. Dr. Nikiaus Wirth,
Institut für Informatik, ETH-Zentrum,
8092 Zürich.

Ende 1985 starteten die Autoren dieses

Aufsatzes ein Projekt, dessen
Zielsetzung die Entwicklung eines speziell
auf persönliche Arbeitsplatzrechner
zugeschnittenen Betriebssystems und
einer Sprache zu seiner Programmierung

war. Nach 30 Monaten intensiver
Arbeit liegt das Resultat nun in Form
eines äusserst flexiblen und zuverlässigen

Werkzeuges, genannt Oberon, vor.
Das System ist auf dem vom

zweitgenannten Autor und H. Eberle
entwickelten Rechner Ceres[1] implementiert.

Der Kern von Ceres ist ein NS-
32032-Mikroprozessor. Als
Peripheriegeräte dienen eine Tastatur, eine
Maus und ein hochauflösender
Bildschirm. Zusätzlich lässt sich ein
Farbmonitor gleicher Auflösung anschlies-
sen. Ceres-Stationen sind normalerweise

in ein lokales Netz einbezogen
und haben Zugang zu Dienstleistungen

wie zentraler Massenspeicher,
Laserdrucker und Elektronische Post.

Design-Prinzipien
Zentrales Prinzip beim Design der

Hardware und auch der Software war
das Streben nach Klarheit und
Einfachheit. Dies war nötig im Hinblick
auf das winzige Team und den
abgesteckten engen Zeitrahmen. Klarheit
und Einfachheit sind aber ohnehin un-
erlässlich, wenn ein Produkt dem
Anspruch nach Zuverlässigkeit genügen
soll. Sie wird am besten durch eine
reguläre und zweckgerichtete Struktur
erreicht. Eine solche Struktur ist aber
nur möglich, wenn das zugrundeliegende

Modell gut verstanden, genügend

einfach und frei von
widersprüchlichen Vorgaben ist.

Modell für Oberon ist ein einzelner
Prozess1, der von einem einzigen Be-

1 Sequenz von logisch zusammengehörigen
Aktionen.

nutzer durch eine Folge von Befehlen
gesteuert wird. Der Benutzer arbeitet
typischerweise an mehreren Aufgaben
(Tasks) gleichzeitig. Die Aufgaben
manifestieren sich gewöhnlich in Form
von Dokumenten, welche in
Bildschirmfenstern dargestellt sind (Fig. 1).

Weil sich aufeinanderfolgende Befehle
auf verschiedene Aufgaben beziehen
können, lässt sich Oberon als Einpro-
zess-Multitasking-System kennzeichnen.

Dieses Modell steht im Gegensatz zu
demjenigen konventioneller
Multitasking-Systeme, in denen jede Aufgabe
von einem einzigen Prozess getragen
und ausgeführt wird und in denen die
Steuerung prinzipiell an jeder beliebigen

Programmstelle vom laufenden
Prozess auf irgendeinen anderen
umgeschaltet werden kann. Die Granula-
rität (bezüglich der Länge der atomaren

Ablaufseinheiten) ist in Oberon
also viel gröber als in konventionellen
Multitasking-Systemen, und die
möglichen Umschaltestellen zwischen
Aufgaben sind im Zeitpunkt der Programmierung

wohlbekannt. Dies alles trägt
entscheidend zur strukturellen
Einfachheit des Systems bei. Aufwendige
Mechanismen zur Speicherung und
Wiederherstellung des Prozesszustan-
des sind ebenso unnötig wie Blockier-
massnahmen zur vorübergehenden
Reservation von Ressourcen durch
einen einzelnen Prozess.

Während der Ausführung eines
Befehls wird grundsätzlich kein Dialog
mit dem Benutzer geführt. Befehle sind
also atomare Aktionseinheiten in
Oberon. Ihre Spezifikation erfolgt
hauptsächlich durch Eingaben über
die Maus oder die Tastatur. Besonders
interessant ist die Strategie der
Befehlsinterpretation. Jeder Befehl wird
direkt demjenigen Bildschirmfenster
zugeführt und zur individuellen
Behandlung übergeben, in welchem sich
der Mauszeiger (Cursor) oder die
Einfügemarke (Caret) befindet.

Bulletin SEV/VSE 79(1988)17, 2. September 1041

Software

Dlsplay.Closfl Draw.Copy Draw.Grow Draw.Restor« Draw.Reset Draw.Dßlet« Draw.Savs

; |> I> l> t> D: {>• Ö : D*: T> : :D*
NOO. N02 NO+. N06 NOS. NIO Nil. N20 N27. N32 N3«

: î> :D: ï> £>:f>: £>:!>: Ö f>£>
Nûûa N02a N04a N06a N08a Ntûa. Nila N20a N27a N32a N38a

>)î>: > " q«

Dlsplay.Oosi Palnt.Copy Palnt.Grow

co •

MO-

Seiver.Mail524389

Display.Qoss EdltCopy EdltGrow EditLocate EditSave

>from lfi.ethz.ch!frclMonJun20 08^28:17 /v\£T 1388 remote from ethz

Auf Veranlassung von GAZ wurde eine kurze Elnfuehrung und Vorfuehrung
des neuen Hochleistungsrechners organisiert.

80 QO-

81 Q1

82 V"
r».8)

-V-P-

N157

I

x

ISES3SQ2I

Dlsplay.aose EdltCopy EditGrow EditLocate EditSave

DIsplay.OpenTool
DIsplay.OpenTool DIsplay.Tool
DIsplay.OpenTool EditTool
DIsplay.OpenTool Draw.Tool
DIsplay.OpenTool System.Tool

Dlsplay.aose EdltCopy EditGrow EditLocate EditSave

Sys tem. DI re cto ry « Mo d

System.Directory ».Fnt
System.Directory #.Pict

Dlsplay.Oose EdltCopy EditGrow EditLocate EditSave

ServerA\allbo*
Server.SendMall
Server.StartServIc«
Server.StopServlce
Server.RecelveFile ~
Server.SendFlle ~

Dlsplay.aose Server.ReceJveAAall Server.DeleteMall EditSave

524379 14.06 14:51 IreldDlfl.et Naechsto Prof.-Sitzung
524386 16.06 19:07 schaerMusterloesung Editorenbau Uebun

524392 24.06 03:59 cernvaximcv Lara/Maple possible connection
524397 27.06 10:57 noacktfDceres Video-Mars

Dlsplay.aose EdltCopy EditGrow EditLocate EditSave

Miscellaneous.Snapshot Dlsplayl.Pict Display2.Pict~

3HE22HB

Dlsplay.Oose EdltCopy EditGrow EditLocate EditSave

Diskette.Form at
Diskette.Initialize

Dlsplay.Oose EdltCopy EditGrow EditLocate EditSave

TTLO.Graph writing

Figur 1 Beispiel einer Oberon-Bildschirmdarstellung
Die Benutzerspur (links) stellt typischerweise Dokumentenfenster, die Systemspur (rechts) vor allem Tools und Log-Fenster dar. So findet sich z.B. das
Inhaltsverzeichnis der Mailbox in der Systemspur, während die abgerufene Meldung als Dokument in der Benutzerspur erscheint.

Vielleicht der wichtigste Effekt des
geschilderten Ablaufschemas ist der,
dass kein Befehl das Oberon-System in
einem versteckten Zustand (Modus)
hinterlässt. Würde die Ausführung
eines Befehls einen Dialog zulassen, so
würde eine Aufforderung wie z.B.
«type file name»» das System in einen
Modus versetzen, der dem Benutzer
eine ganz bestimmte Aktion
aufzwingt, nämlich Eintippen eines
Filenamens. Wir glauben, dass Modi und
die damit verbundene zustandsabhän-
gige Behandlung von Eingaben
wesentlich zur Benutzerunfreundlichkeit
eines Systems beitragen.

Befehle übernehmen ihre Parameter
aus dem globalen Zustand des Sy¬

stems, meistens aus einem dargestellten
Text. Vielleicht noch wichtiger ist

aber die Tatsache, dass Befehle umgekehrt

stets nichtflüchtige Ausgabedaten

(typischerweise Texte, Grafiken
oder Rasterbilder) in Form von
Datenstrukturen erzeugen. Daraus lassen
sich Bildschirmdarstellungen ableiten
oder Kopien auf Disk herstellen.
Allgemeiner kann eine erzeugte
Datenstruktur als Eingabe für irgendeinen
folgenden Befehl verwendet werden.
Beispielsweise ist ein vom Befehl
System.Directory erzeugter Auszug aus
dem Inhaltsverzeichnis der Disk ein
editierbarer Text und kann als
Parameterliste für einen weiteren Befehl
verwendet werden. Der Benutzer hat

für die Vorbereitung der nächsten
Tätigkeit also insbesondere immer die
ganze Vielfalt der am Bildschirm
dargestellten Daten zur Verfügung.

Die allgemeine Form eines Befehlsnamens

ist M.P, wobei P der Name
einer Prozedur und M der Name des P

enthaltenden Moduls ist. Befehlsnamen

können eingetippt oder, wenn sie
schon auf dem Bildschirm sichtbar
sind, einfach durch Mausklick
angewählt werden. Nur einige wenige sehr
häufig benutzte Befehle sind sozusagen

eingebaut und werden nicht über
ihren Namen erteilt, sondern durch
Drücken geeigneter Tasten eingeleitet.
Zum Beispiel bedeutet das
Niederdrücken der mittleren Maustaste, dass

1042 Bulletin ASE/UCS 79(1988)17, 2 septembre

Software

der durch den Cursor angezeigte Text
als Befehlsname zu interpretieren ist.
Diese Aktion dient also gewissermas-
sen als Anker für die Eingabe eines
allgemeinen, nicht fest eingebauten
Befehls. Drücken und anschliessendes
Loslassen der rechten Maustaste
bewirkt, dass der vom Cursor überstri-
chene Text markiert und ausgewählt
wird. Ein drittes Beispiel betrifft die
Tastatur. Das Anschlagen einer Taste
der Tastatur signalisiert, dass das
betreffende Zeichen am Ort des Caret im
Text eingefügt werden soll.

Es sei nochmals betont, dass die
Interpretation einer Eingabe nicht ein
für allemal vom Systemkern festgelegt
ist, sondern individuell von dem mit
dem betroffenen Bildschirmfenster
verknüpften Befehlsinterpreter
durchgeführt wird. Die im letzten Abschnitt
besprochenen Einzelheiten der
Interpretation beziehen sich auf die
vordefinierte Klasse der sogenannten
Textfenster. In Grafikfenstern könnte die
Befehlseingabe beispielsweise über das

Antippen von Symbolen erfolgen.
Das angesprochene allgemeine

Schema der Befehlseingabe durch
Anklicken eines Namens oder eines Symbols

beeinflusst die Arbeitsweise mit
dem Oberon-System tiefgreifend. So

zeigt jedes Fenster ein Menu, d.h. eine
Liste von Befehlen, welche sich
automatisch auf das betreffende Fenster
beziehen. Noch wichtiger aber ist, dass
der Benutzer individuelle, kurze Texte
oder Grafiken am Bildschirm zur
Darstellung bringen kann, welche Listen
von häufig benutzten Befehlen und
Parametern enthalten (s. Fig. 1, rechte
Spur). Wir nennen sie Tools. Man
beachte, dass Tools normale editierbare
Dokumente sind und jederzeit auf
individuelle Bedürfnisse und Vorlieben
abgestimmt werden können. Die
geschilderte Arbeitsweise hat zur Folge,
dass die meisten Aktivitäten ohne
Eintippen von Text ausgeführt werden
können.

Zusammenfassend lässt sich sagen,
dass der Phantasie in der Ausschöpfung

des dargelegten universellen
Schemas zur dezentralen Befehlsinterpretation

kaum Grenzen gesetzt sind.

Erweiterbarkeit
Ein anderes zentrales Thema im

Design von Oberon waren Offenheit und
Erweiterbarkeit. Konventionelle mo-
dulare Systeme [2] unterstützen zwar
weitgehend die Erweiterung der
Funktionalität des Systems, jedoch nicht die
Erweiterung von Objekttypen. Vor¬

ausgesetzt es liege eine geeignete
Modulbasis vor, kann beispielsweise
jederzeit eine Kollektion neuer
Editierfunktionen für Texte oder Grafiken in
Form eines neuen Moduls hinzugefügt
werden. Hingegen ist es nicht möglich,
nachträglich neue Varianten bestehender

Objekte einzuführen.
Angenommen, ein bestehendes

Grafikpaket stelle einen Datentyp zur
Beschreibung von Linien und Symbolen
samt Funktionen zur Behandlung
solcher Objekte zur Verfügung. Dann
mag es wünschbar sein, dieses Paket
als Basis für einen Editor zur
Konstruktion elektronischer Schaltungen
zu verwenden. Die neuen Objekte sind
Verbindungen, Widerstände, Transistoren,

Dioden und Tore, also Varianten

von Linien und Symbolen mit
einer zusätzlichen Semantik. Leider
gibt es in konventionellen modularen
Sprachen keine Möglichkeit, diese
Varianten zu definieren.

Die Entwicklung der Sprache Oberon

[3] war grösstenteils durch den
Wunsch nach Erweiterbarkeit von
Datentypen im skizzierten Sinne motiviert.

Das gewählte Schema ist ähnlich
zu dem der Klassen und Unterklassen
in objektorientierten Sprachen. Ein
ganz entscheidendes Merkmal von
Oberon ist jedoch die Verbindung dieses

Schemas mit einem rigorosen Ty-
penprüfsystem. Wir werden auf die
Bedeutung eines zuverlässigen
Typensystems zurückkommen.

Dank der wirkungsvollen Erweiterbarkeit

des Oberon-Systems und der
umfassenden Sammlung von Schnittstellen

zum Kernsystem ist die Grenze
zwischen Benutzern und Programmierern

unscharf. Tatsächlich werden
Benutzer leicht zu Programmierern,
sobald sie entdecken, dass eine zusätzliche

Programmfunktion ihre Aufgabe
wesentlich erleichtern würde. Wir sind
überzeugt davon, dass nur durch eine
solche Betrachtungsweise das Potential,

welches inhärent im Konzept der
Software steckt, vollständig
ausgeschöpft werden kann.

Systemstruktur
Das Oberon-System ist eine

hierarchische Sammlung von Modulen
(Fig. 2). Im wesentlichen gibt es keinen
Unterschied zwischen Betriebssystemmodulen

und solchen, die ein
Programmierer später hinzugefügt hat.
Man versteht die Systemstruktur
vielleicht am besten, wenn man den
Ablauf nach dem Einschalten des

Computers verfolgt.

Zuerst wird die Steuerung an den
Boot Loader übergeben. Dieses kurze
Programm residiert im nichtflüchtigen
Lesespeicher (ROM) des Computers.
Es liest das Boot File von der eingebauten

Hard-Disk. Das Boot File umfasst
den Inneren Kern des Oberon-Systems,

d.h. die Module Kernel, Disk,
FileDir, Files, Modules. Kernel enthält
alle Funktionen, welche entweder
Gebrauch von privilegierten Instruktionen

machen oder zu geschützten Daten

zugreifen, nämlich Routinen für
die Verwaltung des virtuellen und des
realen Speichers und für die Reservation

von Disksektoren. Disk ist der
Driver für die Disk, FileDir verwaltet
das Inhaltsverzeichnis der Disk und
Files stellt Operationen auf Files zur
Verfügung. Modules lädt Module in
Objektform von der Disk in den Speicher

und bringt sie zur Ausführung.
Anschliessend wird der Äussere

Kern geladen, d.h. das Modul Oberon
samt allen importierten Modulen.
Schliesslich verlangt die Initialisierung
des Moduls Oberon das Laden des
Moduls Display, wiederum mit allen
importierten Modulen. Dabei wird das

Display Tool-Fenster geöffnet. Es
enthält Einträge zur Eröffnung weiterer
Tools und kann deshalb als Wurzel in
der Hierarchie der Tool-Fenster
betrachtet werden. Damit ist der
Systemstart abgeschlossen und die Steuerung

wird der Zentralschleife im
Modul Oberon übergeben. Diese
überwacht fortwährend alle Eingabegeräte
und leitet Eingaben direkt an die
zuständigen Befehlsinterpreter weiter.

Verfolgen wir nun die Ereignisse,
nachdem eine Eingabe, z.B. ein Klick
der mittleren Maustaste, festgestellt
wurde. Zunächst wird das
Fensterverwaltungsmodul Viewers zwecks
Identifikation des durch die Maus angezeigten

Fensters aufgerufen. Dann wird
die Eingabe dem diesem Fenster
zugehörigen Befehlsinterpreter gemeldet.
Es ist erwähnenswert, dass die
Meldung einer Eingabe an den
Befehlsinterpreter eines Fensters sich von
einem gewöhnlichen Prozeduraufruf
geringfügig unterscheidet. Der
Hauptunterschied besteht darin, dass die
aufgerufene Prozedur als Variable im
Fensterobjekt installiert und somit
ihre genaue Identität (Implementation)

dem Aufrufenden nicht bekannt
ist. Damit erhält der Aufruf den
Charakter «Reagiere auf die als Parameter
übergebene Meldung in irgendeiner
sinnvollen Art und Weise». Dies ist
genau das Paradigma der objektorientierten

Programmierung.

Bulletin SEV/VSE 79(1988) 17,2. September 1043

Software

Wenn wir nun annehmen, dass das
angesprochene Fenster ein Textfenster
ist, so wird also der Befehlsinterpreter
der Textfenster aktiviert. Er erhält die
Meldung «mittlere Maustaste
gedrückt» und reagiert, indem er mit
Hilfe der Basismodule Texts und
TextFrames das Wort bei der

Cursorposition identifiziert, dieses als
Befehlsname M.P interpretiert, das Modul

M lädt (falls es nicht schon geladen
ist) und die Prozedur P aufruft. Nach
deren Beendigung fällt die Steuerung
wieder an die Zentralschleife zurück,
und zwar unabhängig davon, ob P

normal oder abnormal (Exception)
beendet wurde.

In Figur 2 lassen sich drei ähnliche
Triplets von Modulen erkennen:
(Texts, TextFrames, TextViewers),
(Graphics, GraphicFrames, Gra-
phicViewers) und (Pictures, Picture-
Frames, Picture Viewers). Sie zeigen
eine typische modulare Aufteilung
eines thematischen Komplexes. Die
Grundmodule Texts, Graphicsund
Pictures verwalten die Texte, Grafiken
und Rasterbilder in Form von
Datenstrukturen und stellen die Grundoperationen

für diese Objektklassen zur
Verfügung. Die Frame-Module behandeln

die Darstellung der Objekte in
rechteckigen Feldern (Frames) in
Bildschirmfenstern. Gewöhnlich zerfällt
ein Fenster in genau zwei Frames, ein
Menuframe und ein Hauptframe. Die
Viewer-Module schliesslich steuern
den zur Fensterklasse gehörigen
Befehlsinterpreter bei. Aus
programmtechnischer Sicht sind sowohl die
Objekttypen Viewer als auch TextFrame,
GraphicFrame und PictureFrame
erweiterte Varianten des Grundtyps Frame.

Dies ist ein gutes Beispiel für die
Anwendung des Typenerweiterungsmechanismus

der Sprache Oberon.

Ressourcenverwaltung
Wir wissen bereits, dass Oberon den

Programmbegriff im konventionellen
Sinne nicht kennt. Damit fehlen
diejenigen Instanzen im System, welche
üblicherweise verantwortlich sind für
die Anforderung und Rückgabe von
Speicherressourcen, die für die Erfüllung

eines bestimmten Auftrages
benötigt werden. Die Befehlsprozeduren
können diese Rolle natürlich nicht
übernehmen, da, wie wir festgestellt
haben, Hauptspeicherdaten als
wesentliche Verbindung zwischen
aufeinanderfolgenden Befehlen wirken.

Tool Packages

Figur 2 Struktur des Oberon-Systems
Man beachte die Schalenstruktur, die durch den inneren und äusseren Kern sowie durch die Tool
Packages gebildet wird. Das Modul Oberon enthält die Zentralschlaufe zur dynamischen Steuerung des
Ablaufs sowie die Parameter der Systemkonfiguration.

Die Verwaltung des Hauptspeichers
ist in Oberon einem systemweit
agierenden Mechanismus, einem
sogenannten Garbage Collector, übertragen.

Er durchläuft periodisch den
Speicher und markiert dabei sämtliche
noch benötigten Blöcke2. Die
nichtmarkierten Speicherblöcke gibt er
anschliessend zur Wiederbenutzung frei.
Die Korrektheit und Zuverlässigkeit

dieses Mechanismus hängt entscheidend

von der intakten Typeninformation
in den einzelnen Speicherblöcken

ab. Deshalb ist das rigorose Typensy-

2 Nach dem Prinzip der Zugreifbarkeit, ausgehend

von globalen Wurzeln.

1044 Bulletin ASE/UCS 79(1988)17, 2 septembre

Software

stem der Sprache Oberon, das auch in
der erschwerten Situation von
Typenerweiterungen wirksam ist, nicht bloss
Luxus, sondern Notwendigkeit.

Nicht der ganze Hauptspeicher wird
durch den Garbage Collector verwaltet.

Der Modulspeicher unterliegt
einer eigenen Verwaltung. Module
werden in Oberon verzögert geladen,
d.h. wenn sie das erste Mal aufgerufen
werden. Diese Methode steht im
Gegensatz zum Ladevorgang in üblichen
Systemen, bei welchem mit einem Modul

alle direkt und indirekt importierten
Module unmittelbar mitgeladen

werden. Das verzögerte Laden ist dann
besonders gewinnbringend, wenn von
einem statisch grossen Programmpaket

bei normaler Anwendung nur ein
kleiner Teil der beteiligten Module
tatsächlich benötigt wird. Also etwa
wenn ein Dokumentenverarbeitungs-
system, das normalerweise nur für das
Editieren von gewöhnlichem Text
verwendet wird, Teile zur Bearbeitung
von Formeln und Tabellen enthält3.

Neben dem Hauptspeicher ist der
Plattenspeicher eine wichtige Ressour-

3 Zur Realisierung des verzögerten Ladens
wird Gebrauch von der virtuellen Adressierung
gemacht.

ce des Oberon-Systems. Er ist in Files
gegliedert, die als Bytefolgen zu verstehen

sind. Ein wichtiges Merkmal des

Oberon-File-Systems ist die konzep-
tuelle Trennung von File und
Zugriffsmechanismus. Jeder Schreib- oder
Lesezugriff zu einem File wird von einem
sogenannten Rider geleitet. Für ein
gegebenes File können mehrere Riders
gleichzeitig geöffnet sein, beispielsweise

einer pro aktive Aufgabe. Files können

benannt oder anonym sein.

Anonyme Files existieren nur bis zum
nächsten Systemstart, der deshalb als
eine Art Garbage Collector auf Disk-
Stufe betrachtet werden kann. Anonyme

Files werden hauptsächlich zur
vorübergehenden Speicherung von
eingegebenem oder während der
Ausführung von Befehlen automatisch
erzeugtem Text verwendet.

wird diese Leistungsfähigkeit bei der
Konstruktion von konventionellen
Systemen oft als Einladung zum
unbeschränkten Vergrössern missverstanden.

Wir glauben, dass sie tatsächlich
viel eher eine Herausforderung zu
innovativem Gebrauch darstellt.

Oberon unterscheidet sich in seinem
Umfang um eine Grössenordnung von
vergleichbaren Systemen. Samt Compiler,

Text- und Grafikeditor,
Hilfsmittel für die Benutzung von Disk und
Diskette und Werkzeugen zum Zugriff
auf Dienstleistungen wie Laserdrucker
und Elektronische Post besteht das
System aus etwa 15 000 Zeilen Quellencode.

Die Grösse in Maschinenform
beträgt ungefähr 150 Kilobytes, und
die Übersetzung dauert 5 Minuten.
Sowohl in Quellen- als auch in
Maschinenform findet das System leicht auf
einer einzigen 3,5 Zoll-Diskette Platz!

Schlusswort
Das Design sowohl der Sprache als

auch des Betriebssystems Oberon war
vom Bestreben begleitet, den
Computerbenutzer von künstlichen
Einschränkungen, wie sie in traditionellen
Systemen häufig vorhanden sind, zu
befreien. Dies erforderte Mut zum
Experiment, der durch die überwältigende

Leistungsfähigkeit moderner Hardware

deutlich gestärkt wurde. Leider

Literatur
[1] H. Eberle: Entwicklung eines 32-bit-Arbeits-

platzrechners. Bull. SEV/VSE 78(1987)21,
S. 1328...1332.

[2] J. Gutknecht: Modulare Programmierung
mit Modula-2. Bull. SEV/VSE 78(1987)1,
S.8...14.

[3] N. Wirth: The programming language
Oberon. Software - Practice and Experience
18(1988)7, S. 671...690.

Bulletin SEV/VSE 79(1988)17, 2. September 1045

	Das Oberon-System

