Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 79 (1988)

Heft: 17

Artikel: Ein interaktives Simulations- und Programmgenerations-Werkzeug fur
erweiterte Petri-Netze

Autor: Dahler, J.

DOl: https://doi.org/10.5169/seals-904072

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904072
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Systemtechnik

Ein interaktives Simulations- und
Programmgenerations-Werkzeug fiir
erweiterte Petri-Netze

J. Dahler

Petri-Netze eignen sich fiir die
Beschreibung von diskreten,
ereignisorientierten, verteilten
Systemen. Sie konnen als Ent-
wurfs- und Spezifikationsmodell
sowie als Simulationswerkzeug
fur Leistungsuntersuchungen
verwendet werden. In diesem
Bericht wird ein Werkzeug
beschrieben, das am Institut fur
Elektronik an der ETH Ziirich ent-
wickelt wurde. Es unterstiitzt das
graphische Editieren, das Simu-
lieren, und das automatische
Erzeugen eines C-Programmes
von erweiterten Petri-Netzen.

Les réseaux de Pétri se prétent
bien a la description de systéemes
répartis, discrets et orientés éveé-
nements. lls peuvent s’utiliser
comme modeéle de projet et de
spécification ainsi que comme
outil de simulation. Dans ce rap-
port est décrit un outil qui a été
développé a I'EPF Zurich.

1l assiste I’édition graphique,

la simulation, la génération auto-
matique de programmes C de
réseaux de Pétri élargis.

Adresse des Autors

Jacques Ddihler, Dipl. El.-Ing. ETH,
Institut fiir Elektronik, 8092 Ziirich.

Das in diesem Bericht beschriebene
Werkzeug unterstiitzt das graphische
Editieren, das Simulieren, und das
automatische Erzeugen eines C-Pro-
grammes von erweiterten Petri-Net-
zen. Die Netzelemente werden mit der
Programmiersprache Smalltalk-80 [1]
beschriftet. Smalltalk ist eine objekt-
orientierte Programmiersprache, fiir
die eine michtige Entwicklungsumge-
bung existiert. Diese stellt Hilfsmittel
fiir die Konstruktion window-orien-
tierter, interaktiver Applikationen zur
Verfiigung. Leistungsfdhige Imple-
mentationen dieser Sprache sind nun
fiir praktisch alle modernen Arbeits-
stationen erhéltlich. Das hier beschrie-
bene Werkzeug kann auf diese Rech-
ner mit wenig Aufwand portiert wer-
den.

Die Petri-Netze eignen sich fiir die
Beschreibung von diskreten, ereignis-
orientierten, verteilten Systemen. Sie
konnen als Entwurfs- und Spezifika-
tionsmodell sowie als Simulations-
werkzeug fiir Leistungsuntersuchun-
gen verwendet werden. Im ersten Fall
kann fiir die in Software zu realisieren-
den Teile des Systems ein Programm
automatisch erzeugt werden, im zwei-
ten Fall konnen die interessierenden
Systemgrossen mit Hilfe der Statistik-
funktionen untersucht werden. In die-
sem Bericht wird an Hand eines einfa-
chen Simulationsbeispiels eine Uber-
sicht iiber das Werkzeug und einige
seiner Funktionen gegeben.

Erweiterte Petri-Netze

Die hier verwendeten erweiterten
Petri-Netze bestehen wie die einfachen
Petri-Netze! [2] aus S- und T-Elemen-
ten (Stellen und Transitionen), die als

' Die einfachen Petri-Netze werden auch im
Beitrag von H.P. Gisiger, A. Kiindig auf den Sei-
ten 1026...1034 dieser Nummer beschrieben.

Kreise und Quadrate dargestellt wer-
den und mit Pfeilen verbunden sind.
Die Stellen enthalten durch schwarze
Punkte dargestellte Marken, die beim
Feuern der Transitionen iiber die Pfei-
le fliessen. Eine Transition entfernt
(konsumiert) beim Feuern von allen
Inputstellen eine Marke und legt auf
allen Outputstellen eine neue ab.

Hierarchie

Um komplexe Systeme iibersichtlich
zu modellieren, kénnen die erweiter-
ten Petri-Netze hierarchisch struktu-
riert werden. Dies geschieht durch Ver-
feinern (Differenzieren) der T-Ele-
mente. Verfeinerte T-Elemente - man
nennt sie Module - bestehen aus einem
Netz von weiteren S- und T-Elemen-
ten. Die Figur 1 zeigt ein einfaches Bei-
spiel einer Verfeinerung.

Smalltalk-Objekte als
Marken-Attribute

Die Marken konnen mit Attributen
behaftet sein. Jedes Attribut ist ein
Smalltalk-Objekt. Die Programmier-
sprache Smalltalk arbeitet mit Objek-
ten als Einheiten eines ablaufenden
Programmes. Ein Objekt besteht aus
einer Datenstruktur und Zugriffspro-
zeduren. Diese gehoren zur Definition
der Klasse des Objekts und erscheinen
im Modell nicht. Durch Senden einer
Meldung an das Objekt konnen seine
Daten mit Hilfe der Prozeduren veran-
dert und abgefragt werden. Jedes Ob-
jekt gehort zu einer Klasse, man nennt
es auch eine Instanz seiner Klasse. Die
Klasse definiert, wie sich ein Objekt
beim Empfangen einer Meldung ver-
hélt.

Die Beschriftungen der Netz-Ele-
mente bestehen aus Smalltalk-State-
ments. Diejenigen der Stellen erzeugen
die Anfangsmarkierung. Diejenigen
der Pfeile bestimmen, welche Marken
iiber die Pfeile fliessen konnen. Die

Bulletin SEV/VSE 79(1988)17, 2. September

1035

Systemtechnik

Beschriftungen der Transitionen kon-
nen neue Attribute generieren, beste-
hende verdndern, und die Transitions-
aktivierung von den Markenattributen
abhangig machen.

Inhibitoren

Inhibitoren sind spezielle Inputpfei-
le der Transitionen, die das Feuern
verhindern, falls die Stelle eine ent-
sprechende Marke enthilt. Uber diese
Verbindungen fliesst nie eine Marke.
Sie werden vom Werkzeug mit einem
kleinen Kreis an der Spitze des Pfeiles
gekennzeichnet.

Bedeutung und Modellierung
der Zeit

Unter dem Begriff Zeit versteht man
im allgemeinen einen Wert, der in
einem System global bekannt ist. In
rdumlich verteilten Systemen kann
eine solche Grosse grundsitzlich nicht
existieren. In den urspriinglichen Pe-
tri-Netzen gibt es deshalb keine Zeit.
Trotzdem beobachten wir auch in ver-
teilten Systemen, dass die Hiufigkei-
ten voneinander unabhéngiger Ereig-
nisse in einem bestimmten Verhéltnis
zueinander stehen. Der Zweck von Si-
mulationen ist oft, gerade solche Hiu-
figkeitsverhdltnisse, d.h. Leistungs-
merkmale eines Systems zu untersu-
chen. Das Petri-Netz-Werkzeug bietet
deshalb dem Beniitzer die Moglich-
keit, dem Simulator zusétzliche Infor-
mation iiber die gewiinschte Feue-
rungshiufigkeit der Transitionen ein-
zubringen, indem man ihnen Aktivie-
rungszeiten zuweist. Dies geschieht da-
durch, dass in der Transitionsinschrift
der dafiir reservierten Variablen Delay
ein Wert zugewiesen wird. Die Feue-
rung durch eine aktivierende (d.h. eine
speziell dafiir reservierte Marke) wird
dann um diesen Delay verzogert. An-
dere Marken kdnnen trotzdem gleich-
zeitig die Transition aktivieren bzw.
feuern. Fir andere Transitionen sind
die Marken nicht reserviert, sie kon-
nen von ihnen konsumiert werden.

Funktionen des Werkzeugs

Die Benutzeroberfliche des Petri-
Netz-Werkzeugs ist window-orien-
tiert, wobei verschiedene Typen von
Windows existieren. Die wichtigsten
sind die Editier-, Simulations-, Be-
schriftungs- und Statistik-Windows.
Die Windows enthalten graphisch
oder alphanumerisch dargestellte Ele-
mente, die mit Hilfe der Maus selek-
tiert werden konnen. Das Werkzeug

Figur 1

Hierarchische
Strukturierung von
Petri-Netzen

Module

777

préasentiert auf Wunsch ein Pop-Up-
Menii mit den Funktionen, die bei der
aktuellen Selektion ausgefithrt werden
konnen. Es konnen eine beliebige An-
zahl Windows gleichzeitig auf dem
Bildschirm gedffnet sein. Fir jedes
Modul des Netzes wird ein separates
Window verwendet. Darin sind die
Stellen speziell gekennzeichnet (Raste-
rung), welche mit dem Modul auf der
nachst hoheren Ebene verbunden sind;
sie bilden die Schnittstelle des Moduls
gegen aussen.

Editieren

Der Editor stellt Funktionen zum
Erzeugen, Verbinden, Verschieben,
Beschriften, Verfeinern, Vergrobern,
Loschen und Speichern der Netzele-
mente zur Verfiigung. Beim Ausfithren
jeder Funktion wird gepriift, ob sie das
Modell in korrekter Weise verdndert.
Diese Tests beziehen sich sowohl auf
die graphische Struktur des Modells,
wie auch auf die Syntax der Element-
beschriftungen.

Die Hierarchie eines Netzes kann
nachtriglich verdndert werden. Wenn
ein Modul zu komplex wird, kann aus
einem Teil davon ein neues gebildet
und als Unterknoten in den Modul-
Baum eingefiigt werden. Im aktiven
Modul erscheint dieses neue Modul als
T-Element, zu dem die Schnittstelle
automatisch generiert wird. Ebenso
existiert die Umkehrfunktion, die ein
Modul aus dem Baum entfernt und es
durch die Elemente seiner Verfeine-
rung ersetzt. Durch diese Funktionen
wird der Top-down- und Bottom-up-
Entwurf eines Modells unterstiitzt. Ein
T-Element kann mit seinem gesamten
Unterbaum und seinen Input- und
Outputstellen auf einem File abgespei-
chert werden. Dieser Baum kann in je-
dem Modul wieder eingefiigt werden,
er ist eine Art Bibliotheksmodul. Fir

jedes Netzelement und fiir einen Teil
der Pfeile kann ein Text-Window ge-
d6ffnet werden. Darin kontrolliert ein
Texteditor die Benutzer-Interaktio-
nen. Bei einem Teil der Elemente hat
die Beschriftung eine formale Bedeu-
tung, bei anderen dient sie nur als
Kommentar oder als Name.

Simulation und Animation

Fiir jedes Modul kann ein Simula-
tions-Window geoffnet werden. Darin
werden auch die Marken als schwarze
Punkte auf den Stellen gezeigt. lhre
Attribute werden unter der Stellen-Be-
schriftung beschrieben. Im aktiven
Window wird der Markenfluss ani-
miert, d.h. es werden die Marken mit
ihren Beschriftungen (Attributen) kon-
tinuierlich {iber die Pfeile verschoben.
Somit ist es moglich, das dynamische
Verhalten des Systems fiir eine beliebi-
ge Auswahl von Modulen zu beobach-
ten. Das aktive Modul ist dabei immer
ganz sichtbar. Die Simulation kann
schrittweise ausgefiihrt werden, wobei
die zu feuernde Transition vom Bentit-
zer bestimmt oder zuféllig ausgewéahlt
wird. Zur Unterstiitzung der Fehler-
suche kann auch riickwérts simuliert
werden.

Die aktuelle Markierung kann je-
derzeit durch Hinzufiigen und Entfer-
nen von Marken, oder durch Modifi-
kation der Markenattribute verdndert
werden. Auch gewisse Modelldnde-
rungen sind wahrend der Ausfiihrung
moglich. Bei tiefergreifenden Modifi-
kationen des Modells wird hingegen
die Simulation automatisch neu ge-
startet. Es kann beliebig zwischen Edi-
tieren und Ausfithren abgewechselt
werden, wobei jedes aktive Window
immer den neuesten Stand des Model-

les zeigt.
Fiir alle Elemente des Systems (Stel-
len, Transitionen, Module, Pfeile)

1036

Bulletin ASE/UCS 79(1988)17, 2 septembre

Systemtechnik

kann ein Statistik-Window gedffnet
werden. Darin wird eine von diesem
Element abhingige Grosse laufend
graphisch in einem Histogramm dar-
gestellt. Diese Grosse wird durch eine
vom Beniitzer bestimmbare Funktion
berechnet, die bei jeder Behandlung
des Elementes widhrend der Simula-
tion ausgewertet wird.

Code-Generation

Das Werkzeug bietet die Moglich-
keit, aus einem Modell ein Programm
in der Programmiersprache C zu gene-
rieren. Durch Erzeugung von Test-
sequenzen kann verifiziert werden, ob
dieses sich gleich wie das Modell ver-
halt.

Einige Smalltalk-Klassen (z.B. Inte-
ger, Symbol, Array) wurden in C
nachgebildet. Eine vollstindig auto-
matische Codegeneration ist nur dann
moglich, wenn fiir die verwendeten
Markenattribute und Meldungen eine
C-Implementation existiert. In den ge-
testeten Beispielen konnte ein Effi-
zienzgewinn des generierten C-Codes
gegeniiber der Simulation von bis zu
einem Faktor 40 erreicht werden. Eine
mogliche Anwendung der Codegene-
ration ist zum Beispiel die automati-
sche Implementation eines modellier-
ten Kommunikations-Protokolls, das
zusammen mit seiner Umgebung zu si-
mulieren ist. Eine spezifische Von-
Hand-Implementation wére natiirlich
effizienter. Fiir viele Anwendungen
aber diirfte die Effizienz des automa-
tisch erzeugten Codes hingegen ausrei-
chen. Die Vorteile sind die garantierte
Ubereinstimmung mit dem Modell
und der kleinere Entwicklungsauf-
wand.

Anwendungsbeispiel

Das folgende Simulationsbeispiel
wurde in [3] vorgestellt. Es handelt sich
um ein Rechnersystem, das aus einem
zentralen Rechner und einer Anzahl
Terminals besteht. Diese Terminals
werden von den Beniitzern fiir Infor-
mationsabfragen verwendet. Die fol-
genden Zahlen stammen aus der oben
genannten Quelle:

Die Kunden-Anfragen kommen mit
exponentiell verteilten Intervallen mit
einem Mittel von 0,15 Minuten. Sie
warten auf ein freies Terminal, wobei
die Anzahl wartender Kunden nicht
begrenzt ist. Die Generierung einer
Anfrage auf einem der Terminals
dauert 0,3 bis 0,5 Minuten, gleichver-
teilt. Die Anfrage wartet dann auf die
Bearbeitung durch den Rechner. Die-

Figur 2
Die oberste Ebene des
Rechnersystems { level 0

Kunden

0.2 Terminals Antworten

D Transition Q

Module

O

Stelle

Beschriftung der Tran-
sitionen: generiert und
beeinflusst die Attribute

Beschriftung der
Module: Modulbezeich-
nung, Stellung in der
Hierarchie

Beschriftung der Pfeile:
Liste der Attribute der
dariberfliessenden
Marken (in Klammern)

Beschriftung der Stel-
len: Bezeichnung und
Smalltalk-Code fiir
Anfangsmarkierung
(in Klammern)

ser ist mit einem rotierenden Scanner
ausgeriistet, welcher nach einer
Round-Robin-Strategie der Reihe
nach alle Terminals testet. Eine Rota-
tion dauert 0,0027 Minuten, die glei-
che Zeit wird fiir den Test bendtigt.
Wenn der Scanner bei einem Terminal
eine Anfrage sieht, kopiert er diese in
einen Puffer, was 0,0117 Minuten
dauert. Der Puffer hat drei Platze.
Wenn er voll ist, muss der Scanner
warten. Die Bearbeitung einer Anfrage
dauert eine konstante Zeit von 0,0397
Minuten plus eine gleichverteilte Zeit
zwischen 0,05 und 0,1 Minuten.

Petri-Netz-Modell des
Rechnersystems

Um das Modell fiir diese Einfiih-
rung iibersichtlich zu gestalten, wurde
es relativ stark strukturiert. Es besteht
aus drei hierarchischen Ebenen, wel-
che vier verschiedene Netze enthalten.

Oberstes Modul

Die Figur 2 zeigt eine Editor-Sicht
der obersten Ebene (Level 0). Sie wird
von einem Netz gebildet, welches eine
Transition (weisses Quadrat), zwei
Module (graue Quadrate) und vier
Stellen (Kreise) enthilt. Die Doppel-
pfeile sind eine Abkiirzung fiir einen
hin- und einen zuriickfiihrenden Pfeil.
Sie bedeuten, dass die Marke beim
Feuern der Transition von der Stelle

“Erzeugung der
Kunden-Anfragen"
delay + e next

¢

erzeugte 0.0 Rechner

Terminal-Anfragen

Hilfsstelle fuer Erzeugung der
Ankunftsintervalle der Kunden
(Exponential mean: 0.15)

entfernt und gerade wieder darauf zu-
riickgelegt wird. Die Beschriftungen
der Pfeile bestehen aus einer Liste der
Attribute der dariiberfliessenden Mar-
ken (in runden Klammern). Sehr oft
sind es Variable, die auch in der Tran-
sitionsinschrift verwendet werden
konnen und als Wert das Markenattri-
but enthalten.

Die Transition des obersten Moduls
(Fig. 2, weisses Viereck) erzeugt die
Marken, welche die Kunden représen-
tieren. Der Pfeil zur Stelle, welche die
wartenden Kunden enthilt, hat keine
Beschriftung. Dies bedeutet, dass die
generierten Marken keine Attribute
haben. Die Transition ist zudem mit-
tels eines Doppelpfeils mit der Hilfs-
stelle fir die Erzeugung der Ankunfts-
intervalle verbunden. Der Doppelpfeil
hat nur eine Beschriftung, die Transi-
tion legt darum die Marke unverin-
dert wieder auf der Stelle ab. Die Va-
riable e der Pfeilbeschriftung erhilt
beim Feuern als Wert das Attribut der
Marke der Hilfsstelle, welches eine In-
stanz der Klasse Exponential ist (Def.
s. Smalltalk-Objekte als Markenattri-
bute). In der Beschriftung der Stelle
zeigt der Editor den Smalltalk-Code
(in runden Klammern), der die Attri-
bute der Anfangsmarken generiert.
Dieser Code wird nur einmal, beim
Start der Simulation, ausgefiihrt. Der
Code der Hilfsstelle besagt, dass der
Klasse Exponential die Meldung

Bulletin SEV/VSE 79(1988)17, 2. September

1037

Systemtechnik

mean: mit dem Parameter 0,15 ge-
schickt wird, wodurch eine Instanz
dieser Klasse erzeugt wird, die dann
das (einzige) Attribut der Anfangsmar-
ke hervorbringt. Beim Feuern der
Transition wird dieser Instanz, die
durch die Variable e reprisentiert
wird, jeweils die Meldung next ge-
schickt, worauf diese die nichste ex-
ponentiell verteilte Zufallszahl (e next)
mit dem Mittelwert 0,15 erzeugt. Diese
wird der reservierten Variablen Delay
zugewiesen, so dass die Transition mit
einer entsprechenden Zeitverzogerung
feuert. Das Modul Terminals konsu-
miert die Kunden-Marken, schickt
dem Rechner Anfragen und konsu-
miert dessen Antworten. Die Pfeile
von Modulen haben nie eine Beschrif-
tung; man sieht ihnen also die Art und
Anzahl Attribute der dariiberfliessen-
den Marken nicht an. Der Rechner
konsumiert die Terminal-Anfragen
und schickt die Antworten zuriick.

Modul Terminals

Die Figur 3 zeigt die Verfeinerung
des Moduls Terminals. Die grau gera-
sterten Stellen gehdren nicht zum Mo-
dul selber, sondern sind Input- oder
Outputstellen des Moduls auf der
nichst hoheren Ebene. Sie kénnen
aber trotzdem in diesem Modul mit
Transitionen verbunden werden, aller-
dings nur in diejenige Richtung, in der
auch auf der oberen Ebene eine Ver-
bindung existiert. Stellen kénnen auf
diese Art in einer beliebigen Anzahl
Ebenen erscheinen.

Die Transition (in der Mitte) gene-
riert ohne Verzogerung eine Anfrage,
wenn mindestens ein Kunde wartet
und mindestens ein Terminal frei ist.
Die freien Terminals werden durch
Marken auf der Stelle freie Terminals
représentiert, am Anfang sind alle Ter-
minals frei. Diese Marken haben als
Attribut einen Integer, der das Termi-
nal kennzeichnet. Die entsprechende
Variable t (fiir Integerzahl 0 bis 5)
kommt sowohl an einem Input- wie
auch an einem Output-Pfeil vor. Der
Integer-Wert des Terminals wird da-
durch als erstes von zwei Attributen
der Outputmarke (t b) mitgegeben. Die
Hilfsstelle fur die Erzeugung der Ter-
minal-Bedienzeiten enthilt immer eine
Marke mit einer Instanz der Klasse
Uniform als Attribut, sie ist bereits in
der Anfangsmarkierung vorhanden.
Schickt man einer solchen Instanz die
Meldung next, was beim Feuern der
Transition gemacht wird, antwortet sie
mit einer gleichverteilten Zufallszahl
aus dem Intervall, das bei der Erzeu-

Figur 3 e
Editor-Sicht des Febiediias
Moduls Terminals H level 0.2 Terminals

freie Terminals

G

(0)
M)
@)
3)
(4)
(%)

Kunden

(t)

Antwarten

Terminal-Anfragen
mit Bedienzeiten

Hilfsstelle fuer Erzeugung
der Terminal-Bedienzeiten

(Uniform from: 0.3 to1 0.5)

gung der Instanz angegeben wurde
(hier 0,3 bis 0,5). Diese Zufallszahl (u
next) wird als zweites Attribut b der
Outputmarke (t b) zugewiesen. Die
néchste Transition wird um den Wert
dieses Markenattributes verzogert.
Nach Ablauf des Delays erzeugt sie
eine Marke, welche nur noch die Ter-
minal-Nummer als Attribut enthilt.

Figur 4
Das Modul Rechner

net editor e

level 0.0 Rechner

erzeugte
Terminal-Anfragen

Man beachte, dass mehrere Marken
gleichzeitig auf den Ablauf ihres De-
lays warten konnen. Die Transition
oben rechts kopiert die Antworten
ohne Verzogerung auf die Stelle freie
Terminals.

Modul Rechner
Die Figur 4 zeigt das Modul Rechner

2u bedienendes
Terminal

“Kopieren in den Puffer"
delay €« 0.0117

B Hilfsstelle fuer Erzeugung
Hl der Reohner-Bedlenzeiten
i (Uniform from: 0,05 to: 0.1)

Antworten

O

“Bearbeitung der Anfrage"
delay ¢ u next + 0.0397

1038

Bulletin ASE/UCS 79(1988)17, 2 septembre

Systemtechnik

! net simulator |

Figur 5
Simulatorsicht der

i level 0

wartende Kunden

O

obersten Ebene mit
Statistik der
wartenden Kunden

Antworten

0

SElement-Statistics

wartende Kunden

erzeugte ...Anfragen

1/0Iv
"Erzeugung der
Kunden-Anfragen”

und der Ankunfts-
intervalle

0.0 Rechner

TramiliomSutinicxI

delay ¢« e next

"Erzeugun...¢ e next

9

Hilfsstel...r Kunden
(an Exponential)

0.0798775 / DIV

der zweiten Ebene. Es enthilt ein wei-
teres Modul Scanner-Rotation. Dieses
liest die Marken der Stelle erzeugte
Terminal-Anfragen und verindert nur
diejenigen der Stelle zu bedienendes
Terminal, obwohl das auf dieser Ebene
nicht ersichtlich ist. Man sieht ledig-
lich, dass im Modul Scanner-Rotation
von beiden Stellen Marken entfernt
und darauf abgelegt werden konnen.
Die Transition in der Mitte ist nur
dann feuerbar, wenn eine Terminal-
Anfrage vorhanden ist, deren Num-
mer gleich dem Attribut der Marke auf
der Stelle zu bedienendes Terminal ist.
Diese Anforderung muss deshalb er-
fiillt sein, weil beide Input-Pfeile der
Transition mit der gleichen Variablen
beschriftet sind. Eine weitere Bedin-
gung fiir die Feuerbarkeit ist, dass auf
der Stelle Puffer weniger als 3 Marken
liegen. Die Kapazitit dieser Stelle ist
auf 3 beschriankt. Die Transition wird
um eine konstante Zeit verzogert. Die
untere Transition modelliert schliess-
lich die Bearbeitung der Anfrage. Sie
wird um eine konstante Zeit plus eine
gleichverteilte Auswahl aus dem Inter-
vall 0.05 bis 0.1 verzogert. Beide Tran-
sitionen in diesem Modul kénnen nur
von einer Anfrage gleichzeitig akti-
viert sein, weil sie beide eine Inputstel-
le haben, die immer nur eine Marke
enthilt. Das System hat ja auch nur
einen Scanner und einen Rechner.

Modul Scanner-Rotation

Dieses Modul sorgt dafiir, dass das
Attribut der Marke auf der Stelle zu
bedienendes Terminal zyklisch dndert.
Es wird hier nicht gezeigt.

Simulation des Modells

Die Figur 5 zeigt eine Simulator-
Sicht des obersten Moduls. Es wird ge-
rade das Feuern einer Transition im
Modul Terminals animiert, welche die
Marke mit dem Attribut 5 auf die Stel-
le erzeugte Terminal-Anfragen legt.
Das linke Statistik-Window zeigt in
x-Richtung die Anzahl wartender
Kunden, und in y-Richtung die Dauer,
wihrend welcher diese Anzahl regi-
striert wurde. Der erste Balken gibt an,
iber welche Zeitdauer diese Anzahl
grosser oder gleich null und kleiner als
eins - weil in diesem Fall nur ganze
Zahlen moglich sind -, also null war.
Man sieht, dass sehr selten ein Kunde
warten musste, dass aber trotzdem fur
sehr kurze Zeit einmal eine Schlange
von 6 Kunden vorhanden war. Das
zweite Statistik-Window enthilt die
Intervalle zwischen den ankommen-
den Kunden. Es zeigt die erwartete Ex-
ponentialverteilung.

Die Figur 6 ist eine Simulator-Sicht
des Moduls Terminals. Man sieht, wie
die Inputmarken {iber die Pfeile einer
Transition verschoben werden. Die
Auslastung der Terminals (linke Stati-
stik) und die Verteilung der Bedienzei-
ten wurden statistisch erfasst.

Nun wollen wir betrachten, wie sich
das Rechnersystem verhilt, wenn es
mit nur 3 anstatt 6 Terminals ausgerii-

freie Terminals

(t)

Figur 6
Simulator-Window :
fiir das Modul leval 0.2 Terminals
Terminals mit SElement-Statistics
Statistik der veie Terminal
Terminalbelegung
und Bedienzeiten

1/ DIV

wartende Kunden

@)

(1)

Terminal-..enzeiten
(3 0.437979)
(tb) 4 0ARZ802)

o @

O

Hilfsstel..enzeitd -

¢
b «[u next (00N

TConneclor-Sutinic:l

D

(an @nifform)

0.05 7 DI

erzeugte ..Anfragen

Bulletin SEV/VSE 79(1988)17, 2. September

1039

Systemtechnik

stet ist. Die Figur 7 zeigt die resultie-
rende Statistik der wartenden Kunden.
Meistens lag deren Anzahl zwischen
35 und 40, und zeitweise mussten bis
zu 49 Kunden warten. Mit 3 Terminals
ist das System also iiberlastet, wihrend
es mit 5 und sogar mit 4 noch akzepta-
bel arbeitete.

Das hier vorgestellte Werkzeug ist
an der Swissdata an den Stidnden
212.255 und 211.315 zu sehen. In-
teressenten kénnen sich auch direkt
an den Autor wenden.

Bei komplexen Systemen konnen
solche Leistungsaussagen nur mit Hil-
fe von Simulationen gemacht werden.
Das Petri-Netz-Werkzeug erlaubt ein
interaktives Verdndern des Systems,
wobei die Resultate sofort auf dem
Bildschirm sichtbar werden.

Modellierungsaufwand

Wenn man mit den erweiterten Pe-
tri-Netzen und der Bedienung des
Werkzeuges einmal vertraut ist, kann
ein System sehr schnell modelliert wer-
den. Eine typische Anwendung eines
solchen Tools geschieht aber oft in
einer Phase, wo das zu untersuchende
System noch gar nicht genau bekannt
ist. Das heisst, man lernt es gerade

Figur7
Statistik der

et simulator

wartenden Kunden
bei 3 Terminals

evel 0
Kunden

0]

0.2 Terminals Antworten

0]

Element-Statlistics

@

Kunden

5/ DIV

erzeugte ..Anfragen 0.0 Rechner

"Erzeugung der

Kunden-Anfragen"
delay ¢ e next

Hilfsstel..r Kunden
(an Exponential)

durch die Modellierung und Optimie-
rung kennen und spezifiziert es damit
exakt. Als Resultat erhidlt man neben
der exakten Spezifikation auch Lei-
stungsaussagen und eventuell bereits
das Programm, wenn das System oder
ein Teil davon in Software realisiert
werden soll. Wichtig ist dabei, dass
durch die Bedienung des Werkzeuges
nicht erheblicher zuséatzlicher Auf-
wand entsteht, was hier dank der Be-

"Erzeugun..¢ e next

0.0639412 / DIV

nitzerfreundlichkeit der Smalltalk-

Umgebung der Fall ist.

Literatur

[1]1 A. Goldberg and D. Robson: Smalltalk-80.
The language and its implementation. Read-
ing/Massachusetts, Addison-Wesley, 1985.

[2] W. Reisig: Systementwurf mit Netzen. Berlin
u.a., Springer-Verlag, 1985.

[3] G.M. Birtwistle: A system for discrete event
modelling on simula. London and Basing-
stoke, MacMillan, 1979.

1040

Bulletin ASE/UCS 79(1988)17, 2 septembre

	Ein interaktives Simulations- und Programmgenerations-Werkzeug für erweiterte Petri-Netze

