
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 79 (1988)

Heft: 17

Artikel: Ein interaktives Simulations- und Programmgenerations-Werkzeug für
erweiterte Petri-Netze

Autor: Dähler, J.

DOI: https://doi.org/10.5169/seals-904072

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904072
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Systemtechnik

Ein interaktives Simulations- und
Programmgenerations-Werkzeug für
erweiterte Petri-Netze
J. Dähler

Petri-Netze eignen sich für die
Beschreibung von diskreten,
ereignisorientierten, verteilten
Systemen. Sie können als
Entwurfs- und Spezifikationsmodell
sowie als Simulationswerkzeug
für Leistungsuntersuchungen
verwendet werden. In diesem
Bericht wird ein Werkzeug
beschrieben, das am Institut für
Elektronik an der ETH Zürich
entwickelt wurde. Es unterstützt das
graphische Editieren, das
Simulieren, und das automatische
Erzeugen eines C-Programmes
von erweiterten Petri-Netzen.

Les réseaux de Pétri se prêtent
bien à la description de systèmes
répartis, discrets et orientés
événements. Ils peuvent s'utiliser
comme modèle de projet et de
spécification ainsi que comme
outil de simulation. Dans ce
rapport est décrit un outil qui a été
développé à l'EPFZurich.
Il assiste l'édition graphique,
la simulation, la génération
automatique de programmes C de
réseaux de Pétri élargis.

Adresse des Autors
Jacques Dähler, Dipl. El.-Ing. ETH,
Institut für Elektronik, 8092 Zürich.

Das in diesem Bericht beschriebene
Werkzeug unterstützt das graphische
Editieren, das Simulieren, und das
automatische Erzeugen eines
C-Programmes von erweiterten Petri-Net-
zen. Die Netzelemente werden mit der
Programmiersprache Smalltalk-80 [1]
beschriftet. Smalltalk ist eine
objektorientierte Programmiersprache, für
die eine mächtige Entwicklungsumgebung

existiert. Diese stellt Hilfsmittel
für die Konstruktion window-orien-
tierter, interaktiver Applikationen zur
Verfügung. Leistungsfähige
Implementationen dieser Sprache sind nun
für praktisch alle modernen
Arbeitsstationen erhältlich. Das hier beschriebene

Werkzeug kann auf diese Rechner

mit wenig Aufwand portiert werden.

Die Petri-Netze eignen sich für die
Beschreibung von diskreten,
ereignisorientierten, verteilten Systemen. Sie
können als Entwurfs- und
Spezifikationsmodell sowie als Simulationswerkzeug

für Leistungsuntersuchungen
verwendet werden. Im ersten Fall

kann für die in Software zu realisierenden

Teile des Systems ein Programm
automatisch erzeugt werden, im zweiten

Fall können die interessierenden
Systemgrössen mit Hilfe der
Statistikfunktionen untersucht werden. In
diesem Bericht wird an Hand eines einfachen

Simulationsbeispiels eine Übersicht

über das Werkzeug und einige
seiner Funktionen gegeben.

Erweiterte Petri-Netze
Die hier verwendeten erweiterten

Petri-Netze bestehen wie die einfachen
Petri-Netze1 [2] aus S- und T-Elemen-
ten (Stellen und Transitionen), die als

1 Die einfachen Petri-Netze werden auch im
Beitrag von H.P. Gisiger, A. Kündig auf den Seiten

1026...1034 dieser Nummer beschrieben.

Kreise und Quadrate dargestellt werden

und mit Pfeilen verbunden sind.
Die Stellen enthalten durch schwarze
Punkte dargestellte Marken, die beim
Feuern der Transitionen über die Pfeile

fliessen. Eine Transition entfernt
(konsumiert) beim Feuern von allen
Inputstellen eine Marke und legt auf
allen Outputstellen eine neue ab.

Hierarchie
Um komplexe Systeme übersichtlich

zu modellieren, können die erweiterten

Petri-Netze hierarchisch strukturiert

werden. Dies geschieht durch
Verfeinern (Differenzieren) der T-Ele-
mente. Verfeinerte T-Elemente - man
nennt sie Module - bestehen aus einem
Netz von weiteren S- und T-Elemen-
ten. Die Figur 1 zeigt ein einfaches
Beispiel einer Verfeinerung.

Smalltalk-Objekte als
Marken-Attribute
Die Marken können mit Attributen

behaftet sein. Jedes Attribut ist ein
Smalltalk-Objekt. Die Programmiersprache

Smalltalk arbeitet mit Objekten

als Einheiten eines ablaufenden
Programmes. Ein Objekt besteht aus
einer Datenstruktur und Zugriffsprozeduren.

Diese gehören zur Definition
der Klasse des Objekts und erscheinen
im Modell nicht. Durch Senden einer
Meldung an das Objekt können seine
Daten mit Hilfe der Prozeduren verändert

und abgefragt werden. Jedes
Objekt gehört zu einer Klasse, man nennt
es auch eine Instanz seiner Klasse. Die
Klasse definiert, wie sich ein Objekt
beim Empfangen einer Meldung
verhält.

Die Beschriftungen der Netz-Elemente

bestehen aus Smalltalk-Statements.

Diejenigen der Stellen erzeugen
die Anfangsmarkierung. Diejenigen
der Pfeile bestimmen, welche Marken
über die Pfeile fliessen können. Die

Bulletin SEV/VSE 79(1988)17, 2. September 1035



Systemtechnik

Beschriftungen der Transitionen können

neue Attribute generieren,
bestehende verändern, und die Transitionsaktivierung

von den Markenattributen
abhängig machen.

Inhibitoren
Inhibitoren sind spezielle Inputpfei-

le der Transitionen, die das Feuern
verhindern, falls die Stelle eine
entsprechende Marke enthält. Über diese

Verbindungen fliesst nie eine Marke.
Sie werden vom Werkzeug mit einem
kleinen Kreis an der Spitze des Pfeiles
gekennzeichnet.

Bedeutung und Modellierung
der Zeit
Unter dem Begriff Zeit versteht man

im allgemeinen einen Wert, der in
einem System global bekannt ist. In
räumlich verteilten Systemen kann
eine solche Grösse grundsätzlich nicht
existieren. In den ursprünglichen Pe-
tri-Netzen gibt es deshalb keine Zeit.
Trotzdem beobachten wir auch in
verteilten Systemen, dass die Häufigkeiten

voneinander unabhängiger Ereignisse

in einem bestimmten Verhältnis
zueinander stehen. Der Zweck von
Simulationen ist oft, gerade solche
Häufigkeitsverhältnisse, d.h. Leistungsmerkmale

eines Systems zu untersuchen.

Das Petri-Netz-Werkzeug bietet
deshalb dem Benützer die Möglichkeit,

dem Simulator zusätzliche
Information über die gewünschte
Feuerungshäufigkeit der Transitionen
einzubringen, indem man ihnen
Aktivierungszeiten zuweist. Dies geschieht
dadurch, dass in der Transitionsinschrift
der dafür reservierten Variablen Delay
ein Wert zugewiesen wird. Die Feuerung

durch eine aktivierende (d.h. eine
speziell dafür reservierte Marke) wird
dann um diesen Delay verzögert.
Andere Marken können trotzdem gleichzeitig

die Transition aktivieren bzw.
feuern. Für andere Transitionen sind
die Marken nicht reserviert, sie können

von ihnen konsumiert werden.

Funktionen des Werkzeugs
Die Benutzeroberfläche des Petri-

Netz-Werkzeugs ist window-orien-
tiert, wobei verschiedene Typen von
Windows existieren. Die wichtigsten
sind die Editier-, Simulations-, Be-

schriftungs- und Statistik-Windows.
Die Windows enthalten graphisch
oder alphanumerisch dargestellte
Elemente, die mit Hilfe der Maus selektiert

werden können. Das Werkzeug

Figur 1

Hierarchische
Strukturierung von
Petri-Netzen

Module

präsentiert auf Wunsch ein Pop-Up-
Menü mit den Funktionen, die bei der
aktuellen Selektion ausgeführt werden
können. Es können eine beliebige
Anzahl Windows gleichzeitig auf dem
Bildschirm geöffnet sein. Für jedes
Modul des Netzes wird ein separates
Window verwendet. Darin sind die
Stellen speziell gekennzeichnet (Raste-
rung), welche mit dem Modul auf der
nächst höheren Ebene verbunden sind;
sie bilden die Schnittstelle des Moduls
gegen aussen.

Editieren
Der Editor stellt Funktionen zum

Erzeugen, Verbinden, Verschieben,
Beschriften, Verfeinern, Vergröbern,
Löschen und Speichern der Netzelemente

zur Verfügung. Beim Ausführen
jeder Funktion wird geprüft, ob sie das
Modell in korrekter Weise verändert.
Diese Tests beziehen sich sowohl auf
die graphische Struktur des Modells,
wie auch auf die Syntax der
Elementbeschriftungen.

Die Hierarchie eines Netzes kann
nachträglich verändert werden. Wenn
ein Modul zu komplex wird, kann aus
einem Teil davon ein neues gebildet
und als Unterknoten in den Modul-
Baum eingefügt werden. Im aktiven
Modul erscheint dieses neue Modul als
T-Element, zu dem die Schnittstelle
automatisch generiert wird. Ebenso
existiert die Umkehrfunktion, die ein
Modul aus dem Baum entfernt und es

durch die Elemente seiner Verfeinerung

ersetzt. Durch diese Funktionen
wird der Top-down- und Bottom-up-
Entwurf eines Modells unterstützt. Ein
T-Element kann mit seinem gesamten
Unterbaum und seinen Input- und
Outputstellen auf einem File abgespeichert

werden. Dieser Baum kann in
jedem Modul wieder eingefügt werden,
er ist eine Art Bibliotheksmodul. Für

jedes Netzelement und für einen Teil
der Pfeile kann ein Text-Window
geöffnet werden. Darin kontrolliert ein
Texteditor die Benutzer-Interaktionen.

Bei einem Teil der Elemente hat
die Beschriftung eine formale Bedeutung,

bei anderen dient sie nur als
Kommentar oder als Name.

Simulation und Animation
Für jedes Modul kann ein

Simulations-Window geöffnet werden. Darin
werden auch die Marken als schwarze
Punkte auf den Stellen gezeigt. Ihre
Attribute werden unter der Stellen-Beschriftung

beschrieben. Im aktiven
Window wird der Markenfluss
animiert, d.h. es werden die Marken mit
ihren Beschriftungen (Attributen)
kontinuierlich über die Pfeile verschoben.
Somit ist es möglich, das dynamische
Verhalten des Systems für eine beliebige

Auswahl von Modulen zu beobachten.

Das aktive Modul ist dabei immer
ganz sichtbar. Die Simulation kann
schrittweise ausgeführt werden, wobei
die zu feuernde Transition vom Benützer

bestimmt oder zufällig ausgewählt
wird. Zur Unterstützung der Fehlersuche

kann auch rückwärts simuliert
werden.

Die aktuelle Markierung kann
jederzeit durch Hinzufügen und Entfernen

von Marken, oder durch Modifikation

der Markenattribute verändert
werden. Auch gewisse Modelländerungen

sind während der Ausführung
möglich. Bei tiefergreifenden
Modifikationen des Modells wird hingegen
die Simulation automatisch neu
gestartet. Es kann beliebig zwischen
Editieren und Ausführen abgewechselt
werden, wobei jedes aktive Window
immer den neuesten Stand des Modelles

zeigt.
Für alle Elemente des Systems (Stellen,

Transitionen, Module, Pfeile)

1036 Bulletin ASE/UCS 79(1988)17,2 septembre



Systemtechnik

kann ein Statistik-Window geöffnet
werden. Darin wird eine von diesem
Element abhängige Grösse laufend
graphisch in einem Histogramm
dargestellt. Diese Grösse wird durch eine
vom Benützer bestimmbare Funktion
berechnet, die bei jeder Behandlung
des Elementes während der Simulation

ausgewertet wird.

Code-Generation
Das Werkzeug bietet die Möglichkeit,

aus einem Modell ein Programm
in der Programmiersprache C zu
generieren. Durch Erzeugung von
Testsequenzen kann verifiziert werden, ob
dieses sich gleich wie das Modell
verhält.

Einige Smalltalk-Klassen (z.B. Integer,

Symbol, Array) wurden in C
nachgebildet. Eine vollständig
automatische Codegeneration ist nur dann
möglich, wenn für die verwendeten
Markenattribute und Meldungen eine
C-Implementation existiert. In den
getesteten Beispielen konnte ein
Effizienzgewinn des generierten C-Codes
gegenüber der Simulation von bis zu
einem Faktor 40 erreicht werden. Eine
mögliche Anwendung der Codegeneration

ist zum Beispiel die automatische

Implementation eines modellierten

Kommunikations-Protokolls, das
zusammen mit seiner Umgebung zu
simulieren ist. Eine spezifische Von-
Hand-Implementation wäre natürlich
effizienter. Für viele Anwendungen
aber dürfte die Effizienz des automatisch

erzeugten Codes hingegen ausreichen.

Die Vorteile sind die garantierte
Übereinstimmung mit dem Modell
und der kleinere Entwicklungsaufwand.

Anwendungsbeispiel
Das folgende Simulationsbeispiel

wurde in [3] vorgestellt. Es handelt sich
um ein Rechnersystem, das aus einem
zentralen Rechner und einer Anzahl
Terminals besteht. Diese Terminals
werden von den Benützern für
Informationsabfragen verwendet. Die
folgenden Zahlen stammen aus der oben
genannten Quelle:

Die Kunden-Anfragen kommen mit
exponentiell verteilten Intervallen mit
einem Mittel von 0,15 Minuten. Sie

warten auf ein freies Terminal, wobei
die Anzahl wartender Kunden nicht
begrenzt ist. Die Generierung einer
Anfrage auf einem der Terminals
dauert 0,3 bis 0,5 Minuten, gleichverteilt.

Die Anfrage wartet dann auf die
Bearbeitung durch den Rechner. Die-

Figur 2

Die oberste Ebene des

Rechnersystems

o

Transition

Module

Stelle

Beschriftung der
Transitionen: generiert und
beeinflusst die Attribute

Beschriftung der
Module: Modulbezeichnung,

Stellung in der
Hierarchie

Beschriftung der Pfeile:
Liste der Attribute der
darüberfliessenden
Marken (in Klammern)

Beschriftung der Stellen:

Bezeichnung und
Smalltalk-Code für
Anfangsmarkierung
(in Klammern)

ser ist mit einem rotierenden Scanner
ausgerüstet, welcher nach einer
Round-Robin-Strategie der Reihe
nach alle Terminals testet. Eine Rotation

dauert 0,0027 Minuten, die gleiche

Zeit wird für den Test benötigt.
Wenn der Scanner bei einem Terminal
eine Anfrage sieht, kopiert er diese in
einen Puffer, was 0,0117 Minuten
dauert. Der Puffer hat drei Plätze.
Wenn er voll ist, muss der Scanner
warten. Die Bearbeitung einer Anfrage
dauert eine konstante Zeit von 0,0397
Minuten plus eine gleichverteilte Zeit
zwischen 0,05 und 0,1 Minuten.

Petri-Netz-Modell des
Rechnersystems
Um das Modell für diese Einführung

übersichtlich zu gestalten, wurde
es relativ stark strukturiert. Es besteht
aus drei hierarchischen Ebenen, welche

vier verschiedene Netze enthalten.

Oberstes Modul
Die Figur 2 zeigt eine Editor-Sicht

der obersten Ebene (Level 0). Sie wird
von einem Netz gebildet, welches eine
Transition (weisses Quadrat), zwei
Module (graue Quadrate) und vier
Stellen (Kreise) enthält. Die Doppelpfeile

sind eine Abkürzung für einen
hin- und einen zurückführenden Pfeil.
Sie bedeuten, dass die Marke beim
Feuern der Transition von der Stelle

entfernt und gerade wieder darauf
zurückgelegt wird. Die Beschriftungen
der Pfeile bestehen aus einer Liste der
Attribute der darüberfliessenden Marken

(in runden Klammern). Sehr oft
sind es Variable, die auch in der
Transitionsinschrift verwendet werden
können und als Wert das Markenattribut

enthalten.
Die Transition des obersten Moduls

(Fig. 2, weisses Viereck) erzeugt die
Marken, welche die Kunden repräsentieren.

Der Pfeil zur Stelle, welche die
wartenden Kunden enthält, hat keine
Beschriftung. Dies bedeutet, dass die
generierten Marken keine Attribute
haben. Die Transition ist zudem mittels

eines Doppelpfeils mit der Hilfsstelle

für die Erzeugung der Ankunftsintervalle

verbunden. Der Doppelpfeil
hat nur eine Beschriftung, die Transition

legt darum die Marke unverändert

wieder auf der Stelle ab. Die
Variable e der Pfeilbeschriftung erhält
beim Feuern als Wert das Attribut der
Marke der Hilfsstelle, welches eine
Instanz der Klasse Exponential ist (Def.
s. Smalltalk-Objekte als Markenattribute).

In der Beschriftung der Stelle
zeigt der Editor den Smalltalk-Code
(in runden Klammern), der die Attribute

der Anfangsmarken generiert.
Dieser Code wird nur einmal, beim
Start der Simulation, ausgeführt. Der
Code der Hilfsstelle besagt, dass der
Klasse Exponential die Meldung

Bulletin SEV/VSE 79(1988)17,2. September 1037



Systemtechnik

J net editor '

level 0.2 Terminals
freie Termlnals

T erminal-Anfragen

mean: mit dem Parameter 0,15
geschickt wird, wodurch eine Instanz
dieser Klasse erzeugt wird, die dann
das (einzige) Attribut der Anfangsmarke

hervorbringt. Beim Feuern der
Transition wird dieser Instanz, die
durch die Variable e repräsentiert
wird, jeweils die Meldung next
geschickt, worauf diese die nächste ex-
ponentiell verteilte Zufallszahl (e next)
mit dem Mittelwert 0,15 erzeugt. Diese
wird der reservierten Variablen Delay
zugewiesen, so dass die Transition mit
einer entsprechenden Zeitverzögerung
feuert. Das Modul Terminals konsumiert

die Kunden-Marken, schickt
dem Rechner Anfragen und konsumiert

dessen Antworten. Die Pfeile
von Modulen haben nie eine Beschriftung;

man sieht ihnen also die Art und
Anzahl Attribute der darüberfliessen-
den Marken nicht an. Der Rechner
konsumiert die Terminal-Anfragen
und schickt die Antworten zurück.

Modul Terminals

Die Figur 3 zeigt die Verfeinerung
des Moduls Terminals. Die grau
gerasterten Stellen gehören nicht zum Modul

selber, sondern sind Input- oder
Outputstellen des Moduls auf der
nächst höheren Ebene. Sie können
aber trotzdem in diesem Modul mit
Transitionen verbunden werden,
allerdings nur in diejenige Richtung, in der
auch auf der oberen Ebene eine
Verbindung existiert. Stellen können auf
diese Art in einer beliebigen Anzahl
Ebenen erscheinen.

Die Transition (in der Mitte) generiert

ohne Verzögerung eine Anfrage,
wenn mindestens ein Kunde wartet
und mindestens ein Terminal frei ist.
Die freien Terminals werden durch
Marken auf der Stelle freie Terminals
repräsentiert, am Anfang sind alle
Terminals frei. Diese Marken haben als
Attribut einen Integer, der das Terminal

kennzeichnet. Die entsprechende
Variable t (für Integerzahl 0 bis 5)
kommt sowohl an einem Input- wie
auch an einem Output-Pfeil vor. Der
Integer-Wert des Terminals wird
dadurch als erstes von zwei Attributen
der Outputmarke (t b) mitgegeben. Die
Hilfsstelle für die Erzeugung der
Terminal-Bedienzeiten enthält immer eine
Marke mit einer Instanz der Klasse
Uniform als Attribut, sie ist bereits in
der Anfangsmarkierung vorhanden.
Schickt man einer solchen Instanz die
Meldung next, was beim Feuern der
Transition gemacht wird, antwortet sie
mit einer gleichverteilten Zufallszahl
aus dem Intervall, das bei der Erzeu-

Figur3
Editor-Sicht des

Moduls Terminals

gung der Instanz angegeben wurde
(hier 0,3 bis 0,5). Diese Zufallszahl (u
next) wird als zweites Attribut b der
Outputmarke (t b) zugewiesen. Die
nächste Transition wird um den Wert
dieses Markenattributes verzögert.
Nach Ablauf des Delays erzeugt sie
eine Marke, welche nur noch die
Terminal-Nummer als Attribut enthält.

Figur 4
Das Modul Rechner

Man beachte, dass mehrere Marken
gleichzeitig auf den Ablauf ihres
Delays warten können. Die Transition
oben rechts kopiert die Antworten
ohne Verzögerung auf die Stelle freie
Terminals.

Modul Rechner

Die Figur 4 zeigt das Modul Rechner

net editor V. ^ .w

level 0.0 Rechner zu bedienendes

Terminal

"Bearbeitung der Anfrage"
delay «- u next 0.0397

1038 Bulletin ASE/UCS 79(1988)17, 2 septembre



Systemtechnik

Figur 5
Simulatorsicht der
obersten Ebene mit
Statistik der
wartenden Kunden
und der Ankunftsintervalle

der zweiten Ebene. Es enthält ein
weiteres Modul Scanner-Rotation. Dieses
liest die Marken der Stelle erzeugte
Terminal-Anfragen und verändert nur
diejenigen der Stelle zu bedienendes
Terminal, obwohl das auf dieser Ebene
nicht ersichtlich ist. Man sieht lediglich,

dass im Modul Scanner-Rotation
von beiden Stellen Marken entfernt
und darauf abgelegt werden können.
Die Transition in der Mitte ist nur
dann feuerbar, wenn eine Terminal-
Anfrage vorhanden ist, deren Nummer

gleich dem Attribut der Marke auf
der Stelle zu bedienendes Terminal ist.
Diese Anforderung muss deshalb
erfüllt sein, weil beide Input-Pfeile der
Transition mit der gleichen Variablen
beschriftet sind. Eine weitere Bedingung

für die Feuerbarkeit ist, dass auf
der Stelle Puffer weniger als 3 Marken
liegen. Die Kapazität dieser Stelle ist
auf 3 beschränkt. Die Transition wird
um eine konstante Zeit verzögert. Die
untere Transition modelliert schliesslich

die Bearbeitung der Anfrage. Sie
wird um eine konstante Zeit plus eine
gleichverteilte Auswahl aus dem Intervall

0.05 bis 0.1 verzögert. Beide
Transitionen in diesem Modul können nur
von einer Anfrage gleichzeitig aktiviert

sein, weil sie beide eine Inputstel-
le haben, die immer nur eine Marke
enthält. Das System hat ja auch nur
einen Scanner und einen Rechner.

Modul Scanner-Rotation

Dieses Modul sorgt dafür, dass das
Attribut der Marke auf der Stelle zu
bedienendes Terminal zyklisch ändert.
Es wird hier nicht gezeigt.

Simulation des Modells
Die Figur 5 zeigt eine Simulator-

Sicht des obersten Moduls. Es wird
gerade das Feuern einer Transition im
Modul Terminals animiert, welche die
Marke mit dem Attribut 5 auf die Stelle

erzeugte Terminal-Anfragen legt.
Das linke Statistik-Window zeigt in
x-Richtung die Anzahl wartender
Kunden, und in y-Richtung die Dauer,
während welcher diese Anzahl
registriert wurde. Der erste Balken gibt an,
über welche Zeitdauer diese Anzahl
grösser oder gleich null und kleiner als
eins - weil in diesem Fall nur ganze
Zahlen möglich sind -, also null war.
Man sieht, dass sehr selten ein Kunde
warten musste, dass aber trotzdem für
sehr kurze Zeit einmal eine Schlange
von 6 Kunden vorhanden war. Das
zweite Statistik-Window enthält die
Intervalle zwischen den ankommenden

Kunden. Es zeigt die erwartete Ex-
ponentialverteilung.

Die Figur 6 ist eine Simulator-Sicht
des Moduls Terminals. Man sieht, wie
die Inputmarken über die Pfeile einer
Transition verschoben werden. Die
Auslastung der Terminals (linke Statistik)

und die Verteilung der Bedienzeiten

wurden statistisch erfasst.

Nun wollen wir betrachten, wie sich
das Rechnersystem verhält, wenn es

mit nur 3 anstatt 6 Terminals ausgerü-

Figur6
Simulator-Window
für das Modul
Terminals mit
Statistik der
Terminalbelegung
und Bedienzeiten

I net simulator

Bulletin SEV/VSE 79(1988)17,2. September 1039



Systemtechnik

stet ist. Die Figur 7 zeigt die resultierende

Statistik der wartenden Kunden.
Meistens lag deren Anzahl zwischen
35 und 40, und zeitweise mussten bis
zu 49 Kunden warten. Mit 3 Terminals
ist das System also überlastet, während
es mit 5 und sogar mit 4 noch akzeptabel

arbeitete.

Das hier vorgestellte Werkzeug ist
an der Swissdata an den Ständen
212.255 und 211.315 zu sehen.
Interessenten können sich auch direkt
an den Autor wenden.

Bei komplexen Systemen können
solche Leistungsaussagen nur mit Hilfe

von Simulationen gemacht werden.
Das Petri-Netz-Werkzeug erlaubt ein
interaktives Verändern des Systems,
wobei die Resultate sofort auf dem
Bildschirm sichtbar werden.

Modellierungsaufwand
Wenn man mit den erweiterten Pe-

tri-Netzen und der Bedienung des

Werkzeuges einmal vertraut ist, kann
ein System sehr schnell modelliert werden.

Eine typische Anwendung eines
solchen Tools geschieht aber oft in
einer Phase, wo das zu untersuchende
System noch gar nicht genau bekannt
ist. Das heisst, man lernt es gerade

durch die Modellierung und Optimierung

kennen und spezifiziert es damit
exakt. Als Resultat erhält man neben
der exakten Spezifikation auch
Leistungsaussagen und eventuell bereits
das Programm, wenn das System oder
ein Teil davon in Software realisiert
werden soll. Wichtig ist dabei, dass
durch die Bedienung des Werkzeuges
nicht erheblicher zusätzlicher
Aufwand entsteht, was hier dank der Be-

nützerfreundlichkeit der Smalltalk-
Umgebung der Fall ist.

Literatur
[1] A. Goldberg and D. Robson: Smalltalk-80.

The language and its implementation.
Reading/Massachusetts, Addison-Wesley, 1985.

[2] W. Reisig: Systementwurf mit Netzen. Berlin
u.a., Springer-Verlag, 1985.

[3] G.M. Birtwistle: A system for discrete event
modelling on simula. London and Basingstoke,

MacMillan, 1979.

1040 Bulletin ASE/UCS 79(1988)17, 2 septembre


	Ein interaktives Simulations- und Programmgenerations-Werkzeug für erweiterte Petri-Netze

