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VLSI

De la machine séquentielle synchronisée
au processeur Rise
C. Piguet, R. Pache, Ph. Aubert, P. Clément, B. Perrin, JF Perotto, M. Ansorge, JF Joss, Fl. Leuthold

Les circuits intégrés à applications

spécifiques (ASIC) sont
généralement constitués d'une
unité de traitement et d'une
unité de commande. La méthode
de conception d'unités de traitement

est bien connue aujourd'hui.

Par contre, les méthodes
de conception des unités de
commande sont fort diverses et
produisent des résultats fort
dissemblables. Cet article présente
toute une série de circuits intégrés

industriels, réalisés au
CSEM, dont l'unité de
commande a été réalisée sous forme
programmée, utilisant les

concepts des machines de décision

binaire.

Anwendungsspezifische
integrierte Schaltungen bestehen
grundsätzlich aus einer
Verarbeitungseinheit und einer Befehlseinheit.

Während der Entwurf
von Verarbeitungseinheiten
keine Probleme bietet, liefern
die verschiedenen Entwurfsmethoden

für Befehlseinheiten
noch immer sehr unterschiedliche

Resultate. Der vorliegende
Beitrag stellt einige im CSEM
realisierte ICs vor, deren Befehlseinheit

unter Zuhilfenahme der
Methode der Binärentschei-
dungs-Maschine konzipiert
wurde.
Adresse des auteurs
C. Piguet. R. Pache. Ph. Aubert. P. Clément.
B. Perrin. JF Perotto. M. Ansorge. JF Joss.
H. Leuthold. Centre Suisse d'Electronique et de

Microtechnique (CSEM), rue de la Maladière 71,
2000 Neuchâtel.

La description d'une architecture
interne d'un microprocesseur peut
s'effectuer en décrivant chacun de ses

éléments logiques les uns après les
autres, puis à supposer que le lecteur
devinera comment ils fonctionnent tous
ensembles. Cet article propose une
autre démarche: celle de partir d'une
machine logique très simple (la machine

séquentielle synchronisée ou MSS
des cours de Systèmes logiques) pour
en déduire, après des transformations,
le fonctionnement interne d'un
microprocesseur. Celui-ci sera très simple,
comportant peu d'instructions, et il est
intéressant de constater qu'il sera classé

comme Rise (Reduced Instruction
Set Computer). Or, les machines Rise
sont un sujet de recherche très actuel.

La démarche proposée passe par
l'analyse des machines de décision
binaires, qui sont le fondement du passage

du matériel au logiciel. Une même
fonction logique peut être réalisée
matériellement par des portes logiques ou
au contraire être réalisée par un
programme exécuté par une machine de
décision binaire. Or, le fonctionnement

d'un processeur peut être compris

en se basant sur celui des
machines de décision binaire.

Un autre but de cet article est de

montrer que toutes ces machines ont
des applications industrielles, en
particulier dans la conception de circuits
intégrés. Ainsi, cet article propose
pour chaque type de machine une
réalisation industrielle. Ces descriptions
sont relativement détaillées et, bien
qu'intéressantes, elles ne sont pas
essentielles à la compréhension de la
démarche proposée.

Situation actuelle
Les circuits à applications spécifiques

(ASIC) peuvent être décomposés
en une unité de traitement et une unité
de commande. L'unité de traitement

permet de réaliser des opérations
arithmétiques et logiques sur des données

binaires. L'unité de commande
permet de commander la séquence de
ces opérations.

Des outils de Conception Assistée

par Ordinateur (CAO) permettent
aujourd'hui de créer facilement les plans
de masques ou layouts de tels circuits.
La technique des Cellules standards [1]
est bien connue, et les compilateurs de

silicium seront les outils du futur. C'est
le but de cet article de montrer que si

les outils CAO sont nécessaires, ils ne
sont pas suffisants au développement
de circuits intégrés performants. Nous
pensons en effet que les choix architecturaux

sont plus importants pour obtenir

rapidement un circuit performant.
Les architectures et les méthodes de

conception des unités de traitement
sont bien connues. Comme ces unités
travaillent sur des mots de n bits, elles
sont naturellement décomposées en n
tranches qui sont assemblées pour
réaliser l'unité complète. L'unité de traitement

est par conséquent très régulière,
et si elle occupe généralement la
majeure partie de la surface de la puce,
elle ne demande généralement qu'un
temps de développement relativement
court.

Les méthodes de conception des
unités de commande ne sont pas
parvenues à un tel degré de maturité.
Généralement, le temps de développement

de telles unités est assez long,
bien qu'elles n'occupent qu'une faible
partie de la surface de la puce. Toute
une série d'architectures sont possibles.

Il y a quelques années, les unités
de commande de microprocesseurs
étaient réalisées en logique câblée.
Aujourd'hui, les unités de commande des

microprocesseurs complexes de 16 ou
32 bit sont microprogrammées [2; 3].
Cette évolution est également apparente

pour les circuits à applications
spécifiques. C'est également un but de
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cet article de montrer que les unités de
commande microprogrammées peuvent

être utilisées avec profit pour des
circuits à applications spécifiques.

Les ingénieurs-systèmes dans
l'industrie sont généralement habitués à

utiliser de la logique câblée. Il est par
conséquent très simple, dans la réalisation

d'un circuit intégré, d'avoir
recours à la méthode des Cellules
standards pour traduire en layout le schéma

logique du circuit, constitué de

portes et de bascules. Mais nous
pensons qu'une unité de commande
programmée est encore plus simple à

concevoir. Cet article présentera des

exemples d'unités de commande
programmées, réalisées au CSEM pour
des circuits intégrés industriels.

L'utilisation industrielle d'unités de
commande programmées illustre
également une excellente collaboration
qui s'est instaurée entre le CSEM et le
Laboratoire de Systèmes logiques
(LSL) de l'Ecole Polytechnique Fédérale

de Lausanne. Quantité d'idées
sont nées au LSL, en particulier de
la part du Prof. D. Mange et du Dr
E. Sanchez, et ont été appliquées aux
circuits industriels présentés dans cet
article.

Unités de commande
câblées ou programmées
1. Machines séquentielles
synchronisées
La commande d'une unité de traitement

peut être effectuée par une
machine séquentielle synchronisée [4] ou
MSS. Une MSS admet comme mode
de représentation un graphe des états
ou une table des états. Un signal d'horloge

est utilisé pour synchroniser la
machine. Pour une machine dite de
Moore, les sorties sont fonction de
l'état interne mémorisé dans un
registre, tandis que pour une machine
dite de Mealy, les sorties sont fonction
à la fois de l'état interne et des entrées.

La structure de base d'une MSS est
représentée à la figure 1. Elle est
composée d'un circuit logique combinatoi-
re et d'un registre synchrone. Les sorties

du registre mémorisant l'état interne

de la machine constituent des
entrées du circuit logique combinatoire.
Celui-ci est réalisé par des portes logiques

pour une version câblée ou par
une mémoire ROM (Read Only
Memory) pour une version programmée.

Une MSS dont le circuit logique
combinatoire est réalisé en logique câ-

Figure 1 Machine séquentielle synchronisée
(MSS)

blée exige du concepteur la simplification
des équations logiques. Si cette

simplification est faite à la main, il
n'est possible de réaliser que des MSS
très simples. L'utilisation d'un PLA
(Programmed Logic Array) revient au
même sur le plan de la méthode: un
PLA exige aussi que les équations
logiques soient simplifiées. Un PLA est
donc seulement une manière d'organiser

un ensemble de portes logiques. Il
existe de nombreux programmes CAO
pour obtenir les équations logiques
simplifiées d'un PLA.

2. Machines séquentielles
synchronisées programmables
Une MSS programmable [5]

comporte une mémoire ROM pour la
réalisation du circuit logique combinatoire.
Une telle réalisation n'exige pas la

simplification des équations logiques.
La table d'états peut être directement
programmée dans la mémoire ROM.
Si la conception est faite à la main,
cela peut être un avantage important.
Le prix à payer est une surface de
silicium plus importante que le PLA
correspondant, mais pour de petites MSS,
ce point n'est pas essentiel.

Un avantage plus déterminant est le
fait qu'une MSS programmable peut
être facilement modifiée. Si l'on
suppose que le nombre des entrées et des
sorties (binaires) ne change pas, ainsi
que le nombre de bits du registre, une
erreur dans la table d'états ou une
modification des spécifications peut être
aisément reprogrammée dans la
mémoire ROM. La forme du layout de la
machine, ainsi que les positions des
entrées et des sorties, ne sont pas affectés

par cette reprogrammation. Cela
est loin d'être le cas pour une MSS
dont le circuit combinatoire est réalisé
à l'aide de portes ou d'un PLA, tout
simplement parce qu'une autre
simplification logique donnera des équations

plus simples ou plus complexes. Même
si le layout est produit automatiquement,

il sera différent de la première
version, et tout le routage devra être
refait.

3. MSS programmable
industrielle
La figure 2 représente le plan directeur

d'une machine séquentielle
synchronisée programmable et industrielle

qui a été incorporée comme périphérique

à un processeur horloger, qui est
décrit dans ce même article (fig. 15).

Cette machine a pour rôle la gestion
des entrées d'une montre [6], réalisées
sous forme de quatre touches disposées

les unes à côté des autres sur le bas
du cadran. L'utilisateur peut effleurer
ces touches dans un sens ou dans
l'autre pour indiquer qu'il aimerait
avancer ou reculer l'heure de sa

montre. La machine décrite doit détecter

le sens du mouvement du doigt de

l'utilisateur, en analysant la séquence
des codes qui sont fournis par les
touches. Un timer indique encore à cette
machine que l'utilisateur n'a pas pressé

de touche depuis assez longtemps.
Les sorties de cette machine indiquent
au processeur horloger ce qu'il doit
faire, à savoir incrémenter ou
décrémenter les secondes, les minutes ou les

heures, selon le sens du mouvement du
doigt de l'utilisateur.

Les spécifications de cette machine
peuvent être formalisées en un graphe
de 14 états. Le registre synchrone
contient alors 4 bit qui suffisent pour
coder les états internes. La table d'états
correspondante a été directement
programmée dans la mémoire ROM de
cette machine.

Les entrées de cette machine, à

savoir les quatre touches et la sortie du
timer (fig. 2), peuvent être codées sur
trois bits par un transcodeur, tout
simplement parce qu'il n'existe que 8

configurations des cinq entrées sur les
32 possibles. Les sorties de ce
transcodeur sont stockées dans un registre
d'entrée de 3 bit, nommés X, Y et Z sur
la figure 2.

La figure 3 représente le layout
correspondant au plan directeur de la

figure 2. La mémoire ROM est réalisée

par une logique à précharge [7], Le
transcodeur ainsi que le registre
synchrone sont réalisés en layout orienté
[8]. Les connexions entre le registre et

la ROM passent au travers du décodeur

d'adresses de la ROM. Cela
implique que le tableau ainsi que le décodeur

d'adresses de la ROM ont été un
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ROM Array 70x8 Bit

ROM Address Decoder

"x;,v'z ' t '

Cl ock

3 Bit
Régister

TTT
4 Bit
Register

Transcoder

ùààà
4 Inputs

L
Timer

3 Outputs

Figure 3 Microphotographie de la MSS programmable

Figure 2 Plan directeur d'une MSS programmable

peu étendus pour laisser la place à ces
connexions.

Ce circuit comporte environ 1000

transistors, en comptant une mémoire
ROM non complète de 70 mots de 8

bit. Un plan directeur a été dressé
avant la conception du registre, dont
la longueur a été choisie de manière à

s'adapter à celle de la ROM. Ce circuit
présente une excellente densité
d'intégration, due bien évidemment en partie

à la densité de la ROM, et un temps
de développement très court. La
première intégration était fonctionnelle.

Machines de décision
binaire
1. Principe
Les entrées des machines séquentielles

synchronisées programmables
présentées à la section précédente
étaient directement connectées au
décodeur d'adresses de la mémoire
ROM. Toutes les entrées sont par
conséquent testées simultanément
pour déterminer l'état suivant. Si l'on
suppose une machine avec n entrées et

un registre de m bits, la mémoire ROM
contient alors 2 n+m mots. Pour de

grandes valeurs de n et m, la mémoire
ROM peut alors atteindre une taille
prohibitive.

Les machines de décision binaire [9;
10; 11] permettent de réduire la taille
de la mémoire ROM si l'on accepte
d'exécuter plusieurs étapes pour
déterminer l'état futur. L'idée de base est de
considérer séquentiellement les n
entrées. Les machines de décision binaire
ont par conséquent besoin de davantage

de coups d'horloge que les MSS

Bulletin SEV/VSE 79(1988)11, 4. Juni

pour exécuter une tâche. Une instruction

de test permet de sélectionner une
des n entrées et d'effectuer un branchement

à une adresse spécifiée dépendante

de la valeur de la variable d'entrée

sélectionnée.
La figure 4 représente une architecture

possible d'une machine de décision

binaire. La mémoire ROM est
adressée par un registre. Un champ de
l'instruction de test permet de choisir
une variable d'entrée par un
multiplexeur de test. En commandant un
multiplexeur d'adresses, la sortie du
multiplexeur de test sélectionne un des

deux champs d'adresse contenu dans
l'instruction de test. La taille de la
ROM n'est ainsi plus dépendante du
nombre d'entrées.

2. Algorithmes
On peut montrer que toute fonction

logique peut être représentée par un
algorithme de décision binaire [9; 12],

Figure 4
Architecture d'une
machine de décision
binaire
Add. Mux
Multiplexeur d'adresses

Add. Reg.
Registre d'adresses

La figure 5a représente une fonction
logique donnée par une table de
Karnaugh. En appliquant une méthode de

simplification qui partage successivement

la table de Karnaugh (fig. 5b), il
est facile d'obtenir un algorithme de
décision binaire (fig. 5c). Les blocs de
zéros et de uns doivent couvrir toute la
table sans avoir de recouvrements [12].
Les algorithmes de décision binaire
contiennent deux types d'instructions,
à savoir une instruction de test
(if...then...eise) et une instruction de
sortie (do...). Cette dernière est utilisée
pour charger une valeur dans un
registre de sortie. Un algorithme de décision

binaire peut être écrit dans un
langage utilisant les instructions
if...then...eise et do... (fig. 5c).

L'exemple de la figure 5 permet de

montrer que toute fonction logique
peut être réalisée par un algorithme de
décision binaire. Pour obtenir un
résultat en sortie, il est néanmoins nécessaire

d'exécuter plusieurs instructions.

\/
Add. Add.
Mux Reg.

ROM Memory

Do - Add.1 Out
1

If t Add. 1 Add.2

Test
Mux

Inputs

Outputs
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La sortie n'est donc disponible
qu'après plusieurs coups d'horloge.

3. Tables d'états réalisées

Une table d'état peut être simplifiée
selon la méthode décrite à la section
précédente pour déterminer son
algorithme de décision binaire. Nous
prenons en exemple la table d'états
correspondant à la MSS décrite à la figure
2 et nous cherchons à l'implémenter
par une machine de décision binaire.
Une méthode possible est d'utiliser
chaque état du graphe d'états pour
déterminer pour chacun d'entre eux un
algorithme de décision binaire qui
donne l'adresse de l'état futur [13]. La
figure 6 représente un des 14 états de
cette MSS. L'état futur dépend des
trois variables d'entrée X, Y et Z
(fig. 2). Une table de Karnaugh peut
être obtenue à partir de ce graphe partiel

pour calculer l'algorithme de décision

binaire. Pour cet état, l'algorithme
comporte 4 instructions (fig. 6). Pour le

graphe des états complet, formé des 14

algorithmes de décision binaire
correspondant aux 14 états du graphe, le
nombre total d'instructions peut être
estimé à 14x4 instructions, soit environ

56 instructions. Cela implique un
registre d'état de 6 bit au lieu du
registre de 4 bit de la MSS (fig. 2). Les
instructions comportent un bit de code
opératoire, 2 bit pour sélectionner une
des trois entrées et deux champs
d'adresses de 6 bit chacun. L'instruction

comporte ainsi 15 bit. Dans ce cas

particulier, à la fois les tailles de la
ROM et de son registre d'adresses sont
plus grandes que celles de la MSS.

Ainsi, et contrairement à l'affirmation
à la section 1 de ce chapitre, au

lieu de diminuer la taille de la ROM, le

recours à une machine de décision
binaire pour de petites machines peut
avoir pour résultat d'augmenter la taille

de la ROM. Cela explique pourquoi
une machine de décision binaire n'est
pas souvent utilisée pour implémenter
une simple table d'états. Elle est seulement

intéressante dans le cas où, à partir
d'un état, il n'existe que peu d'états

futurs, comme dans les compteurs [13].
Il est néanmoins certain que seules

des tâches simples peuvent être formalisées

à l'aide de tables d'états ou de

graphes d'états. Pour des tâches
complexes, il est nécessaire de recourir à

d'autres moyens de représentation,
comme un programme. Dans ce cas, il
est possible d'écrire directement le

programme d'une machine de décision
binaire. La méthode de simplification

z ab

\ 00 01 11 10

1 1 1 0

0 0 1 1

Figure 5 Algorithme de décision binaire
a Table de Karnaugh
b Partage de la table
c Algorithme et programmes correspondants
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-0 /a\ 1
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0 M 1

2 : =0
I

1 /b\ 0

0 /c\ 1

1 L

0 : if a then goto 1 else qoto 2

1 : if b then goto 5 else goto 3

2 : if c then goto 4 else goto 5

3 : if c then goto 5 else goto 4
4 : do z:=0 and goto 0 ;
5 : do z: 1 and goto 0 ;

Figure 6

Algorithme de
décision binaire pour
un graphe des états.

Les traits dans
l'expression 11--, 0-1

indiquent que C est

indépendant de la
variable ainsi marquée

décrite à la section précédente reste
utilisable pour de petites procédures
de ce programme.

4. Machines de décision binaire
pour des tâches complexes
La machine de décision binaire

représentée à la figure 4 n'est pas bien

adaptée à l'exécution de tâches
complexes. Si plus de 1000 instructions
sont nécessaires, les adresses doivent
être codées sur 10 ou II bit. Il est alors
plus économique de recourir à un
compteur de programme plutôt que
d'avoir une instruction de test avec
deux champs d'adresses de 10 ou 11

bit. Ainsi, l'instruction de test devient

622 Bulletin ASE/UCS 79(1988)11,4 juin
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un branchement conditionnel du type
if...then branch to... Si le branchement
n'est pas effectué, le compteur de

programme est incrémenté. Les
algorithmes de décision binaire peuvent
être programmés à l'aide de ce type
d'instructions. Les instructions de
branchement non conditionnels sont
alors réalisées en testant une entrée
particulière qui est toujours câblée au
« 1 » logique.

Pour des tâches complexes, il est
généralement utile de pouvoir écrire des

sous-programmes. Deux instructions
supplémentaires sont alors
nécessaires, à savoir une instruction d'appel
(call) et de retour de sous-programme
(return). L'adresse de retour doit être
mémorisée dans une pile. La figure 7

représente une machine de décision
binaire comportant un ensemble de

compteurs de programme. Ceux-ci
sont constitués d'un maître M et d'un
ensemble d'esclaves PC. Un appel à un
sous-programme est réalisé en changeant

simplement de PC, ceux-ci étant
adressés par un pointeur de pile SP

(compteur-décompteur). Le PC utilisé
avant l'appel conserve naturellement
l'adresse de retour sans qu'il soit
besoin d'exécuter la moindre procédure
de sauvetage. Il a été montré [14] que
cette architecture est très intéressante

pour une réalisation VLSI, du fait de

sa régularité et de sa facilité de
connexion avec la mémoire ROM.

De telles machines de décision
binaire empruntent plusieurs caractéristiques

aux microprocesseurs, en
particulier la présence de compteurs de

programme et des instructions d'appel
et de retour de sous-programmes. Elles
sont programmées de la même manière

que le sont les microprocesseurs.
Néanmoins, il existe des différences
importantes. Le répertoire d'instructions

est limité à quatre types
d'instructions. Il est bien évident que
l'instruction de sortie «do...» est utilisée
pour commander différentes opéra-

Figure 7

Architecture d'une
machine de décision
binaire avec compteur
de programme et pile
PC Program Counter
SP Stack Pointer
M Master PC

INC Incrementer
IR Instruction

Register

G
Set of
PC

*" M «- Inc # Mux

SP

Inputs-
Test
Mux

Figure 8

Répertoire
d'instructions

14 12

00 VAR ADR

00 1111 ADR

01 REG DATA

10 1^1 ADR

11

if input(VAR)=1
then goto ADR

jmp ADR

do reg(REG):=Data

call ADR

return

tions de l'unité de traitement. On
prend donc l'habitude de décrire
autant d'instructions «do...» différentes
qu'il y a d'opérations effectuées par
l'unité de traitement. Il en résulte que
le répertoire d'instructions comporte
alors 10 à 20 instructions. Une autre
différence importante par rapport aux
microprocesseurs est que l'instruction
est codée sur un seul mot. La longueur
du mot dépend de l'application, mais

compte certainement plus de bit que le
célèbre 8 bit des microprocesseurs.
Chaque instruction est exécutée en un
seul cycle de plusieurs phases, mais
jamais, comme les microprocesseurs, en

un nombre variable de cycles.

5. Machine de décision binaire
industrielle

Les machines de décision binaire ne
sont pas souvent utilisées pour des
circuits intégrés industriels. La machine
décrite ici (fig. 8 et 9) a été conçue pour
un circuit à application médicale.
L'unité de traitement était principalement

composée de compteurs et de

périphériques d'entrée et de sortie.
Le répertoire d'instructions de cette

machine est représenté à la figure 8.

Un code opératoire de 2 bit permet de

distinguer quatre types d'instructions,
à savoir le branchement, le «do», le
«call» et le «return». L'instruction de

Figure 9

Machine de décision
binaire industrielle
a Plan directeur

Reg. Dec.
Décodeur d'adresses
des registres de
sortie

b Microphotographie
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Figure 10

Architecture d'une
machine à 8-décision

Ml, M2, M3:
champs de sélection
d'une variable d'entrée

Al A8
champs d'adresse

A1 ^ |
<v C

A2 A3 A4 A5 A6 A7 A8

Figure 11

Architecture d'une
machine à 4-décision
avec prétraitement
des entrées

Ml 1 M2 | 143 | Test Type | A1 | A2 [ A3 | A4 | Output

Inputs
J

Test
Mux

Test
Mux

,Test
Mux

'Logic Address Multiplexer
A 4:1

branchement conditionnel permet de
tester 16 signaux d'entrée. Une de ces
entrées (adressée par 1111) est câblée
au « 1 » logique, ce qui permet de définir

la 5e instruction du répertoire, qui
est le branchement non conditionnel.
L'adresse de branchement est codée
sur 9 bit, ce qui permet d'adresser 512
instructions. L'instruction «call»
comporte ainsi un champ d'adresse de 9 bit
et l'instruction «return» n'a pas de
paramètre. L'instruction «do» comporte
deux paramètres, à savoir l'adresse
d'un des 16 registres de sortie et la donnée

de 4 bit à charger. L'instruction
comporte 15 bit et la mémoire ROM
7680 bit.1

L'architecture de la machine de
décision binaire est très semblable à celle
de la figure 7. La pile des compteurs de

programme ne comporte que deux
niveaux, si bien que le pointeur de pile
n'est qu'une simple bascule, pointant
tantôt le premier compteur de

programme, tantôt le deuxième. D'autres
circuits sont nécessaires pour cette
application particulière, comme le décodeur

d'adresses des registres de sortie
ou l'interface pour des interruptions.
La figure 9a représente le plan directeur

de cette machine, tandis que la

figure 9b représente le circuit intégré test
correspondant. Celui-ci a été réalisé
avant l'intégration du circuit complet
[15]. Pour des raisons topologiques,
l'ordre des bit de l'instruction a été
modifié sur le layout par rapport au
répertoire d'instructions. Les parties en

logique câblée ont été réalisées en
layout ordonné [8],

Machines à N-décision
1. Principe des
machines à N-décision

La machine de décision binaire (ou
2-décision) est basée sur un test
séquentiel des variables d'entrée. Pour
certaines applications, il n'est pas
acceptable d'exécuter plusieurs instructions

pour déterminer l'état futur de la
MSS équivalente (fig. 6). 11 a été
démontré que pour certains problèmes

1 Cette machine de décision binaire comporte
environ 9400 transistors, y compris la ROM de
7680 bit. La régularité [14] d'environ 15,3,
incluant la ROM, est tout à fait acceptable. Les 1700
transistors de la partie en logique câblée présentent

une régularité de seulement 3,3. Le temps de
conception fut considéré comme très intéressant
par rapport à ceux de circuits équivalents entièrement

en logique câblée.

[16], une machine de N-décision (où
2 <N < 2", s'il y a « entrées) peut
atteindre la même vitesse qu'une MSS,
mais avec un coût réduit.

L'idée de base est que certaines
instructions puissent tester simultanément

plusieurs variables d'entrée au
lieu d'une seule pour la machine de
décision binaire. La figure 10 représente
une machine à N-décision [16; 17] où
plusieurs multiplexeurs de test permettent

de tester plusieurs variables à la
fois. Toutes les variables d'entrée sont
connectées à chaque multiplexeur. Ces

multiplexeurs sont commandés chacun

par un champ différent de
l'instruction de test. Les sorties des
multiplexeurs de test sont connectées aux
entrées de sélection du multiplexeur
d'adresses. Celui-ci est capable de
choisir une adresse parmi N=2k
adresses, s'il y a k multiplexeurs de test
et k variables d'entrées testées simultanément.

La figure 10 représente une

machine à 8-décision capable de tester
simultanément trois variables d'entrée.
Cette machine exécute en un seul coup
d'horloge l'instruction de test multi-
branchements de la figure 10.

2. Machines à N-décision avec
prétraitement des entrées

Il est évident que pour l'instruction
de la figure 6, une machine à 8-déci-
sion est loin d'être optimale. Il est
possible d'ajouter un circuit logique entre
les multiplexeurs de test et le
multiplexeur d'adresses, comme le représente

la figure 11. Cette architecture est

une machine à 4-décision, qui peut
néanmoins tester 3 variables d'entrée
simultanément. Elle est donc mieux
adaptée à l'exécution de l'instruction
de la figure 6. Le circuit logique
additionnel réalise un prétraitement des
entrées [17], L'idée de base est de définir

plusieurs instructions de test
différentes, chacune d'entre elles permet-
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tant de tester une seule configuration
particulière des variables d'entrée. Le
choix de ces instructions de test est
effectué en analysant soigneusement le

programme à réaliser.

3. Machine à 4-décision
industrielle
Une machine à 4-décision a été

réalisée (fig. 11) pour la commande d'un
convertisseur analogique-numérique
basé sur des approximations successives.

Chaque bit doit être converti sé-

riellement à 10 kHz. Trois signaux
d'entrée, à savoir SP (début de conversion),

OR (interruption) et AC
(redémarrage d'une conversion), doivent
être pris en compte en lOOps.

L'analyse du fonctionnement
(fig. 12) a montré que les quatre
instructions suivantes, à savoir le test de
SP, la commande Start A/D, le test de
OR et le test de AC, doivent être exécutées

en 100 (is. Si l'on utilise une
machine de décision binaire où ces 4
instructions sont exécutées en séquence,
une horloge de 40 kHz est nécessaire.
Par contre, si l'on utilise une machine
à 4-décision, permettant de tester
simultanément ces trois variables d'entrées

et d'envoyer la commande en une
seule instruction, la fréquence d'horloge

est alors de 10 kHz, ce qui réduit la
consommation.

Différents types d'instructions de
test sont nécessaires, le premier (instr.
0) avec quatre adresses futures, le
deuxième avec trois et le dernier avec
deux adresses futures. Il faut
néanmoins être conscient que cette machine
ne peut tester que les configurations
des variables d'entrée représentées à la
figure 12a. Une quatrième instruction
de la machine est l'instruction «do».
Le répertoire d'instructions correspondant

est représenté sur la figure 12b.
La figure 13a représente l'architecture

de cette machine à 4-décision. Le

programme obtenu ne comporte que
22 instructions, mais la ROM a été
étendue à 32x32 bit, organisée en 16

lignes de 64 bit. Les 4 champs
d'adresses sont connectés au
multiplexeur d'adresses. La sortie de celui-ci
est mémorisée dans un registre
d'adresses de 5 bit. La figure 13b représente

la microphotographie du
circuit-test de cette machine à 4-décision
avant son intégration avec le convertisseur

A/D pour le circuit médical.

4. Comparaison
La machine à 4-décision de la

section précédente nécessite, pour la corn-

Figure 12

Quatre types
d'instructions
a Organigrammes des

instructions
h Formats des

instructions 32 bits
< > contient le
nombre de bit du
champ en question.

a

0 1 2 3

0 1 2

Instruction 0

00 AO-5 - A1<5> A2- 5 | A3'5> | Output -10--

31
Instruction 1

Q ^

01 AO-5 A1- 5 - | A2' 5 - Output --10-

31 Instruction 2 9010 AO-5- A1-5-- 0utPut 'LL

31
Instruction 3

9 0

A05 - ^X\ Output -'10 - |

Figure 13 Machine à 4-décision industrielle
a Plan directeur
b Microphotographie
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Les démarches menant aux machines Rise

Pour des microprocesseurs 32 bit, le recours à des architectures Rise a été proposé à la
suite des analyses des programmes engendrés par des compilateurs et exécutés par ces
machines. Il en résultait que la moitié environ des instructions machine n'étaient pas
utilisées. Réduire le répertoire d'instructions de tels microprocesseurs en supprimant
ces instructions inutiles n'était pas une mauvaise idée. Cela réduit la complexité de la
conception du microprocesseur, et les performances en vitesse pourraient s'en trouver
améliorées.

Cet article propose une autre démarche menant à des architectures de type Rise,
appliquée, il est vrai, à des processeurs basse consommation et non pas à des machines
32 bit. Elle consiste à déterminer le répertoire d'instructions du processeur à partir des
deux instructions fondamentales d'une machine de décision binaire, à savoir le
if..then...eise et le do... Très naturellement, on obtient alors un répertoire d'instructions
réduit.

Encadré I

mande du convertisseur, 22 instructions

de 32 bit, soit une ROM de 704
bit et une horloge de 10 kHz.

Si une machine de décision binaire
avait été utilisée pour cette même fonction,

celle-ci aurait nécessité 82
instructions de 18 bit, soit une ROM de
1476 bit et une fréquence de 40 kHz.

Si l'on compare la machine à 4-déci-
sion présentée à une MSS équivalente,
on peut montrer que la ROM de cette
dernière comporterait davantage de
bit. Pour cet exemple particulier, le
recours à une machine à N-décision est
donc le meilleur choix.

De façon générale, le choix d'une
machine à N-décision est recommandé
si la machine comporte beaucoup
d'entrées et que seules quelques
entrées doivent être considérées pour
déterminer l'état futur. Il est par contre
avantageux de recourir à une MSS si la
machine comporte un nombre limité
d'entrées et que toutes ces entrées
doivent être considérées pour déterminer
l'état futur. C'est d'ailleurs le choix qui
a été fait pour la MSS de la figure 2.

Processeurs de type Rise
1. Machines de décision binaire et
processeurs Rise

Un processeur peut être décomposé
en une unité de traitement et une unité
de commande. Pour un processeur ru-
dimentaire, l'unité de commande peut
être réalisée par une MSS ou une
machine de décision binaire. Pour des

microprocesseurs, l'unité de commande a

pour rôle d'interpréter les instructions
stockées dans une mémoire RAM
externe. Pour des processeurs spécialisés,
comme des montres électroniques ou
des applications médicales, c'est
l'application qui est directement programmée

dans l'unité de commande. Si c'est
une machine de décision binaire qui
est utilisée, on programme l'application

dans un langage de bas niveau,
utilisant le répertoire d'instructions de
la machine de décision binaire (fig. 8).
On constate alors que le répertoire
d'instructions est très limité, comme
pour les processeurs Rise (Reduced
Instruction Set Computers).

Cependant, le répertoire d'instructions

de la figure 8 ne contient qu'une
seule instruction de commande de
l'unité de traitement, à savoir une
instruction «do...». Pour un processeur
spécialisé, comportant une unité de
traitement avec une unité arithmétique
et logique, il est nécessaire de pouvoir
exécuter plusieurs opérations diffé¬

rentes. Le choix de celles-ci est réalisé
par des instructions «do...» spécialisées

comme l'addition, la soustraction,
le chargement etc. C'est d'ailleurs ainsi
que sont définis les répertoires
d'instructions des microprocesseurs.

Il est dès lors évident que les répertoires

d'instructions des processeurs
spécialisés considérés comprendront
de l'ordre de 20 instructions. Généralement,

les instructions «do...»
comprendront un champ pour définir
l'opération que doit exécuter l'unité de
traitement. De tels répertoires
d'instructions ont donc les caractéristiques
suivantes:

- un répertoire très limité
- chaque instruction est codée sur un

seul mot
- toutes les instructions ont la même

longueur
- chaque instruction est exécutée en

un seul cycle, comportant un
nombre fixe de phases

- le décodeur d'instructions est très
simple et occupe une très faible partie

de la surface de la puce, de
l'ordre de 5%.

Toutes ces caractéristiques sont bien
connues comme étant celles, entre
autres, des processeurs Rise [17; 18; 19],

On peut d'ailleurs observer que
l'application des machines de décision
binaire pour des processeurs basse
consommation a été étudiée [20; 21]
sans avoir eu au préalable connaissance

des machines Rise pour des

microprocesseurs. Les deux approches ont
mené à des répertoires d'instructions
limités, mais pour des raisons
différentes. Si la vitesse est le premier critère

pour les machines Rise, c'est la bas¬

se consommation qui a dicté ce choix
pour les processeurs horlogers [22]. En
effet, un répertoire d'instructions limité,

ainsi qu'une exécution d'instruction

en un seul cycle conduisent à un
nombre minimal de coups d'horloge
pour une tâche donnée et ainsi à une
très faible consommation, le processeur

étant arrêté dès que la tâche est
terminée. C'est pour cette raison que
nous avons appelé ces machines des

processeurs Rise basse consommation
[22],

2. Processeurs Rise basse

consommation
Des architectures Rise basse

consommation ont été utilisées pour
des processeurs horlogers [6; 22],
décrites dans la section prochaine. De
telles architectures comportent une
unité arithmétique et logique rudimen-
taire et une mémoire RAM de quelques

mots. L'unité de commande est

une machine de décision binaire dont
la schéma est représenté à la figure 7.

11 est bien évident que les variables à

tester par la machine de décision
binaire ne proviennent pas seulement
des circuits périphériques mais aussi
de l'unité de traitement. De plus,
certains booléens doivent pouvoir être
mis à « 1 » ou à «0» et testés par l'unité
de commande.

La figure 14 représente l'architecture
d'un processeur Rise basse consommation.

Une différence existe par
rapport à la figure 7: le multiplexeur de
test a été remplacé par une banque de
booléens adressés par le même décodeur

que celui de la mémoire RAM.
Cela implique bien évidemment que le

nombre de booléens est le même que

626 Bulletin ASE/UCS 79(1988)11, 4 juin



VLSI

n Set of
PC

Inc Mux

SP : Inputs

ROM

Memory

IR

^ Flags ^j-1

ALU
/ \

RAM

Data Bus

celui des registres RAM. De plus,
certains signaux provenant de circuits
périphériques sont liés directement à

quelques-uns de ces booléens.

Ces processeurs comportent généralement

plus de 1000 instructions. Il est
donc intéressant de constater
qu'industriellement, les machines de décision

binaire ne sont utilisées que pour
des tâches importantes nécessitant un
grand nombre d'instructions.

Des travaux de recherches [20; 21]
ont montré qu'un processeur horloger
pouvait être réalisé sans unité arithmétique

et logique. L'idée est de remplacer
les opérations arithmétiques,

essentiellement l'incrémentation et la
décrémentation, par des algorithmes de
décision binaire [13]. Cela n'a pas été

exploité pour des réalisations
industrielles, d'une part parce que la
conception d'une unité arithmétique
est très aisée et, d'autre part, parce que
le nombre d'instructions exécutées est

moindre, ce qui est favorable sur le

plan de la consommation. Cependant,
de nombreuses parties du programme
d'un processeur horloger furent réalisées

par des algorithmes de décision
binaire, comme par exemple la
détermination du nombre de jours d'un
mois [21; 23]. Cela illustre un choix
fondamental, à savoir d'implémenter
telle ou telle fonction en logiciel ou en
matériel [13; 24],

Figure 14

Architecture d'une
machine Rise basse
consommation

3. Processeurs horlogers
industriels

La figure 15a représente le plan
directeur d'un processeur horloger [6]
dont l'architecture, sans les circuits
périphériques, est représentée à la
figure 14. Ce processeur ne comporte
que 12 instructions de 16 bit (fig. 15c).
La mémoire ROM contient 800
instructions, soit 12 800 bit. La mémoire
RAM comporte 15 registres de 7 bit et
15 booléens. Le nombre total de
transistors est d'environ 20 000.

Ce processeur ne comporte pas de

pile matérielle pour les sous-pro¬

grammes. Cependant, un niveau de

sous-programme est utilisé avec un
retour de sous-programme réalisé en
logiciel [13]. Le mécanisme est basé sur le

test d'un registre de donnée caractéristique

du point de retour, pour calculer
l'adresse de retour au lieu de la mémoriser.

Cela illustre une nouvelle fois
l'équivalence entre le logiciel et le
matériel. Le décodeur d'instructions et le

séquenceur, comme cela est le cas pour
des machines Rise, n'occupent qu'environ

5% de la surface de la puce. La
MSS décrite au début de cet article est
utilisée comme périphérique dans ce
circuit. La figure 15b représente la mi-

S EN s on

DETECT

[**i

C O Q O 2 C

Instruction
0 d e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 JPZ,JPNZ 0 Branch Address P Fl ag

2 JMP 0 Branch Address 0 1 1 1 1

3 Data^RAM 1 0 0 i H Data (7 bi ts) RAM

4 AORAM 1 0 0 0 H 0 0 0 0 0 0 0 RAM

5 AO(0P)RAM 1 1 1 0 H 0 0 0 0 0 OP RAM

6 AC=Data 1 1 0 1 H Data (7 bits) 0 0 0 0

7 SR Flags 1 0 1 1 H 0 0 0 0 0 0 SR Fl ag

3 Motor 1 1 0 0 H 0 0 0 R M1 MC M2 0 0 0 0

g Reset 1 0 1 0 H 0 0 0 0 HZ ED 0 0 0 0 0

10 NOP 1 0 1 0 H 0 0 0 0 0 0 0 0 0 0 0

11 Num Output 1 1 1 1 H 0 SUP COL
Flash
G D Digit RAM

12 Alpha Out 1 1 1 1 H 1 SUP COL Flash
G i D Digit RAM

Figure 15 Processeur horloger
a Plan directeur c Répertoire d'instructions HZ Base de temps
b Microphotographie R Moteur run ED Entrée données

Ml, MC, M2 Commande moteur
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crophotographie de ce circuit. D'autres

processeurs horlogers ont été
intégrés, le plus complexe atteignant environ

35 000 transistors [ 15; 22],

Conclusion
Il est certain qu'aujourd'hui, la

plupart des unités de commande relativement

simples sont conçues en logique
câblée. Les outils CAO, comme la

technique des Cellules standards, ainsi
que la formation en logique de base,
en sont responsables. Cependant, il est
évident que la plupart du temps une
unité de commande programmée est
meilleure. Leur conception est plus
structurée de par la programmation de
la mémoire ROM, avec les avantages
inhérents comme la facilité de correction

et de modification. Cet article a

montré que toute une gamme d'unités
de commande programmées peuvent
être utilisées industriellement.

Dans une courbe en fonction de la

complexité des machines, les machines
de décision binaire se situent à mi-chemin

entre les MSS et les microprocesseurs.

Elles ne sont utilisées que pour
des tâches complexes nécessitant plus
de 500 instructions et, dans ce cas, elles
sont nettement moins coûteuses que
d'autres réalisations.

La théorie sur les machines de décision

binaire a pour but de réaliser en
logiciel des fonctions réalisées
traditionnellement en matériel et de montrer

l'équivalence entre le logiciel et le
matériel. En pratique, les machines de
décision binaire sont utilisées
industriellement comme unités de comman¬

de de processeurs horlogers. L'architecture

du processeur qui en résulte
comporte alors plusieurs caractéristiques

des machines Rise, avec les avantages

en consommation cités plus haut.
On observe d'autre part sur le marché

que plusieurs circuits intégrés
horlogers ont adopté une architecture très
proche des microprocesseurs 8 bit
classiques, plutôt de type Cisc (Complex
Instruction Set Computer). Un débat
Risc-Cisc peut ainsi également avoir
lieu pour des circuits intégrés à

applications spécifiques.
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