
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 79 (1988)

Heft: 7

Artikel: Nora : ein Softwarepaket zur Programmierung und Analyse von
parallelen Signalprozessorsystemen

Autor: Hufschmid, M. / Löffler, C.

DOI: https://doi.org/10.5169/seals-904018

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904018
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Signa/Verarbeitung

Nora - ein Softwarepaket
zur Programmierung und Analyse
von parallelen Signalprozessorsystemen
M. Hufschmid und Ch. Löffler

Im vorliegenden Artikel wird das am
Institut für Signal- und
Informationsverarbeitung der ETH Zürich
entwickelte Programmpaket Nora
(Net Optimization and Resource
Allocation) vorgestellt. Nora ist ein
Entwicklungswerkzeug, das die
Analyse und Programmierung von
parallelen Signalprozessorsystemen

wesentlich vereinfacht. Einerseits

besteht die Möglichkeit, einen
beliebigen Signalverarbeitungs-
Algorithmus nahezu optimal auf
eine gegebene Hardware abzubilden,

anderseits können die Leistungen

verschiedener Prozessorarchitekturen

untereinander verglichen
werden.

Dans le présent article, l'ensemble
de la software Nora (Net Optimization

and Resource Allocation),
développé à l'institut de traitement des
signaux et de l'information de l'EPF
de Zurich, est présenté. Nora a été
spécialement conçu pour simplifier
l'analyse et la programmation des
systèmes de micro-processeurs
parallèles, utilisés pour le traitement

des signaux électriques. Il
offre d'une part la possibilité de
répartir un algorithme de traitement
de signaux d'une manière presque
parfaite sur un système de hardware

donné, et d'autre part la possibilité

d'évaluer et de comparer les
rendements de différents modèles
d'architecture.

Adresse der Autoren
Dipl. El.-Ing. ETH Markus Hufschmid und Dipl.
El.-Ing. ETH Christoph Löffler. Institut für
Signal-und Informationsverarbeitung, ETH
Zentrum, 8092 Zürich.

Die digitale Signalverarbeitung hat
in den letzten Jahren stark an Bedeutung

gewonnen. In vielen Bereichen
der Elektrotechnik werden heute in
zunehmendem Masse Prozessoren zur
Lösung von Signalverarbeitungsproblemen

eingesetzt. Die digitale
Verarbeitung von Signalen zeichnet sich
durch hohe Genauigkeit, gute
Reproduzierbarkeit und Flexibilität aus.
Dies hat zur Folge, dass sie für gewisse
Anwendungen der traditionellen
Analogtechnik vorgezogen wird. Ferner
erlaubt die digitale Signalverarbeitung
Lösungen (z.B. adaptive Filter), welche

mit herkömmlichen Methoden
nicht oder nur mit ungleich höherem
Aufwand zu realisieren sind.

Als vor etwa vierzig Jahren erste
Programme zur Signalverarbeitung
entwickelt wurden, war eine
Echtzeitverarbeitung aufgrund der damaligen
bescheidenen Rechenleistungen nicht
denkbar. Erst nach der Entwicklung
von speziellen VLSI-Chips gelang es,
die Algorithmen in Echtzeit zu berechnen.

Die Leistungsfähigkeit der heute
verfügbaren Signalprozessoren ist
beeindruckend. Bedingt durch die
steigende Komplexität der Algorithmen
einerseits und den Anstieg der
geforderten Abtastraten anderseits, sind
jedoch auch die Anforderungen an die
Rechenleistung der Prozessoren stark
gestiegen. Für viele Anwendungen ist
ein einzelner Prozessor nicht mehr
ausreichend, es müssen mehrere,
parallel arbeitende Prozessoren eingesetzt
werden. Dabei stösst man leider auf
Probleme, welche bis heute nicht
zufriedenstellend gelöst werden konnten.
Der Aufbau eines Parallelprozessorsystems

ist mit den verfügbaren VLSI-
Chips keine unlösbare Aufgabe, wie
eine Vielzahl bereits realisierter Systeme

(Cray II, Illiac IV, Empress usw.)
zeigt. Hingegen stösst man auf
Schwierigkeiten, wenn ein Algorithmus unter
möglichst optimaler Ausnützung der

vorhandenen Ressourcen auf einem
solchen System implementiert werden
soll. Es existieren noch kaum
Werkzeuge, mit denen beliebige sequentielle
Programme auch nur annähernd optimal

auf eine gegebene Parallelrechnerstruktur

abgebildet werden können.
Dem Anwender steht zwar eine ausgereifte

Hardware zur Verfügung, die
Leistungsfähigkeit der Softwarewerkzeuge

lässt jedoch häufig zu wünschen
übrig. Während sich für allgemeine
Problemstellungen diesbezüglich in
naher Zukunft nicht viel ändern wird,
ist für eingeschränkteAnwendungsge-
biete die Möglichkeit der Entwicklung
von leistungsfähigen Programmierwerkzeugen

bereits absehbar. Am
Institut für Signal- und Informationsverarbeitung

(ISI) der ETH Zürich wurde
ein Softwarepaket für die Implementation

von Signalverarbeitungs-Algo-
rithmen auf parallelen Rechnerarchitekturen

entwickelt, das bei hoher
Flexibilität eine sehr gute Ausnützung der
Rechnerressourcen ermöglicht.

Problemstellung
Viele Echtzeit-Signalverarbeitungs-

anwendungen benötigen einen sehr
hohen Datendurchsatz, welcher nur
durch den Einsatz von parallel
arbeitenden Prozessoren bewältigt werden
kann. Unglücklicherweise sind solche
Systeme im allgemeinen schwierig zu
programmieren. Untersucht man
jedoch die in der Signalverarbeitung
verwendeten Algorithmen, so zeigt es

sich, dass diese sehr ähnliche
Eigenschaften aufweisen:

- Der Programmablauf ist weitgehend
unabhängig von den zu verarbeitenden

Daten. Er ist demnach schon vor
Ausführung des Programms bekannt.
Eine Darstellung in einem Datenfluss-
graphen ist fast immer möglich.
- Signalverarbeitungs-Algorithmen

lassen sich häufig mit Hilfe von Vekto-

368 Bulletin ASE/UCS 79(1988)7, 9 avril



Parallelrechner

ren und Matrizen beschreiben, was auf
das Vorhandensein von expliziter
Parallelität schliessen lässt. Das wohl
bekannteste Beispiel ist der in den sechziger

Jahren von Cooley und Tukey
veröffentlichte Fast Fourier Transform
(FFT) Algorithmus. Mit diesem
Algorithmus benötigt ein einzelner Prozessor

zur Transformation eines N-di-
mensionalen Signalvektors K • N
logiN Zeiteinheiten, während N
Prozessoren dieselbe Aufgabe N-mal
schneller bewältigen.
- Für die Signalverarbeitung werden
zwar hohe Rechenleistungen, meist
jedoch nur einfache Operationen wie
Addition und Multiplikation benötigt.
Die Komplexität der einzelnen
Prozessorelemente ist aus diesem Grund
nicht sehr hoch.

Am Institut für Signal- und
Informationsverarbeitung wurde nun
versucht, diese spezifischen Eigenschaften

auszunützen und ein Programm zu
entwickeln, das die weitgehend
automatische Implementation eines Si-
gnalverarbeitungs-Algorithmus auf
ein Parallelprozessorsystem gestattet
[2,...,5]. Die Hauptaufgabe besteht dabei

in der Abbildung eines Algorithmus
auf eine Hardwarestruktur. In diesem
Zusammenhang stellt sich vorerst die
Frage, welche der vielen heute bekannten

Rechnerstrukturen (Vektorrechner,

Array-Prozessoren, Systolische
Arrays, Multiprozessoren, Datenfluss-
systeme usw.) sich besonders für die
Bedürfnisse der Signalverarbeitung
eignen. Eine optimale Ausnützung der
Parallelität wird durch Datenflusssy-
steme erreicht, da bei diesen der
Ablauf der Rechenschritte nicht durch
eine Kontrollstruktur festgelegt,
sondern aus dem Vorhandensein der Daten

abgeleitet wird. Leider ist der
Aufwand für die Ablaufplanung (Scheduling)

der Operationen im allgemeinen
sehr hoch. Bei Signalverarbeitungs-Al-
gorithmen kann die Ablaufplanung
jedoch schon zur Compilationszeit
vollzogen werden, da der Programmablauf

grösstenteils schon vor Ausführung

des Programms bekannt ist. Die
wenigen datenbedingten Verzweigungen

sind so einfach, dass sie mit Hilfe
von einfachen Schalterfunktionen
gelöst werden können.

Häufig ist nicht die minimal erreichbare

Rechenzeit von Interesse,
sondern der minimale Hardwareaufwand
für eine vorgegebene Rechenzeit. Ein
umfassendes Entwicklungspaket muss
sowohl in der Lage sein, die Operationen

einzuplanen, als auch die Vergabe

der einzelnen Operationen an die
vorhandenen Ressourcen (Prozessorelemente,

Speicher usw.) vorzunehmen.
Schliesslich soll als Endprodukt ein
lauffähiges Mikroprogramm für das
realisierte Parallelprozessorsystem
erzeugt werden.

Der Datenfluss-
iibersetzer PSPL
Die Struktur des gesamten

Entwicklungssystems Nora ist in Figur 1

dargestellt. Als Eingabe wird einerseits
der zu realisierende Algorithmus und
anderseits eine Beschreibung der
Hardwarearchitektur verlangt. Das
System liefert eine Aussage über die
Parallelität des Algorithmus sowie ein
formales Mikroprogramm, das als

Vorlage zur Generierung des eigentlichen

Mikrocodes für den parallelen
Signalprozessor dienen kann.

In einem ersten Schritt wird der
gegebene Signalverarbeitungs-Algorithmus

in einen Datenflussgraphen
umgewandelt. Diese Aufgabe übernimmt
der PSPL-Compiler. PSPL (Parallel
Signal Processing Language) ist eine
einfache Hochsprache, welche speziell
für SignalverarbeitungsanWendungen
am ISI entwickelt wurde. Syntax und
Semantik sind weitgehend aus den
bekannten Sprachen Pascal und C
entlehnt. Neben den üblichen Befehlen
unterstützt PSPL auch das Formulie-

Figur 1

Übersicht über das

Softwarepaket Nora

INZ^>

ren von Algorithmen in
Vektorschreibweise sowie spezielle Funktionen

(z.B. Shift, Bitreverse Adressing
usw.).

Der Compiler besteht aus drei Teilen:

dem Preprozessor, der den
Quellencode vorverarbeitet (u.a. die Schleifen

auflöst und die lokalen Variablen
beseitigt), dem eigentlichen Übersetzer

(Compiler) und dem Outputgenerator.
Als Ausgabe liefert der Compiler eine
Rückwärtsabhängigkeitstabelle, welche

einer tabellenartigen Darstellung
des Datenflussgraphen des eingegebenen

Algorithmus entspricht. Die Figur
2 zeigt, wie aus einem PSPL-Pro-

gramm vom Compiler die
Rückwärtsabhängigkeitstabelle generiert wird.
Zum besseren Verständnis ist gleichzeitig

auch die graphische Interpretation

(Datenflussgraph) wiedergegeben.

Hardwaremodell
Damit das Entwicklungspaket Nora

die Zuteilung der Operationen an die
vorhandenen Ressourcen vornehmen
kann, wird eine Beschreibung der
Hardwarearchitektur benötigt. Ausgehend

von den Bedürfnissen der digitalen

Signalverarbeitung wurde das in
Figur 3 dargestellte Hardwaremodell
entworfen. Die einzelnen Baublöcke
sind jeweils einmal gezeichnet worden,
können jedoch auch mehrmals auftreten.

Algorithmuseingabe

=>0UT

Bulletin SEV/VSE 79(1988)7,9. April 369



Signalverarbeitung

PSPL-Programm

z.B. Komplexe FFT

PSPL-
Compiler

175 sub 5,37
176 sub 69,101
177 add 5,37
178 add 69,101
179 ldc /co=5
180 mul 175,179
181 ldc /co=105
182 mul 176,181
183 sub 180,182

Interpretation

5 177 179

-•/+) ©
37/<J75 Ï 183

180/*
69 176 182/

101/<G78
~*vD ©

181

Figur 2 PSPL-Compiler

Figur 3 Hardwaremodell
PE Das Processing Element führt einfache Operationen und Funktionen aus.

GDM Das Global Data Memory wird für die Speicherung von global zugänglichen Daten, d.h. etwa
für Verzögerungselemente in Filteralgorithmen oder für Eingangsdaten einer FFT verwendet.

AR Das Address Register wird für die Adressierung des GDM verwendet.

CM Das Coefficient Memory speichert Konstanten, beispielsweise für Filterkoeffizienten.
IO Das Input/Output Device, z.B. ein AD/DA-Konverter, kommuniziert mit der Aussenwelt.

TM Das Temporary Memory speichert Zwischenresultate.

CPSN Das Cross-Point Switch Network verbindet die einzelnen Baublöcke.

CCU Die Central Control Unit ist die zentrale Steuerung des Systems.

Für die Verbindung der Baublöcke
wurde im Modell ein Cross-Point-
Switch-Netzwerk gewählt, da es die
allgemeinste Lösung für ein
Verbindungsnetzwerk darstellt. Es ist aber
nicht beabsichtigt, ein solches Netzwerk

auch für die Hardwarerealisierung

zu verwenden. Da nicht alle
Verbindungsknoten einen Schalter enthalten

müssen, wird definiert, ob ein
Cross-Point geschaltet, immer offen
oder dauernd geschlossen ist. Auf diese

Art lassen sich beliebige
Prozessorstrukturen beschreiben. Das hier
beschriebene Modell deckt alle Bedürfnisse

der Signalverarbeitung bestens
ab. Es lässt sich beliebig erweitern,
indem die Anzahl der einzelnen
Baublöcke erhöht wird. Im weiteren ist
eine hierarchische Modellierung der

Hardwarestruktur möglich, d.h. es

können Subsysteme formuliert werden,

die wiederum zu Gesamtsystemen
zusammengefasst werden können.

Ablaufoptimierung und
Ressourcenzuteilung
Das zentrale Problem bei der

Programmierung eines Datenflussrech-
ners besteht in der Optimierung der
Ablaufplanung (Scheduleoptimie-
rung) und in der Ressourcenzuteilung.
Die erstere arbeitet den «Fahrplan»
der Operationen (welche Operation
wird wann im Gesamtablauf ausgeführt)

so aus, dass die totale
Ausführungszeit bei einer gegebenen Anzahl
Rechenelemente minimal wird. Es

wird vorerst angenommen, dass die
Speicher- und Datentransferoperatio-
nen ideal sind. Die Zuweisung der
Operationen an eine bestimmte
Ressource sowie das Finden eines geeigneten

Speicherplatzes und Datenpfades
ist Aufgabe der Ressourcenzuteilung.
Die Scheduleoptimierung und die
Ressourcenzuteilung bilden den vom
PSPL-Compiler gelieferten Daten-
flussgraphen auf das oben beschriebene

Hardwaremodell ab. Im Gegensatz
zu früheren Arbeiten [2;5;6] sind im
System Nora die Ablaufoptimierung
und die Ressourcenzuteilung kombiniert.

Dies erlaubt die Modellierung
von beliebigen Hardwarekonfigurationen

unter Einbezug der
Hardwareeinschränkungen, welche durch die
Speicher- und Datentransferoperatio-
nen gegeben sind. Diese Einschränkungen

haben einen direkten Einfluss
auf die minimal erreichbare
Abarbeitungszeit des Algorithmus.

Zum Bestimmen des optimalen
Scheduling wurde ein heuristisches
Verfahren gewählt, da kein Algorithmus

bekannt ist, der dieses Problem in
polynomialer Zeit1 löst (NP-komplet-
tes Problem). Die verwendete Methode
wurde im Grundsatz von Gewald et al.

[7] vorgeschlagen und beinhaltet die
folgenden Schritte:

1. Feststellen der einplanbaren
Operationen: Es sind dies die Operationen,
deren Vorgänger schon eingeplant
sind oder die selber keinen Vorgänger
haben.

2. Ordnen der Operationen nach
Prioritäten: Diese bestimmen sich aus
einer geschickten Kombination
verschiedener Kriterien, von welchen hier
nur einige aufgezählt werden:

- Speicherbelegung,
- Pufferzeit (die freie bzw. gesamte

Pufferzeit bestimmt, um wieviel ein
Task verschoben werden kann, ohne
dass der früheste bzw. späteste
Anfangszeitpunkt eines Nachfolgers
verschoben wird),

- graphtopologische Kriterien wie
«Joint-Priorität» (Erhöhung der
Priorität für Tasks, die den gleichen
Nachfolger besitzen wie ein soeben

eingeplanter) oder Anzahl Nachfolger,

- mögliche Ressourcen für die
Ausführung eines Tasks und mögliche
Ausgangsressourcen (Verbindun-

1 Die Rechenzeit nimmt in Funktion der zu
verarbeitenden Informationsmenge schneller als

jede beliebige Polynomfunktion zu.

370 Bulletin ASE/UCS 79(1988)7,9 avril



Parallelrechner

gen, Zwischenspeicher für Resultate),

- benötigte Verbindungen.
3. Einplanen der Operationen

gemäss Priorität, bis keine weiteren
Operationen mehr zum gegebenen
Zeitpunkt möglich sind.

4. Zeitintervall um eine Zeiteinheit
erhöhen.

5. Repetition des Vorgehens ab
Punkt 1 bis alle Operationen eingeplant

sind.

Trotz des heuristischen Vorgehens
zeigt es sich, dass die erhaltenen Resultate

meist sehr nahe am Optimum
liegen. Dies wird etwas später anhand
eines Beispiels verdeutlicht werden.

Der Rechner
Um die vom Softwarepaket Nora

gelieferten Ergebnisse auch in der Praxis

überprüfen zu können, wird zurzeit
am Institut für Signal- und
Informationsverarbeitung ein Parallelrechnersystem

aufgebaut. Besonderes Gewicht
wurde dabei auf eine möglichst
vollständige Modularität gelegt. Wie die
Figur 4 zeigt, besteht der Rechner aus
einem Bussystem und einer Steuereinheit

(Controller). Letztere besitzt eine
Schnittstelle zu einem Hostsystem,
welches zum Laden und Debuggen
von Programmen dient. Hinzu kommt
eine nahezu beliebige Anzahl (paralleler)

Arithmetik-, Speicher-, Input/
Output- und eventuell Verbindungsmodule.

Die einzelnen Module lassen
sich gut mit Hilfe des oben eingeführten

Hardwaremodells beschreiben; als
Beispiel ist in Figur 5 die Modellierung

des Arithmetikmoduls dargestellt.

Um volle Modularität zu
gewährleisten, besitzt jedes Modul
seinen eigenen Mikrocodespeicher, in
dem das Mikroprogramm für das Mo¬

dul abgelegt wird. Denkt man sich die
Mikrocodespeicher der einzelnen
Module aneinandergereiht, so ergibt sich
ein sehr langes Mikrocodewort, man
spricht von einem VLIW-Rechner
(Very Long Instruction Word). Um die
Anzahl der für die Verbindung
zwischen den Modulen benötigten Busse
möglichst klein zu halten, wurden einige

zusätzliche Massnahmen ergriffen:

- Beim Zugriff auf den Temporärspeicher
arbeitet der Bus im Multiplexbetrieb.

Während der ersten Hälfte
des Basiszyklus kann der Speicher
beschrieben, während der zweiten
Hälfte kann er gelesen werden.

- Es wurden Dual-Port-Speicher
eingesetzt. Diese Bausteine können als
Busschalter verwendet werden, da
sie zwei Eingänge und zwei Ausgänge

besitzen.

- Durch den Einsatz von Tri-State-
Ausgangsregistern wurde die
Mehrfachbelegung von Bussen ermöglicht.

Selbstverständlich muss die
Mehrfachbelegung eines Busses bei
der Ressourcenzuteilung berücksichtigt

werden.

Bis heute wurden die Controllerkarte,
ein Arithmetik-, ein Speicher- sowie

ein Input-Output-Modul aufgebaut.
Das realisierte System ist durch
folgende Grössen charakterisiert:

Datenformat:
Zykluszeit:
Verwendete
Bausteine:

Hostrechner:
Aufbau:

Bussystem:

32 Bit Floating Point
100 ns

Serie AMD 293xx

System 68000

3fach-Europakarten,
Wire-wrap
gemeinsamer Adress-
und Steuerbus
6 Datenbusse à 32 Bit,
unterteilbar

Dauer der Addition, Subtraktion,
Operationen: Multiplikation:

je 1 Zyklus

Beispiel
Im folgenden soll die Anwendung

des Softwarepakets Nora anhand
eines Beispiels demonstriert werden.
Wir nehmen an, ein Parallelprozessorsystem

mit der in Figur 5 dargestellten
Hardwarearchitektur sei gegeben. Es
besteht aus einer Steuereinheit, einem
Speicher- sowie drei Arithmetikmodulen.

Die drei Arithmetikmodule seien
untereinander im Ring und mit dem
Speichermodul über drei bidirektionale

Busschalter verbunden. Auf diesem
System soll eine komplexe 64-Punkt-
Fast-Fourier-Transformation
implementiert werden. Es handelt sich dabei
um einen typischen Signalverarbei-
tungs-Algorithmus mit 2332 Operationen

(Additionen, Subtraktionen,
Multiplikationen, Laden und Speichern
der Signale). Das erste Ergebnis, das
man nach Eingabe des Algorithmus
und der Hardwarestruktur erhält, ist
die minimale Abarbeitungsdauer des

Algorithmus unter der Annahme, dass
die Ressourcen in unbeschränktem
Masse zur Verfügung stünden. Es ist
dies ein direktes Mass für die im
Algorithmus vorhandene Parallelität. In
unserem Beispiel könnte die FFT in
minimal 18 Zeiteinheiten gerechnet
werden. Dazu würden jedoch 128

Arithmetikeinheiten benötigt.
Nora erlaubt nun, für den gewählten

Algorithmus verschiedene
Architekturvarianten zu untersuchen und
untereinander zu vergleichen. In
Tabelle 1 sind die Ergebnisse einiger
Untersuchungen zusammengestellt. Die
erste Kolonne zeigt die Anzahl benötigter

Rechenschritte und den Ausnüt-

Figur4
Blockschaltbild des

parallelen
Signalprozessorsystems

Figur 5 Arithmetikmodul
pPr Mikroprogramm
CM Koeffizientenspeicher
TM Zwischenresultatspeicher
ALU Arithmetik-Logic-Einheit

Bulletin SEV/VSE 79(1988)7,9. April 371



Signalverarbeitung Parallelrechner

Anzahl
Arithmetikmodule

l
Processing-Elemente
beschränkt

Ii
Processing-Elemente und
Speicher beschränkt

m
Bei Architektur
der Figur 5

2 776 811 817
99% 95% 94%

3 512 557 606
99% 92% 85%

4 396
97%

439
88%

450
86%

Tabelle 1

Resultate zum
FFT-Beispiel

Die Tabelle zeigt die Anzahl benötigter Kechenschritte, und zwar unter der
Bedingung,

I dass Speicherressourcen und Verbindungen unbeschränkt zur
Verfügung stehen,

II dass Verbindungen unbeschränkt zur Verfügung stehen,
III dass Processing-Elemente, Speicherressourcen und Verbindungen

beschränkt zur Verfügung stehen.

zungsgrad der Rechenmodule falls die
Speicherressourcen und die Verbindungen

in unbeschränktem Masse zur
Verfügung stünden. Es wird also lediglich

die Einschränkung durch die
Processing-Elemente (PE) betrachtet. In
Kolonne 2 wurden die Zwischenspeicher

modelliert, hingegen wurde
angenommen, dass die Elemente über ein
vollständiges Cross-Point-Switch-
Netzwerk verbunden sind. Die letzte
Kolonne zeigt schliesslich die erreichbaren

Rechenzeiten bei einer
Hardwarearchitektur, die derjenigen von Figur
5 entspricht. Bemerkenswert ist der
durchwegs hohe Ausnutzungsgrad von
85 bis 99%, welcher mit dem heuristischen

Optimierungsverfahren erreicht
wurde. Wie anzunehmen war, nimmt
die Rechenzeit mit zunehmender
Beschränkung der Ressourcen (in der
Tabelle von links nach rechts) zu. Verglichen

mit dem deutlich höheren
Hardwareaufwand der idealen Variante, ist
der Gewinn an Rechenleistung jedoch
bescheiden. Dies ist ein Hinweis darauf,

dass eine Vereinfachung der
Hardwarestruktur bis zu einem gewissen

Grad keinen entscheidenden Ein-
fluss auf die Leistung des Systems
haben muss.

Das Softwarepaket Nora eignet sich
gut dazu, für ein gegebenes Problem

(in unserem Beispiel die Bestimmung
der diskreten Fourier-Transformation)
verschiedene Algorithmen und
Architekturen auf ihre Eignung hin zu
untersuchen. Hat man sich für eine
Lösung entschieden, liefert Nora die
notwendige Rechenzeit und die Auslastung

der diversen Hardwareelemente;
schliesslich besteht noch die Möglichkeit,

ein lauffähiges Mikroprogramm
zu generieren. Dadurch wird die Analyse

von parallelen Signalprozessorarchitekturen

und ihre Programmierung
wesentlich erleichtert.

Zusammenfassung und
Ausblick
Im vorliegenden Artikel wurde ein

Softwarepaket zur Analyse, Synthese
und Programmierung von parallelen
Signalprozessorarchitekturen vorgestellt.

Wir haben uns bewusst auf
Signalverarbeitungsprobleme
beschränkt, um die besonderen
Eigenschaften von derartigen Algorithmen
ausnützen zu können. Das Softwarepaket

Nora kann eingesetzt werden,
um verschiedene Algorithmen zu
analysieren und untereinander zu vergleichen.

Insbesondere wird die dem
Algorithmus inhärente Parallelität be-

£

Arithmetik¬
modul

Ari thmetiE
modul

1
Ari thmeti k-

modul
Speichermodul Steuer-

einheit

Figur 6

Hardwarearchitektur
des im Beispiel
verwendeten FFT-Pro-
zessors

• Festgeschaltete
Cross-Point-Switch-
Verbindung

O schaltbare Cross-
Point-Switch-Ver-
bindung

stimmt. Nora gestattet ferner die
Modellierung, Simulation und den
Vergleich von Hardwarearchitekturen. Es
ist somit möglich, einen guten Kom-
promiss zwischen Hardwareaufwand
und Rechenzeit zu finden. Da die
Auslastung der einzelnen Komponenten
angegeben wird, kann die Hardware
gezielt an den gewählten Algorithmus
angepasst werden. Um Hinweise auf
noch zu lösende Problempunkte zu
erhalten, wird zurzeit am Institut für
Signal- und Informationsverarbeitung
ein paralleles Signalprozessorsystem
realisiert. Die gewählte Hardware
besitzt einen hohen Grad an Modulari-
tät, ist gut realisierbar und zeichnet
sich trotz ihrer strukturellen Einfachheit

durch hohe Effizienz aus.
Obwohl das bestehende Softwarepaket

Nora für viele Beispiele schon
gute Resultate liefert, sind noch
Verbesserungen geplant. So wäre es von
Vorteil, wenn der vom PSPL-Compi-
ler gelieferte Datenflussgraph auch
nachträglich vom Benutzer modifiziert
werden könnte. Die Parallelität kann
dadurch häufig noch gesteigert werden.

Im weiteren sollen neben
Signalprozessoren auch VLSI-Chips als
Zielsysteme unterstützt werden, was die
Attraktivität des Systems für gewisse
Anwender erhöhen dürfte. Neu sollen
als Architekturelemente in Zukunft
auch ganze Blöcke und etwas speziellere

Bausteine wie beispielsweise Rota-
toren (Digitales Phasendrehglied)
eingesetzt werden können. Schliesslich
muss noch ein Konzept zur effizienten
Ausführung und Programmierung von
«If then eise» und Schleifenstrukturen
gefunden und implementiert werden.

Literatur
[1] J.W. Cooler and J.W. Tukey: An algorithm

for the machine calculation of complex Fourier

series. Mathematics of Computation
19(1965)2. p. 297...301.

[2] J. V. Zeman: Synthese und praktische Reali¬
sation von Systemen und Algorithmen für
digitale Signalverarbeitung. Dissertation Nr.
7857 der ETH Zürich, 1985.

[3] M. Thaler. C. Loeffler and G.S. Moschytz:
Programming, analysis and synthesis of

parallel signal processors. Proceedings of the
IEEE International Symposium on Circuits
and Systems (ISCAS), Philadelphia, May
4...7, 1987. Vol.2, p. 378...381.

[4] M. Thaler: Analyse und Synthese von paral¬
lelen Signalprozessor-Architekturen. Dissertation

Nr. 8240 der ETH Zürich, 1987.
[5] J. Zeman and G S. Moschyt:: Systematic

design and programming of signal processors,

using project management techniques.
IEEE Trans. ASSP 31 (1983)6, p. 1536... 1549.

[6] B.R. Rau. C.D. Glaeser and R.L. Picard:
Conference Proceedings of the 9th
IEEE/ACM Symposium of Computer
Architecture 1982; p. 131... 139.

[7] K. Gewald. K. Kasper und H. Schelle: Netz¬
plantechnik. Band 2: Kapazitätsoptimierung.
München, Oldenbourg-Verlag, 1972.

372 Bulletin ASE/UCS 79(1988)7,9 avril


	Nora : ein Softwarepaket zur Programmierung und Analyse von parallelen Signalprozessorsystemen

