
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 79 (1988)

Heft: 7

Artikel: Synchroner Datenflussrechner zur Echtzeitbildverarbeitung

Autor: Gunzinger, A. / Mathis, S. / Guggenbühl, W.

DOI: https://doi.org/10.5169/seals-904017

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904017
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Bildverarbeitung

Synchroner Datenflussrechner zur
Echtzeitbildverarbeitung
A. Gunzinger, S. Mathis, W. Guggenbühl

Ein an die Bildverarbeitung ange-
passtes Datenflussrechnerkonzept
wird vorgestellt. Dabei wird der
statische Datenflussgraph auf einem
programmierbaren Mehrprozessorsystem

nachgebildet. Dank einem
am Institut für Elektronik entwickelten

verteilten Netzwerk kann die
Zuordnung der Knoten des Daten-
flussgraphen zu den einzelnen
Prozessorelementen automatisiert werden.

Der Rechner kann in der
Echtzeitbildverarbeitung wie z. B. in
Fahrzeugsteuerungen oder in der
Robotertechnik eingesetzt werden.

Le concept d'un calculateur à
circulation de données adapté au traitement

d'images est présenté. Le

graphe du flux de données statique
est reproduit sur un système à

multiprocesseur programmable.
Grâce à un réseau développé à

l'Institut d'électronique il est
possible d'automatiser l'affectation

des nœuds du graphe aux
divers éléments du processeur. Le

calculateur peut s'utiliser dans le
traitement d'images en temps réel,
par exemple dans les commandes
de véhicules ou dans la robotique.

Adresse der Autoren
Dipl. Ing. ETH Anton Gunzinger.
Dipl. Ing. ETH Severin Mathis
und Prof. Dr. Walter Guggenbühl,
Institut für Elektronik, ETH-Zentrum,
8092 Zurich.

Ziel dieses Projekts sind die
Konzeption und der Aufbau eines Echt-
zeitbildverarbeitungssystems, das
einerseits dieselbe Rechenleistung
erbringt wie problemspezifische Hardware,

anderseits aber programmierbar
ist und in weiten Grenzen an Probleme
der Echtzeitbildverarbeitung ange-
passt werden kann. Der Anwender
sollte dabei stets auf einer ihm an-
gepassten Softwareebene mit dem
System kommunizieren können. Die
Arbeit umfasst neben der Konzeption
der Rechnerstruktur auch den Bau
eines Funktionsmusters. Dabei ist darauf

zu achten, dass sich das
vorgeschlagene Konzept gut für die
Implementation mit VLSI-Schaltkreisen eignet.

In einer weiteren Phase soll eine an
die Bedürfnisse der Echtzeitbildverarbeitung

angepasste Anwendersprache
definiert sowie die notwendige
Systemsoftware konzipiert und realisiert
werden. Anhand von realen Anwendungen

(z.B. Tracking, autonome
Fahrzeugführung) sollen die
Einsatzmöglichkeiten des Systems demonstriert

werden.
Im Bereich Robotertechnik und

Fahrzeugsteuerung besteht ein
wachsendes Bedürfnis nach optisch geführten

Systemen. Bei einem solchen
System liegt das Ausgangssignal des
Prozesses als optisches Signal vor (z. B. als
Bild der Fahrbahn). Dieses Signal
wird zunächst aufbereitet und daraus
die interessierende Information durch
ein Bildverarbeitungssystem extrahiert
(z.B. die Position der Leitlinie). In
einem Regler wird ein Vergleich mit
dem Sollwert (Gewünschte Ablage zur
Mittellinie) durchgeführt und daraus
das Steuersignal für den Prozess (z. B.

Lenkung des Fahrzeugs) berechnet.
Da das Bildverarbeitungssystem im
Regelkreis eingebettet ist, muss es die

Information sehr schnell (in Echtzeit)
und möglichst ohne Totzeit verarbeiten.

1. Problemstellung bei der
Echtzeitbildverarbeitung
1.1 Die klassische Struktur
von Echtzeitbildverarbeitungs-
systemen
In einem «klassischen»

Bildverarbeitungssystem durchlaufen die
Bilddaten nach der Aufnahme und
Digitalisierung die Stufen Vorverarbeitung
(Verbesserung des Datenmaterials,
Normierung, Kodierung), Segmentierung

(Einteilung des Bildes in Gebiete
mit «gleichen» Eigenschaften),
Nachverarbeitung (Korrektur von
Segmentierungsfehlern) und Merkmalextraktion

(Berechnung von statistischen
Merkmalen wie Fläche, Umfang,
Momente). Der nachfolgende Block
Klassifikation/Szenenanalyse ordnet
Teilgebiete zu vorgegebenen Klassen und
interpretiert die Szene. Die systemrelevante

Information dieser Analyse wird
an das Regelsystem weitergegeben.
Ein Steuerungsteil kann die Parameter
sämtlicher Verarbeitungsstufen verändern,

wobei die Parametersätze nur in
den Verarbeitungspausen geändert
werden.

1.2 Datendurchsatz und
Instruktionsrate
Eines der Hauptprobleme bei der

Verarbeitung von Videobildern in
Echtzeit ist die hohe Datenrate des

Videosignals [1]. Bei der Aufnahme können

durch die Verwendung mehrerer
Kanäle (z.B. Stereovision, Farbbildanalyse)

bis zu 100 Millionen Abtastwerte

pro Sekunde entstehen. Diese
Datenrate wird für die Szenenanalyse

362 Bulletin ASE/UCS 79(1988)7,9 avril

Datenflussrechner

auf einige 1000 Abtastwerte pro
Sekunde reduziert. Geht man davon aus,
dass die Vorverarbeitung bis zu 100

Instruktionen pro Datenwert beinhaltet
und dass sich diese Anzahl für die
Klassifikation etwa um den Faktor 10

erhöht, so werden für die
Szenenanalyse/Klassifikation Rechenleistungen
von etwa 0,1 bis 1 MIPS (Millionen
Instruktionen pro Sekunde) benötigt.
Die Instruktionsrate für die vorangehende

Aufnahme und
Merkmalextraktion (100 Millionen Abtastwerte)

ist jedoch beträchtlich höher
und beträgt bis zu 10 GIPS (Milliarden
Instruktionen pro Sekunde). Während
für die Szenenanalyse/Klassifikation
bereits Rechnerstrukturen mit
genügender Rechenleistung erhältlich sind
(z.B. Signalprozessoren, Transputer),
stehen programmierbare Systeme für
die Bildaufnahme/Merkmalextraktion

noch aus.

1.3 Anwendersicht

Da der Endverbraucher immer
höhere Anforderungen an ein Computersystem

stellt, steigen die
Anwenderprogrammkosten stetig an. Bereits
beim Entwurf eines neuen Systems
sollte nach Möglichkeiten gesucht
werden, wie die Erstellungskosten von
Anwendersoftware verringert werden
können. Die folgenden Massnahmen
können zur Reduktion dieser Kosten
führen:
- anwendungsnahe Benutzersprache,
- klar strukturiertes Systemmodell,
- hochwertige Übersetzungsprogramme

(Compiler),
- automatische Zuordnung der

Teilaufgaben an die Prozessorelemente
bei Mehrprozessorsystemen

- hochwertige Testhilfsmittel auf der
Ebene der Benutzersprache.

Um diesen Anforderungen gerecht
zu werden, sollte der Anwender das
Verhalten des Systems (die Algorithmen)

in einem ihm vertrauten
mathematischen Formalismus beschreiben
können. Für die Kommunikation des

Systems mit seiner Umgebung (Video-
signal-Ein- und -Ausgänge, Tastatur,
Maus, Bildschirm) muss die Benutzersprache

die entsprechenden Elemente
zur Verfügung stellen.

2. Rechnerkonzept
2.1 Grundidee
Die Grundidee des hier vorgestellten

Konzeptes besteht in der direkten
Nachbildung von Software durch
Hardware. Dabei wird aus der forma-

to/from other
Processing Elements

Figur 1 Struktur eines Prozessorelementes

Dieses besteht aus der eigentlichen Verarbeitungseinheit

(Processing Unit, PU), aus einer
Datensynchronisationseinheit (Matching Unit, MU)
und aus einer auf die einzelnen Prozessoren
verteilten Kommunikationseinheit (Network Unit,
NU).

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 10 10 10 10 3 3 3

3 3 3 10 10 10 10 3 3 3

3 3 3 10 10 10 10 3 3 3

3 3 3 10 10 10 10 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0 0

0 0 7 14 14 14 7 0 0

0 0 14 0 0 0 14 0 0

0 0 14 0 0 0 14 0 0

0 0 14 0 0 0 14 0 0

0 0 7 14 14 14 7 0 0

0 0 0 0 0 0 0 0 0

Figur 2 Wirkungsweise des Robertsoperators

Vom hellen Rechteck (hohe Zahlenwerte) auf
dunklem Hintergrund (niedrige Zahlenwerte)
werden durch die Bearbeitung mit dem
Robertsoperator im wesentlichen die Objektkanten
hervorgehoben.

R (x, y, /) abs / (x, y, t)- / (x - y- 7, r) |

+ abs | / (x-1, y, t)-1 (x, y- /, t) |

a Ursprüngliches Bild /(x, y, 0
b Bearbeitetes Bild R(x, y, t)

len Systemspezifikation zuerst ein
statischer Datenflussgraph erzeugt. Dieser

wird dann anschliessend durch
Hardware nachgebildet, indem jeder
Knoten bzw. jede Knotengruppe
durch ein Prozessorelement ersetzt
wird. Jedes Prozessorelement (Fig. 1)

besteht aus einer Verarbeitungseinheit
(Processing Unit, PU), aus einer
Datensynchronisationseinheit (Matching
Unit, MU) und aus einer auf die
einzelnen Prozessoren verteilten
Kommunikationseinheit (Network Unit, NU).

Im folgenden wird dieses Konzept
anhand eines einfachen Beispiels,
nämlich des Roberts-Operators (eines
nichtlinearen, zweidimensionalen
Kantendetektors), näher erläutert. Die
Figur 2 zeigt die Wirkungsweise des

Roberts-Operators: Vom hellen Rechteck

(hohe Zahlenwerte) auf dunklem
Hintergrund (niedrige Zahlenwerte)
werden durch die Bearbeitung mit dem
Roberts-Operator im wesentlichen die
Objektkanten hervorgehoben.

2.2 Systemsoftware
Die Funktion wird zuerst in der

Sprache IPL (Image Processing
Language), einer an die Bedürfnisse der
Echtzeitbild Verarbeitung angepassten,
für den Anwender leicht verständlichen,

formalen Sprache formuliert.
Ein besonderer Vorteil dieser Sprache
ist, dass sich der in einer Aufgabe
vorhandene Parallelismus leicht erkennen
lässt, was für die klassischen
Programmiersprachen wie Fortran, Pascal,
Modula 2 nur eingeschränkt gilt [2; 3],
Die Sprache IPL wurde - ebenfalls im
Rahmen dieses Projektes - am Institut
für Elektronik entworfen.

Figur 3 Statischer Datenflussgraph des

Robertsoperators

Bulletin SEV/VSE 79(1988)7,9. April 363

Bildverarbeitung

Der Compiler übersetzt das
Programm zuerst einmal in einen
statischen Datenflussgraphen (Fig. 3). Dieser

wird dann in Subgraphen mit zwei
Eingängen und einem Ausgang unterteilt,

da die Rechenwerke ebenfalls
zwei Eingänge und einen Ausgang
besitzen, wobei, wie im nächsten
Abschnitt beschrieben wird, die Komplexität

der Operation keine Rolle spielt.
Zuletzt wird jeder dieser Subgraphen
durch ein Prozessorelement ersetzt.

2.3 Rechenwerk

Das Rechenwerk oder die
Verarbeitungseinheit besteht aus einer Look-
up-Tabelle: Für zwei Operanden von
beispielsweise 8 Bit Breite wird zur
Compilationszeit das Ergebnis jeder
möglichen Eingangskombination
berechnet und in einem statischen Speicher

abgelegt [4]. Bei der Verarbeitung
werden nun die zwei Operanden als
Adresse interpretiert und an den Speicher

angelegt, worauf am Speicherausgang

das Ergebnis der Operation
erscheint. Diese Technik hat verschiedene

Vorteile: Jede beliebige Funktion
von zwei Operanden kann berechnet
werden, und die «Ausführung» der
Operation dauert unabhängig von
ihrer Komplexität immer gleich lang.
Allerdings benötigt eine Look-up-Tabel-
le einen relativ grossen Speicherraum
(in diesem Fall 64 KByte), weshalb
damit keine beliebige Auflösung erreicht
werden kann. Die 8-Bit-Genauigkeit
ist für viele Anwendungen in der
Bildverarbeitung glücklicherweise ausreichend

[4],

Robertsoperators in Datenflussgraphen
D1,D2, D3 Einstellung der digitalen

Schieberegister
PU 1, PU2, PU3 Look-up-Tabelle
u, v, w lokale Datenströme

2.4 Datensynchronisation
Die Kamera wird im sogenannten

Line-Scan-Verfahren abgetastet, und
die Daten gelangen in gleicher Reihenfolge

in das System. Müssen nun zwei
Operanden miteinander verknüpft
werden, z. B. l(x,y,t) mit I(x-1, y-1, t),
so geschieht dies durch digitales
Verzögern des Datenstromes in einem
einstellbaren Schieberegister. In obigem
Beispiel müssen die Daten um eine
Zeile und einen Punkt verzögert werden

(Fig. 4). Die benötigte Verzöge¬

rung kann bereits zur Compilationszeit
bestimmt werden. Die Figur 5 zeigt

für das Beispiel des Roberts-Operators
die Einstellung der digitalen Schieberegister

sowie die Look-up-Tabellen
mit den zugehörigen Funktionen.

2.5 Prozessorkommunikation
In einem enggekoppelten

Mehrprozessorsystem werden die Hardwarekosten

durch das Kommunikationsnetzwerk
dominiert. Damit der Preis eines

Systems linear mit seiner Leistungsfähigkeit

(Anzahl Prozessoren) wächst,
muss das Kommunikationsnetzwerk
auf die verschiedenen Prozessoren verteilt

werden. Eine weitere Forderung
ist, dass die Leistungsfähigkeit des

Kommunikationsnetzwerkes durch
Hinzufügen einer beliebigen Anzahl
weiterer Prozessorelemente erhöht
werden kann.

Die Figur 6 zeigt am Beispiel des

Roberts-Operators die Kommunikationspfade.

Dabei wird einfachheitshalber

angenommen, dass das Ergebnis

wieder zu einem (hier neu
eingeführten) Prozessorelement PEO

zurückgeführt wird, z.B. zur Darstellung
auf dem Bildschirm. Das universellste
Kommunikationsnetzwerk ist der
Kreuzschienenverteiler (Fig. 7). Leider
wächst der Aufwand (Anzahl Knotenpunkte)

für dieses Netzwerk proportional

mit der Ordnung 0(n2). Für
Anwendungen mit sehr vielen Prozessorelementen

muss deshalb nach einer
anderen Lösung gesucht werden.

In Figur 8 ist der Kreuzschienenverteiler

etwas anders gezeichnet; die
einzelnen Schaltelemente sind jetzt lokal
einem Prozessor zugeordnet. Jeder
Prozessor kann dabei seinen Ausgang
auf einen beliebigen Bus schalten. Bei

genauer Betrachtung fällt auf, dass
z. B. der zweite Bus (von unten) nur zur
Übertragung von Daten von PE 2 auf
PE 3 benötigt wird. Wenn es möglich
wäre, den Bus zu unterbrechen, so
könnte er gleichzeitig mehrmals zur
Übertragung von Daten ausgenutzt
werden. Von dieser Möglichkeit wurde
in Figur 9 Gebrauch gemacht. Anstelle
von 4 werden für die Nachbildung
desselben Netzwerks jetzt nur noch 2 Busse

benötigt. Wird dieses Netzwerk weiter

untersucht, so wird für bekannte
Algorithmen minimal die in Tabelle I

angegebene Anzahl Busse benötigt.
Das bedeutet, dass sich viele

Algorithmen der digitalen Signalverarbeitung
mit Hilfe einer solchen Busstruktur

implementieren lassen. Anstelle
der in Figur 9 gezeichneten Schalter

a b

i
(x-1,y-1)

I
(x.y-1) I (x ,y

(Line-
Scan)

*-I(x,y)

Einstel1 bares
Schieberegister

I

(x-l.y)
I

(x,y)
—* Verz.=nx+1 —I(x-1,y-1)

Figur 4 Datensynchronisation
Durch Verzögern des Datenstroms in einer digitalen Verzögerungsleitung (b) der Länge nx+1 (nx:
Punkte pro Zeile) wird erreicht, dass die Operanden /(v. r) und /(v-1 v-1 gleichzeitig an die Recheneinheit

gelangen,
a Bildfeld
b Verzögerungsschaltung

364 Bulletin ASE/UCS 79(1988)7,9 avril

Da ten flussrechner

Figur 6
Kommunikationsgraph

des

Robertsoperators
PE Processing

Element

werden (als programmierbare Schalter)

Multiplexer mit nachgeschaltetem
Latch verwendet. Damit können die
Daten synchron von einem Prozessorelement

zum andern verschoben werden

(Pipeline). Weil die Daten auf
genau definiertem Pfad vom Sender
(Ausgang eines PE) zum Empfänger
(Eingang des nächsten PE) weitergeleitet

werden, kann eine viel höhere Taktrate

als in einem System mit parallelem

Bus und einer unbekannten
Anzahl von Empfängern erzielt werden.
Die sich durch den Transport ergebende

Verzögerung kann durch die digitalen

Verzögerungsleitungen (Abschnitt
2.4) kompensiert werden, da diese
sinnvollerweise mit derselben Taktrate
arbeiten.

Figur 7

Implementation des

Robertsoperators auf
einem universellen
Koppelnetzwerk
(Kreuzschienenverteiler)

Der Aufwand für das

Koppelnetzwerk wächst
mit der Ordnung 0{n2)

Figur 8

Implementation des

Robertsoperators auf
verteiltem Netzwerk
Ein solches System
kann maximal nur
soviele Prozessoren
enthalten, wie Busse zur
Verfügung stehen. Jede

Verbindung blockiert
einen ganzen Bus.

2.6 Konfiguration
Die Anzahl benötigter Busse ist

nicht nur von der Form des
Kommunikationsgraphen, sondern auch von
der Zuordnung der Aufgaben (Tasks)
an die verschiedenen Prozessorelemente

abhängig. Unter der Annahme,
dass jedes Prozessorelement gleichwertig

ist, ergeben sich für einen
Algorithmus mit n Prozessoren (n-1)! mögliche

Anordnungen. Für das Beispiel
Roberts-Operator ist n 4; es gibt also
insgesamt 6 mögliche Anordnungen,
wie Tabelle II zeigt.

Aus dieser Tabelle geht hervor, dass
die Anzahl benötigter Busse stark von
der Verteilung der Aufgaben auf die
Prozessorelemente abhängt. Da ein
System aber für eine definierte Anzahl
Busse ausgelegt werden muss, kann es

möglich sein, dass eine zufällig
gewählte Anordnung nicht implementiert

werden kann, weil die Anzahl
Busse nicht ausreicht, obwohl es eine
andere Konfiguration gibt, deren
Implementation keine Probleme macht.

Es ist nun die Aufgabe eines

Programms, des sogenannten Konfigura-
tors, eine geeignete Zuordnung zu
finden, die auf dem System implementiert

werden kann. Eine Überprüfung
aller Anordnungen ist für Algorithmen,

die viele Prozessorelemente
benötigen, nicht möglich, da die Anzahl
der Möglichkeiten mit (n-1)! zunimmt.
Deshalb werden heuristische Verfahren

verwendet, die den Aufwand stark
reduzieren können. Beispiele solcher
Verfahren sind z. B. Subblock-,
Traveling-Salesman- und Simulated-Anneal-
ing-Optimierung. Es sind dieselben
Verfahren, die auch in Print-Layout-
Systemen für das Routing verwendet
werden.

Bulletin SEV/VSE 79(1988)7, 9. April 365

Bildverarbeitung

Sobald eine Konfiguration gefunden

ist, die auf dem System implementiert
werden kann, muss diese in die

Hardware geladen werden, d.h. die
Bussschalter, Verzögerungsleitungen
und Look-up-Tabellen müssen
entsprechend programmiert werden.
Anschliessend kann das Programm
ausgeführt werden.

3. Realisation
Ein erster Testaufbau erfolgte im

Rahmen einer Diplomarbeit am Institut

für Elektronik. Dabei wurden
herkömmliche LS-TTL-Bausteine
verwendet. Ein einzelnes Prozessorelement

fand dabei auf einer Dreifach-
Europakarte Platz, die Stromaufnahme

einer Karte betrug etwa 4 A.
Diese Schaltung wurde überarbeitet

und teilweise durch programmierbare
Gatearrays (Logic Cell Array, LCA)
ersetzt. Die Datensynchronisationseinheit

(Matching Unit) wurde in
SMD-Technologie aufgebaut.
Dadurch konnte die Packungsdichte um
den Faktor 3 erhöht und die Stromaufnahme

um den Faktor 4 reduziert werden.

Eine Integration in Custom-
VLSI-Chips könnte das Volumen
nochmals um den Faktor 4 bis 8 bei
gleichzeitiger Reduktion der
Stromaufnahme verringern. Die technischen
Daten des Prototyps sind in der Tabelle

III zusammengestellt.

Figur 9

Reduktion des

Koppelnetzwerkes

• Verbindung
X Unterbruch
Die zu den einzelnen
Prozessoreinheiten
gehörenden Busanteile
können entsprechend
der jeweiligen Aufgabe
unterbrochen oder
durchgeschaltet werden.
Für die Berechnung des

Robertsoperators zum
Beispiel werden damit
anstelle von 4 nur noch
2 Busse benötigt.

Algorithmus Minimale
Anzahl
Busse

Lineares Array 2

Binärer Baum mit 211 n
Eingängen
2 n x n-Matrix-
Multiplikation 2n-l
Rekursive Struktur n-ter
Ordnung n + 1

Tabelle I Minimale Anzahl Busse für
verschiedene Algorithmen

Anordnung der Anzahl
Teilaufgaben benötigter Busse

0 12 3 2

0 13 2 3

0 2 13 2

0 2 3 1 3

0 3 12 4

0 3 2 1 4

Tabellen Die Anzahl benötigter Busse ist
von der Zuordnung der Tabellenaufgaben
auf die Prozessoren abhängig

4. Anwendungen
Aus Platzgründen muss auf eine

ausführliche Beschreibung von
Anwendungsbeispielen verzichtet werden.

Es sind aber nachfolgend einige
der möglichen Algorithmen, die auf
dem Rechner implementiert werden
können, zusammengestellt.
- ortsabhängige Korrekturen (Shading),

- Lokaloperationen (linear,
nichtlinear),

- temporale Operationen (linear,
nichtlinear),

- multispektrale Verarbeitung
(Farbbildverarbeitung),

- Erzeugung von Fensterfunktionen
(Rechteck, Rahmen, Kreis, Kreisring),

- Erzeugung von Verteilungsfunktionen
als Funktion des Ortes und der

Zeit,
- Bildsegmentierung,
- Nachverarbeitung (Kantendetek-

tion, Erosion, Dilatation, nichtlineare

Rauschunterdrückung),

Tabelle III
Technische Daten des

Datenflussrechner-
prototyps

Verarbeitungsleistung:

Maximale Anzahl
Prozessorelemente:

Kommunikationsnetzwerk:

Datensynchronisation:

Prozessorelementtypen:

Klassifikationsrechner:

Programmentwick-
lungssystem:
Programmentwicklungsumgebung:

50 Bilder/Sekunde, 256x256
Bildpunkte

256

12 umlaufende Verbindungspfade
mit 8-Bit-Auflösung, 10-MHz-Da-
tenrate

Verzögerung von 1...4096 Bildpunkten
einstellbar. Damit können beliebige

Daten, die innerhalb von 16

Bildzeilen liegen, miteinander
verknüpft werden.

A/D- und D/A-Wandler,
Filterprozessor, Korrelator, «Look-Up-
Table»-Prozessor, Binärprozessor,
Statistikprozessor
IBM-XT oder AT, Signalprozessor
TMS 320C25

IBM-XT- oder -AT-kompatibler
Rechner

Compiler, Konfigurator, Loader,
Interpreter, Hardwaremonitor,
Debugger und Simulator

366 Bulletin ASE/UCS 79(1988)7, 9 avril

Datenflussrechner

- Merkmalsextraktion (Fläche,
Umfang, Momente 1. und 2. Ordnung,
Histogramme).
Diese Algorithmen oder beliebige

Kombinationen davon können
selbstverständlich in Echtzeit (50 Bilder pro
Sekunde) abgearbeitet werden.

5. Ausblick
Das vorgestellte Konzept ist

vielversprechend für Anwendungen mit relativ

wenig Instruktionen und grossen
Datenmengen bzw. grossem
Datendurchsatz. Die Echtzeitbildverarbeitung

ist eine solche Anwendung.
Bekannte Bildverarbeitungsalgorithmen
können mit diesem System 100- bis
lOOOmal schneller abgearbeitet werden
als auf herkömmlichen Systemen.
Beispielsweise benötigt der Farbbildklas-
sifikator zur autonomen Fahrzeugführung

auf dem WARP-Rechner [5] (gilt
in den USA als sehr erfolgversprechende

Architektur) 5 Sekunden zur
Auswertung eines einzelnen Bildes.
Derselbe Algorithmus kann auf dem
vorgestellten Rechner in 20 ms, also
rund 250mal schneller, abgearbeitet
werden.

Das vorgestellte Konzept ist jedoch

auch von der Programmentwicklungsumgebung

aus gesehen äusserst
interessant: Der Anwender kann die Aufgaben

an das System auf sehr hoher Ebene

definieren (Spezifikationsebene).
Die Systemsoftware übersetzt die
Spezifikation nicht nur in ein lauffähiges
Programm, sondern verteilt dieses
automatisch auf die zur Verfügung
stehende Hardware. Ein Debugger sollte
die Untersuchung von Programmen
ebenfalls auf der Spezifikationsebene
erlauben. Auf diese Aspekte kann aus
Platzgründen nicht eingegangen werden,

doch sei hier auf weitere Publikationen

über diese Rechnerarchitektur
verwiesen [6; 7; 8].

Da das vorgestellte Konzept von der
Datenbreite und den verwendeten
Rechenwerken unabhängig ist, liesse sich
unter Zuhilfenahme entsprechender
Rechenelemente auch ein äusserst
leistungsfähiges System für 32/64-bit-
Gleitkomma-Arithmetik realisieren.
Damit könnten auch Algorithmen aus
dem Gebiet der Computersimulation
und des CAD (Computer-Aided
Design) effizient bearbeitet werden.

Schliesslich könnten durch die
Integration des Systems in Custom-VLSI-
Chips die Stromaufnahme, das Volumen

und auch die Kosten beträchtlich
gesenkt werden. Das System würde da¬

mit auch im industriellen Umfeld
Interesse finden.

Literatur
[1] 5. Yalamichili a.o.: Image processing archi¬

tectures: A taxonomy and survey. In: Progress

in pattern recognition. Volume 2.
Amsterdam, North-Holland, 1985.

[2] E.J. Lerner: Data-flow architecture. IEEE
Spectrum 21(1984)4, p. 57.. .62.

[3] A.L. Davis and R.M. Keller: Data flow pro¬
gram graphs. IEEE Computer 15(1982)2, p.
26...41.

[4] H.J. Keller, A. Favre and A. Comazzi: VAP a
video array processor using cascaded
look-up tables and its applications in biomed-
icine. Proceedings of SPIE (The international

Society of Optical Engineering). Vol. 397:
Applications of digital image processing; p.
406...414.

[5] H.T. Kung: Systolic algorithms for the CMU
Warp processor. Proceedings of the seventh
International Conference on Pattern Recognition,

Quebec, July 30-August 2, 1984; vol.
1, p. 570...577.

[6] T. Gunzinger: Synchroner Datenflussrechner
zur Echtzeitbildverarbeitung. Mustererkennung

1986. 8. DAGM-Symposium (Deutsche
Arbeitsgemeinschaft für Mustererkennung).
Informatik-Fachberichte 125. Berlin u. a,
Springer-Verlag, 1986; S. 123... 128.

[7] A. Gunzinger, S. Mathis and W. Guggenbühl:
Datenflussrechner Echtzeitbildverarbeitung:
Softwareentwicklungsumgebung. Mustererkennung

1987. 9. DAGM-Symposium (Deutsche

Arbeitsgemeinschaft für Mustererkennung)

Informatik-Fachberichte 149. Berlin u.
a., Springer-Verlag, 1987; S. 34...39.

[8] A. Gunzinger, S. Mathis and W. Guggenbühl:
A reconfigurable systolic array for real-time
image processing. Proceedings of the IEEE
International Conference in Acoustics,
Speech and Signal Processing (ICASSP)
1988.

Bulletin SEV/VSE 79(1988)7, 9. April 367

	Synchroner Datenflussrechner zur Echtzeitbildverarbeitung

