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Transputer

Paralleles Rechnen mit Transputern

P.G. Kropf

Viele Probleme, die heute auf se-
quentiell arbeitenden Computern
gelost werden, besitzen eigentlich
eine parallele Struktur. Das Trans-
puter-Occam-Konzept erlaubt nun,
derartige Probleme direkt parallel
zu implementieren; im Gegensatz
zu konventionellen Systemen kann
die Parallelitat in natirlicher Weise
in ein Programm und auf die Archi-
tektur abgebildet werden. In diesem
Artikel werden die Moglichkeiten
der Sprache Occam und der Trans-
puter-Architektur diskutiert.

Nach einer Einfiihrung in parallele
Systeme und das Transputer-
Occam-Konzept werden einige Pro-
jekte kurz vorgestellt.

La plupart des problemes actuelle-
ment résolus a I’aide d’ordinateurs
travaillant de maniéere séquentielle
sont en fait paralleles par leur
nature. Le tandem Occam-Trans-
puter permet maintenant |’implé-
mentation paralléle de tels pro-
blemes, car, contrairement aux sys-
temes conventionnels, il permet de
passer de facon naturelle du pro-
bleme a un programme puis a une
architecture paralléle. Dans cet arti-
cle, les possibilités du langage
Occam et de I’architecture du
Transputer sont discutées. Apres
une courte introduction aux sys-
temes paralléles et au concept
Occam-Transputer un choix de pro-
jets est présenté.

Adresse des Autors

Peter G. Kropf, Dipl. Math., Institut fir
Informatik und angewandte Mathematik,
Universitat Bern, Linggassstrasse 51,3012 Bern.

In der Forschung und Entwicklung
von parallelen Computersystemen gibt
es viele verschiedene Ansitze. Die mei-
sten davon basieren auf dem von den
sequentiellen Computern her bekann-
ten von-Neumannschen Prinzip, bei
dem der zeitliche Berechnungsablauf
durch die Instruktion gesteuert wird.
Daneben gibt es andere Entwicklun-
gen, die z.B. auf dem Datenflussprin-
zip aufbauen, bei dem die Berechnun-
gen durch die Daten gesteuert werden.
Die erste Gruppe wird oft nach den in
der Tabelle I angegebenen Typen klas-

SIMD- MIMD - Typen
Typen
Switched Network
Tabelle I

Klassifikation paralleler Systeme
(von-Neumann-Typen)

SIMD  Single Instruction Multiple Data
MIMD  Multiple Instruction Multiple Data

sifiziert [1; 2]. Die heute kommerziell
erhéltlichen parallelen Computersy-
steme, insbesondere die Supercompu-
ter wie etwa Cray oder die Connection
Machine, basieren meist auf dem Sing-
le Instruction Multipe Data-Typ
(SIMD-Typ)'.

Das Hauptgewicht beziiglich der
Entwicklung von parallelen Rechner-
systemen liegt bei den Multiple In-
struction Multiple Data-Typen
(MIMD-Typen). Die geschalteten
(switched) MIMD-Maschinen enthal-

' SIMD-Maschinen weisen einen gemeinsa-
men Speicher auf. Eine Instruktion bearbeitet je-
weils gleichzeitig mehrere Daten.

ten gemeinsame Speicher, iiber die die
verschiedenen Prozessoren miteinan-
der kommunizieren und sich gegensei-
tig synchronisieren. Diese werden als
eng gekoppelte parallele Systeme be-
zeichnet. Die zweite MIMD-Klasse,
lose gekoppelte Netzwerk-Systeme, ba-
sieren auf dem Prinzip des Nachrich-
tenaustausches tiber ein Netzwerkme-
dium, das im allgemeinen eine kom-
plexe Struktur (Topologie), wie etwa
einen Torus (Fig. 1), aufweist. Jeder
Prozessor verfiigt iiber seinen eigenen,
privaten Speicher, auf den kein ande-
rer Prozessor direkten Zugriff hat, d.h.
es gibt keinen gemeinsamen, globalen
Speicher.

Fiir all die verschiedenen Architek-
turen gibt es auch passende Program-
miersprachen. Man unterscheidet hier
zwischen Sprachen, die auf dem Prin-
zip der gemeinsamen Variablen basie-
ren (SIMD und switched MIMD) und
denjenigen, die dem Modell des Nach-
richtenaustausches zwischen unabhén-
gigen Systemen entsprechen (MIMD-
Networks).

Der im folgenden nédher beschriebe-
ne Baustein fiir parallele Computersy-

H—4 ¢,

o—o—+

Y

Figur 1 Torus oder Hyperwiirfel
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Transputer

steme, der Transputer, und die paralle-
le Programmiersprache Occam geho-
ren in die Klasse der Netzwerk-
MIMD-Systeme.

Die Sprache Occam

Die Sprache Occam [3] basiert auf
der theoretischen Sprache CSP (Com-
municating Sequential Processes) von
C.A.R. Hoare [4]. Occam ist speziell
geeignet fiir die Programmierung von
Prozessornetzwerken, also fiir paralle-
le Systeme. Ein Occam-Programm be-
steht aus einer Menge von sequentiel-
len Teilprozessen, die zueinander par-
allel ablaufen. Die Teilprozesse kon-
nen iiber Kanile miteinander kommu-
nizieren und Informationen austau-
schen. Auf diese Weise bearbeiten
mehrere parallele Prozesse gemeinsam
ein Problem, wobei die Prozesse genau
dann kommunizieren miissen, wenn
die Fortfilhrung eines Prozesses von
einem anderen Prozess abhidngt. Die

Kommunikation ist synchron, unge-
puffert und findet immer tiber Punkt-
zu-Punkt-Verbindungen (sog. Kanile)
statt. Parallele Prozesse konnen nur
iber Kanile Daten austauschen (Tab.
IT), d.h. es gibt insbesondere keine ge-
meinsamen, globalen Datenbereiche
(Shared Variables). Im sequenticllen
Teil der Sprache findet man ausser dy-
namischen Strukturen etwa dieselben
Sprachelemente wie in Pascal, wih-
rend der parallele Teil Sprachelemente
fir die Kommunikation (Senden und
Empfangen) (Tab.III), Kanalproto-
kolle und die Parallelitit enthilt. Im
Gegensatz zu anderen Sprachen, wie
Ada oder Chill, ist bei Occam die Par-
allelitit das grundlegende Konzept
und der sequentielle Fall nur ein Spe-
zialfall [5].

Der Transputer

Der Transputer (Fig. 2) gestattet, die
parallelen Occam-Programme optimal

CHAN OF INT from.A.to.B :

PAR =

-- Prozess ‘Af
INT x : --
SEQ
--compute
kanal ! x e
--compute

-- Prozess ‘Bf

INT y :

SEQ
--compute
kanal 7 y e
-=-compute

sende

-- Kanal Deklaration --

Parallele Ausfuehrung --

Variablen Deklaration --

‘x¢ ueber Kanal
‘from.A.to.B¢ zu Prozess ‘B¢ --

empfange von Prozess ‘A‘ ueber

Kanal ‘from.A.to.B einen Wert
und speichere ihn in ‘y° --

Tabelle I Kommunizierende Prozesse

Das Einriicken bestimmt in Occam die Blockbildung und die Giiltigkeitsbereiche von Objekten.

Datentypen BOOL Wert TRUE,FALSE E?ebl:l:stlel‘lier
BYTE Wert 0 bis 255 S he O
INT Integer prache Liccam
REAL 32 Floating Point Zahlen

Konstrukte SEQ Sequenz
PAR parallel
IF Verzweigung
ALT Input Alternative
WHILE Schleife

Kandle, CHAN OF protocol Kanaltyp

Kommuni - keyboard? char Kanalinput

kation screen! char Kanaloutput

Systen [Jeotinksf==
Services | |- oo
am [ ik
Memory COLink! =
Interface
| = ) ==
- -
FPU CPU

Figur2 Der Inmos-Transputer

FPU Floating Point Unit
CPU Central Processing Unit

auf einer parallelen Hardware auszu-
fihren [6; 7]. Dieser 32-Bit-Prozessor
ist ein schneller RISC?-Rechner mit
einer Leistung von 10 MIPS? in der
Grundversion (T414) und zusétzlich
1,5 MFLOPS? in der Floating Point
Version (T800). Im weiteren sind beim
T414 2 kByte RAM und beim T800
4 kByte RAM auf dem Chip integriert.
Ein entscheidender Unterschied zu an-
deren herkémmlichen Mikroprozesso-
ren sind die 4 bidirektionalen seriellen
Links (20 Mbit/s), liber welche ver-
schiedene Transputer miteinander ver-
bunden werden konnen. Diese Links
entsprechen den Occam-Kanilen.
Softwarekanile konnen damit direkt
auf Hardwarekanilen (Links) abgebil-
det werden. Dabei realisiert jeder Link
zwei gerichtete Occam-Kanile, einen
in jede Richtung. Diese Kanéle kon-
nen auch generell fiir die Kommunika-
tion mit der Aussenwelt verwendet
werden, indem herkdmmliche (paral-
lele oder serielle) Schnittstellen daran
angeschlossen werden. Dank diesem
einheitlichen Hardware-Software-
Konzept kann z.B. eine Prozesssteue-
rung ganz in einer hoheren Program-
miersprache implementiert werden,
ohne dass auf Assembler- oder Be-
triebssystemebene zurlickgegriffen
werden muss. Die Kommunikations-
fahigkeiten des Transputers machen
diesen insbesondere als Komponente
fiir den Aufbau von komplexen paral-
lelen Systemen (Fig. 1) bis zur Lei-
stungsfahigkeit von Supercomputern
geeignet. Im Gegensatz zu klassischen

2RISC Reduced Instruction Set Computer

3MIPS Millionen Instruktionen pro Sekunde,
MFLOPS Millionen  Gleitkommaoperationen
pro Sekunde
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Supercomputern sind derartige Syste-
me allerdings wesentlich kleiner und
kostengiinstiger.

Occam-Transputer-
Programmierung

Zur Entwicklung von Occam-Pro-
grammen auf Transputern steht dem
Benutzer ein integriertes System mit
Editor, Compiler, Configurator und
Bibliotheken zur Verfiigung. Dieses
Entwicklungssystem enthdlt auch
Hilfsmittel zur separaten Kompilation
von Prozeduren, zum Laden von
Transputernetzwerken iiber Hostrech-
ner (z.B. IBM-PC, Sun, Vax), zur Ein-
bindung von Programmteilen, die in
anderen Sprachen geschrieben sind
(C, Pascal, Fortran) und zur Erstel-
lung von Eprom. Fiir die Fehlersuche
steht ein symbolischer Debugger zur
Verfiigung. Dieses von Inmos entwik-
kelte Programmiersystem, das Trans-
puter Development System (TDS), hat
sich in unseren Projekten bewihrt. Es
gibt jedoch auch Stand-alone-Occam-
Compiler, bei denen die Umgebung
von Hostrechnern (Editoren usw.) ver-
wendet werden kann. Das TDS erfor-
dert einen relativ hohen Einarbei-
tungsaufwand, bietet aber gegeniiber
den Stand-alone-Compilern einen we-
sentlich hoheren Komfort (insbeson-
dere beim Editieren, bei der separaten
Kompilation und der Fehlersuche).

Weitere Hilfsmittel sind an der Uni-
versitdt Bern in Entwicklung, u.a. ein
Werkzeug zur automatischen Konfi-
guration von Occam-Programmen fiir
ein Netzwerk von Transputern unter
Berticksichtigung minimaler Kommu-
nikationskosten und optimaler Prozes-
sorauslastung [8], ein grafisches Werk-
zeug zur Entwicklung von Occam-Pro-
grammen. Compiler fiir andere Spra-
chen wie Prolog, Lisp oder ADA exi-
stieren bereits oder sind in Entwick-
lung.

Projekte

Seit Beginn des Einsatzes von
Transputern und Occam besteht eine
enge Zusammenarbeit zwischen dem
Institut fiir Informatik und angewand-
te Mathematik (IAM), der Ingenieur-
schule Bern (ISB) und der Software-
Schule Schweiz in Bern (SWS). Am
IAM sowie auch an der ISB/SWS
wird Occam schon seit lingerem in der
Ausbildung eingesetzt. In den nachfol-
genden Kapiteln werden einige der
bisher durchgefiihrten und laufenden
Projekte kurz beschrieben.

1. Prozesssteuerungen

Seit Beginn der Aktivititen mit
Transputern und Occam am IAM wer-
den Praktika fiir Studenten in den
Grundsemestern  durchgefiihrt. In
Gruppen (5 bis 7 Studenten) werden
kleine Projekte liber ein Semester lang
realisiert. Das Ziel dieser Arbeiten ist
die Entwicklung einer Prozesssteue-
rung vom Design bis zur Implementie-
rung. Die Aufgabe besteht darin, eine
Modelleisenbahnanlage oder einen
Modellift zu steuern. Den verschiede-
nen Gruppen stehen als Steuerungssy-
steme wahlweise Transputer, AIM-65-
Systeme oder IBM-PCs zur Verfii-
gung.

Um die Modelle direkt von einem
Transputer ansprechen zu koénnen,
wurden parallele und serielle Schnitt-
stellen entwickelt, die an einen Trans-
puter-Link angeschlossen werden kon-
nen. Damit wird die Applikation vom
Hostsystem unabhangig.

Als Design-Hilfsmittel werden die
State-Event-Technik und Petri-Netze
verwendet. Die Umsetzung des De-
signs in Occam gestaltet sich wesent-
lich einfacher als bei anderen Spra-
chen (Macro Assembler, Pascal), da
die bei diesen Aufgaben vorhandene
Parallelitét direkt auf die Software ab-
gebildet werden kann. Die Verwen-
dung von Occam erlaubt, alle Funktio-
nen der Steuerung in einer Hochspra-
che zu formulieren, ohne dass auf Sy-
stemroutinen oder Assembler zuriick-
gegriffen werden muss. Beispielsweise
sind die Eingabefunktionen der
Schnittstellen als Prozesse formuliert,
die einen Kanal abfragen, ob Daten
anliegen (Tab. IV). Dabei werden aber

WHILE TRUE
interface.in 7 data
-- send data to other process

Tabelle IV Kanalabfrage, ein Pseudo-Pol-
ling-Prozess

keine kontinuierlichen Lese-Instruk-
tionen ausgefiihrt, wie es beim Polling*
iiblich ist, sondern der Prozess, der die
Abfrage auf dem entsprechenden
Kanal macht, wartet passiv, bis ein
Datum anliegt. Die Geschwindigkeit
des Transputers und sein interner
Scheduling-Algorithmus mit einer
Context Switching Time von unter
1 us garantieren, dass keine anliegen-
den Daten unberiicksichtigt bleiben.
Anstelle der iblichen Unterbrechungs-
steuerung tritt also ein Pseudo-Polling.

In Tabelle V ist die dusserste Ebene
eines Steuerungsprogramms darge-
stellt. Der Prozess process.control bear-
beitet die Steuerung, und der Prozess
input.output ist verantwortlich fiir das
Pseudo-Polling auf den Kanilen fo.in-
terface und from.interface, die durch
die PLACE-Anweisungen an einen
Transputer-Link gebunden sind. Die-
ser Link ist iber eine Schnittstelle mit
der Anlage verbunden.

2. Monte-Carlo-Simulationen

Seit dem Friihling 1987 ist am IAM
ein Forschungsprojekt im Gange, wel-
ches sich mit Anwendungen auf neuar-
tigen parallelen und vektoriellen Ar-
chitekuren befasst. Der anwendungs-
orientierte Aspekt steht dabei im Vor-
dergrund, wobei insbesondere natur-
wissenschaftliche Probleme behandelt
werden.

Das Projekt umfasst die Entwick-
lung und Untersuchung von parallelen
Algorithmen fiir naturwissenschaftli-
che Probleme und die Bildverarbei-
tung, die Implementierung dieser Al-
gorithmen auf verschiedenen Archi-
tekturen und die Entwicklung von
Werkzeugen zum effizienten Einsatz
von parallelen Systemen. Bisher wur-
den vektorielle Rechner (Cray) sowie
kleine Transputernetzwerke benutzt.

4 Abfragen einer Eingabestelle zu definierten
Zeitpunkten

Tabelle V
Struktur der Steue-
rung

PAR

CHAN OF ANY in,out :

CHAN OF BYTE to.interface, from.interface :
PLACE to.interface AT link.adress.0.out :
PLACE from.interface AT link.adress.0.in :

process.control(in,out)
input.output(in,out,to.interface,from. interface)
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Kiinftig sollen auch andere Architek-
turen einbezogen werden (z.B. Supre-
num). Ausser der kleinen Transputer-
installation (20 Prozessoren) und Ent-
wicklungsstationen (Sun, IBM-PC)
stehen dem Projekt keine eigenen Res-
sourcen zur Verfiigung. Herkémmli-
che Supercomputer wie die Cray sind
jedoch mittels Telekommunikations-
verbindungen (Telepac) bei anderen
Institutionen verfiigbar.

Bisher wurden insbesondere Algo-
rithmen fir Monte-Carlo-Simulatio-
nen in der Gittereichtheorie betrachtet.
Verschiedene vektorielle und parallele
Implementierungen wurden vorge-
nommen und auf ihre Effizienz hin
untersucht [9; 10].

Diese  Monte-Carlo-Simulationen
wurden auch sequentiell in Fortran 77
und Occam implementiert und auf
verschiedenen Maschinen getestet. Ein
Vergleich der Laufzeit-Grdssenord-
nungen fiir diese Programme ist in Ta-
belle VI wiedergegeben. Die parallele
Version fiir ein Transputernetzwerk
erbrachte einen linearen Speedup, d.h.
mit 3 Transputern wurde auch eine
etwa 3mal schnellere Ausfithrungszeit
gemessen. Die bisherigen Untersu-
chungen deuten darauf hin, dass mit
einem wesentlich grosseren Trans-
puternetzwerk ebenfalls ein linearer
Speedup erreicht werden kann.

3. Paralleler Lisp-Interpreter

Ein funktionales Programm ent-
spricht einem Algorithmus mit einem
Input, und seine Ausfiihrung besteht
in der Auswertung eines Ausdruckes,
der sukzessive bis zur Normalform re-
duziert wird. Die Auswertungen von
Teilausdriicken kdnnen kausal unab-
hdngig voneinander sein und damit
parallel ausgefiihrt werden. In einer
funktionalen Sprache geschriebene
Programme weisen oft implizite Paral-
lelitdt auf. Die Sprache Lisp ist die am
weitesten verbreitete funktionale Pro-
grammiersprache.

Im Rahmen einer Lizentiatsarbeit
wird am IAM ein Lisp-Interpreter fir
ein paralleles Transputernetzwerk rea-
lisiert. Vorrangiges Ziel dieser Arbeit
ist, ein geeignetes Speicherverwaltungs-
konzept und einen Garbage-Collection-
Algorithmus zu finden, welche das Ein-
binden eines Multiprozess-Lisp-Inter-
preters fiir die parallele Auswertung

von Ausdriicken ermdglichen sollen.
Zu diesem Zweck stehen zurzeit ein

Transputer-Entwicklungssystem
(PC-AT mit Transputerboard und 2
MByte Memory) sowie ein externes
Board (4 Transputer mit je 256 KByte)
zur Verfiigung. Zweckmdissigerweise
wird ein Konzept mit Speichersegmen-
tierung verwendet, um den lokalen
Speicher der Transputer-Umgebung
moglichst gut zu nutzen. Der Garbage-
Collection-Algorithmus wird diesem
Konzept angepasst und auf einem
eigenen Transputer ausgefiihrt.
Schliesslich wird ein Interpreter mit
minimalem Befehlssatz zu Testzwek-
ken implementiert.

Aufbauend auf dieser Umgebung
kann ein Interpreter mit grosserem
Funktionsumfang (beispielsweise
Common Lisp) oder ein Multiprozess-
Interpreter fiir ein Transputer-Netz-
werk entwickelt werden. Schliesslich
besteht auch die Moglichkeit, einen
Lisp-Compiler in diese Umgebung zu
integrieren. Als Basis fiir den zu Test-
zwecken bendtigten Interpreter wurde
XLisp gewidhlt. Da ein XLisp-Inter-
preter 6ffentlich zur Verfiigung steht?,
wurde dieser zu Vergleichszwecken
auf einen Transputer portiert.

4. X.25-Implementation

Das X.25-Protokoll ist einer der am
weitesten verbreiteten Standards fiir
die digitale Kommunikation in der In-
dustrie und in den o6ffentlichen Net-
zen. In der kurzen Entwicklungszeit
von einem halben Jahr wurde das
X.25-Kommunikationsprotokoll  in
einer moglichst natiirlichen Art und
Weise implementiert [11]. Die in seiner
Definition vorhandenen parallelen
Strukturen und der State-Event-Cha-
rakter wurden direkt als System von
kommunizierenden Prozessen reali-
siert. Die OSI-Schichten im X.25-Pro-
tokoll werden in der Implementierung
direkt durch die Occam-Prozess- und
Kanalstrukturen reflektiert (Fig.3).
Dadurch wird der iibliche grosse Gra-
ben zwischen Spezifikation und Im-
plementation wesentlich verringert.

Um aussagekriftige Tests machen
zu kdnnen, wurde eine passende Be-
nutzerschnittstelle (OSI-Schichten 4

SIn der Sprache C geschriebene Public Do-
main Software

Cray X-MP/416 1800 371800

Sun-3/FPA

Tabelle VI

VAX 8530 Leistungsvergleich

1 142 46

130 87

bis 7) realisiert. Teil des Projektes war
auch die Untersuchung der Anwend-
barkeit der besonderen Kommunika-
tionsfahigkeiten des Transputers (4
Links, die von separaten, unabhingi-
gen DMA-Controllern getrieben wer-
den) sowie der Moglichkeiten, die
Software gleichméssig beziiglich Bela-
stung auf verschiedene, miteinander
verbundene Prozessoren zu verteilen.
Beim letzteren hat sich gezeigt, dass
die Definition des Protokolls selbst
eine Leistungssteigerung verunmog-
licht, da dieses mehrheitlich einen
streng sequentiellen Ablauf vorsieht.
Der grosse Vorteil, den die Verwen-
dung der parallelen Occam-Prozesse
bringt, liegt mehr in den guten Formu-
lierungsméglichkeiten fiir die Abhand-
lung des Protokolls als in den Mog-
lichkeiten der echt parallelen Ausfiih-
rung.

Die Tests in einer simulierten Um-
gebung, d.h. ohne Verbindung zur
Aussenwelt, jedoch mit zwei durch
einen Link verbundenen Transputer-
systemen, sind erfolgreich abgeschlos-
sen worden. Mit einem [5-MHz-
Transputer, einem externen RAM mit
200 ns Zugriffszeit und 10 Mbit/s-
Links wurde eine Ubertragungslei-
stung von 12 Paketen zu 128 Byte pro
Sekunde erreicht. Diese Leistung er-
scheint auf den ersten Blick nicht
iiberragend zu sein. Es ist aber zu beto-
nen, dass die gesamte X.25-Protokoll-
abhandlung softwaremissig imple-
mentiert ist und auf einem Transputer
ablduft. Die zeitaufwendigen Funktio-
nen des Layers 2, die in den iiblichen
Implementationen immer hardware-
madssig realisiert sind, werden hier
vollstindig von der Software durchge-
fuhrt.

Der Einsatz eines schnelleren Trans-
puters und Speichern sowie die Pro-
grammoptimierungen werden noch
eine wesentliche Leistungssteigerung
bringen. Ausserdem ist zu beriicksich-
tigen, dass fiir Testzwecke der Bit-
Strom auf Schicht 1 durch eine
byteweise Ubertragung realisiert wur-
de, d.h. fiir jedes einzelne Bit in einem
Paket wird ein Byte liber den Transpu-
ter-Link iibertragen. Gegenwirtig wird
an den Schnittstellen zur Aussenwelt
gearbeitet, um das X.25-System mit
und ohne Verwendung eines dazwi-
schengeschalteten Modems testen zu
kénnen.

5. Kiirzeste Wege in einem
Graphen

Der Algorithmus von Dijkstra [12]
zum Auffinden des kiirzesten Weges
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Control Monitor Composer
Demux Mux
dmx mx
Layer 3|
Destuffer Monitor Stuffer
Layer 2
Layer 1
Layer 1

[2]CHAN OF INT master.to slave, slave.to.master :

PAR
SEQ -- master process
PAR
master.to.slave[0] ! nodes
master.to.slave[1]
WHILE not.finished
SEQ
PAR
slave.to.master[0] ? data
slave.to.master[1] ? data
-- compute

! nodes

SEQ -- glave.0
master.to.slave[0] ? nodes
WHILE not.finished

SEQ
-- compute
slave.to.master[0] ! result

SEQ == slave.l
master.to.slave[l] ? nodes
WHILE not.finished

SEQ
-- compute
slave.to.master[1] ! result

Figur 3

X.25: OSI-Schichten
und dazugehorige
Occam-Prozesse

Layer I, physikalische
Bitiibertragungsschicht
Layer 2, Sicherungs-
schicht: Die Prozesse
Destuffer und Stuffer
entfernen bzw. fiigen
den Paketen Kontroll-
informationen fiir die
Ubertragung hinzu. Im
Prozess Monitor wer-
den Statusinformatio-
nen verwaltet und
Fehlerkorrekturen vor-
genommen.

Layer 3, Netzwerk-
schicht: Mx, Mux, dmx,
Demux sind Multiple-
xer bzw. Demultiplexer-
prozesse. Die anderen
Prozesse des Layers 3
sind jedem Benutzer
(logischen Kanal) ein-
zeln zugeordnet: Die
Prozesse Control
senden Pakete mit
Benutzerdaten an die
oberen Schichten. In
den Prozessen Compo-
ser werden die Pakete
zusammengestellt und
gekennzeichnet. Die
Monitor-Prozesse sind
fir den Kontrollfluss
verantwortlich.

Tabelle VII
Master-Slave-Pro-
gramm

Die hier ausformulier-
ten Prozesse kdnnen
auch als Prozeduren
definiert werden und
dann parallel aufgeru-
fen werden. Die Slave-
Prozesse werden damit
nur einmal (parametri-
siert) definiert.

von irgendeinem Knoten zu allen an-
deren Knoten in einem gerichteten
Graphen ist fiir eine Parallelisierung
gut geeignet. Der Aufwand des Algo-
rithmus sinkt linear im Verhéltnis der
eingesetzten Prozessoren, falls die An-
zahl der Prozessoren viel kleiner als
die der Knoten ist. Der parallele Algo-
rithmus basiert auf einem einfachen
Master-Slave-Prinzip: jeder Slavepro-
zess bearbeitet einen Teil der Knoten
des Graphen, und der Masterprozess
liest dann jeweils aus der Menge der
von den Slaveprozessen vorgeschlage-
nen Knoten denjenigen aus, fir wel-
chen der kiirzeste Weg gefunden wor-
den ist. In einem Initialisierungsschritt
werden die bendtigten Daten den ein-
zelnen Prozessen zugesandt, d.h. der
Datenbereich wird {iber das Netzwerk
verteilt, so dass jeder Prozess direkten
Zugriff zu den Daten hat, die er bear-
beitet. Wihrend des Programmablaufs
kommunizieren die Prozesse miteinan-
der, um sich gegenseitig abzustimmen
(Tab. VII).

Da ein Transputer nur vier Links
besitzt, kann die Master-Slave-Struk-
tur nicht um beliebig viele Slaves er-
weitert werden. Um mehr Slaves bei
der Bearbeitung mithelfen zu lassen,
kann z.B. eine terndre Baumstruktur
eingefiihrt werden, bei der die Slaves
uiber die dazwischenliegenden Knoten
mit dem Master kommunizieren.

Zeitmessungen haben den theoreti-
schenGeschwindigkeitsgewinn(Speed-
up) bestitigt (Fig.4). Da bei diesem
Programm, je nach Anzahl Knoten im
Graphen, grosse Datenmengen trans-
feriert werden, kommt den Kommuni-
kationsmoglichkeiten des Transputers
besondere Bedeutung zu. Die Daten
konnen parallel transferiert werden,
weil jeder Transputer-Link von einem
separaten DMA-Kontroller betrieben
wird. Dies bedeutet, dass fiir eine Kon-
figuration mit einem Master und drei
Slaves fiir die Verteilung von 160 Kno-
ten (etwa 100 KByte) nur die Zeit fir
einen vergleichbaren Datentransfer in
der Grosse von ungefiahr 35 KByte ge-
braucht wird.

Zusammenfassung

Das  Transputer-Occam-Konzept
hat sich bisher in allen Projekten des
IAM sowohl in der Ausbildung als
auch in der Forschung bewihrt. Die
Modularitit des Systems ermdoglicht
einen sehr flexiblen Einsatz der (bis
jetzt) 20 Prozessoren. Fiir die Pro-
grammentwicklung werden Transpu-
ter-Einschubkarten fiir PCs verwen-
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Transputer

TA
[ms]

400 1
300
200 1

100

Figur 4
Laufzeitvergleich

T Rechenzeit

K Anzahl Knoten des
zu verrechnenden
Graphen

(a) Paralleles

Programm

(1 Master-, 3 Slave-

Prozesse), Ausfiih-

rung auf 4 Prozes-

soren

Sequentielles

o

Programm (1 Pro-
zess), Ausfiithrung
auf 1 Prozessor

det. Es steht damit ein dusserst kosten-
giinstiges paralleles System zur Verfii-
gung, das erlaubt, parallele Program-
me nicht nur zu simulieren, sondern
auch echt parallel auszufithren. Wegen
der freien Konfigurierbarkeit eines
Transputernetzwerkes konnen fiir ver-
schiedene Applikationen jeweils die
am besten passenden Topologien zu-
sammengestellt werden. Neben der
Sprache Occam wurden auch Pro-
gramme in Pascal, C und Fortran 77
fir einzelne und mehrere Transputer
geschrieben. Optimal ldsst sich die
Parallelitit jedoch nur mit Occam nut-
zen. Diese Sprache verfiigt iiber alle
iiblichen sequentiellen Kontroll- und

(¢ Paralleles
Programm

(1 Master-, 3 Slave-
Prozesse), Ausfiih-
rung auf 1 Prozes-
sor

Datenstrukturen ausser den dynami-
schen Konstrukten (Rekursion und
Pointers). Rekursionen lassen sich al-
lerdings einfach mittels Pipelines von
parallelen Prozessen nachbilden. Als
weiteres hédufiges Anwendungsgebiet
fiir Transputer, das hier nicht disku-
tiert wurde, sind die Bildverarbeitung
und die grafische Datenverarbeitung
zu erwihnen. Beim TAM ist z.B. ein
Projekt zur Implementierung eines
Grafikpakets im Gang, bei dem ein
Transputer in einem Netzwerk als
Grafikprozessor eingesetzt wird.
Zusammenfassend kann gesagt wer-
den, dass das Tandem Occam-Trans-
puter ein machtiges Mittel bei der Ent-

wicklung paralleler Systeme ist, das
fiir die Zukunft noch ungeahnte Mog-

lichkeiten beinhaltet.
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