
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 79 (1988)

Heft: 7

Artikel: Paralleles Rechnen mit Transputern

Autor: Kropf, P. G.

DOI: https://doi.org/10.5169/seals-904016

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904016
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Transputer

Paralleles Rechnen mit Transputern
P.G. Kropf

Viele Probleme, die heute auf
sequentiell arbeitenden Computern
gelöst werden, besitzen eigentlich
eine parallele Struktur. Das Trans-
puter-Occam-Konzept erlaubt nun,
derartige Probleme direkt parallel
zu implementieren; im Gegensatz
zu konventionellen Systemen kann
die Parallelität in natürlicher Weise
in ein Programm und auf die
Architektur abgebildet werden. In diesem
Artikel werden die Möglichkeiten
der Sprache Occam und der
Transputer-Architektur diskutiert.
Nach einer Einführung in parallele
Systeme und das Transputer-
Occam-Konzept werden einige
Projekte kurz vorgestellt.

La plupart des problèmes actuellement

résolus à l'aide d'ordinateurs
travaillant de manière séquentielle
sont en fait parallèles par leur
nature. Le tandem Occam-Transputer

permet maintenant l'implé-
mentation parallèle de tels
problèmes, car, contrairement aux
systèmes conventionnels, il permet de

passer de façon naturelle du
problème à un programme puis à une
architecture parallèle. Dans cet article,

les possibilités du langage
Occam et de l'architecture du
Transputer sont discutées. Après
une courte introduction aux
systèmes parallèles et au concept
Occam-Transputer un choix de projets

est présenté.

Adresse des Autors
Peter G. Kropf. Dipl. Math., Institut für
Informatik und angewandte Mathematik,
Universität Bern, Länggassstrasse 51, 3012 Bern.

In der Forschung und Entwicklung
von parallelen Computersystemen gibt
es viele verschiedene Ansätze. Die meisten

davon basieren auf dem von den
sequentiellen Computern her bekannten

von-Neumannschen Prinzip, bei
dem der zeitliche Berechnungsablauf
durch die Instruktion gesteuert wird.
Daneben gibt es andere Entwicklungen,

die z.B. auf dem Datenflussprin-
zip aufbauen, bei dem die Berechnungen

durch die Daten gesteuert werden.
Die erste Gruppe wird oft nach den in
der Tabelle I angegebenen Typen klas-

S I M D -
Typen

MIMD- Typen

Switched Network

Tabelle I
Klassifikation paralleler Systeme
(von-Neumann-Typen)
SIMD Single Instruction Multiple Data

MIMD Multiple Instruction Multiple Data

sifiziert [1; 2], Die heute kommerziell
erhältlichen parallelen Computersysteme,

insbesondere die Supercomputer
wie etwa Cray oder die Connection

Machine, basieren meist auf dem Single

Instruction Multipe Data-Typ
(SIMD-Typ)1.

Das Hauptgewicht bezüglich der
Entwicklung von parallelen
Rechnersystemen liegt bei den Multiple
Instruction Multiple Data-Typen
(MIMD-Typen). Die geschalteten
(switched) MIMD-Maschinen enthal-

1 SIMD-Maschinen weisen einen gemeinsamen

Speicher auf. Eine Instruktion bearbeitet
jeweils gleichzeitig mehrere Daten.

ten gemeinsame Speicher, über die die
verschiedenen Prozessoren miteinander

kommunizieren und sich gegenseitig

synchronisieren. Diese werden als

eng gekoppelte parallele Systeme
bezeichnet. Die zweite MIMD-Klasse,
lose gekoppelte Netzwerk-Systeme,
basieren auf dem Prinzip des
Nachrichtenaustausches über ein Netzwerkmedium,

das im allgemeinen eine
komplexe Struktur (Topologie), wie etwa
einen Torus (Fig. 1), aufweist. Jeder
Prozessor verfügt über seinen eigenen,
privaten Speicher, auf den kein anderer

Prozessor direkten Zugriff hat, d.h.

es gibt keinen gemeinsamen, globalen
Speicher.

Für all die verschiedenen Architekturen

gibt es auch passende
Programmiersprachen. Man unterscheidet hier
zwischen Sprachen, die auf dem Prinzip

der gemeinsamen Variablen basieren

(SIMD und switched MIMD) und
denjenigen, die dem Modell des
Nachrichtenaustausches zwischen unabhängigen

Systemen entsprechen (MIMD-
Networks).

Der im folgenden näher beschriebene

Baustein für parallele Computersy-

|
r*

1 | J

4 \ f 1 41

4 |
">

{

t \ 4 1 4 1' u
Figur 1 Torus oder Hyperwürfel

356 Bulletin ASE/UCS 79(1988)7,9 avril



Transputer

steme, der Transputer, und die parallele
Programmiersprache Occam gehören

in die Klasse der Netzwerk-
MIMD-Systeme.

Die Sprache Occam
Die Sprache Occam [3] basiert auf

der theoretischen Sprache CSP
(Communicating Sequential Processes) von
C.A.R. Hoare [4], Occam ist speziell
geeignet für die Programmierung von
Prozessornetzwerken, also für parallele

Systeme. Ein Occam-Programm
besteht aus einer Menge von sequentiellen

Teilprozessen, die zueinander
parallel ablaufen. Die Teilprozesse können

über Kanäle miteinander kommunizieren

und Informationen austauschen.

Auf diese Weise bearbeiten
mehrere parallele Prozesse gemeinsam
ein Problem, wobei die Prozesse genau
dann kommunizieren müssen, wenn
die Fortführung eines Prozesses von
einem anderen Prozess abhängt. Die

Kommunikation ist synchron, unge-
puffert und findet immer über Punkt-
zu-Punkt-Verbindungen (sog. Kanäle)
statt. Parallele Prozesse können nur
über Kanäle Daten austauschen (Tab.
II), d.h. es gibt insbesondere keine
gemeinsamen, globalen Datenbereiche
(Shared Variables). Im sequentiellen
Teil der Sprache findet man ausser
dynamischen Strukturen etwa dieselben
Sprachelemente wie in Pascal, während

der parallele Teil Sprachelemente
für die Kommunikation (Senden und
Empfangen) (Tab. III), Kanalprotokolle

und die Parallelität enthält. Im
Gegensatz zu anderen Sprachen, wie
Ada oder Chili, ist bei Occam die
Parallelität das grundlegende Konzept
und der sequentielle Fall nur ein
Spezialfall [5],

Der Transputer
Der Transputer (Fig. 2) gestattet, die

parallelen Occam-Programme optimal

CHAN OF INT from.A.to.B : — Kanal Deklaration —

PAR — Parallele Ausfuehrung —

— Prozess 'A'
INT x : — Variablen Deklaration —
SEq

—compute
kanal x — sende 'x' ueber Kanal
—compute 'from.A.to.B' zu Prozess 'B' —

— Prozess 'B'
INT y :

SEq

—compute
kanal y — empfange von Prozess 'A' ueber
—compute Kanal 'from.A.to.B einen Wert

und speichere ihn in 'y'

Tabelle II Kommunizierende Prozesse

Das Einrücken bestimmt in Occam die Blockbildung und die Gültigkeitsbereiche von Objekten.

Datentypen B00L Wert TRUE,FALSE
BYTE Wert 0 bis 255
INT Integer
REAL 32 Floating Point Zahlen

Konstrukte SEQ Sequenz
PAR parallel
IF Verzweigung
ALT Input Alternative
WHILE Schleife

Kanäle, CHAN OF protocol Kanaltyp
Kommuni - keyboard? char Kanalinput
kation screen! char Kanaloutput

Tabelle III
Elemente der
Sprache Occam

System
Services

Memory
Interface

On-Chip
RAM

cT

C=DLink2

Link3

Linkl

LinkO

FPU CPU

Figur 2 Der Inmos-Transputer
FPU Floating Point Unit
CPU Central Processing Unit

auf einer parallelen Hardware
auszuführen [6; 7]. Dieser 32-Bit-Prozessor
ist ein schneller RISC2-Rechner mit
einer Leistung von 10 MIPS3 in der
Grundversion (T414) und zusätzlich
1,5 MFLOPS3 in der Floating Point
Version (T800). Im weiteren sind beim
T414 2 kByte RAM und beim T800
4 kByte RAM auf dem Chip integriert.
Ein entscheidender Unterschied zu
anderen herkömmlichen Mikroprozessoren

sind die 4 bidirektionalen seriellen
Links (20 Mbit/s), über welche
verschiedene Transputer miteinander
verbunden werden können. Diese Links
entsprechen den Occam-Kanälen.
Softwarekanäle können damit direkt
auf Hardwarekanälen (Links) abgebildet

werden. Dabei realisiert jeder Link
zwei gerichtete Occam-Kanäle, einen
in jede Richtung. Diese Kanäle können

auch generell für die Kommunikation
mit der Aussenwelt verwendet

werden, indem herkömmliche (parallele

oder serielle) Schnittstellen daran
angeschlossen werden. Dank diesem
einheitlichen Hardware-Software-
Konzept kann z.B. eine Prozesssteuerung

ganz in einer höheren
Programmiersprache implementiert werden,
ohne dass auf Assembler- oder
Betriebssystemebene zurückgegriffen
werden muss. Die Kommunikationsfähigkeiten

des Transputers machen
diesen insbesondere als Komponente
für den Aufbau von komplexen parallelen

Systemen (Fig. 1) bis zur
Leistungsfähigkeit von Supercomputern
geeignet. Im Gegensatz zu klassischen

2 RISC Reduced Instruction Set Computer
3 MIPS Millionen Instruktionen pro Sekunde,

MFLOPS Millionen Gleitkommaoperationen
pro Sekunde

Bulletin SEV/YSE 79(1988)7,9. April 357



Transputer

Supercomputern sind derartige Systeme

allerdings wesentlich kleiner und
kostengünstiger.

Occam-Transputer-
Programmierung
Zur Entwicklung von Occam-Pro-

grammen auf Transputern steht dem
Benutzer ein integriertes System mit
Editor, Compiler, Configurator und
Bibliotheken zur Verfügung. Dieses
Entwicklungssystem enthält auch
Hilfsmittel zur separaten Kompilation
von Prozeduren, zum Laden von
Transputernetzwerken über Hostrechner

(z.B. IBM-PC, Sun, Vax), zur
Einbindung von Programmteilen, die in
anderen Sprachen geschrieben sind
(C, Pascal, Fortran) und zur Erstellung

von Eprom. Für die Fehlersuche
steht ein symbolischer Debugger zur
Verfügung. Dieses von Inmos entwik-
kelte Programmiersystem, das Transputer

Development System (TDS), hat
sich in unseren Projekten bewährt. Es

gibt jedoch auch Stand-alone-Occam-
Compiler, bei denen die Umgebung
von Hostrechnern (Editoren usw.)
verwendet werden kann. Das TDS erfordert

einen relativ hohen
Einarbeitungsaufwand, bietet aber gegenüber
den Stand-alone-Compilern einen
wesentlich höheren Komfort (insbesondere

beim Editieren, bei der separaten
Kompilation und der Fehlersuche).

Weitere Hilfsmittel sind an der
Universität Bern in Entwicklung, u.a. ein
Werkzeug zur automatischen
Konfiguration von Occam-Programmen für
ein Netzwerk von Transputern unter
Berücksichtigung minimaler
Kommunikationskosten und optimaler
Prozessorauslastung [8], ein grafisches Werkzeug

zur Entwicklung von Occam-Pro-
grammen. Compiler für andere Sprachen

wie Prolog, Lisp oder ADA
existieren bereits oder sind in Entwicklung.

Projekte
Seit Beginn des Einsatzes von

Transputern und Occam besteht eine

enge Zusammenarbeit zwischen dem
Institut für Informatik und angewandte

Mathematik (IAM), der Ingenieurschule

Bern (ISB) und der Software-
Schule Schweiz in Bern (SWS). Am
IAM sowie auch an der ISB/SWS
wird Occam schon seit längerem in der
Ausbildung eingesetzt. In den nachfolgenden

Kapiteln werden einige der
bisher durchgeführten und laufenden
Projekte kurz beschrieben.

1. Prozesssteuerungen
Seit Beginn der Aktivitäten mit

Transputern und Occam am IAM werden

Praktika für Studenten in den
Grundsemestern durchgeführt. In
Gruppen (5 bis 7 Studenten) werden
kleine Projekte über ein Semester lang
realisiert. Das Ziel dieser Arbeiten ist
die Entwicklung einer Prozesssteuerung

vom Design bis zur Implementierung.

Die Aufgabe besteht darin, eine
Modelleisenbahnanlage oder einen
Modellift zu steuern. Den verschiedenen

Gruppen stehen als Steuerungssysteme

wahlweise Transputer, AIM-65-
Systeme oder IBM-PCs zur Verfügung.

Um die Modelle direkt von einem
Transputer ansprechen zu können,
wurden parallele und serielle Schnittstellen

entwickelt, die an einen Trans-
puter-Link angeschlossen werden können.

Damit wird die Applikation vom
Hostsystem unabhängig.

Als Design-Hilfsmittel werden die
State-Event-Technik und Petri-Netze
verwendet. Die Umsetzung des
Designs in Occam gestaltet sich wesentlich

einfacher als bei anderen Sprachen

(Macro Assembler, Pascal), da
die bei diesen Aufgaben vorhandene
Parallelität direkt auf die Software
abgebildet werden kann. Die Verwendung

von Occam erlaubt, alle Funktionen

der Steuerung in einer Hochsprache

zu formulieren, ohne dass auf
Systemroutinen oder Assembler
zurückgegriffen werden muss. Beispielsweise
sind die Eingabefunktionen der
Schnittstellen als Prozesse formuliert,
die einen Kanal abfragen, ob Daten
anliegen (Tab. IV). Dabei werden aber

UHILE TRUE

interface.in data
— send data to other process

Tabelle IV Kanalabfrage, ein Pseudo-Pol-
ling-Prozess

Tabelle V
Struktur der Steuerung

keine kontinuierlichen Lese-Instruktionen

ausgeführt, wie es beim Polling4
üblich ist, sondern der Prozess, der die
Abfrage auf dem entsprechenden
Kanal macht, wartet passiv, bis ein
Datum anliegt. Die Geschwindigkeit
des Transputers und sein interner
Scheduling-Algorithmus mit einer
Context Switching Time von unter
1 ps garantieren, dass keine anliegenden

Daten unberücksichtigt bleiben.
Anstelle der üblichen Unterbrechungssteuerung

tritt also ein Pseudo-Polling.
In Tabelle V ist die äusserste Ebene

eines Steuerungsprogramms dargestellt.

Der Prozess process.control
bearbeitet die Steuerung, und der Prozess

input.output ist verantwortlich für das
Pseudo-Polling auf den Kanälen to.in-
terface und from.interface, die durch
die PLACE-AnWeisungen an einen
Transputer-Link gebunden sind. Dieser

Link ist über eine Schnittstelle mit
der Anlage verbunden.

2. Monte-Carlo-Simulationen
Seit dem Frühling 1987 ist am IAM

ein Forschungsprojekt im Gange,
welches sich mit Anwendungen auf neuartigen

parallelen und vektoriellen Ar-
chitekuren befasst. Der anwendungs-
orientierte Aspekt steht dabei im
Vordergrund, wobei insbesondere
naturwissenschaftliche Probleme behandelt
werden.

Das Projekt umfasst die Entwicklung

und Untersuchung von parallelen
Algorithmen für naturwissenschaftliche

Probleme und die Bildverarbeitung,

die Implementierung dieser
Algorithmen auf verschiedenen
Architekturen und die Entwicklung von
Werkzeugen zum effizienten Einsatz
von parallelen Systemen. Bisher wurden

vektorielle Rechner (Cray) sowie
kleine Transputernetzwerke benutzt.

4 Abfragen einer Eingabestelle zu definierten
Zeitpunkten

CHAN OF ANY in,out :

CHAN OF BYTE to.interface, from.interface :

PLACE to.interface AT link.adress.0.out :

PLACE from.interface AT link.adress.0.in :

PAR

process.control(in,out)
input.output(in,out,to.interface,from.interface)

358 Bulletin ASE/UCS 79(1988)7,9 avril



Transputer

Künftig sollen auch andere Architekturen

einbezogen werden (z.B. Supre-
num). Ausser der kleinen Transputerinstallation

(20 Prozessoren) und
Entwicklungsstationen (Sun, IBM-PC)
stehen dem Projekt keine eigenen
Ressourcen zur Verfügung. Herkömmliche

Supercomputer wie die Cray sind
jedoch mittels Telekommunikationsverbindungen

(Telepac) bei anderen
Institutionen verfügbar.

Bisher wurden insbesondere
Algorithmen für Monte-Carlo-Simulatio-
nen in der Gittereichtheorie betrachtet.
Verschiedene vektorielle und parallele
Implementierungen wurden
vorgenommen und auf ihre Effizienz hin
untersucht [9; 10].

Diese Monte-Carlo-Simulationen
wurden auch sequentiell in Fortran 77
und Occam implementiert und auf
verschiedenen Maschinen getestet. Ein
Vergleich der Laufzeit-Grössenord-
nungen für diese Programme ist in
Tabelle VI wiedergegeben. Die parallele
Version für ein Transputernetzwerk
erbrachte einen linearen Speedup, d.h.
mit 3 Transputern wurde auch eine
etwa 3mal schnellere Ausführungszeit
gemessen. Die bisherigen Untersuchungen

deuten darauf hin, dass mit
einem wesentlich grösseren
Transputernetzwerk ebenfalls ein linearer
Speedup erreicht werden kann.

3. Paralleler Lisp-Interpreter
Ein funktionales Programm

entspricht einem Algorithmus mit einem
Input, und seine Ausführung besteht
in der Auswertung eines Ausdruckes,
der sukzessive bis zur Normalform
reduziert wird. Die Auswertungen von
Teilausdrücken können kausal
unabhängig voneinander sein und damit
parallel ausgeführt werden. In einer
funktionalen Sprache geschriebene
Programme weisen oft implizite Parallelität

auf. Die Sprache Lisp ist die am
weitesten verbreitete funktionale
Programmiersprache.

Im Rahmen einer Lizentiatsarbeit
wird am IAM ein Lisp-Interpreter für
ein paralleles Transputernetzwerk
realisiert. Vorrangiges Ziel dieser Arbeit
ist, ein geeignetes Speicherverwaltungskonzept

und einen Garbage-Collection-
Algorithmus zu finden, welche das
Einbinden eines Multiprozess-Lisp-Inter-
preters für die parallele Auswertung

von Ausdrücken ermöglichen sollen.
Zu diesem Zweck stehen zurzeit ein

Transputer-Entwicklungssystem
(PC-AT mit Transputerboard und 2

MByte Memory) sowie ein externes
Board (4 Transputer mit je 256 KByte)
zur Verfügung. Zweckmässigerweise
wird ein Konzept mit Speichersegmentierung

verwendet, um den lokalen
Speicher der Transputer-Umgebung
möglichst gut zu nutzen. Der Garbage-
Collection-Algorithmus wird diesem
Konzept angepasst und auf einem
eigenen Transputer ausgeführt.
Schliesslich wird ein Interpreter mit
minimalem Befehlssatz zu Testzwek-
ken implementiert.

Aufbauend auf dieser Umgebung
kann ein Interpreter mit grösserem
Funktionsumfang (beispielsweise
Common Lisp) oder ein Multiprozess-
Interpreter für ein Transputer-Netz-
werk entwickelt werden. Schliesslich
besteht auch die Möglichkeit, einen
Lisp-Compiler in diese Umgebung zu
integrieren. Als Basis für den zu
Testzwecken benötigten Interpreter wurde
XLisp gewählt. Da ein XLisp-Inter-
preter öffentlich zur Verfügung steht5,
wurde dieser zu Vergleichszwecken
auf einen Transputer portiert.

4. X.25-Implementation
Das X.25-Protokoll ist einer der am

weitesten verbreiteten Standards für
die digitale Kommunikation in der
Industrie und in den öffentlichen Netzen.

In der kurzen Entwicklungszeit
von einem halben Jahr wurde das

X.25-Kommunikationsprotokoll in
einer möglichst natürlichen Art und
Weise implementiert [11]. Die in seiner
Definition vorhandenen parallelen
Strukturen und der State-Event-Charakter

wurden direkt als System von
kommunizierenden Prozessen realisiert.

Die OSI-Schichten im X.25-Pro-
tokoll werden in der Implementierung
direkt durch die Occam-Prozess- und
Kanalstrukturen reflektiert (Fig. 3).
Dadurch wird der übliche grosse Graben

zwischen Spezifikation und
Implementation wesentlich verringert.

Um aussagekräftige Tests machen
zu können, wurde eine passende
Benutzerschnittstelle (OSI-Schichten 4

5 In der Sprache C geschriebene Public
Domain Software

Tabelle VI
Leistungsvergleich

bis 7) realisiert. Teil des Projektes war
auch die Untersuchung der Anwendbarkeit

der besonderen
Kommunikationsfähigkeiten des Transputers (4
Links, die von separaten, unabhängigen

DMA-Controllern getrieben
werden) sowie der Möglichkeiten, die
Software gleichmässig bezüglich
Belastung auf verschiedene, miteinander
verbundene Prozessoren zu verteilen.
Beim letzteren hat sich gezeigt, dass
die Definition des Protokolls selbst
eine Leistungssteigerung verunmög-
licht, da dieses mehrheitlich einen
streng sequentiellen Ablauf vorsieht.
Der grosse Vorteil, den die Verwendung

der parallelen Occam-Prozesse
bringt, liegt mehr in den guten
Formulierungsmöglichkeiten für die Abhandlung

des Protokolls als in den
Möglichkeiten der echt parallelen Ausführung.

Die Tests in einer simulierten
Umgebung, d.h. ohne Verbindung zur
Aussenwelt, jedoch mit zwei durch
einen Link verbundenen Transputersystemen,

sind erfolgreich abgeschlossen

worden. Mit einem 15-MHz-
Transputer, einem externen RAM mit
200 ns Zugriffszeit und 10 Mbit/s-
Links wurde eine Übertragungsleistung

von 12 Paketen zu 128 Byte pro
Sekunde erreicht. Diese Leistung
erscheint auf den ersten Blick nicht
überragend zu sein. Es ist aber zu betonen,

dass die gesamte X.25-Protokoll-
abhandlung softwaremässig
implementiert ist und auf einem Transputer
abläuft. Die zeitaufwendigen Funktionen

des Layers 2, die in den üblichen
Implementationen immer hardware-
mässig realisiert sind, werden hier
vollständig von der Software durchgeführt.

Der Einsatz eines schnelleren Transputers

und Speichern sowie die
Programmoptimierungen werden noch
eine wesentliche Leistungssteigerung
bringen. Ausserdem ist zu berücksichtigen,

dass für Testzwecke der Bit-
Strom auf Schicht 1 durch eine

byteweise Übertragung realisiert wurde,

d.h. für jedes einzelne Bit in einem
Paket wird ein Byte über den Transputer-Link

übertragen. Gegenwärtig wird
an den Schnittstellen zur Aussenwelt
gearbeitet, um das X.25-System mit
und ohne Verwendung eines dazwi-
schengeschalteten Modems testen zu
können.

5. Kürzeste Wege in einem
Graphen
Der Algorithmus von Dijkstra [12]

zum Auffinden des kürzesten Weges

Cray X-MP/416 T800 3 T800 Sun-3/FPA VAX 8530

1 142 46 130 87

Bulletin SEV/VSE 79(1988)7,9. April 359



Transputer

[2]CHAN OF INT master.to slave, slave.to.master :

PAR

SEQ — master process
PAR

master.to.slave[0] nodes
master.to.slave[l] nodes

WHILE not.finished
SEQ

PAR

slave.to.master[0] data
slave.to.master[1] data

— compute

SEQ — slave.0
master.to.slave[0] nodes
WHILE not.finished

SEQ

— compute
slave.to.master[0] result

SEQ — slave.1
master.to.slave[l] nodes
WHILE not.finished

SEQ

— compute
slave.to.master[l] result

Figur 3

X.25: OSI-Schichten
und dazugehörige
Occam-Prozesse

Layer 1, physikalische
Bitübertragungsschicht

Layer 2, Sicherungsschicht:

Die Prozesse
Destuffer und Stuffer
entfernen bzw. fügen
den Paketen
Kontrollinformationen für die
Übertragung hinzu. Im
Prozess Monitor werden

Statusinformationen
verwaltet und

Fehlerkorrekturen
vorgenommen.

Layer 3, Netzwerkschicht:

Mx, Mux, dmx,
Demux sind Multiplexer

bzw. Demultiplexer-
prozesse. Die anderen
Prozesse des Layers 3

sind jedem Benutzer
(logischen Kanal)
einzeln zugeordnet: Die
Prozesse Control
senden Pakete mit
Benutzerdaten an die
oberen Schichten. In
den Prozessen Composer

werden die Pakete

zusammengestellt und
gekennzeichnet. Die
Monitor-Prozesse sind
für den Kontrollfluss
verantwortlich.

Tabelle VII
Master-Slave-Pro-
gramm
Die hier ausformulierten

Prozesse können
auch als Prozeduren
definiert werden und
dann parallel aufgerufen

werden. Die Slave-
Prozesse werden damit
nur einmal (parametri-
siert) definiert.

von irgendeinem Knoten zu allen
anderen Knoten in einem gerichteten
Graphen ist für eine Parallelisierung
gut geeignet. Der Aufwand des
Algorithmus sinkt linear im Verhältnis der
eingesetzten Prozessoren, falls die
Anzahl der Prozessoren viel kleiner als
die der Knoten ist. Der parallele
Algorithmus basiert auf einem einfachen
Master-Slave-Prinzip: jeder Slavepro-
zess bearbeitet einen Teil der Knoten
des Graphen, und der Masterprozess
liest dann jeweils aus der Menge der
von den Slaveprozessen vorgeschlagenen

Knoten denjenigen aus, für
welchen der kürzeste Weg gefunden worden

ist. In einem Initialisierungsschritt
werden die benötigten Daten den
einzelnen Prozessen zugesandt, d.h. der
Datenbereich wird über das Netzwerk
verteilt, so dass jeder Prozess direkten
Zugriff zu den Daten hat, die er
bearbeitet. Während des Programmablaufs
kommunizieren die Prozesse miteinander,

um sich gegenseitig abzustimmen
(Tab. VII).

Da ein Transputer nur vier Links
besitzt, kann die Master-Slave-Struk-
tur nicht um beliebig viele Slaves
erweitert werden. Um mehr Slaves bei
der Bearbeitung mithelfen zu lassen,
kann z.B. eine ternäre Baumstruktur
eingeführt werden, bei der die Slaves
über die dazwischenliegenden Knoten
mit dem Master kommunizieren.

Zeitmessungen haben den theoretischen

Geschwindigkeitsgewinn (Speedup)

bestätigt (Fig. 4). Da bei diesem
Programmée nach Anzahl Knoten im
Graphen, grosse Datenmengen
transferiert werden, kommt den
Kommunikationsmöglichkeiten des Transputers
besondere Bedeutung zu. Die Daten
können parallel transferiert werden,
weil jeder Transputer-Link von einem
separaten DMA-Kontroller betrieben
wird. Dies bedeutet, dass für eine
Konfiguration mit einem Master und drei
Slaves für die Verteilung von 160 Knoten

(etwa 100 KByte) nur die Zeit für
einen vergleichbaren Datentransfer in
der Grösse von ungefähr 35 KByte
gebraucht wird.

Zusammenfassung
Das Transputer-Occam-Konzept

hat sich bisher in allen Projekten des

IAM sowohl in der Ausbildung als

auch in der Forschung bewährt. Die
Modularität des Systems ermöglicht
einen sehr flexiblen Einsatz der (bis
jetzt) 20 Prozessoren. Für die
Programmentwicklung werden
Transputer-Einschubkarten für PCs verwen-

360 Bulletin ASE/UCS 79(1988)7, 9 avril



Transputer

det. Es steht damit ein äusserst
kostengünstiges paralleles System zur Verfügung,

das erlaubt, parallele Programme
nicht nur zu simulieren, sondern

auch echt parallel auszuführen. Wegen
der freien Konfigurierbarkeit eines
Transputernetzwerkes können für
verschiedene Applikationen jeweils die
am besten passenden Topologien
zusammengestellt werden. Neben der
Sprache Occam wurden auch
Programme in Pascal, C und Fortran 77
für einzelne und mehrere Transputer
geschrieben. Optimal lässt sich die
Parallelität jedoch nur mit Occam nutzen.

Diese Sprache verfügt über alle
üblichen sequentiellen Kontroll- und

Figur 4

Laufzeitvergleich
T Rechenzeit
K Anzahl Knoten des

zu verrechnenden
Graphen

(a) Paralleles
Programm
(1 Master-, 3 Slave-
Prozesse), Ausführung

auf 4 Prozessoren

(b) Sequentielles
Programm (1 Pro-
zess), Ausführung
auf 1 Prozessor

@ Paralleles
Programm
(1 Master-, 3 Slave-
Prozesse), Ausführung

auf 1 Prozessor

Datenstrukturen ausser den dynamischen

Konstrukten (Rekursion und
Pointers). Rekursionen lassen sich
allerdings einfach mittels Pipelines von
parallelen Prozessen nachbilden. Als
weiteres häufiges Anwendungsgebiet
für Transputer, das hier nicht diskutiert

wurde, sind die Bildverarbeitung
und die grafische Datenverarbeitung
zu erwähnen. Beim IAM ist z.B. ein
Projekt zur Implementierung eines

Grafikpakets im Gang, bei dem ein
Transputer in einem Netzwerk als

Grafikprozessor eingesetzt wird.
Zusammenfassend kann gesagt werden,

dass das Tandem Occam-Transputer

ein mächtiges Mittel bei der Ent¬

wicklung paralleler Systeme ist, das
für die Zukunft noch ungeahnte
Möglichkeiten beinhaltet.

Literatur
[1] M.C. Flynn: Some computer organizations

and their effectiveness. IEEE Trans.
C 21(1972)9, p. 948...960.

[2] R. IT. Hockney and C.R. Jesshope: Parallel
computers. Architecture, programming and
algorithms. Bristol, A. Hilger, 1981.

[3] Occam 2 reference manual. London a.o.,
Prentice-Hall, 1988.

[4] C.A. Hoare: Communicating sequential pro¬
cesses. EnglewoodCliffs/N.J., Prentice-Hall,
1985.

[5] P.G. Kropf: A comparison between the lan¬

guage Chill and Occam. Proceedings of the
4th Chill Conference, Munich, October 1986;

p. 145...152.
[6] Transputer reference manual. Bristol. Inmos

Ltd., October 1986.
[7a] P. Eckelmann: Transputer der 2. Generation.

1. Teil: Architektur und Merkmale. Elektronik

36(1987)18, S. 61...70.
[7b] P. Eckelmann: Transputer der 2. Generation.

2. Teil: Leistungsuntersuchungen und
Benchmark-Programme. Elektronik 36(1987)19, S.
129...136.

[7c] P. Eckelmann: Transputer der 2. Generation.
3. Teil: Hardware- und Software-Hilfsmittel
für die Anwendung. Elektronik 36(1987)20,
S. 86...93.

[8] J.E. Boillat a.o.: An analysis and reconfigu¬
ration tool for mapping parallel programs
onto transputer networks. Proceedings of the
7th Occam User Group Meeting (OUG),
Grenoble, September 1987.

[9] K. Decker and P.G. Kropf: Vectorized and
parallelized Monte Carlo algorithms for
lattice gauge theory problems. Parcom Project
Preprint. Berne, University of Berne,
January 1988.

[10] K. Decker: Monte Carlo simulations for lat¬
tice gauge theory. Parcom Project Preprint.
Berne, University of Berne, February 1988.

[11] D. Bärtschi a.o.: Communication protocols
and concurrency: An Occam implementation
of X.25. Proceedings of the 1988 International

Zürich Seminar on Digital Communication
Systems. Zurich, March 1988.

[12] E.W. Dijkstra: A note on two problems in
connexion with graphs. Numerische Mathematik

1(1959)-, p. 269...271.

Bulletin SEV/VSE 79(1988)7,9. April 361


	Paralleles Rechnen mit Transputern

