
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 79 (1988)

Heft: 7

Artikel: Ein Datenflussrechnerkonzeot für den Einsatz in eingebetteten
Systemen

Autor: Bührer, R.

DOI: https://doi.org/10.5169/seals-904015

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904015
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Da ten flussrechner

Ein Datenflussrechnerkonzept für den Einsatz
in eingebetteten Systemen
R. Bührer

Ein Forschungsprojekt an der ETH
Zürich soll abklären, wieweit Daten-
flussrechner auch für eingebettete
Systeme eingesetzt werden können.

Dazu wird eine entsprechende
Programmiersprache und ein Expe-
rimental-Multiprozessor entwickelt.
Nach einer Beschreibung des Code-
block-Datenflusskonzepts wird
gezeigt, wie die funktionellen und
zeitlichen Aspekte eines Daten-
flussrechners auf einem experimentellen

Multiprozessor emuliert werden

können. Die Architektur und die
mögliche Implementation eines
derartigen Systems sowie einige
experimentelle Aspekte werden näher
beleuchtet und abschliessend
einige Schlussfolgerungen angegeben.

Un projet de recherche à l'EPF de
Zurich essaie de montrer dans
quelle mesure les ordinateurs à
circulation de donées (dataflow)
peuvent être appliqués dans la réalisation

de systèmes à temps réel. Un
langage de programmation approprié

et un multiprocesseur
expérimental sont développés à cet effet.
Après une description du concept
de circulation de données code-
block, il est montré comment les
aspects fonctionnels et temporels
d'un tel ordinateur peuvent être
émulés sur un multiprocesseur
expérimental. L'architecture et l'im-
plémentation possible d'un tel
système, ainsi que quelques aspects
expérimentaux sont mis en lumière
et quelques conclusions tirées.

Adresse des Autors
Dr. Richard Bührer. Institut für Elektronik,
ETH-Zentrum, 8092 Zürich.

Unter den verschiedenen grundsätzlich

neuen Parallelcomputerarchitekturen
[1] scheinen die Datenflussrech-

ner für den Einsatz in
technisch-wissenschaftlichen Anwendungen in der
höheren und höchsten Leistungsklasse
besonders prädestiniert zu sein [2], Der
kommerzielle Durchbruch dürfte
hingegen in den nächsten Jahren noch
nicht erfolgen, da zahlreiche Probleme
auf den Stufen Applikationsprogrammierung

(Sprachdefinition, Bereitstellung

von Software-Entwicklungswerkzeugen

usw.), Laufzeitsystem (Prozessor-

und Speicherverwaltung usw.)
und Implementation (spezielle
Speicherelemente hoher Kapazität,
extrem leistungsfähige Netzwerke zur
Datenübertragung zwischen den
einzelnen Prozessoren usw.) noch nicht
vollständig gelöst sind.

Während die Forschungsarbeiten
auf dem Gebiet neuer Rechnerarchitekturen

für Supercomputer-Anwendungen
in den letzten Jahren

bemerkenswerte Fortschritte verzeichnen
konnten [3], wurden bei den
entsprechenden Arbeiten für eingebettete
Systeme (Echtzeitsysteme, Embedded
Systems) vergleichsweise bescheidene
Erfolge erzielt, obwohl auch bei
solchen Anwendungen künftig sehr hohe
Rechenleistung gefragt sein wird, z. B.

beim Einsatz fortgeschrittener
Industrieroboter oder bei der Überwachung
und Steuerung komplexer Industrieanlagen

oder Kraftwerke usw. Beim
vorliegenden Forschungsprojekt geht
es darum, die Eignung einer speziellen
Datenflussrechnervariante (Grobkörniger

oder Coarse-Grain-Datenfluss)
im Hinblick auf einen Einsatz in künftigen

eingebetteten Systemen abzuklären.

Zu diesem Zweck wird die
Entwicklung einer entsprechenden
Programmiersprache sowie eines Emula-
tions-Multiprozessor vorangetrieben.
Die besonderen Aspekte einer derartigen

Architektur und Implementation
sollen möglichst flexibel und dennoch
exakt abgeklärt werden.

Architektur
Einer der markantesten Vorzüge des

Datenflusskonzepts liegt darin, dass
unter Verwendung eines funktionalen
Programmierstils die in einem
Applikationsprogramm enthaltene Parallelität

einfach extrahiert und in einer
entsprechenden parallelen Rechnerarchitektur

ausserordentlich gut ausgenützt
werden kann [2], wodurch, zumindest
theoretisch, extrem hohe
Verarbeitungsgeschwindigkeiten möglich werden.

Praktische Implementationsstudien
haben jedoch gezeigt, dass infolge

spezieller Beschaffenheit der einzelnen
Datenflussprozessoren [4] die Rechenleistung

stark reduziert wird, wenn die
Programmparallelität eine gewisse
Grenze unterschreitet. Da zudem die
einzelnen Instruktionen ausschliesslich

aufgrund der Verfügbarkeit der
Daten abgearbeitet (gefeuert) werden,
kann ein nach diesem Konzept
aufgebautes eingebettetes System die strengen

Antwortzeitbedingungen von
Echtzeitsystemen nicht einhalten.

Die Entwicklung des nachstehend
beschriebenen Codeblock-Datenfluss-
konzepts basiert auf Forschungsarbeiten

[5], welche zum Ziel hatten, diese
Nachteile zu eliminieren. Der wesentliche

Unterschied gegenüber klassischen

Lösungsversuchen wie [4] oder
[6] besteht darin, dass die einzelnen
Knoten in einem Datenflussgraphen
[2] nicht mehr einzelne (einfache)
Maschineninstruktionen sondern ganze
Blöcke solcher Instruktionen (d. h.

Codeblocks) beinhalten. Derartige
Codeblocks weisen etwa die Struktur von
Prozeduren oder Loops auf, wie sie

von höheren Programmiersprachen
her bekannt sind. Die Vorteile des
Datenflusskonzepts können somit
übernommen werden, während konventionelle

Von-Neumann-Rechnertechni-
ken bei der Abarbeitung der einzelnen
Codeblocks die Eliminierung der
erwähnten Nachteile ermöglicht.

Der konzipierte Datenflussrechner

Bulletin SEV/VSE 79(1988)7,9. April 351

Da ten flussrechner

(Fig. 1) besteht aus einer Vielzahl
einzelner Prozessoren, die sich aus einer
Verarbeitungseinheit (VE) und einem
verteilten Datenspeicher (DS)
zusammensetzen und durch ein leistungsfähiges

(z. B. Packed-Switched) Netzwerk

verbunden sind. Der Aufbau
eines einzelnen Prozessors ist in Figur
2 dargestellt.

Grosse Datenstrukturen wie Arrays,
Matrizen usw. werden auf die einzelnen

Speicherblöcke der verschiedenen
Prozessoren verteilt; die Grundidee
dazu wurde von den in [4] beschriebenen

I-Strukturen übernommen. Da bei
der von-Neumann-artigen Abarbeitung

einzelner Codeblocks Referenzen
auf Daten vorkommen, welche in
nichtlokalen Speicherblöcken abgelegt
sind, muss verhindert werden, dass das
durch das eigentliche Datenflusskon-
zept elegant gelöste Memory-Latency-

Problem [2] erneut auftritt und die
Prozessoren während der Daten-Fetch-
Phase für längere Zeit blockiert werden.

Die Lösung besteht darin, dass in
jedem Prozessor mehrere lauffähige
Codeblocks vorliegen, welche ihrem
momentanen Status entsprechend zur
Abarbeitung gelangen. Jeder einzelne
Codeblock verfügt dabei über einen
eigenen Stack-Bereich zur Ablage
temporärer Daten. Referenzen auf die Daten

des verteilten Speichers erfolgen
anhand spezieller Instruktionen (Load
Global Address to Local Address),
welche ein Data Request Token
generieren, das zum Objekt Memory
Manager (Figur 2) des das verlangte
Datum enthaltenden Prozessors übertragen

wird. Als Erwiderung sendet dieser

eine Kopie des Datums in Form
eines Data Tokens dem aufrufenden
Prozessor zurück. Die das Datum be¬

Prozessor 1 Prozessor 2 Prozessor n

VE DS VE DS VE DS

Figur 1

Konzept eines
Datenflussrechners
VE Verarbeitungs¬

einheit

DS Datenspeicher

Netzwerk

Codeblock
Description
Memory

Codeblock
Manager

r

Codeblock Codeblock
Frame,
Stack

Wake-
Code Execution «- up
Memory Unit Logic Commu¬

nication
Unit

Object
Memory
Manager

"T
Object
Data
Memory

Object
Memory
Descriptors

Datenspeicher
Prozessor

Figur 2

Prozessor des

Codeblock-Daten-
flussrechners
Codeblock Execution
Unit:
Abarbeitung der
Codeblocks

Codeblock Manager:
Verwaltung der
Codeblocks

Object Memory
Manager:
Verwaltung und
Zugriffskontrolle des
verteilten
Datenspeichers

Communication Unit:
Schnittstelle zum
Netzwerk

Netzwerk'3

nötigende Instruktion führt zur
Ausführungszeit einen impliziten Test
(Test Local Address) durch, um sich

von der (rechtzeitigen) Ankunft desselben

zu überzeugen. Stellt sich heraus,
dass sich das verlangte Datum nicht
am vorgesehenen lokalen Speicherplatz

befindet, wird die Instruktion
und der zugehörige aktive Codeblock
suspendiert und ein anderer lauffähiger

Codeblock zur Ausführung
gebracht. Das nachträglich eintreffende
Data Token wird vom Codeblock
Manager als solches erkannt und der
zugehörige Codeblock wird vom
Zustand «suspendiert» in den Zustand
«ausführbar» übergeführt. Die sonst
üblichen zeitintensiven Context-Um-
schaltungen werden durch die
Verwendung des Stackrechnerprinzips in
den einzelnen Codeblock Execution
Units auf ein absolutes Minimum
reduziert.

Der Codeblock Manager ist neben
der Verwaltung auch für die Zuweisung

der auszuführenden Codeblocks
zuständig. Während die Verwaltung
dereinem Prozessor zugewiesenen
Codeblocks eine rein lokale Angelegenheit

ist, verlangt die zur Laufzeit
erfolgende Zuweisung neuer Codeblocks
zu den einzelnen Prozessoren
umfassenden Koordinationsmassnahmen
zwischen allen Codeblock Managern
des Systems. Es gilt, die momentane
Auslastung der verschiedenen Prozessoren

möglichst korrekt und konsistent

zu erfassen und anhand dieser
sowie anhand der anfallenden Last
(Rechen- und Speicheraufwand für die
Abarbeitung des Codeblocks) die
Arbeit im Gesamtsystem möglichst optimal

zu verteilen.
Ähnliche Aufgaben im Bereich der

Speicherverwaltung werden durch die
Gesamtheit der Object Memory
Manager des Systems wahrgenommen.

Programmierung des
Codeblock-Rechners
Zur Programmierung des Code-

block-Datenflussrechners, der im
vorliegenden Forschungsprojekte untersucht

werden soll, wird zunächst eine
bereits existierende, experimentelle,
später eine neue, optimierte Sprache
verwendet. In einer ersten Phase wird
das Systemverhalten anhand
verhältnismässig einfacher Testprogramme
analysiert. Die zu diesem Zweck benötigten

Applikationsprogramme werden

in der seit einigen Jahren verfügbaren

Sprache Sisal [7] geschrieben.
Der zugehörige Compiler generiert

352 Bulletin ASE/UCS 79(1988)7, 9 avril

Da ten flussrechner

eine als IF1 bezeichnete Zwischenform,

aus der ein im Rahmen dieses
Projekts entwickelter Codegenerator
den für den Codeblock-Datenfluss-
rechner definierten Programmcode
erzeugt. Als langfristige Lösung wird in
einer zweiten Phase die Entwicklung
einer neuen Applikationssprache
vorangetrieben, welche unter anderem
auch die nötigen Konstrukte für die
Programmierung von Echtzeitanwendungen

beinhalten wird.

Emulation eines
Codeblock-
Datenflussrechners
Die Erforschung eines weitgehend

neuartigen Rechnerkonzepts führt zur
Erarbeitung zahlreicher Architektur-
und Implementationsvarianten. Die
Einflüsse der sich dabei herauskristallisierenden

Hard- und Softwarelösungen
müssen sorgfältig untersucht und

optimiert werden. Da die Zahl der
anfänglich freien Systemparameter sehr

gross ist, muss der Bereitstellung einer
flexiblen und leistungsfähigen
Experimentierumgebung grösste Beachtung
geschenkt werden.

Die gewählte Lösung stützt sich auf
drei verschiedene, sich jedoch ergänzende

Methoden:
1. Implementation einer sogenannten

Metamaschine zur Emulation
eines einzelnen Codeblockprozessors
auf einem konventionellen Rechner
(Macintosh II),

2. Verwendung spezieller
Simulationspakete, welche detaillierte
Simulationen einzelner Hardwarekomponenten

des Datenflussrechners ermöglichen

(eine detaillierte Simulation des

vollständigen Multiprozessors ist
selbst unter Verwendung von
Höchstleistungsrechnern extrem zeitintensiv
und zurzeit unrealistisch) und

3. Realisierung eines experimentellen
Multiprozessors, mit dem Entwürfe
von Codeblock-Multiprozessoren

emuliert werden können.
Im folgenden wird auf den Emula-

tions-Multiprozessor eingegangen, der
momentan aufgebaut wird. Erfahrungen

mit vergleichbaren Projekten
haben gezeigt, dass ein Experimentator
von einem derartigen Multiprozessor
drei Grundvoraussetzungen erwartet.
Die erste betrifft eine komfortable
Benutzerschnittstelle. Dazu gehört eine
gute Eingabemöglichkeit von
Systemparametern (z. B. Speichergrösse,
Busbandbreiten usw.), eine klare und
umfassende Darstellung der zu untersu¬

chenden Systemdaten in Form von
Tabellen und Grafiken etc. und nicht
zuletzt auch die Verfügbarkeit einer
entsprechenden Programmiersprache mit
Compiler für die Erstellung lauffähiger

Testprogramme. Die zweite
Voraussetzung betrifft die notwendige
Flexibilität des Systems. Es muss möglich
sein, den Einfluss verschiedener
Systemparameter im Detail zu studieren,
ohne dass der physikalische Aufbau
des Rechners verändert werden muss.
Die dritte Voraussetzung betrifft eine

angemessene Systemleistung; einzelne
Experimentierphasen (Abarbeitung
von Testprogrammen mit unterschiedlichen

Systemparametern) sollen keine
untolerierbar lange Zeit in Anspruch
nehmen. Diese verschiedenen Ansprüche

sind teilweise kontradiktionär,
und es gilt daher, einen entsprechenden

Kompromiss auszuarbeiten1.
Der Emulations-Multiprozessor soll

neben den funktionellen Eigenschaften
des theoretischen Codeblock-Mul-

tiprozessors auch dessen zeitbezogenen

Eigenschaften exakt emulieren
(nachbilden) können. Im Gegensatz zu
nahezu allen existierenden For-
schungs-Multiprozessoren hat der
Experimentator dadurch die Möglichkeit,

die Einflüsse sowohl von Software-

wie auch von Hardwarekomponenten
umfassend zu studieren. Bei der

Konzeption des Emulationsrechners
wird als erstes die gewünschte, auf das

zu emulierende System bezogene,
zeitliche Auflösung (Basic Time Step) al-

'Das Schwergewicht der momentanen Projektphase

liegt auf der Untersuchung der grösseren
Zusammenhänge bzw. Einflüsse verschiedener
Systemparameter. Zu diesem Zweck muss der
theoretische Rechner zugunsten hoher Flexibilität
und vernünftiger Experimentierzeiten entsprechend

auf das wesentliche beschränkt werden.
Fine-Tuning ist einer späteren Projektphase mit
verbesserter Hardwareumgebung vorbehalten
(z. B. Bau eines Prototyprechners).

Tabelle 1

Emulationsalgorithmus

des
Emulationsrechners

(Vereinfachte
Darstellung)
max number
of_steps:
totale Anzahl
Zeitschritte

max number—
of—subunit:
totale Anzahl Subunits

1er Messungen festgelegt. Dieser
Basiszeitschritt hat sowohl Einfluss auf die
Genauigkeit aller Messresultate wie
auch auf die Dauer der einzelnen
Experimente, d. h. auf die Abarbeitungszeit

entsprechender Testprogramme.
Im vorliegenden Projekt wurde ein
Basiszeitschritt gewählt, der der
Abarbeitungszeit einer einfachen arithmetischen

Operation entspricht. Basierend
auf der Wahl dieser Grösse wird in
einem nächsten Schritt definiert, welche

Arbeit jede einzelne Rechnerkomponente

während eines solchen
Zeitschrittes erledigen kann.

Da der Codeblock-Prozessor
gemäss Figur 2 aus einzelnen Blöcken
(Subunits) besteht, welche über
entsprechende (nicht gezeichnete) Ent-
kopplungslatches oder First-in-First-
out-Buffer gekoppelt sind, und alle
Datentransfers in Form von
Datenpaketen erfolgen, kann ein
Emulationsalgorithmus gewählt werden,
welcher zyklisch in jeder Subunit die
Arbeit eines Basiszeitschrittes zur
Ausführung bringt. Sobald alle Subunits
eines Prozessors sowie alle Prozessoren

des Systems die möglichen Aktivitäten

des laufenden Zeitschritts erledigt

haben, wird der gesamte
Multiprozessor resynchronisiert und die
Emulation des nächsten Zeitschritts
initialisiert. Eine etwas vereinfachte
Form dieses Algorithmus wird in
Tabelle I aufgezeigt. Es fällt dabei auf,
dass in einem ersten Schritt zuerst alle
Eingangswerte der einzelnen Subunits
eingefroren und anschliessend die
möglichen Aktivitäten durchgeführt
werden. Die von den Experimentator
gewünschten Datenerfassungen für
die laufende oder spätere Auswertung
(Monitoring Tasks) werden ähnlich
wie die Aktivitäten der Subunits eingefügt.

Durch die spezielle Wahl des

Emulationsalgorithmus wird die
Abarbeitungszeit eines Testprogramms
dadurch etwas verzögert; die Genauig-

for basic_time_step := 1 to max number of steps do
for subunit := 1 to max_number_of_subunits do

{freeze input data of each subunit} ;

for subunit := 1 to max_number_of_subunits do
if input_data[subunit] available then begin

{do work of one basic time step};
{perform monitoring tasks as necessary};
{do output to connected subunit}

end;
{synchronize system-wide)

end.

Bulletin SEV/VSE 79(1988)7,9. April 353

Datenflussrechner

keit der Messresultate wird hingegen
in keiner Art und Weise beeinflusst.

In der praktischen Implementation
wird der Emulationsalgorithmus von
Tabelle I derart erweitert, dass auch
Aktivitäten berücksichtigt werden
können, welche mehr als einen (k> 1

Basic Time Step beanspruchen. In diesen

Fällen wird die entsprechende
Aktivität der Subunit durchgeführt und
diese anschliessend für weitere k-1

Zeitschritte gesperrt. Entsprechende
Datenausgaben werden während des
/c-ten Zeitschrittes durchgeführt.

Architektur und
Implementation des

Emulationsmultiprozessors
Zwei der wichtigsten Anforderungen

beim Bau eines Experimentalrech-
ners für Architekturuntersuchungen
sind, wie erwähnt, dessen Flexibilität
und Leistung. Flexibilität kann primär
dadurch erreicht werden, dass die
kritischen Module des Rechners in
Software statt in Hardware realisiert werden.

Änderungen oder Optimierungen
führen dabei nur zu einfachen
Softwareanpassungen. Die effektiv für die
Emulation benötigte Hardware kann
daher auf verhältnismässig einfache
Komponenten wie konventionelle
Prozessoren, Speicher, Interfaces und
ein Netzwerk beschränkt werden, wie
dies in Figur 3 dargestellt ist. Jeder der
einzelnen Prozessoren (Macintosh II)
emuliert dabei einen vollständigen Co-
deblock-Datenflussprozessor.

Leistungserhöhungen für den Fall
weiterer, umfassenderer, Untersuchungen

lassen sich mittels Hinzufügen

zusätzlicher Emulationsprozessoren
bewerkstelligen. Durch die

Entkopplung der Prozessoren und des
Netzwerks mittels Dual-Port-Spei-
chern und definierten Protokollen bei
der Datenübermittlung können aber
auf einfache Art auch leistungsfähigere

Prozessoren an das bestehende
Netzwerk angeschlossen werden. Eine
der Hauptauflagen wäre in diesem
Fall, dass die in Modula-2 geschriebene

Emulationssoftware weiter verwendet

werden kann.
Das Kommunikationsnetzwerk des

Emulations-Multiprozessors wird in
einer ersten Phase (Anzahl Prozessoren

^5) mit Inmos-Transputern realisiert,

wobei jeder einzelne Transputer
mittels serieller Verbindungen mit
allen anderen Transputern verbunden
sein wird. Für mehr als 5 Prozessoren
können hypercubeartige oder andere

Transputer-Netzwerktopologien realisiert

werden. Das in Figur 3

eingezeichnete Synchronisationsnetzwerk
dient der im Emulationsalgorithmus
von Tabelle I aufgeführten, nach
jedem Zeitschritt erfolgenden Synchronisation

des Gesamtsystems.

Experimentelle Aspekte
Die zahlreichen Experimente auf

dem Emulations-Multiprozessor
haben zum Ziel, die grundsätzlichen
Abläufe in einem Codeblock-Datenfluss-
rechner zu verstehen sowie die einzelnen

Komponenten eines solchen
Rechners zu optimieren. Die Untersuchungen

werden auf drei Ebenen
durchgeführt und umfassen unter
anderem folgende Teilaspekte:

1. auf der Compilerebene

- Art und Grösse der Codeblocks
- Statische Codeblock-Zuweisungs-

strategien

- Strategien für das effiziente Kopieren

von Daten
- Statische Codeblock-Prioritätsschemata

zur Einhaltung vorgegebener
Antwortzeiten.

2. auf der Laufzeitsystemebene

- Codeblock-Zuweisungsstrategien
auf die verschiedenen Prozessoren

- Algorithmen für die Zuweisung von
Daten auf den verteilten Speicher

- Dynamische Codeblock-Prioritätsschemata.

Figur 3

Struktur des
Emulations-
Multiprozessors

Dual-Port-

Speicher

3. auf der Implementationsebene

- Vielfalt und Art der Maschineninstruktionen

- Beeinflussung der Rechenleistung
durch Komponentenmodifikationen

- Einfluss unterschiedlicher
Verbindungsnetzwerke zwischen den
Prozessoren

- Einfluss unterschiedlicher
Verbindungskonzepte innerhalb der
Prozessoren

- Einfluss der Grösse von Speichern
und Datenbuffern.

Im praktischen Experimentierbetrieb
können auf übersichtliche Art

und Weise die vorgesehenen
Systemparameter mittels Bildschirm eingegeben

und die gewünschten
Datenaufzeichnungsarten und deren
Darstellungsvarianten ausgewählt werden. Je

nach Fall werden diese Werte laufend
oder am Ende des Experimentes
dargestellt. Die vollständige
Experimentierumgebung, welche auch Daten für
Off-Line-Simulationen zur Verfügung
stellt (Trace Output), wird in Figur 4

dargestellt. Ein anderer wichtiger
Aspekt der Untersuchungen betrifft
die Erarbeitung von Software-Debug-
ging-Techniken für Mehrprozessorsysteme.

Schlussfolgerung und
Ausblick
Die Resultate verschiedener

ausländischer wie auch eigener Forschungsarbeiten

deuten darauf hin, dass das
Codeblock-Datenflusskonzept ein

354 Bulletin ASE/UCS 79(1988)7, 9 avril

Wer zur Gesamtleistung
Farbe bekennt,
steckt den Horizont
weiter.

Zum Beispiel in der Tarifgestaltung

Wer den Blick in die Zukunft richtet,
wird die Möglichkeiten der zeit- und
leistungsabhängigen Tarifgestaltung
verstärkt nutzen. Zumal Ihnen
Landis & Gyr technisch ausgereifte
Tarifgeräte anbietet.

Mit Landis & Gyr haben Sie einen erfahrenen

Partner, der Ihnen übergreifende
Gesamtlösungen bietet. Und zwar für
die Energiemessung, dieTarifgestaltung,
die Datenerfassung und die
Zählerprüfung.

Farbe bekennen zur Gesamtleistung
eines Partners, der für die Zukunft
gerüstet ist, eigentlich eine gute Sache.
Und für uns ein willkommener Anlaß,
Ihnen und allen anderen Kunden für die
vertrauensvolle Zusammenarbeit zu
danken.

Landis & Gyr—der Partner für umfassende Lösungen

Bitte beachten Sie
zum Thema Tarifgestaltung
die Rückseite.

[LflHDIS&GYR

Tarifgestaltung — ein wichtiger Bereich
der Gesamtleistung

Die Verrechnung der elektrischen
Energie erfolgt zunehmend mit Hilfe
von Tarifen, welche die Kosten für
die Bereitstellung von Leistung und
Energie widerspiegeln. Sie berücksichtigen

dabei einerseits den Zeitpunkt
und andrerseits die Intensität des
Energiebezugs. Tarifgeräte mit dem-
entsprechenden Funktionen ergänzen
die für die Energiemessung eingesetzten
Zähler und liefern die erforderlichen
Daten zur Verrechnung des Energiebezugs.

Sie ermöglichen es den EW,
den Bezug je nach Wunsch und
Anforderung an die Tarifstrukturen zu
verrechnen.

Die zeitabhängige Tarifgestaltung
ist eine der verschiedenen Maßnahmen,
die vorhandene Netzkapazität optimal
auszunutzen. Was Ziel jedes EW ist.
Dazu dienen

• mechanische Doppel- und
Dreifachtarifzählwerke oder

• elektronische Geräte für Mehrfach-
Energietarif

Rundsteuerung oder Schaltuhren
übernehmen die zeitabhängige Steuerung.

Die leistungsabhängige Tarifgestaltung
soll den Investitionsaufwand und die
Betriebskosten für die Erzeugung und
Lieferung der elektrischen Energie
berücksichtigen. Die EW sind bestrebt,
mittleren und größeren Abnehmern
neben der bezogenen Energie auch die
beanspruchte Leistung zu verrechnen.

Hierzu dienen Tarifgeräte, welche
während einer definierten Meßperiode
(z.B. 15 min) die mittlere Leistung
ermitteln und den höchsten Wert (Maximum)

während einer oder mehrerer
Verrechnungsperioden festhalten.
Diese Tarifgeräte sind

• elektromechanische Maximumzählwerke,

teils mit Kumulierfunktion

• elektronische Tarifgeräte mit Mehr-
fach-Leistungs- und Energietarifen
sowie Datenspeicher

LGZ Landis & Gyr Zug AG
Gubelstraße
CH-6301 ZUG
Tel. 042-24 11 24 Monetics

Elektrizitätszähler
Fernwirk- und Rundsteuertechnik
Heizungs- und Klimaregelung, Gebäudeleittechnik
Telefonie

[LAMDIS & GYR]
Z/D-CH 543 Gedruckt in der Schweiz

3M11Öffl4i}4
pa20/38ö V

6000 imo

Datenerfassung

Diesem Bereich ist
unser nächster
Beitrag gewidmet.

Für Ihr Interesse
danken wir Ihnen
schon jetzt.

Anzeige-Kontrolle

Kundennummer

Kumulierungen n

Pmax kumuliert kW

T-abgelaufen min

P-Iaufend kW

I t- Vorwert-Kennzahl
L- Tarif

Code

Pmax kW

Energie kWh

Tageszähler d

LANDIS & GY

Autom. Ablesung

Gehör; zu Zahler

uawpis&s

Datenflussrechner

Off-line- Off-Line-
Interpretation Simulation

vielversprechender Ansatz zur
Realisierung künftiger eingebetteter Systeme

darstellt. Sie versprechen eine hohe
Rechenleistung sowie eine solide
Programmierungsgrundlage. Die Einführung

von Prioritätsschemata und die
Verwendung von konventionellen
Von-Neumann-Techniken zur
Abarbeitung von Codeblocks bieten zudem
die Grundlage für einen erfolgreichen
Einsatz unter strengen Echtzeitbedingungen.

Die Zahl der noch offenen Fragen
ist hingegen nicht klein. Die laufenden
Forschungsarbeiten müssen die
verschiedensten Aspekte abklären. Dazu
gehören insbesondere das
Anforderungsprofil potentieller Anwendungen

Figur 4
Experimentierumgebung

sowie die Frage, ob eine mächtige
Programmiersprache und ein leistungsfähiger

Compiler, welcher effizienten
und korrekten, den Spezifikationen
entsprechenden Code zu generieren in
der Lage ist, mit vernünftigem
Aufwand realisierbar sind. Auf der
Systemseite müssen für die Prozessor-
und Speicherverwaltung günstige
Strategien evaluiert und implementiert
werden. Das Verhalten bei Ausfällen
von Komponenten, allenfalls verbunden

mit redundanter Verarbeitung, ist
ebenso Gegenstand vertiefter Untersuchungen

wie die Detailplanung
entsprechender Zielhardware. Zur
Problematik der Implementation gehören
auch die physikalischen Randbedin¬

gungen, die für viele eingebettete
Systeme gegeben sind, wie Grösse,
Stromverbrauch, begrenzte Wartbar-
keit usw.

Als vorteilhaft kann abschliessend
der Aspekt gewertet werden, dass bei
vielen Anwendungen vor der eigentlichen

Inbetriebsetzung eine
Optimierungsphase eingeschaltet werden
kann, so dass bei eingebetteten Systemen

verschiedene der erwähnten
Probleme einen kleineren Stellenwert als
bei allgemeinen Anwendungen von
Datenflussrechnern (z. B. Supercomputer)

einnehmen.

Literatur
[1] P.C. Treleaven and l.G. Lima: Future

computers: Logic, data flow... control flow?
IEEE Computer 17(1984)3, p. 47...58.

[2] R. Bührer: Datenflussrechner - Konzepte
und Anwendungen. Bull. SEV/VSE
78(1988)7, S.334...350.

[3] Proceedings of the Second Conference on
Supercomputing. Vol. 1...3 St. Petersburg/
Florida, International Supercomputing
Institute Inc., 1987.

[4] Arvind a. o.: The tagged token dataflow
architecture. Memo of the Computation
Structures Group/Laboratory for Computer
Science. Cambridge/Mass., Massachusetts
Institute ofTechnology (MIT), 1983.

[5] R. Buehrer and K. Ekanadham: Incorporat¬
ing data flow ideas into von Neumann
processors for parallel execution. IEEE Tran, on
Computers C 36(1987) 12, p. 1515... 1522.

[6] J.R. Gurd, C.C. Kirkham and I. Watson:
The Manchester prototype dataflow computer.

Communications of the ACM 28(1985)1,
p. 34...52.

[7] J. McGraw: SISAL - Streams and iterations
in a single-assignment language. Language
reference manual. Livermore/California,
Livermore National Laboratory, 1983.

[8] R. Bührer: Emulation of a parallel codeblock
dataflow processor. Microprocessing and
Microprogramming (The Euromicro Journal)

21(1987)- p. 319...324.

Bulletin SEV/VSE 79(1988)7, 9. April 355

	Ein Datenflussrechnerkonzeot für den Einsatz in eingebetteten Systemen

