Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 79 (1988)

Heft: 7

Artikel: Ein Datenflussrechnerkonzeot fir den Einsatz in eingebetteten
Systemen

Autor: Buhrer, R.

DOl: https://doi.org/10.5169/seals-904015

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904015
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Datenflussrechner

Ein Datenflussrechnerkonzept fiir den Einsatz
in eingebetteten Systemen

R. Biihrer

Ein Forschungsprojekt an der ETH
Zirich soll abkldren, wieweit Daten-
flussrechner auch fur eingebettete
Systeme eingesetzt werden kon-
nen. Dazu wird eine entsprechende
Programmiersprache und ein Expe-
rimental-Multiprozessor entwickelt.
Nach einer Beschreibung des Code-
block-Datenflusskonzepts wird
gezeigt, wie die funktionellen und
zeitlichen Aspekte eines Daten-
flussrechners auf einem experimen-
tellen Multiprozessor emuliert wer-
den konnen. Die Architektur und die
mogliche Implementation eines der-
artigen Systems sowie einige expe-
rimentelle Aspekte werden naher
beleuchtet und abschliessend
einige Schlussfolgerungen angege-
ben.

Un projet de recherche a I'EPF de
Zurich essaie de montrer dans
quelle mesure les ordinateurs a cir-
culation de donées (dataflow) peu-
vent étre appliqués dans la réalisa-
tion de systemes a temps réel. Un
langage de programmation appro-
prié et un multiprocesseur expéri-
mental sont développés a cet effet.
Apreés une description du concept
de circulation de données code-
block, il est montré comment les
aspects fonctionnels et temporels
d’un tel ordinateur peuvent étre
émulés sur un multiprocesseur
expérimental. L architecture et I'im-
plémentation possible d’un tel sys-
teme, ainsi que quelques aspects
expérimentaux sont mis en lumiére
et quelques conclusions tirées.

Adresse des Autors

Dr. Richard Biihrer, Institut fiir Elektronik,
ETH-Zentrum, 8092 Ziirich.

Unter den verschiedenen grundsitz-
lich neuen Parallelcomputerarchitek-
turen [1] scheinen die Datenflussrech-
ner fiir den Einsatz in technisch-wis-
senschaftlichen Anwendungen in der
hoéheren und hochsten Leistungsklasse
besonders pradestiniert zu sein [2]. Der
kommerzielle Durchbruch diirfte hin-
gegen in den nidchsten Jahren noch
nicht erfolgen, da zahlreiche Probleme
auf den Stufen Applikationsprogram-
mierung (Sprachdefinition, Bereitstel-
lung von Software-Entwicklungswerk-
zeugen usw.), Laufzeitsystem (Prozes-
sor- und Speicherverwaltung usw.)
und Implementation (spezielle
Speicherelemente hoher Kapazitit, ex-
trem leistungsfihige Netzwerke zur
Dateniibertragung zwischen den ein-
zelnen Prozessoren usw.) noch nicht
vollstandig geldst sind.

Wihrend die Forschungsarbeiten
auf dem Gebiet neuer Rechnerarchi-
tekturen fiir Supercomputer-Anwen-
dungen in den letzten Jahren bemer-
kenswerte Fortschritte verzeichnen
konnten [3], wurden bei den entspre-
chenden Arbeiten fiir eingebettete Sy-
steme (Echtzeitsysteme, Embedded
Systems) vergleichsweise bescheidene
Erfolge erzielt, obwohl auch bei sol-
chen Anwendungen kiinftig sehr hohe
Rechenleistung gefragt sein wird, z. B.
beim Einsatz fortgeschrittener Indu-
strieroboter oder bei der Uberwachung
und Steuerung komplexer Industrie-
anlagen oder Kraftwerke usw. Beim
vorliegenden Forschungsprojekt geht
es darum, die Eignung einer speziellen
Datenflussrechnervariante (Grobkor-
niger oder Coarse-Grain-Datenfluss)
im Hinblick auf einen Einsatz in kiinf-
tigen eingebetteten Systemen abzukli-
ren. Zu diesem Zweck wird die Ent-
wicklung einer entsprechenden Pro-
grammiersprache sowie eines Emula-
tions-Multiprozessor vorangetrieben.
Die besonderen Aspekte einer derarti-
gen Architektur und Implementation
sollen moglichst flexibel und dennoch
exakt abgeklart werden.

Architektur

Einer der markantesten Vorziige des
Datenflusskonzepts liegt darin, dass
unter Verwendung eines funktionalen
Programmierstils die in einem Appli-
kationsprogramm enthaltene Paralleli-
tat einfach extrahiert und in einer ent-
sprechenden parallelen Rechnerarchi-
tektur ausserordentlich gut ausgeniitzt
werden kann [2], wodurch, zumindest
theoretisch, extrem hohe Verarbei-
tungsgeschwindigkeiten moglich wer-
den. Praktische Implementationsstu-
dien haben jedoch gezeigt, dass infolge
spezieller Beschaffenheit der einzelnen
Datenflussprozessoren [4] die Rechen-
leistung stark reduziert wird, wenn die
Programmparallelitit eine gewisse
Grenze unterschreitet. Da zudem die
einzelnen Instruktionen ausschliess-
lich aufgrund der Verfiigbarkeit der
Daten abgearbeitet (gefeuert) werden,
kann ein nach diesem Konzept aufge-
bautes eingebettetes System die stren-
gen Antwortzeitbedingungen von
Echtzeitsystemen nicht einhalten.

Die Entwicklung des nachstehend
beschriebenen Codeblock-Datenfluss-
konzepts basiert auf Forschungsarbei-
ten [5], welche zum Ziel hatten, diese
Nachteile zu eliminieren. Der wesent-
liche Unterschied gegeniiber klassi-
schen Losungsversuchen wie [4] oder
[6] besteht darin, dass die einzelnen
Knoten in einem Datenflussgraphen
[2] nicht mehr einzelne (einfache) Ma-
schineninstruktionen sondern ganze
Blocke solcher Instruktionen (d. h. Co-
deblocks) beinhalten. Derartige Code-
blocks weisen etwa die Struktur von
Prozeduren oder Loops auf, wie sie
von hoheren Programmiersprachen
her bekannt sind. Die Vorteile des Da-
tenflusskonzepts konnen somit iiber-
nommen werden, wihrend konventio-
nelle Von-Neumann-Rechnertechni-
ken bei der Abarbeitung der einzelnen
Codeblocks die Eliminierung der er-
wahnten Nachteile ermoglicht.

Der konzipierte Datenflussrechner

Bulletin SEV/VSE 79(1988)7, 9. April

351

Datenflussrechner

(Fig. 1) besteht aus einer Vielzahl ein-
zelner Prozessoren, die sich aus einer
Verarbeitungseinheit (VE) und einem
verteilten Datenspeicher (DS) zusam-
mensetzen und durch ein leistungsfa-
higes (z. B. Packed-Switched) Netz-
werk verbunden sind. Der Aufbau
eines einzelnen Prozessors ist in Figur
2 dargestellt.

Grosse Datenstrukturen wie Arrays,
Matrizen usw. werden auf die einzel-
nen Speicherbldcke der verschiedenen
Prozessoren verteilt; die Grundidee
dazu wurde von den in [4] beschriebe-
nen I-Strukturen tibernommen. Da bei
der von-Neumann-artigen Abarbei-
tung einzelner Codeblocks Referenzen
auf Daten vorkommen, welche in
nichtlokalen Speicherblécken abgelegt
sind, muss verhindert werden, dass das
durch das eigentliche Datenflusskon-
zept elegant geloste Memory-Latency-

Problem [2] erneut auftritt und die Pro-
zessoren wihrend der Daten-Fetch-
Phase fiir ldngere Zeit blockiert wer-
den. Die Losung besteht darin, dass in
jedem Prozessor mehrere lauffihige
Codeblocks vorliegen, welche ihrem
momentanen Status entsprechend zur
Abarbeitung gelangen. Jeder einzelne
Codeblock verfiigt dabei iiber einen
eigenen Stack-Bereich zur Ablage tem-
pordrer Daten. Referenzen auf die Da-
ten des verteilten Speichers erfolgen
anhand spezieller Instruktionen (Load
Global Address to Local Address),
welche ein Data Request Token gene-
rieren, das zum Objekt Memory Ma-
nager (Figur 2) des das verlangte Da-
tum enthaltenden Prozessors iibertra-
gen wird. Als Erwiderung sendet die-
ser eine Kopie des Datums in Form
eines Data Tokens dem aufrufenden
Prozessor zuriick. Die das Datum be-

notigende Instruktion fiithrt zur Aus-
fihrungszeit einen impliziten Test
(Test Local Address) durch, um sich
von der (rechtzeitigen) Ankunft dessel-
ben zu iiberzeugen. Stellt sich heraus,
dass sich das verlangte Datum nicht
am vorgesehenen lokalen Speicher-
platz befindet, wird die Instruktion
und der zugehorige aktive Codeblock
suspendiert und ein anderer laufféahi-
ger Codeblock zur Ausfilhrung ge-
bracht. Das nachtriglich eintreffende
Data Token wird vom Codeblock Ma-
nager als solches erkannt und der zu-
gehorige Codeblock wird vom Zu-
stand «suspendiert» in den Zustand
«ausfithrbar» tibergefiihrt. Die sonst
iiblichen zeitintensiven Context-Um-
schaltungen werden durch die Ver-
wendung des Stackrechnerprinzips in
den einzelnen Codeblock Execution
Units auf ein absolutes Minimum re-
duziert.

Der Codeblock Manager ist neben

Figur 1 der Verwaltung auch fiir die Zuwei-
Prozessor 1 Prozessor 2 Prozessor n Konzept eines sung der auszufiihrenden Codeblocks
Datenflussrechners zystindig. Wihrend die Verwaltung
VE Verarbeitungs- der einem Prozessor zugewiesenen Co-
VE || °s VE || PS e VE || DS antii deblocks eine rein lokale Angelegen-
DS Daienspricher heit ist, verlangt die zur Laufzeit erfol-
I t t gende Zuweisung neuer Codeblocks
Netzwerk I zu den einzelnen Prozessoren umfas-
senden Koordinationsmassnahmen
zwischen allen Codeblock Managern
des Systems. Es gilt, die momentane
Auslastung der verschiedenen Prozes-
soren moglichst korrekt und konsi-
r—-———-—-—- — — — — — — — 2 Figur2 stent zu erfassen und anhand dieser so-
] Codeblock | Prozessor des wie anhand der anfallenden Last (Re-
| a‘:f;'rp""" | Codeblock-Daten- chen- und Speicheraufwand fi'!r die
| £ | flussrechners Abarbeitung des Codeblocks) die Ar-
| Codeblock Execution beit im Gesamtsystem moglichst opti-
I | Unit: mal zu verteilen.
| ﬁ::ig':f K | égg:ﬁggﬁ‘fd” Ahnliche Aufgaben im Bereich der
| Codeblock Manager: Speicherv;rwaltung_werden durch die
| [' | Verwaltung der Gesamtheit der Object Memory Ma-
| Codeblocks nager des Systems wahrgenommen.
| Codeblock Codeblock Wake- .
Code Lol Execution fesf L2 lqlup e | Object Memory
|| Memory Unit Stack 1" |Logic || commu-f| Manager: Programmierung des
|] [’ nication Verw_altungund
unit || Zugriffskontrolledes Codeblock-Rechners
| | g;iﬂ;zichers Zur Programmierung des Code-
I[_ == Yy —— 4 — 1 | Communication Unit: block-Datenflussrechners, der im vor-
|| Object gbiect l | Schnittstelle zum liegenden Forschungsprojekte unter-
| m'::grzr " M::ory l ISIAREHS sucht werden soll, wird zundchst eine
|| | bereits existierende, experimentelle,
| ‘ | | spiter eine neue, optimierte Sprache
I| Object | [verwendet. In einer ersten Phase wird
g| g:::?irgtors | | das Systemverhalten anhand verhalt-
.. . - - | | nismissig einfacher Testprogramme
| Datenspeicher] analysiert. Die zu diesem Zweck bend-
Prozessor T~ — T T T T T T/ - tigten Applikationsprogramme wer-
den in der seit einigen Jahren verfiig-
Netzwerk baren Sprache Sisal [7] geschrieben.
Der zugehorige Compiler generiert
352 Bulletin ASE/UCS 79(1988)7, 9 avril

Datenflussrechner

eine als IF1 bezeichnete Zwischen-
form, aus der ein im Rahmen dieses
Projekts entwickelter Codegenerator
den fiir den Codeblock-Datenfluss-
rechner definierten Programmcode er-
zeugt. Als langfristige Losung wird in
einer zweiten Phase die Entwicklung
einer neuen Applikationssprache vor-
angetrieben, welche unter anderem
auch die nétigen Konstrukte fiir die
Programmierung von Echtzeitanwen-
dungen beinhalten wird.

Emulation eines
Codeblock-
Datenflussrechners

Die Erforschung eines weitgehend
neuartigen Rechnerkonzepts fiihrt zur
Erarbeitung zahlreicher Architektur-
und Implementationsvarianten. Die
Einfliisse der sich dabei herauskristal-
lisierenden Hard- und Softwareldosun-
gen miissen sorgféltig untersucht und
optimiert werden. Da die Zahl der an-
fanglich freien Systemparameter sehr
gross ist, muss der Bereitstellung einer
flexiblen und leistungsfidhigen Experi-
mentierumgebung grosste Beachtung
geschenkt werden.

Die gewihlte Losung stiitzt sich auf
drei verschiedene, sich jedoch ergén-
zende Methoden:

1. Implementation einer sogenann-
ten Metamaschine zur Emulation
eines einzelnen Codeblockprozessors
auf einem konventionellen Rechner
(Macintosh IT),

2. Verwendung spezieller Simula-
tionspakete, welche detaillierte Simu-
lationen einzelner Hardwarekompo-
nenten des Datenflussrechners ermog-
lichen (eine detaillierte Simulation des
vollstindigen Multiprozessors ist
selbst unter Verwendung von Héchst-
leistungsrechnern extrem zeitintensiv
und zurzeit unrealistisch) und

3. Realisierung eines experimentel-
len Multiprozessors, mit dem Entwiir-
fe von Codeblock-Multiprozessoren
emuliert werden konnen.

Im folgenden wird auf den Emula-
tions-Multiprozessor eingegangen, der
momentan aufgebaut wird. Erfahrun-
gen mit vergleichbaren Projekten ha-
ben gezeigt, dass ein Experimentator
von einem derartigen Multiprozessor
drei Grundvoraussetzungen erwartet.
Die erste betrifft eine komfortable Be-
nutzerschnittstelle. Dazu gehort eine
gute Eingabemoglichkeit von System-
parametern (z. B. Speichergrosse, Bus-
bandbreiten usw.), eine klare und um-
fassende Darstellung der zu untersu-

chenden Systemdaten in Form von Ta-
bellen und Grafiken etc. und nicht zu-
letzt auch die Verfiigbarkeit einer ent-
sprechenden Programmiersprache mit
Compiler fir die Erstellung lauffahi-
ger Testprogramme. Die zweite Vor-
aussetzung betrifft die notwendige Fle-
xibilitdt des Systems. Es muss moglich
sein, den Einfluss verschiedener Sy-
stemparameter im Detail zu studieren,
ohne dass der physikalische Aufbau
des Rechners verdndert werden muss.
Die dritte Voraussetzung betrifft eine
angemessene Systemleistung; einzelne
Experimentierphasen (Abarbeitung
von Testprogrammen mit unterschied-
lichen Systemparametern) sollen keine
untolerierbar lange Zeit in Anspruch
nehmen. Diese verschiedenen Ansprii-
che sind teilweise kontradiktiondr,
und es gilt daher, einen entsprechen-
den Kompromiss auszuarbeiten'.

Der Emulations-Multiprozessor soll
neben den funktionellen Eigenschaf-
ten des theoretischen Codeblock-Mul-
tiprozessors auch dessen zeitbezoge-
nen Eigenschaften exakt emulieren
(nachbilden) kénnen. Im Gegensatz zu
nahezu allen existierenden For-
schungs-Multiprozessoren hat der Ex-
perimentator dadurch die Moglich-
keit, die Einfliisse sowohl von Softwa-
re- wie auch von Hardwarekomponen-
ten umfassend zu studieren. Bei der
Konzeption des Emulationsrechners
wird als erstes die gewlinschte, auf das
zu emulierende System bezogene, zeit-
liche Auflésung (Basic Time Step) al-

'Das Schwergewicht der momentanen Projekt-
phase liegt auf der Untersuchung der grosseren
Zusammenhidnge bzw. Einfliisse verschiedener
Systemparameter. Zu diesem Zweck muss der
theoretische Rechner zugunsten hoher Flexibilitat
und verninftiger Experimentierzeiten entspre-
chend auf das wesentliche beschrinkt werden.
Fine-Tuning ist einer spéteren Projektphase mit
verbesserter Hardwareumgebung vorbehalten
(z. B. Bau eines Prototyprechners).

ler Messungen festgelegt. Dieser Basis-
zeitschritt hat sowohl Einfluss auf die
Genauigkeit aller Messresultate wie
auch auf die Dauer der einzelnen Ex-
perimente, d. h. auf die Abarbeitungs-
zeit entsprechender Testprogramme.
Im vorliegenden Projekt wurde ein Ba-
siszeitschritt gewdhlt, der der Abarbei-
tungszeit einer einfachen arithmeti-
schen Operation entspricht. Basierend
auf der Wahl dieser Grosse wird in
einem nichsten Schritt definiert, wel-
che Arbeit jede einzelne Rechnerkom-
ponente wihrend eines solchen Zeit-
schrittes erledigen kann.

Da der Codeblock-Prozessor ge-
miss Figur 2 aus einzelnen Bldcken
(Subunits) besteht, welche iiber ent-
sprechende (nicht gezeichnete) Ent-
kopplungslatches oder First-in-First-
out-Buffer gekoppelt sind, und alle
Datentransfers in Form von Daten-
paketen erfolgen, kann ein Emula-
tionsalgorithmus gewahlt werden, wel-
cher zyklisch in jeder Subunit die Ar-
beit eines Basiszeitschrittes zur Aus-
fiihrung bringt. Sobald alle Subunits
eines Prozessors sowie alle Prozesso-
ren des Systems die moglichen Aktivi-
titen des laufenden Zeitschritts erle-
digt haben, wird der gesamte Multi-
prozessor resynchronisiert und die
Emulation des nichsten Zeitschritts
initialisiert. Eine etwas vereinfachte
Form dieses Algorithmus wird in Ta-
belle 1 aufgezeigt. Es féllt dabei auf,
dass in einem ersten Schritt zuerst alle
Eingangswerte der einzelnen Subunits
eingefroren und anschliessend die
moglichen Aktivititen durchgefiihrt
werden. Die von den Experimentator
gewiinschten Datenerfassungen fiir
die laufende oder spitere Auswertung
(Monitoring Tasks) werden dhnlich
wie die Aktivitdten der Subunits einge-
fiigt. Durch die spezielle Wahl des
Emulationsalgorithmus wird die Ab-
arbeitungszeit eines Testprogramms
dadurch etwas verzogert; die Genauig-

Tabelle 1
Emulations-
algorithmus des
Emulationsrechners
(Vereinfachte
Darstellung)
max_number_
of__steps:

totale Anzahl
Zeitschritte
max_number_
of__subunit:

totale Anzahl Subunits

end;

end.

for basic_time_step := 1 to max_number_of_steps do
for subunit ;= 1 to max_number_of_subunits do
{freeze input data of each subunit};
for subunit := 1 to max_number_of subunits do
if input_data[subunit] = available then begin
{do work of one basic time step};
{perform monitoring tasks as necessary};
{do output to connected subunit}

{synchronize system-wide}

Bulletin SEV/VSE 79(1988)7, 9. April

353

Datenflussrechner

keit der Messresultate wird hingegen
in keiner Art und Weise beeinflusst.

In der praktischen Implementation
wird der Emulationsalgorithmus von
Tabelle I derart erweitert, dass auch
Aktivitdten beriicksichtigt werden
konnen, welche mehr als einen (k>1)
Basic Time Step beanspruchen. In die-
sen Fillen wird die entsprechende Ak-
tivitdt der Subunit durchgefihrt und
diese anschliessend fiir weitere k-1
Zeitschritte gesperrt. Entsprechende
Datenausgaben werden wéhrend des
k-ten Zeitschrittes durchgefiihrt.

Architektur und
Implementation des
Emulationsmultiprozessors

Zwei der wichtigsten Anforderun-
gen beim Bau eines Experimentalrech-
ners fir Architekturuntersuchungen
sind, wie erwihnt, dessen Flexibilitét
und Leistung. Flexibilitat kann primér
dadurch erreicht werden, dass die kri-
tischen Module des Rechners in Soft-
ware statt in Hardware realisiert wer-
den. Anderungen oder Optimierungen
fithren dabei nur zu einfachen Softwa-
reanpassungen. Die effektiv fir die
Emulation bendétigte Hardware kann
daher auf verhiltnismissig einfache
Komponenten wie konventionelle
Prozessoren, Speicher, Interfaces und
ein Netzwerk beschriankt werden, wie
dies in Figur 3 dargestellt ist. Jeder der
einzelnen Prozessoren (Macintosh II)
emuliert dabei einen vollstindigen Co-
deblock-Datenflussprozessor.

Leistungserhohungen fiir den Fall
weiterer, umfassenderer, Untersu-
chungen lassen sich mittels Hinzufi-
gen zusidtzlicher Emulationsprozesso-
ren bewerkstelligen. Durch die Ent-
kopplung der Prozessoren und des
Netzwerks mittels Dual-Port-Spei-
chern und definierten Protokollen bei
der Datentibermittlung konnen aber
auf einfache Art auch leistungsféhige-
re Prozessoren an das bestehende
Netzwerk angeschlossen werden. Eine
der Hauptauflagen wiére in diesem
Fall, dass die in Modula-2 geschriebe-
ne Emulationssoftware weiter verwen-
det werden kann.

Das Kommunikationsnetzwerk des
Emulations-Multiprozessors wird in
einer ersten Phase (Anzahl Prozesso-
ren £5) mit Inmos-Transputern reali-
siert, wobei jeder einzelne Transputer
mittels serieller Verbindungen mit al-
len anderen Transputern verbunden
sein wird. Fiir mehr als 5 Prozessoren
konnen hypercubeartige oder andere

Transputer-Netzwerktopologien reali-
siert werden. Das in Figur 3 einge-
zeichnete Synchronisationsnetzwerk
dient der im Emulationsalgorithmus
von Tabelle I aufgefiihrten, nach je-
dem Zeitschritt erfolgenden Synchro-
nisation des Gesamtsystems.

Experimentelle Aspekte

Die zahlreichen Experimente auf
dem Emulations-Multiprozessor ha-
ben zum Ziel, die grundsitzlichen Ab-
ldufe in einem Codeblock-Datenfluss-
rechner zu verstehen sowie die einzel-
nen Komponenten eines solchen
Rechners zu optimieren. Die Untersu-
chungen werden auf drei Ebenen
durchgefiihrt und umfassen unter an-
derem folgende Teilaspekte:

1. auf der Compilerebene

- Artund Grosse der Codeblocks

- Statische Codeblock-Zuweisungs-
strategien

- Strategien fiir das effiziente Kopie-
ren von Daten

- Statische Codeblock-Priorititssche-
mata zur Einhaltung vorgegebener
Antwortzeiten.

~ 2. auf der Laufzeitsystemebene

- Codeblock-Zuweisungsstrategien
auf die verschiedenen Prozessoren

- Algorithmen fiir die Zuweisung von
Daten auf den verteilten Speicher

- Dynamische Codeblock-Prioritéts-
schemata.

3. auf der Implementationsebene

- Vielfalt und Art der Maschinenin-
struktionen

- Beeinflussung der Rechenleistung
durch Komponentenmodifikatio-
nen

- Einfluss unterschiedlicher Verbin-
dungsnetzwerke zwischen den Pro-
zessoren

- Einfluss unterschiedlicher Verbin-
dungskonzepte innerhalb der Pro-
zessoren

- Einfluss der Grosse von Speichern
und Datenbuffern.

Im praktischen Experimentierbe-
trieb konnen auf iibersichtliche Art
und Weise die vorgesehenen System-
parameter mittels Bildschirm eingege-
ben und die gewiinschten Datenauf-
zeichnungsarten und deren Darstel-
lungsvarianten ausgewéhlt werden. Je
nach Fall werden diese Werte laufend
oder am Ende des Experimentes dar-
gestellt. Die vollstindige Experimen-
tierumgebung, welche auch Daten fiir
Off-Line-Simulationen zur Verfiigung
stellt (Trace Output), wird in Figur 4
dargestellt. Ein anderer wichtiger
Aspekt der Untersuchungen betrifft
die Erarbeitung von Software-Debug-
ging-Techniken fiir Mehrprozessorsy-
steme.

Schlussfolgerung und
Ausblick

Die Resultate verschiedener ausldn-
discher wie auch eigener Forschungs-
arbeiten deuten darauf hin, dass das
Codeblock-Datenflusskonzept ein

Communication Link

Y Y

Figur 3
Struktur des
Emulations- Host
Multiprozessors System
Dual-Port-
Speicher A
Macintosh I

Macintosh Il |+ » | Macintosh Il

|

1 [2 16

|

Transputer

Transputer | * * = | Transputer

Intercommunication Network]

354

Bulletin ASE/UCS 79(1988)7, 9 avril

Wer zur Gesamtleistung
Farbe bekennt,

steckt den Horizont
weiter.

Zum Beispiel in der Tarifgestaltung Mit Landis & Gyr haben Sie einen erfah- Farbe bekennen zur Gesamtleistung
renen Partner, der lhnen ibergreifende eines Partners, der fur die Zukunft

Wer den Blick in die Zukunft richtet, Gesamtldsungen bietet. Und zwar fir gerustet ist, eigentlich eine gute Sache.

wird die Moglichkeiten der zeit- und die Energiemessung, die Tarifgestaltung, Und fir uns ein willkommener AnlaB,

leistungsabhangigen Tarifgestaltung die Datenerfassung und die Zahler- Ihnen und allen anderen Kunden fir die

verstarkt nutzen. Zumal lhnen prafung. vertrauensvolle Zusammenarbeit zu

Landis & Gyr technisch ausgereifte danken.

Tarifgerate anbietet.

Landis & Gyr—der Partner fir umfassende Losungen

Bitte beachten Sie lA N |] I S & BYH
zum Thema Tarifgestaltung

die Rickseite.

Tarifgestaltung —

ein wichtiger Bereich

der Gesamtleistung

Die Verrechnung der elektrischen
Energie erfolgt zunehmend mit Hilfe
von Tarifen, welche die Kosten fir

die Bereitstellung von Leistung und
Energie widerspiegeln. Sie beriicksich-
tigen dabei einerseits den Zeitpunkt
und andrerseits die Intensitat des
Energiebezugs. Tarifgerate mit dem-
entsprechenden Funktionen erganzen

die fiir die Energiemessung eingesetzten

Zahler und liefern die erforderlichen
Daten zur Verrechnung des Energie-
bezugs. Sie ermdglichen es den EW,
den Bezug je nach Wunsch und
Anforderung an die Tarifstrukturen zu
verrechnen.

Die zeitabhangige Tarifgestaltung

ist eine der verschiedenen MaBnahmen,
die vorhandene Netzkapazitat optimal
auszunutzen. Was Ziel jedes EW ist.
Dazu dienen

e mechanische Doppel- und Dreifach-
tarifzahlwerke oder

e elektronische Geréte flir Mehrfach-
Energietarif

Rundsteuerung oder Schaltuhren Gber-
nehmen die zeitabhangige Steuerung.

Die leistungsabhéangige Tarifgestaltung
soll den Investitionsaufwand und die
Betriebskosten fiir die Erzeugung und
Lieferung der elektrischen Energie be-
ricksichtigen. Die EW sind bestrebt,
mittleren und gréBeren Abnehmern
neben der bezogenen Energie auch die
beanspruchte Leistung zu verrechnen.

Hierzu dienen Tarifgeréte, welche
wahrend einer definierten MeBperiode
(z.B.15 min) die mittlere Leistung
ermitteln und den hochsten Wert (Maxi-
mum) wéhrend einer oder mehrerer
Verrechnungsperioden festhalten.
Diese Tarifgerate sind

e elektromechanische Maximumzahl-
werke, teils mit Kumulierfunktion

® elektronische Tarifgerate mit Mehr-
fach-Leistungs- und Energietarifen
sowie Datenspeicher

LGZ Landis & Gyr Zug AG
GubelstraBe

CH-6301 ZUG

Tel. 042-24 11 24

Datenerfassung

Diesem Bereich ist
unser nachster
Beitrag gewidmet.

Fur lhr Interesse
danken wir lhnen
schon jetzt.

XN Anzeige-Kontrolle :
Kundennummer Energie kWh
Kumulierungen n [N Tegeszihler d
Prax kumuliert kW '
T-abgelaufen min
P-laufend kw

8 vz
" Vorwert-Kennzahl
i Tarif

b Code

Elektrizitatszahler
Fernwirk- und Rundsteuertechnik
Heizungs- und Klimaregelung, Gebaudeleittechnik

Telefonie
Monetics

Z/D-CH 543

Gedruckt in der Schweiz 88801 Kz

Datenflussrechner

Implementation
Parameter

Monitoring
Parameter

Figur 4

Experimentier-
Benchmark umgebung
Pragram

I

|

Emulation
Multiprocessor

y

On-Line
Output

Histogram

Trace
Output

l

Off-Line-
Interpretation

l

Off-Line-
Simulation

vielversprechender Ansatz zur Reali-
sierung kiinftiger eingebetteter Syste-
me darstellt. Sie versprechen eine hohe
Rechenleistung sowie eine solide Pro-
grammierungsgrundlage. Die Einfiih-
rung von Prioritdtsschemata und die
Verwendung von konventionellen
Von-Neumann-Techniken zur Abar-
beitung von Codeblocks bieten zudem
die Grundlage fiir einen erfolgreichen
Einsatz unter strengen Echtzeitbedin-
gungen.

Die Zahl der noch offenen Fragen
ist hingegen nicht klein. Die laufenden
Forschungsarbeiten miissen die ver-
schiedensten Aspekte abkldren. Dazu
gehoren insbesondere das Anforde-
rungsprofil potentieller Anwendungen

sowie die Frage, ob eine michtige Pro-
grammiersprache und ein leistungsfi-
higer Compiler, welcher effizienten
und korrekten, den Spezifikationen
entsprechenden Code zu generieren in
der Lage ist, mit verninftigem Auf-
wand realisierbar sind. Auf der Sy-
stemseite missen fir die Prozessor-
und Speicherverwaltung glinstige Stra-
tegien evaluiert und implementiert
werden. Das Verhalten bei Ausfillen
von Komponenten, allenfalls verbun-
den mit redundanter Verarbeitung, ist
ebenso Gegenstand vertiefter Untersu-
chungen wie die Detailplanung ent-
sprechender Zielhardware. Zur Pro-
blematik der Implementation gehoren
auch die physikalischen Randbedin-

gungen, die fiir viele eingebettete Sy-
steme gegeben sind, wie Grdsse,
Stromverbrauch, begrenzte Wartbar-
keit usw.

Als vorteilhaft kann abschliessend
der Aspekt gewertet werden, dass bei
vielen Anwendungen vor der eigentli-
chen Inbetriebsetzung eine Optimie-
rungsphase eingeschaltet werden
kann, so dass bei eingebetteten Syste-
men verschiedene der erwidhnten Pro-
bleme einen kleineren Stellenwert als
bei allgemeinen Anwendungen von
Datenflussrechnern (z. B. Supercom-
puter) einnehmen.

Literatur

[1]1 P.C. Treleaven and I.G. Lima: Future com-
puters: Logic, data flow... control flow?
IEEE Computer 17(1984)3, p. 47...58.

[2] R. Biihrer: Datenflussrechner - Konzepte
und Anwendungen. Bull. SEV/VSE
78(1988)7, S. 334...350.

[3] Proceedings of the Second Conference on
Supercomputing. Vol. 1..3 St. Petersburg/
Florida, International Supercomputing
Institute Inc., 1987.

[4] Arvind a. o.. The tagged token dataflow
architecture. Memo of the Computation
Structures Group/Laboratory for Computer
Science. Cambridge/Mass., Massachusetts
Institute of Technology (MIT), 1983.

[5] R. Buehrer and K. Ekanadham: Incorporat-
ing data flow ideas into von Neumann pro-
cessors for parallel execution. [IEEE Tran. on
Computers C 36(1987)12, p. 1515...1522.

[6] J.R. Gurd, C.C. Kirkham and 1. Watson:
The Manchester prototype dataflow compu-
ter. Communications of the ACM 28(1985)1,
p.34..52.

[7] J. McGraw: SISAL - Streams and iterations

in a single-assignment language. Language
reference manual. Livermore/California,
Livermore National Laboratory, 1983.
R. Biihrer: Emulation of a parallel codeblock
dataflow processor. Microprocessing and
Microprogramming (The Euromicro Jour-
nal) 21(1987)- p. 319...324.

[8

Bulletin SEV/VSE 79(1988)7, 9. April

355

	Ein Datenflussrechnerkonzeot für den Einsatz in eingebetteten Systemen

