
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 79 (1988)

Heft: 7

Artikel: Datenflussrechner : Konzepte und Anwendungen

Autor: Bührer, R.

DOI: https://doi.org/10.5169/seals-904014

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904014
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Einführung

Datenflussrechner -
Konzepte und Anwendungen
R. Bührer

Zahlreiche Forschungsprojekte
befassen sich zurzeit mit der
Frage, wieweit sich Datenfluss-
rechnerkonzepte für polyvalente
Hochleistungsrechner eignen.
Anhand einer Einführung in die
grundlegenden Funktionsprinzipien,

in die möglichen
Architekturvarianten und
Implementationen sowie in die
Eigenschaften zugehöriger
Programmiersprachen werden die
vielversprechenden Eigenschaften
und die noch offenen Fragen des
Konzepts erklärt.

De nombreux projets de recherche

essaient actuellement de
montrer dans quelle mesure les
concepts d'ordinateurs à circulation

de données (dataflow)
peuvent être appliqués dans la
réalisation d'ordinateurs polyvalents

et de haute performance.
Au moyen d'une introduction
aux principes fondamentaux de
fonctionnement, aux différentes
variantes d'architecture et aux
implémentations possibles, ainsi
qu'aux propriétés des langages
de programmation utilisés, les
propriétés prometteuses du
concept et les questions encore
ouvertes sont discutées.

Adresse des Autors
Dr. Richard Bührer, Institut für Elektronik,
ETH-Zentrum, 8092 Zürich.

Obwohl das Prinzip der Datenflussrechner

noch keine kommerzielle Reife

erreicht hat und teilweise noch
umstritten ist [1], zeichnet sich anhand
verschiedener Forschungsarbeiten wie
[2; 3] usw. immer deutlicher ab, dass
diese Computerarchitektur gegenüber
zahlreichen anderen Parallelrechnervarianten

grosse Vorteile aufweist [4].
Ein erstes wichtiges Argument ist die
Tatsache, dass die funktionale
Programmiertechnik. welche den
Applikationsprogrammierer weitgehend
davon entlastet, sich mit der expliziten
Parallelisierung seiner Programme zu
beschäftigen, für die Programmierung
eines Datenflussrechners eingesetzt
werden kann. Dieser Aspekt ist
deshalb von grosser Bedeutung, weil nicht
nur in vielen technisch-wissenschaftlichen,

sondern auch in industriellen
Anwendungen mittel- und langfristige
Problemstellungen anstehen werden,
welche nur noch durch hochparallele
Rechnersysteme bearbeitet werden
können. Dabei ist zu beachten, dass
bei allgemeinen Anwendungen - im
Gegensatz zu eher spezifischen
Anwendungen (Aerodynamik, Bildverarbeitung

usw.), bei denen grosse, regulär

strukturierte Datenmengen verarbeitet

werden - der Applikationsprogrammierer

kaum mehr in der Lage ist,
die im Applikationsprogramm
vorhandene Parallelität zu überblicken
und bei der Programmierung entsprechend

umzusetzen. Diese Aufgabe
muss von einem leistungsfähigen
Compiler übernommen und zur
Programmausführungszeit durch ein
entsprechendes Laufzeitsystem unterstützt

werden.
Eine weitere wichtige Eigenschaft

der Datenflussrechner besteht darin,
dass sie verhältnismässig einfach
erweitert werden können, indem - der
geforderten zusätzlichen Leistung
entsprechend - weitere Prozessoren in ein
System eingebaut werden können,
ohne dass am Applikationsprogramm

etwas geändert werden muss. Dies ist
eine wichtige Grundvoraussetzung zur
Realisierung von Rechnersystemen
mit hoher und höchster Leistung.

Das Datenflussprinzip
Das grundlegende Prinzip aller

Datenflussrechner beruht auf der
Vorschrift, der sogenannten Feuerungsregel

(Firing Rule), dass eine
Rechnerinstruktion dann und nur dann zur
Ausführung kommt, wenn alle
zugehörigen Datenwerte (die Argumente
der Instruktion) vorhanden, d.h.
unmittelbar verfügbar, sind. Die Ausführung

eines Programms wird somit
nicht wie bei einem konventionellen
Rechner durch einen Programmzähler
gesteuert, vielmehr sind es
Datenverfügbarkeiten, die die Prozessoraktivitäten

beeinflussen bzw. vorschreiben
(Data Driven Program Execution).

Das Datenflussprinzip an sich ist
nicht neu. Optimierende Compiler
verwenden diese Technik seit langer
Zeit zur Zuteilung von Speicherzellen
und Akkumulatoren mit dem Ziel, die
vorhandenen Rechnerressourcen
möglichst optimal und somit auch lei-
stungssteigernd auszunützen. Hard-
waremässige Verwendung findet dieses

Prinzip z. B. schon in den Rechneranlagen

IBM 360/91 und CDC 6600
[5] zur Optimierung des Einsatzes von
arithmetischen Einheiten. Eine ganze
Rechnerarchitektur auf dieses Konzept

abzustützen ist hingegen neu.
Eine kurze Übersicht über einige
Begriffe, welche zum Verständnis wichtig
sind, wird in Tabelle I gegeben.

Synchrone und
asynchrone Systeme
Die verschiedenen Varianten der

Datenflussarchitekturen, welche in
jüngster Zeit mit Erfolg untersucht
und implementiert worden sind, können

in synchrone und asynchrone Sy-

344 Bulletin ASE/UCS 79(1988)7,9 avril

Da ten flussrechner

Begriffe
Datenflussprogramme werden in Form von Datenflussgraphen (Dataflow Graphs)

dargestellt (Fig. 1). Sie bestehen aus Knoten (Nodes), welche eine Operationseinheit,
d.h. eine Rechneroperation darstellen, und verbindenden Kanten (Ares), welche die
zugehörige Datenabhängigkeit (Data Dependency) bzw. den Informationsfluss
darstellen. Daten werden paketartig in Form sogenannter (Data) Tokens entlang dieser
Kanten verschoben. Datenpakete, welche einzelnen Knoten zugeführt werden, werden

als Input Token jene, die von einzelnen Knoten wegführen (die Resultate der
Instruktion also), als Output Tokens bezeichnet. Die Bedingung zur Abarbeitung einer
Instruktion, die Feuerungsregel, wird im Datenflussgraphen explizit dargestellt.

Als Iteration wird ein Durchgang (Instanz) einer Schleife (Loop) bezeichnet. Wird
eine Programmsequenz mehrfach von verschiedenen Programmstellen aus aufgerufen
(z.B. Funktionen oder Prozeduren), so werden verschiedene Kontexte (Contexts) des

gleichen Unterprogrammes geschaffen.
Monadische Rechnerinstruktionen verarbeiten einen einzigen Operanden, dyadische
Instruktionen zwei Operanden.
Als Tag wird jene Zusatzinformation eines Datentokens bezeichnet, welche darüber
Auskunft gibt, wo die zugehörige Instruktion zu finden ist und in welchem
Zusammenhang (z. B. Kontekt) diese Instruktion ausgeführt wird.

Tabelle I

steme aufgeteilt werden. Das Konzept
der synchronen Datenflusssysteme
geht von der Überlegung aus, für jeden
Knoten des Datenflussgraphen eine
der entsprechenden Operation
entsprechende Rechnerkomponente
bereitzustellen. Diese je nach
Applikationsprogramm zum Teil vielfach
replizierten, einfachen Rechenelemente
sind in der Lage, eine bestimmte (Ma-
schinen-jlnstruktion auszuführen. Die
Instruktion wird, gemäss der
Feuerungsregel, beim Eintreffen des
entsprechenden Tokens ausgelöst. Die
einzelnen Rechenelemente werden
durch ein statisches oder dynamisch
konfigurierbares Netzwerk verbunden.

Der aus Knoten (Rechenelementen)
und Kanten (Verbindungen)

bestehende Datenflussgraph wird also
hardwaremässig implementiert. Die
einzelnen, das Netzwerk
durchwandernden Tokens bestehen dabei
aus den effektiv zu bearbeitenden
Datenwerten.

Eine Untervariante dieses Konzepts
besteht darin, dass der Instruktionstyp
der Rechenelemente vor der
Betriebsaufnahme, d.h. vor der Abarbeitung
des Applikationsprogramms,
programmiert werden kann. Dadurch
wird es möglich, eine gewisse Flexibilität

bezüglich implementierbarer
Programme (d.h. Algorithmen) zu erzielen.

Synchrone Datenflussrechner
eignen sich insbesondere für jene
Anwendungen, welche eine sich vielfach
wiederholende Bearbeitung
unterschiedlicher Daten umfassen (vgl.
z.B. [6]).

Bei den asynchronen oder frei
programmierbaren Datenfluss-Multipro-
zessoren verfügt jeder einzelne Prozessor

über ein einzelnes Rechenelement,
welches jedoch (wie bei konventionellen

Von-Neumann-Rechnern [7]) über
einen mehr oder weniger umfassenden
Instruktionssatz verfügt. Der
Datenflussgraph wird hier in tabellarischer
Form in einem Programmspeicher
abgelegt. Die Tokens müssen zusätzlich
zu den Datenwerten eine entsprechende

Tabellenadresse enthalten, aus der
die zugehörige Instruktion ausgelesen,
im Rechenelement dekodiert und
anschliessend ausgeführt werden kann.
Da die in die erwähnte Tabellenform
umgewandelten Applikationsprogramme

auf klassische Art in die
Programmspeicher eingelesen werden
können, stellen asynchrone
Datenflussrechner bezüglich Programmierung

ein flexibles Rechnerkonzept dar.
Im weiteren wird ausschliesslich auf

die asynchronen Datenflusskonzepte
eingegangen, welche ihrerseits nochmals

in die statischen und dynamischen

Konzepte unterteilt werden. Als
Einführung in die beiden Varianten wird
die Abarbeitung der Gleichung

S A • B + C/D (1)

als einfaches Beispiel verwendet. Der
zugehörige Datenflussgraph ist in
Figur 2 dargestellt.

A B C D

Figur 2 Beispiel eines Datenflussgraphen
Funktion: S A • B + C/D

Statisches
Datenflusskonzept
Das statische Datenflusskonzept

beruht darauf, dass die Daten-Tokens
vor der Verarbeitung auf vorgegebenen

Plätzen im Instruktionsspeicher
zwischengespeichert werden (Fig. 3).
Sobald in einer monadischen Instruktion

ein Token verfügbar ist, kann sie
nach der Feuerungsregel abgearbeitet,
d.h. gefeuert, werden. Bei dyadischen
Instruktionen ist der entsprechende
Vermerk «#: Anzahl benötigter
Tokens» in der codierten Instruktion
(Fig. 3) auf zwei gesetzt. Die
Instruktion kommt somit erst nach
Abspeicherung beider Argumente
(Tokens) zur Ausführung. Die Abspeicherung

des Datenflussgraphen erfolgt,
wie erwähnt, in Form einer Tabelle.
Das entsprechende Beispiel geht aus
Figur 3 hervor. Der Aufbau eines
Tokens wird in Figur 4 dargestellt.

Die Abspeicherung der Token-Werte
in die vorgegebenen Plätze im

Instruktionsspeicher führt nun aber in
jenen Fällen zu Problemen, in denen

Figur 1 Datenflussgraph
Bezeichnungen

Bulletin SEV/VSE 79(1988)7,9. April 345

Einführung

Opr
Code Argument 1 Argument 2 # Zieladresse 1 Zieladresse 2

• a b 2 3.1 -

/ c d 2 3.r -

+ a • b c / d 2

Programmsequenzen iterativ oder
rekursiv abgearbeitet werden.

Beispiel: (2)

FORi := 0 TO n DO

s[i] := a [i] • b [i] + c[i]/d [i]
END;

Da die Ankunft der Token a[i]...
d[i] zeitlich nicht bestimmbar ist, können

- ohne entsprechende Vorkehrun-

Zieladresse l/r Datenwert

Figur 4 Aufbau eines Tokens beim
statischen Datenflusskonzept
l/r Index für linke bzw. rechte Kante des Daten-

flussgraphen

gen - die Argumentenplätze im
Instruktionsspeicher fälschlicherweise
überschrieben werden, da mehrere
Tokens der gleichen Instruktion zugeordnet

sind.

s [i-1] S [1-1]

s [i]

Figur 3
Tabellarischer
Datenflussgraph
beim statischen
Datenflusskonzept
Anzahl benötigter

Tokens

l, r Index für linke
bzw. rechte Kante
des Daten-
flussgraphen

Die praktische Lösung dieses
Problems besteht darin, dass durch die
Einführung sogenannter Kontroll-To-
kens dieser Stau verhindert wird. Wie
Figur 5 entnommen werden kann,
wird jede Instruktion dabei erst dann
feuerbar, wenn die datenempfangende
Instruktion signalisiert hat, dass die
vorherige Instanz abgearbeitet ist, die
entsprechenden Argumentenplätze
also frei geworden sind. Im
Instruktionsspeicher muss somit zusätzlich
Platz für die Kontroll-Tokens vorgesehen

werden. Die Feuerungsregel für
Instruktion 1 in Figur 5, beispielsweise,

lautet daher

Execute Instr. 1 if Tokens

a [i] & b [i] & s' [i-1]
are available,

(3)

wobei & die UND-Operation bezeichnet.

Die erste Iteration benötigt kein
Kontroll-Token.

Die Detektion feuerbarer Instruktionen

erfolgt anhand einer logischen
Vergleichsoperation (2) beim Abspeichern

der Daten-Tokens auf die
entsprechenden Plätze des Programmspeichers.

Ein vollständiger statischer

Datenflussrechner nach [18] setzt sich
gemäss Figur 6 aus fünf Blöcken
zusammen:

1. aus der Speichereinheit (Memory
Section), welche aus einzelnen
Instruktionszellen aufgebaut ist, in
denen gemäss Figur 3 sowohl die
Operationscodes wie auch die Argumente
und Zieladressen abgespeichert sind;

2. aus der Ausführungseinheit
(Processing Section), welche mittels
spezieller Recheneinheiten (Processing
Elements) die eigentlichen Datenoperationen

durchführt;
3. aus einem Zuweisungsnetzwerk

(Arbitration Network), welches
sogenannte Instruktionspakete von der
Speichereinheit zur Ausführungseinheit

übermittelt, die (unter anderem)
aus Operationscode, Argumenten und
Zieladressen bestehen;

4. aus einem Kontrollnetzwerk
(Control Network) zur Übermittlung
der obenerwähnten Kontrollinformation

zwischen Ausführungseinheit und
Speichereinheit und

5. aus einem Verteilnetzwerk (Distribution

Network) zur Übertragung von
Datenpaketen von der Ausführungseinheit

zur Speichereinheit. Eine
einzelne Instruktion gelangt dann zur
Ausführung, wenn in der Instruktionszelle

die nötigen Argumente abgelegt
sind und die zugehörige
Kontrollinformation eintrifft. Ausführliche
Beschreibungen solcher Konzepte findet
man z.B. in [8].

Dynamisches
Datenflusskonzept
Wie im vergangenen Kapitel erläutert,

werden in der statischen Daten-
flussvariante die Argumente direkt in

Figur 5 Einführung von Kontrolltokens
beim statischen Datenflusskonzept

Figur 6 Beispiel
eines statischen
Datenflussrechners

346 Bulletin ASE/UCS 79(1988)7,9 avril

Da ten flussrechner

Data Memory Data Memory I Data Memory

Processing
Element

Processing
Element

Processing
Element

Packet-Switched Network

Op-Code Destination Address 1 l/r Destination Address 2 l/r

den Instruktionsspeichern zwischengelagert,

bevor eine entsprechende
Verarbeitung stattfindet. Der grosse
Nachteil dieses Prinzips liegt somit
darin, dass eine bestimmte Programmsequenz

jeweils nur in einem Kontext
oder nur für eine einzige Iteration
benützt werden kann. Ein parallelisier-
barer Loop beispielsweise kann also

nur mittels Expansion (für jede Iteration

wird eine Kopie des entsprechenden

Loop-Körpers im Programmspeicher

abgelegt) effektiv parallel abgearbeitet

werden. Zudem muss in jeder
Instruktion Platz für die Daten-To-
kens reserviert werden. Dies führt im
allgemeinen Fall zu erheblich grösseren

Programmspeicherbelegungen als
bei konventionellen Rechnern.

Das dynamische Datenflussprinzip
will nun (unter anderem) diesen Nachteil

eliminieren, indem die Daten-To-
kens nicht mehr im Programmspeicher
abgelegt, sondern in einem eigenständigen

Token-Speicher ausgelagert
werden. Dieser Speicher ist derart
ausgelegt, das er einerseits eine selbständige

Belegungsverwaltung besitzt und
zudem in der Lage ist, anhand der To-
ken-Art festzustellen (Token Matching),

ob eine Instruktion gefeuert werden

kann oder nicht. Die Daten-To-
kens müssen dazu mit Zusatzinforma-
tionen versehen werden, welche
darüber Auskunft geben, ob nur ein
Token für eine Instruktion benötigt oder
ob ein Tokenpaar verarbeitet wird. Im
zweiten Fall wird eine Tag-Information

interpretiert, welche einen eindeutigen

Vergleich zur Bestimmung von
Token-Paaren erlaubt.

Das Konzept wird im folgenden
anhand des Tagged-Token-Datenfluss-
rechners von Arvind[3] erläutert.

Wie aus Figur 7 ersichtlich ist,
besteht ein derartiger Parallelrechner aus
einer Vielzahl von Rechenelementen
(Processing Elements) und
Datenspeicherblöcken (Data Memories),
welche durch ein leistungsfähiges
(Packet-Switched) Netzwerk verbunden

sind. Die eigentlichen Programmspeicher

sind gemäss Figur 10 in den
jeweiligen Rechenelementen
implementiert.

Figur 8 und 9 beschreiben das
Instruktionsformat bzw. den Token-Auf-
bau der Tagged-Token-Maschine. Der
Instruktionsaufbau ist gegenüber der
Variante von Figur 3 einfacher, da keine

Plätze für die Ablage der Datenwerte
nötig sind. Die Tokens (Fig. 9) sind

hingegen mit der obenerwähnten
Zusatzinformation (Tag Information)
versehen, welche darüber Auskunft

Figur 7

Datenfluss-
Multiprozessor
Processing-Element:
Rechenelement zur
Abarbeitung des

Datenflussgraphen

Data Memory:
Datenspeicherblock
zur Ablage von
Datenstrukturen

Packet-Switched
Network:
Verbindungsnetzwerk
zur Übertragung von
Datentoken

Figur 8
Instruktionsformat
des Tagged-Token-
Datenflussrechners
nach [3]

Figur 9 «-
Tokenformat
Anzahl benötigter
Argumente

gibt, in welchem Kontext oder in
welcher Iteration die mittels Instruktionsadresse

referenzierte Instruktion
verwendet wird.

Daten-Tokens, welche vom Netzwerk

oder über die interne Rückführung

zur Waiting-Matching Section
(W/M Section) gelangen (Fig. 10),
werden anhand der internen Information

«# : number of tokens to match»
(Fig. 9) kontrolliert, ob ein Partner-
Token zur Instruktionsabarbeitung
benötigt wird (dyadische Operationen:
2) oder ob eine monadische
Operation mit diesem Token vorgesehen
ist (# 1). Im ersten Fall wird in der
W/M Section mittels spezieller
Vergleichslogik kontrolliert, ob das Part-
ner-Token, welches eine identische
Tag-Information (Fig. 9) aufweist,
bereits vorliegt. Trifft dies zu, so werden
beide Tokens zur Instruction-Fetch
Unit weitergeleitet. Liegt das Partner-
Token noch nicht vor, wird das
angekommene Token in der W/M Section
abgelegt. Tokens von monadischen
Instruktionen werden in allen Fällen
sofort ohne Vergleichsoperation
weitergeleitet. Die Instruction-Fetch Unit
liest (d.h. kopiert) die vollständige
Information aus der zugehörigen
Instruktionsspeicherzelle und leitet die

Tag *

Teilinformation gemäss Figur 10 zu
den weiteren Funktionsblöcken der
Recheneinheit weiter. In der Output
Section werden vom berechneten
Resultat so viele Output Tokens gebildet,
wie Destinationsadressen in der
Instruktion vorgegeben sind. Die Tokens
werden anhand der vorgegebenen
Zieladresse und der entsprechenden
Belegungstabellen entweder zurück an
den Eingang des Rechenelementes
übermittelt oder, sofern die Adresse
der Zielinstruktion sich in einem anderen

Rechenelement befindet, in das
Netzwerk geleitet.

Was den physikalischen Aufbau
betrifft, liegt der wesentliche Unterschied
gegenüber der statischen Datenfluss-
variante somit darin, dass die
Instruktionsspeicher wesentlich kompakter
aufgebaut werden können, da die
W/M Section die Zwischenspeiche-
rung der Tokens übernimmt. Im weiteren

wird der interne Datenverkehr in
der Recheneinheit signifikant verringert,

da die Übermittlung von Kon-
troll-Tokens vollständig entfällt. Ein
gewisser Mehraufwand entsteht beim
dynamischen Rechner hingegen bei
der Übermittlung der Daten-Tokens,
da diese infolge der zusätzlichen Tag-
Informationen etwas grösser ausfal-

Instruction Address Context Iteration Count # Data

Bulletin SEV/VSE 79(1988)7, 9. April 347

Einführung

len. Der zentrale Vorteil liegt hingegen
darin, dass, wie oben erwähnt, mehrfach

benützbare (reentrant) Programme
einfach realisiert werden können.

Datenstrukturen
Auf die spezielle Handhabung von

(verteilten) Datenstrukturen in Daten-
flussrechnern wird in diesem Rahmen
nur kurz anhand der von Arvind
vorgeschlagenen I-Struktur (I-Structure)
eingegangen. Die begrenzte Grösse der
W/M Section sowie die zwischen den
Funktionsblöcken implementierten
Zwischenbuffer lassen nicht zu, dass
sämtliche Daten ausschliesslich als
Tokens realisiert werden. Es muss daher
ein spezifischer Datenspeicher zur
Ablage von Arrays, Matrizen usw. vorgesehen

werden. Die von Arvind
vorgeschlagene Lösung basiert auf einem
gemäss Figur 7 verteilten Speicher, auf
dessen einzelnen Blöcken die
Datenstrukturen nach entsprechenden
Zuweisungsalgorithmen verteilt werden.
Die Semantik dieser I-Struktur beruht
darauf, dass ein einzelnes Datenwort
nur einmal geschrieben, hingegen
beliebig oft gelesen werden darf. Das
Abspeichern von Daten erfolgt mittels
spezieller I-Struktur- Write Tokens,
welche statt einer Instruktionsadresse
(Fig. 9) eine I-Struktur-Adresse
beinhalten. Nach jedem Einschreiben des
individuellen Datenwertes wird die
entsprechende Speicherzelle mit einem
Valid-Bit gekennzeichnet. Wird nun in
einer Programmsequenz ein I-Struk-
tur-Datum referenziert, wird ein
entsprechendes I-Structure-Read Token

generiert und zum entsprechenden
I-Struktur-Block übertragen. Bei
verfügbarem Datum wird eine Kopie des

fraglichen Datenwertes an jene
Instruktion zurückgeschickt, welche im
I-Structure-Read Token spezifiziert
worden ist. Ist hingegen das Valid-Bit
nicht gesetzt, wird der Request so lange

sistiert, bis das entsprechende
Datum mittels I-Structure-Write Tokens
in der I-Struktur abgelegt worden ist.

Auf diesem Datenkonzept lassen sich
höhere Datenstrukturen aller Art
aufbauen.

Vorteile des

Datenflussprinzips
1. Ausnützung der Parallelität
von Anwenderprogrammen
Die meisten der heute kommerziell

verfügbaren Hochleistungsrechner
erreichen üblicherweise dann ihre maxi¬

male Leistung, wenn die entsprechenden

Programme ein hohes Mass an
Vektorisierbarkeit aufweisen. Es gilt
daher, mittels optimierender (z.B.
Fortran-) Compiler die Anwendungen so
zu programmieren, dass diese
Anforderung möglichst gut erfüllt ist. Abgesehen

von speziellen Applikationen
(wie Aerodynamik, Seismik,
Luftraumüberwachung usw.), wo replizierte

Berechnungen vieler gleicher Objekte
(mit unterschiedlichen Daten bzw.

Randwerten) vorliegen können, weisen

jedoch viele allgemeine Programme
ein äusserst kleines Mass an

Vektorisierbarkeit auf, und die mittlere
Leistung der erwähnten Rechnersysteme
fällt drastisch zusammen. Die Daten-
flussrechner sind diesbezüglich nahezu
unempfindlich, da, dank der funktionalen

Programmierweise, jegliche Art
von Parallelität eines Programms
automatisch und umfassend durch den
Compiler aufgedeckt und durch die
Maschine ausgenützt werden kann.

2. Elimination des

Memory-Latency-Problems
Ein wichtiges Problem bei

konventionellen Multiprozessoren, sowohl
bei gemeinsamen wie auch bei verteilten

Speichern, wird als Memory Latency

(Speicher-Zugriffsverzögerung)
bezeichnet. Man versteht darunter die
Tatsache, dass, wann immer bei der
(von-Neumann-artigen) Ausführung
einer Instruktion eine Referenz auf
einen Datenwert ausgeführt wird (Da-
ten-Fetch), mit Wartezeiten gerechnet
werden muss. Im Fall des gemeinsamen

Speichers ist dies auf
Speicherzugriffskollisionen zurückzuführen, da
mehrere Rechner zur gleichen Zeit auf
die gleiche Speicherbank zugreifen
oder aber der Zugriff über einen
gemeinsamen Bus erfolgt. Bei verteilten
Speichern wird die Wartezeit in vielen
Fällen noch länger, da ein Zugriffspfad

vom Prozessor zur entsprechenden
nichtlokalen Speicherzelle

etabliert werden muss. In beiden Fällen
wird der entsprechende Prozessor in
einen mehr oder weniger langen
Wartezustand versetzt.

In Datenflussrechnern mit verteilten
Speichern ist dieses Problem entscheidend

entschärft, da die Beschaffung
der Daten von der zugehörigen
Verarbeitung entkoppelt ist und die entsprechende

Latenzzeit durch die Abarbeitung

anderer ausführbarer Instruktionen

überbrückt werden kann. Dies
ermöglicht eine wesentlich bessere Pro-
zessorausnützung und somit eine hö¬

here spezifische Rechenleistung (Anzahl

Instruktionen pro Zeiteinheit und
Prozessor).

3. Synchronisationsaspekte
Die durch die Datenverfügbarkeit

gesteuerte Programmabarbeitung des

Datenflussrechners eliminiert das in
vielen Parallelrechnerkonzepten nur
schwerfällig lösbare Problem der
Datensynchronisation zwischen
kommunizierenden Unterprogrammen.
Komplizierte und verhältnismässig
rechenintensive Synchronisationsmechanismen

wie Semaphoren, Rendez-vous,
Fork-and-Joins usw. entfallen, da die
zur Synchronisation nötigen Operationen

(z.B. die W/M Section in Figur 10)

hardwaremässig implementiert werden

können. Die bekannten Lese-War-
te-Sequenzen (ein konsumierender
Prozessor will ein Datum lesen, bevor
es vom entsprechenden produzierenden

Prozessor generiert wurde) entfallen

vollständig. Bei verteilten
Datenspeichern ermöglicht die Einführung
expliziter Data-Fetch- bzw. Data-
Store-Operationen (im Kapitel
«Datenstrukturen»), Prozessoren auch im
Fall von Referenzen auf nichtlokale
Daten für andere Operationen
freizubehalten. Kontextumschaltungen sind
vollständig zeitverzugslos, weil
konzeptionell jede individuelle Instruktion

ihren eigenen Kontext aufweist.

4. Erweiterbarkeit
Wie im folgenden Kapitel gezeigt

wird, sollte sich der Programmierer
von Parallelrechnersystemen für
allgemeine Anwendungen nicht um den
Grad der durch die Maschine
verarbeitbaren Parallelität kümmern müssen.

Diese Aufgaben sollen durch
einen entsprechenden Compiler
übernommen werden, der den vollständigen

parallelisierten Programmgraphen
entwickelt. Die zur Laufzeit anfallenden

Programm- bzw. Lastzuweisungen
werden durch entsprechende Komponenten

eines (ebenfalls als Datenfluss-
programm implementierten)
Betriebssystemkerns übernommen. Erweiterungen

des Rechnersystems durch
Implementation zusätzlicher Prozessoren
bedingen daher keine Änderungen des

Anwenderprogramms. Das Laufzeitsystem

kann, mit Ausnahme spezieller
Systemkonfigurationstabellen,
unverändert übernommen werden.

5. Realisierbarkeit
Ein wichtiger Punkt bei der

Abschätzung der Qualität eines Rechner-

348 Bulletin ASE/UCS 79(1988)7,9 avril

LU

0<
W
£
Ë
o

oo
LU

0)
0)
O
0)
{/)
<0

"5
0
£
O
"£
TO

Ö
O
(0
(/)
<

c
o

o
cn

c

CO

o0
u 3° M0 INJ

co ^< 00
— o
-03 CO

CO
CO
O)

_o
.2
00
o
Q.
CD
CO

03
O

CD

E

CD
— CO

c
CD 0
>
CD CO

c 'c

9--D'i- 03

m w

£ 8
"O '>
S= O

CO

0 O
C _0
3 LU

S co
0 0*- ~D
0

"O

0
•0

LU
(/)
<
<D

O
£
O

(Q

E

o
£

O
'CD

£
v_
3
O

~3

0
Xm

~o
3

LU ©

2*
— 0
0 £
13 C

28
O C

4= o
"O o
C 0

H£ Œ

oo "Ö
s? </)

cw oo>.2

0iS

CD

E

"Ö
CD

« S
+- ro w

c c
% <Â

0 Q)

3
O
Q.

CM

O
O
O)
co
CO

X
3
CD
1».

c
o

^d-
CD

r-
coa>

"O
O
C
« nro O

<d Z
œ cco tr
en O

O
w
£

CD

C
E
o
g 2?

«I
-0 "E
u. Q.
2 £
*0 "
Q.-0
E w
o £
o -
N 0
Q) —

C
3 «
0 3> O

- oz Jd

VdWSV.I 8p 18

3SV.I 9P 9Jqiu8|AI

—"06 Jd

8jqiU8lil U0(\|

-OSt Jd

VdlAlSV.I 8p

19 3SV.I 9P 9Jqui8iAl

— 092 Jd

8jqUJ8W U0(\1

0000
"D
< _0

CL

03
O
>

03000
"O

0
O
C
0
0
35

0
"O

0
O
*0
E

X
3
0
"O

0
_0

C
0
E
00
0
>
0
"O

ö "2
.77 0
o
^ 0
C =3

0 Q_

00
0 CO

5 00^ O)
0 T—

"O

I E
Jh.
3 i-
-û ^Q)

3 —

C
C o
0 '-3
>, CL
O "3
F °c 0
3 C
0

| Q.

0 _0
0 ^<D

Û_ Q

0
O
C
0
"D
C
O
CL
00
O
Ü

O
3
O
3

D-
'~o
C

33

0

Cp
W

3<

O
2

Vor der Einzahlung abzutrennen / A détacher avant le versement / Da staccare prima del versamento TTT
episse/ Hlcevuta I <=)> Einzahlung Giro Versement Virement Versamento Girata

Einzahlung für/Versement pour/Versamento pei

Schweizerischer
Elektrotechnischer Verein SEV
8034 Zürich

Konto
Compte 80-6133-2
Conto

Fr. c.

Einbezahlt von/Versé par/Versato da

Einzahlung für/Versement pour/
Versamento per

Schweizerischer
Elektrotechnischer Verein SEV
8034 Zürich

' Konto
I Compte 80-6133-2

Mitteilungen / Communications / Comunicazioni

639002 No. 6764
Journée d'information de i'ASE 31.5.1988, Montreux

SR 3.£

Fr.r
Giro aus Konto
Virement du compte
Girata dal conto

Einbezahlt von/Versé par/Versato da

Die Annahmestelle
L'office de dépôt
L'ufficio d'accettazione 800061

800061

33 2>

33 2>

Da ten flussrechner

Figur 10

Rechenelement
(Processing Element)
des Tagged-
Token-Datenfluss-
rechners

nach [3]

konzepts betrifft die Realisierungsmöglichkeiten

einer entsprechenden
Rechnerhardware. Eine diesbezügliche

Beurteilung der verschiedenen
Komponenten eines dynamischen Da-
tenflussrechners zeigt, dass zu deren
Implementation weder exotische
Technologien noch unverhältnismässig

komplexe Bausteine nötig sind. Die
Verfügbarkeit von Halbleiter-Speicherelementen

grosser Kapazität sowie die
vielfältigen Möglichkeiten, leistungsfähige

Netzwerke für Paketvermittlung

zu realisieren [9], unterstreichen
das Potential dieser Rechnerarchitektur.

Programmierung von
Datenflussrechnern
Wie in allen parallelen Rechnersystemen

spielt die Frage der Programmierung

auch bei Datenflussrechnern
eine ausserordentlich wichtige Rolle.
Stichworte wie Mächtigkeit, Modulari-
tät, Benutzerakzeptanz usw. müssen
entsprechend berücksichtigt werden.
Ein grosses Gewicht muss auch den
marktstrategischen Aspekten
beigemessen werden, da viele Endbenützer
nur dann Rechnersysteme akzeptieren
werden, welche in einer neuen Sprache
zu programmieren sind, wenn eine
signifikante Erhöhung der
Computerrechenleistung garantiert wird oder be¬

deutende Vorteile bei der Erstellung
korrekter, den Spezifikationen
entsprechender Programme geboten werden.

Da eine umfassende Darstellung der
Eigenschaften von Programmiersprachen

für Datenflussrechner den
vorliegenden Rahmen sprengen würde, wird
im folgenden nur eine Auswahl der
wichtigsten Punkte gemäss [10] gegeben.

Zur Vertiefung sei auf [10] (Sprache

VAL), [11] (Sprache Id) oder [12]
(Sprache SISAL) verwiesen.

1. Freiheit von Seiteneffekten
Seiteneffekte treten z.B. dann auf,

wenn in einem konventionellen Multi-
prozessor eine gemeinsame Variable
von mehreren Prozessoren modifiziert
werden kann. Sofern nicht durch
strenge Zugriffsrechte eine verbindliche

Schreibe- und Lesedisziplin
erzwungen wird, können fehlerhafte
Resultate produziert werden. In
Datenflussrechnern existieren keine Variablen

im Sinne von Sprachen wie
Fortran, Pascal usw., da Zwischenwerte in
Form von Datenpaketen (Tokens)
übermittelt werden und keine effektiven

(Daten-) Speicherplätze belegen
(Call by-Value statt Call by-Refer-
ence). Dadurch können bei der
Verwendung von skalaren Argumenten
auch keine Seiteneffekte auftreten. Da

hingegen auch in Datenflussrechnern
für Datenstrukturen Speicherbereiche
vorgesehen sind, welche von mehreren
Prozessoren bearbeitet werden, muss
das Seiteneffektproblem trotzdem
gelöst werden. Die entsprechende Regel
besteht darin, dass Daten enthaltende
Speicherzellen nicht überschrieben
werden dürfen. Konsequenterweise
muss daher bei jeder beabsichtigten
Schreiboperation in einen bereits mit
gültigen Daten versehenen Array oder
Record usw. ein vollständig neuer
Datenbereich erstellt werden, in den der
neue Wert an der entsprechenden Stelle

eingeschrieben und alle unveränderten

Daten in die weiteren Plätze
kopiert werden. Diese enorm aufwendige
Arbeit kann durch die Einführung
hierarchischer Datenstrukturen
wesentlich verringert werden. Eine
vielversprechende, das Problem weiter
entschärfende Methode besteht in der
Verwendung von sogenannten
I-Strukturen (vgl. Kapitel
«Datenstrukturen» [3],

2. Lokalitätsprinzip (im Sinne der
Verwendung von Variablennamen)
Das Lokalitätsprinzip ist grundsätzlich

dann gewährleistet, wenn die
Instruktionen eines Programms keine
unnötigen, weitreichenden
Datenabhängigkeiten aufweisen. Es wird z.B.
dann verletzt, wenn in einem
Programm gleiche Variablennamen an
verschiedenen Stellen benützt werden,
obwohl zwischen ihnen kein
Zusammenhang existiert. Diese Methode
wird oft verwendet, um in einem
konventionellen Rechner Speicherplätze
zu sparen. Optimierende Compiler
sind heute zwar in der Lage, mit
entsprechendem Aufwand die meisten
derartigen Pseudoabhängigkeiten zu
entflechten, um dadurch eine parallele
Verarbeitung zu ermöglichen. Da, wie
erwähnt, in einem Datenflusskonzept
keine Speicherplätze belegenden
Variablen existieren, entfällt die Notwendigkeit

derartiger Speicheroptimierungen
und somit die Verwendung

gleicher Variablennamen. Compiler werden

dadurch wesentlich einfacher, und
Parallelverarbeitungen werden nicht
mehr unnötig eingeschränkt.

3. Einfachzuweisungen
(Single Assignment)
Datenflussprogramme müssen in

eindeutige, gerichtete Graphen
umgewandelt werden können. Konsequenterweise

dürfen Variablennamen auf
der linken Seite von Zuweisungen in¬

Bulletin SEV/VSE 79(1988)7, 9. April 349

Einführung Datenftussrechner

nerhalb eines zusammenhängenden
Programmbereichs nur einmal
vorkommen.

4. Spezielle Notationen zur
Programmierung von Iterationen
Damit in Iterationen Loop-Zähler

der Art i:=i +1 realisiert werden können,

wird eine spezielle Notation der
Art new i :=i +1 eingeführt (z.B. [11]).
Dies ermöglicht dem Compiler, eine
Entflechtung der einzelnen Loop-
Durchgänge vorzunehmen und zudem
Hilfsinstruktionen in den Programmgraphen

einzufügen, welche in den
Token Tags (Fig. 9) die entsprechenden
Iteration-Count-Felder inkrementie-
ren, damit eine parallele Abarbeitung
mehrerer Loop-Instanzen möglich
wird.

Ausblick, offene Fragen
Datenflussrechner sind nach wie vor

Gegenstand intensiver Forschungsarbeiten.

Trotz den zahlreichen positiven
Aspekten kann deren Erfolg noch
nicht endgültig abgeschätzt werden.
Die wichtigsten, zurzeit noch nicht
befriedigend gelösten Probleme betreffen

die Last- und Datenverteilungsstrategien

sowie die technologischen
Aspekte für eine kosteneffiziente
Implementation. Die Frage der Lastverteilung

ist nicht nur datenflussspezi-
fisch, sie muss in jedem
Parallelprozessorkonzept für technisch-wissenschaftliche

Anwendungen allgemeiner
Art (General Purpose) gelöst werden.
Obwohl beim Datenflusskonzept
durch die Generierung eines
Programmgraphen wichtige Informationen,

wie z.B. der Grad der Parallelität
im Applikationsprogramm usw., in
vielen Fällen explizit vorliegen und

durch den Compiler/Optimizer wichtige

Eingangswerte für eine
Lastverteilungsstrategie gewonnen werden können,

müssen trotzdem während der
Laufzeit Entscheide über die Zuweisung

von Programmteilen zu Prozessoren

vorgenommen werden. Kriterien
dazu sind etwa die momentane Last
einzelner Prozessoren oder die zusätzliche

Belastung durch den neuen Auftrag.

Hier treten aber nichttriviale
Probleme auf, da die Belastung eines
Prozessors kaum exakt, allenfalls sogar
nur grob angenähert werden kann.

Intensive Vertiefung erfordert auch
die Organisation und Zuweisung von
Datenstrukturen in den Speicherblökken

der verschiedenen Prozessoren.
Dazu gehören Strategien, welche mittels

Anlegens von mehreren Kopien
einzelner Datenstrukturen die
Effizienz eines Rechners erhöhen sollen,
sowie die Datenduplikationen, welche
durch den funktionalen Programmierstil

erzwungen werden.
Ebenfalls Gegenstand von Untersuchungen

ist die Frage, ob Datenfluss
mit sehr feiner Granularität (Fine-
Grain Parallelism) tatsächlich effizient
ist oder ob ein grobkörniges Konzept
(Coarse-Grain Parallelism) [13]
verfolgt werden soll, bei dem im Daten-
flussgraphen gemäss Figur 1 anstelle
von einzelnen einfachen Instruktionen
in den Knoten Blöcke von Instruktionen

(Codeblocks) vorgesehen werden
sollen, welche in den einzelnen Prozessoren

von-Neumann-artig abgearbeitet
werden sollen.
Eine Übersicht über laufende

Forschungsprojekte auf dem Gebiet
Datenflussrechner, vertiefende Diskussionen

über die verschiedenen Aspekte
dieser neuen Rechnergeneration sowie
umfassende Literaturreferenzen können

z.B. in [4; 8; 14;...; 17] gefunden
werden.

Literaturverzeichnis

[1] D.D. Gajski a.o.: A second opinion on data
flow machines and languages. IEEE Computer

15(1982)2, p. 58—69.

[2] J.R. Gurd. C.C. Kirkham and I. Watson The
Manchester prototype dataflow computer.
Communications of the ACM 28(1985)1, p.
34...52.

[3] Arvind a.o.: The tagged token dataflow archi¬
tecture. Memo of the Computation Structures

Group/Laboratory for Computer
Science. Cambridge/Mass., Massachusetts
Institute of Technology (MIT), 1983.

[4] P.C. Treleaven and I.G. Lima: Future com¬
puters: Logic, data flow, control flow?
IEEE Computer 17(1984)3, p. 47...58.

[5] T. Agerwala and Arvind: Data flow systems.
IEEE Computer 15(1982)2, p. 10...13.

[6] T. Gunzinger: Synchroner Datenflussrechner
zur Echtzeitbildverarbeitung. Mustererkennung

1986. 8. DAGM-Symposium (Deutsche
Arbeitsgemeinschaft für Mustererkennung).
Informatik-Fachberichte 125. Berlin u.a.,
Springer-Verlag, 1986; S. 123...128.

[7] A. Kündig: Parallelverarbeitung in elektroni¬
schen Systemen - eine Übersicht. Bull.
SEV/VSE 78(1988)7, S. 338...343.

[8] P.C. Treleaven. D.R. Brownbridge and R.P.
Hopkins: Data-driven and demand-driven
Computer architectures. ACM Computing
Surveys 14(1982) 1, p. 93... 143.

[9] H J. Siegel: Interconnection networks for
large-scale parallel processing. Theory and
case studies. Lexington/Mass./Toronto,
Lexington Books, 1985.

[10] W.B. Ackermann: Data flow languages.
IEEE Computer 15(1982)2, 15...25.

[11] R.S. Nikhil, K. Pingali and Arvind: Id nou¬
veau. Memo 265 of the Computation Structures

Group/Laboratory for Computer
Science. Cambridge/Mass., Massachusetts
Institute of Technology (MIT), 1986.

[12] J. McGraw: SISAL - Streams and iteration
in a single assignment language. Language
reference manual. Livermore/California,
Livermore National Laboratory, 1983.

[13] R. Buehrer and K. Ekanadham: Incorpora¬
ting data flow ideas into Von Neumann
processors for parallel execution. IEEE Trans,
on Computers 36(1987)12, p. 1515... 1522.

[14] Data flow systems. Special issue. IEEE Com¬
puter 15(1982)2.

[15] J.-L. Gaudiot: Structure handling in data¬
flow systems. IEEE Trans, on Computers
35(1986)6, p. 489...502.

[16] V.P. Srini: An architectural comparison of
dataflow systems. IEEE Computer
19(1986)3, p. 68...88.

[17] A.H. Veen: Dataflow machine architecture.
ACM Computing Surveys 18(1986)4, p.
365...396.

[18] J.B. Dennis: Data flow supercomputers.
IEEE Computer 13(1980)4, p. 48...56.

350 Bulletin ASE/UCS 79(1988)7, 9 avril

	Datenflussrechner : Konzepte und Anwendungen

