Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 79 (1988)

Heft: 7

Artikel: Datenflussrechner : Konzepte und Anwendungen

Autor: Bahrer, R.

DOl: https://doi.org/10.5169/seals-904014

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904014
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Einfuhrung

Datenflussrechner -
Konzepte und Anwendungen

R. Biihrer

Zahlreiche Forschungsprojekte
befassen sich zurzeit mit der
Frage, wieweit sich Datenfluss-
rechnerkonzepte fiir polyvalente
Hochleistungsrechner eignen.
Anhand einer Einfiihrung in die
grundlegenden Funktionsprinzi-
pien, in die moglichen
Architekturvarianten und Imple-
mentationen sowie in die Eigen-
schaften zugehoriger Program-
miersprachen werden die viel-
versprechenden Eigenschaften
und die noch offenen Fragen des
Konzepts erklart.

De nombreux projets de recher-
che essaient actuellement de
montrer dans quelle mesure les
concepts d’ordinateurs a circu-
lation de données (dataflow)
peuvent étre appliqués dans la
réalisation d’ordinateurs polyva-
lents et de haute performance.
Au moyen d’une introduction
aux principes fondamentaux de
fonctionnement, aux différentes
variantes d’architecture et aux
implémentations possibles, ainsi
qu’aux propriétés des langages
de programmation utilisés, les
propriétés prometteuses du
concept et les questions encore
ouvertes sont discutées.

Adresse des Autors

Dr. Richard Biihrer, Institut fir Elektronik,
ETH-Zentrum, 8092 Ziirich.

Obwohl das Prinzip der Datenfluss-
rechner noch keine kommerzielle Rei-
fe erreicht hat und teilweise noch um-
stritten ist [1], zeichnet sich anhand
verschiedener Forschungsarbeiten wie
[2; 3] usw. immer deutlicher ab, dass
diese Computerarchitektur gegeniiber
zahlreichen anderen Parallelrechner-
varianten grosse Vorteile aufweist [4].
Ein erstes wichtiges Argument ist die
Tatsache, dass die funktionale Pro-
grammiertechnik, welche den Applika-
tionsprogrammierer weitgehend da-
von entlastet, sich mit der expliziten
Parallelisierung seiner Programme zu
beschaftigen, fir die Programmierung
eines Datenflussrechners eingesetzt
werden kann. Dieser Aspekt ist des-
halb von grosser Bedeutung, weil nicht
nur in vielen technisch-wissenschaftli-
chen, sondern auch in industriellen
Anwendungen mittel- und langfristige
Problemstellungen anstehen werden,
welche nur noch durch hochparallele
Rechnersysteme bearbeitet werden
konnen. Dabei ist zu beachten, dass
bei allgemeinen Anwendungen - im
Gegensatz zu eher spezifischen An-
wendungen (Aerodynamik, Bildverar-
beitung usw.), bei denen grosse, regu-
lar strukturierte Datenmengen verar-
beitet werden - der Applikationspro-
grammierer kaum mehr in der Lage ist,
die im Applikationsprogramm vor-
handene Parallelitdt zu uberblicken
und bei der Programmierung entspre-
chend umzusetzen. Diese Aufgabe
muss von einem leistungsfahigen
Compiler ibernommen und zur Pro-
grammausfithrungszeit durch ein ent-
sprechendes Laufzeitsystem unter-
stiitzt werden.

Eine weitere wichtige Eigenschaft
der Datenflussrechner besteht darin,
dass sie verhdltnisméssig einfach er-
weitert werden koénnen, indem - der
geforderten zusitzlichen Leistung ent-
sprechend - weitere Prozessoren in ein
System eingebaut werden konnen,
ohne dass am Applikationsprogramm

etwas geandert werden muss. Dies ist
eine wichtige Grundvoraussetzung zur
Realisierung von Rechnersystemen
mit hoher und hochster Leistung.

Das Datenflussprinzip

Das grundlegende Prinzip aller Da-
tenflussrechner beruht auf der Vor-
schrift, der sogenannten Feuerungsre-
gel (Firing Rule), dass eine Rechner-
instruktion dann und nur dann zur
Ausfithrung kommt, wenn alle zuge-
horigen Datenwerte (die Argumente
der Instruktion) vorhanden, d.h. un-
mittelbar verfiigbar, sind. Die Ausfiih-
rung eines Programms wird somit
nicht wie bei einem konventionellen
Rechner durch einen Programmzahler
gesteuert, vielmehr sind es Datenver-
figbarkeiten, die die Prozessoraktivi-
titen beeinflussen bzw. vorschreiben
(Data Driven Program Execution).

Das Datenflussprinzip an sich ist
nicht neu. Optimierende Compiler
verwenden diese Technik seit langer
Zeit zur Zuteilung von Speicherzellen
und Akkumulatoren mit dem Ziel, die
vorhandenen Rechnerressourcen mog-
lichst optimal und somit auch lei-
stungssteigernd auszuniitzen. Hard-
wareméssige Verwendung findet die-
ses Prinzip z. B. schon in den Rechner-
anlagen IBM 360/91 und CDC 6600
[5] zur Optimierung des Einsatzes von
arithmetischen Einheiten. Eine ganze
Rechnerarchitektur auf dieses Kon-
zept abzustiitzen ist hingegen neu.
Eine kurze Ubersicht iiber einige Be-
griffe, welche zum Verstdndnis wichtig
sind, wird in Tabelle I gegeben.

Synchrone und
asynchrone Systeme

Die verschiedenen Varianten der
Datenflussarchitekturen, welche in
jiungster Zeit mit Erfolg untersucht
und implementiert worden sind, kén-
nen in synchrone und asynchrone Sy-

344

Bulletin ASE/UCS 79(1988)7, 9 avril

Datenflussrechner

Begriffe

Datenflussprogramme werden in Form von Datenflussgraphen (Dataflow Graphs)
dargestellt (Fig. 1). Sie bestehen aus Knoten (Nodes), welche eine Operationseinheit,
d.h. eine Rechneroperation darstellen, und verbindenden Kanten (Arcs), welche die
zugehorige Datenabhdngigkeit (Data Dependency) bzw. den Informationsfluss dar-
stellen. Daten werden paketartig in Form sogenannter (Data) Tokens entlang dieser
Kanten verschoben. Datenpakete, welche einzelnen Knoten zugefiihrt werden, wer-
den als Input Token jene, die von einzelnen Knoten wegfithren (die Resultate der In-
struktion also), als Output Tokens bezeichnet. Die Bedingung zur Abarbeitung einer
Instruktion, die Feuerungsregel, wird im Datenflussgraphen explizit dargestellt.

Als Iteration wird ein Durchgang (Instanz) einer Schleife (Loop) bezeichnet. Wird
eine Programmsequenz mehrfach von verschiedenen Programmstellen aus aufgerufen
(z.B. Funktionen oder Prozeduren), so werden verschiedene Kontexte (Contexts) des
gleichen Unterprogrammes geschaffen.

Monadische Rechnerinstruktionen verarbeiten einen einzigen Operanden, dyadische
Instruktionen zwei Operanden.

Als Tag wird jene Zusatzinformation eines Datentokens bezeichnet, welche dariiber
Auskunft gibt, wo die zugehorige Instruktion zu finden ist und in welchem Zusam-

menhang (z. B. Kontekt) diese Instruktion ausgefithrt wird.

Tabelle I

steme aufgeteilt werden. Das Konzept
der synchronen Datenflusssysteme
geht von der Uberlegung aus, fiir jeden
Knoten des Datenflussgraphen eine
der entsprechenden Operation ent-
sprechende Rechnerkomponente be-
reitzustellen. Diese je nach Applika-
tionsprogramm zum Teil vielfach re-
plizierten, einfachen Rechenelemente
sind in der Lage, eine bestimmte (Ma-
schinen-)Instruktion auszufithren. Die
Instruktion wird, geméss der Feue-
rungsregel, beim Eintreffen des ent-
sprechenden Tokens ausgelost. Die
einzelnen Rechenelemente werden
durch ein statisches oder dynamisch
konfigurierbares Netzwerk verbun-
den. Der aus Knoten (Rechenelemen-
ten) und Kanten (Verbindungen) be-
stehende Datenflussgraph wird also
hardwareméssig implementiert. Die
einzelnen, das Netzwerk durch-
wandernden Tokens bestehen dabei
aus den effektiv zu bearbeitenden Da-
tenwerten.

Input
YToken \/&
Kanten

Knoten
Qutput
Token
Figur 1 Datenflussgraph

Bezeichnungen

Eine Untervariante dieses Konzepts
besteht darin, dass der Instruktionstyp
der Rechenelemente vor der Betriebs-
aufnahme, d.h. vor der Abarbeitung
des Applikationsprogramms, pro-
grammiert werden kann. Dadurch
wird es moglich, eine gewisse Flexibili-
tdt beziiglich implementierbarer Pro-
gramme (d.h. Algorithmen) zu erzie-
len. Synchrone Datenflussrechner eig-
nen sich insbesondere fiir jene Anwen-
dungen, welche eine sich vielfach
wiederholende Bearbeitung unter-
schiedlicher Daten umfassen (vgl.
z.B. [6)).

Bei den asynchronen oder frei pro-
grammierbaren Datenfluss-Multipro-
zessoren verfligt jeder einzelne Prozes-
sor liber ein einzelnes Rechenelement,
welches jedoch (wie bei konventionel-
len Von-Neumann-Rechnern [7]) liber
einen mehr oder weniger umfassenden
Instruktionssatz verfiigt. Der Daten-
flussgraph wird hier in tabellarischer
Form in einem Programmspeicher ab-
gelegt. Die Tokens miissen zusitzlich
zu den Datenwerten eine entsprechen-
de Tabellenadresse enthalten, aus der
die zugehorige Instruktion ausgelesen,
im Rechenelement dekodiert und an-
schliessend ausgefiihrt werden kann.
Da die in die erwidhnte Tabellenform

umgewandelten Applikationspro-
gramme auf klassische Art in die Pro-
grammspeicher eingelesen werden

koénnen, stellen asynchrone Daten-
flussrechner beziiglich Programmie-
rung ein flexibles Rechnerkonzept dar.

Im weiteren wird ausschliesslich auf
die asynchronen Datenflusskonzepte
eingegangen, welche ihrerseits noch-
mals in die statischen und dynamischen

Konzepte unterteilt werden. Als Ein-
fiihrung in die beiden Varianten wird
die Abarbeitung der Gleichung

S=A.B+C/D (D)
als einfaches Beispiel verwendet. Der

zugehorige Datenflussgraph ist in Fi-
gur 2 dargestellt.

Figur 2 Beispiel eines Datenflussgraphen
Funktion:S=A.B+ C/D

Statisches
Datenflusskonzept
Das statische Datenflusskonzept

beruht darauf, dass die Daten-Tokens
vor der Verarbeitung auf vorgegebe-
nen Pldtzen im Instruktionsspeicher
zwischengespeichert werden (Fig. 3).
Sobald in einer monadischen Instruk-
tion ein Token verfiigbar ist, kann sie
nach der Feuerungsregel abgearbeitet,
d.h. gefeuert, werden. Bei dyadischen
Instruktionen ist der entsprechende
Vermerk «4#: Anzahl benétigter To-
kens» in der codierten Instruktion
(Fig. 3) auf zwei gesetzt. Die
Instruktion kommt somit erst nach
Abspeicherung beider Argumente (To-
kens) zur Ausfithrung. Die Abspeiche-
rung des Datenflussgraphen erfolgt,
wie erwahnt, in Form einer Tabelle.
Das entsprechende Beispiel geht aus
Figur 3 hervor. Der Aufbau eines To-
kens wird in Figur 4 dargestellt.

Die Abspeicherung der Token-Wer-
te in die vorgegebenen Plitze im In-
struktionsspeicher fithrt nun aber in
jenen Fillen zu Problemen, in denen

Bulletin SEV/VSE 79(1988)7, 9. April

345

Einfuhrung

Op- Figur 3
Code Argument 1 Argument2 # Zieladresse 1 Zieladresse 2 Tabellarischer
Datenflussgraph
beim statischen
. a b 2 #
1 3 Datenflusskonzept
Anzahl bendtigter
2 / c d 2 3r = Tokens
I,r Index firlinke
3 + aeb c/d 2 bzw. rechte Kante
des Daten-
flussgraphen

Programmsequenzen iterativ oder re-
kursiv abgearbeitet werden.

Beispiel: (2)
FORi := 0TOn DO

s[i] := ali]-b[i] + c[i]/d][i]
END;

Da die Ankunft der Token ali]...
d[i] zeitlich nicht bestimmbar ist, kon-
nen - ohne entsprechende Vorkehrun-

Zieladresse Ifr Datenwert

Figur4 Aufbau eines Tokens beim stati-
schen Datenflusskonzept

1/r Index fir linke bzw. rechte Kante des Daten-
flussgraphen

gen - die Argumentenpldtze im In-
struktionsspeicher félschlicherweise
iiberschrieben werden, da mehrere To-
kens der gleichen Instruktion zugeord-
net sind.

a[l] b[i]

cli]

d[i]

Figur5 Einfilhrung von Kontrolltokens
beim statischen Datenflusskonzept

Die praktische Losung dieses Pro-
blems besteht darin, dass durch die
Einfiithrung sogenannter Kontroll-To-
kens dieser Stau verhindert wird. Wie
Figur 5 entnommen werden kann,
wird jede Instruktion dabei erst dann
feuerbar, wenn die datenempfangende
Instruktion signalisiert hat, dass die
vorherige Instanz abgearbeitet ist, die
entsprechenden Argumentenplitze
also frei geworden sind. Im Instruk-
tionsspeicher muss somit zusétzlich
Platz fiir die Kontroll-Tokens vorgese-
hen werden. Die Feuerungsregel fir
Instruktion 1 in Figur 5, beispielswei-
se, lautet daher

Execute Instr. 1 if Tokens

ali]&b[i]&s’[i-1]
are available,

3)

wobei & die UND-Operation bezeich-
net. Die erste Iteration bendtigt kein
Kontroll-Token.

Die Detektion feuerbarer Instruk-
tionen erfolgt anhand einer logischen
Vergleichsoperation (2) beim Abspei-
chern der Daten-Tokens auf die ent-
sprechenden Plitze des Programm-
speichers. Ein vollstandiger statischer

Datenflussrechner nach [18] setzt sich
gemdss Figur 6 aus fiinf Blocken zu-
sammen:

1. aus der Speichereinheit (Memory
Section), welche aus einzelnen In-
struktionszellen aufgebaut ist, in de-
nen gemaiss Figur 3 sowohl die Opera-
tionscodes wie auch die Argumente
und Zieladressen abgespeichert sind;

2. aus der Ausfithrungseinheit (Pro-
cessing Section), welche mittels spe-
zieller Recheneinheiten (Processing
Elements) die eigentlichen Datenope-
rationen durchfiihrt;

3. aus einem Zuweisungsnetzwerk
(Arbitration Network), welches soge-
nannte Instruktionspakete von der
Speichereinheit zur Ausfiihrungsein-
heit ubermittelt, die (unter anderem)
aus Operationscode, Argumenten und
Zieladressen bestehen;

4. aus einem Kontrollnetzwerk
(Control Network) zur Ubermittlung
der obenerwidhnten Kontrollinforma-
tion zwischen Ausfithrungseinheit und
Speichereinheit und

5. aus einem Verteilnetzwerk (Distri-
bution Network) zur Ubertragung von
Datenpaketen von der Ausfithrungs-
einheit zur Speichereinheit. Eine ein-
zelne Instruktion gelangt dann zur
Ausfithrung, wenn in der Instruktions-
zelle die ndtigen Argumente abgelegt
sind und die zugehodrige Kontroll-
information eintrifft. Ausfiithrliche Be-
schreibungen solcher Konzepte findet
man z.B. in [8].

Dynamisches
Datenflusskonzept

Wie im vergangenen Kapitel erldu-
tert, werden in der statischen Daten-
flussvariante die Argumente direkt in

Processing Section

Figur 6 Beispiel
eines statischen
Datenflussrechners

Proc. Element

LR

Proc. Element

! !

IControl Network I

Instruction Cell |

ok k

Distribution
Network

Arbitration
Network

Instruction Cell |

Memory Section

346

Bulletin ASE/UCS 79(1988)7, 9 avril

Datenflussrechner

den Instruktionsspeichern zwischen-
gelagert, bevor eine entsprechende
Verarbeitung stattfindet. Der grosse
Nachteil dieses Prinzips liegt somit
darin, dass eine bestimmte Programm-
sequenz jeweils nur in einem Kontext
oder nur fiir eine einzige Iteration be-
niitzt werden kann. Ein parallelisier-
barer Loop beispielsweise kann also
nur mittels Expansion (fiir jede Itera-
tion wird eine Kopie des entsprechen-
den Loop-Korpers im Programmspei-
cher abgelegt) effektiv parallel abgear-
beitet werden. Zudem muss in jeder
Instruktion Platz fiir die Daten-To-
kens reserviert werden. Dies fiihrt im
allgemeinen Fall zu erheblich grosse-
ren Programmspeicherbelegungen als
bei konventionellen Rechnern.

Das dynamische Datenflussprinzip
will nun (unter anderem) diesen Nach-
teil eliminieren, indem die Daten-To-
kens nicht mehr im Programmspeicher
abgelegt, sondern in einem eigenstidn-
digen Token-Speicher ausgelagert
werden. Dieser Speicher ist derart aus-
gelegt, das er einerseits eine selbstiandi-
ge Belegungsverwaltung besitzt und zu-
dem in der Lage ist, anhand der To-
ken-Art festzustellen (Token Match-
ing), ob eine Instruktion gefeuert wer-
den kann oder nicht. Die Daten-To-
kens miissen dazu mit Zusatzinforma-
tionen versehen werden, welche dar-
iiber Auskunft geben, ob nur ein To-
ken fiir eine Instruktion bendtigt oder
ob ein Tokenpaar verarbeitet wird. Im
zweiten Fall wird eine Tag-Informa-
tion interpretiert, welche einen eindeu-
tigen Vergleich zur Bestimmung von
Token-Paaren erlaubt.

Das Konzept wird im folgenden an-
hand des Tagged-Token-Datenfluss-
rechners von Arvind[3] erldutert.

Wie aus Figur 7 ersichtlich ist, be-
steht ein derartiger Parallelrechner aus
einer Vielzahl von Rechenelementen
(Processing Elements) und Daten-
speicherblocken (Data Memories),
welche durch ein leistungsfiahiges
(Packet-Switched) Netzwerk verbun-
den sind. Die eigentlichen Programm-
speicher sind gemass Figur 10 in den
jeweiligen Rechenelementen imple-
mentiert.

Figur 8 und 9 beschreiben das In-
struktionsformat bzw. den Token-Auf-
bau der Tagged-Token-Maschine. Der
Instruktionsaufbau ist gegeniiber der
Variante von Figur 3 einfacher, da kei-
ne Pldtze fiir die Ablage der Datenwer-
te notig sind. Die Tokens (Fig. 9) sind
hingegen mit der obenerwidhnten Zu-
satzinformation (Tag Information)
versehen, welche dariiber Auskunft

Figur 7
Datenfluss-

Multiprozessor I Data Memory

I Data Memory l Data Memory

Processing-Element:
Rechenelement zur
Abarbeitung des

Processing
Element

Processing
Element

Processing
Element

Datenflussgraphen

Data Memory:

Datenspeicherblock I
zur Ablage von

Packet- Switched Network l

Datenstrukturen

Packet-Switched
Network:
Verbindungsnetzwerk
zur Ubertragung von
Datentoken

Figur 8
Instruktionsformat

Op-Code

Destination Address 1

/r

/r| Destination Address 2

des Tagged-Token-
Datenflussrechners

nach [3]

Figur 9 <

Tokenformat

Tag

v

Anzahl bendtigter

% Instruction Address
rgumente

Context | lteration Count | # Data

gibt, in welchem Kontext oder in wel-
cher Iteration die mittels Instruktions-
adresse referenzierte Instruktion ver-
wendet wird.

Daten-Tokens, welche vom Netz-
werk oder uber die interne Riickfiih-
rung zur Waiting-Matching Section
(W/M Section) gelangen (Fig. 10),
werden anhand der internen Informa-
tion «#: number of tokens to match»
(Fig. 9) kontrolliert, ob ein Partner-
Token zur Instruktionsabarbeitung
benotigt wird (dyadische Operationen:
= 2) oder ob eine monadische Ope-
ration mit diesem Token vorgesehen
ist (# = 1). Im ersten Fall wird in der
W/M Section mittels spezieller Ver-
gleichslogik kontrolliert, ob das Part-
ner-Token, welches eine identische
Tag-Information (Fig. 9) aufweist, be-
reits vorliegt. Trifft dies zu, so werden
beide Tokens zur Instruction-Fetch
Unit weitergeleitet. Liegt das Partner-
Token noch nicht vor, wird das ange-
kommene Token in der W/M Section
abgelegt. Tokens von monadischen In-
struktionen werden in allen Fillen so-
fort ohne Vergleichsoperation weiter-
geleitet. Die Instruction-Fetch Unit
liest (d.h. kopiert) die vollstindige In-
formation aus der zugehorigen In-
struktionsspeicherzelle und leitet die

Teilinformation geméss Figur 10 zu
den weiteren Funktionsblocken der
Recheneinheit weiter. In der Output
Section werden vom berechneten Re-
sultat so viele Output Tokens gebildet,
wie Destinationsadressen in der In-
struktion vorgegeben sind. Die Tokens
werden anhand der vorgegebenen Zie-
ladresse und der entsprechenden
Belegungstabellen entweder zuriick an
den Eingang des Rechenelementes
ibermittelt oder, sofern die Adresse
der Zielinstruktion sich in einem ande-
ren Rechenelement befindet, in das
Netzwerk geleitet.

Was den physikalischen Aufbau be-
trifft, liegt der wesentliche Unterschied
gegeniiber der statischen Datenfluss-
variante somit darin, dass die Instruk-
tionsspeicher wesentlich kompakter
aufgebaut werden konnen, da die
W/M Section die Zwischenspeiche-
rung der Tokens iibernimmt. Im weite-
ren wird der interne Datenverkehr in
der Recheneinheit signifikant verrin-
gert, da die Ubermittlung von Kon-
troll-Tokens vollstindig entféllt. Ein
gewisser Mehraufwand entsteht beim
dynamischen Rechner hingegen bei
der Ubermittlung der Daten-Tokens,
da diese infolge der zusitzlichen Tag-
Informationen etwas grosser ausfal-

Bulletin SEV/VSE 79(1988)7, 9. April

347

Einfdhrung

len. Der zentrale Vorteil liegt hingegen
darin, dass, wie oben erwihnt, mehr-
fach beniitzbare (reentrant) Program-
me einfach realisiert werden konnen.

Datenstrukturen

Auf die spezielle Handhabung von
(verteilten) Datenstrukturen in Daten-
flussrechnern wird in diesem Rahmen
nur kurz anhand der von Arvind vorge-
schlagenen I-Struktur (I-Structure)
eingegangen. Die begrenzte Grosse der
W/M Section sowie die zwischen den
Funktionsblocken implementierten
Zwischenbuffer lassen nicht zu, dass
sdmtliche Daten ausschliesslich als To-
kens realisiert werden. Es muss daher
ein spezifischer Datenspeicher zur Ab-
lage von Arrays, Matrizen usw. vorge-
sehen werden. Die von Arvind vorge-
schlagene Losung basiert auf einem
gemaiss Figur 7 verteilten Speicher, auf
dessen einzelnen Blocken die Daten-
strukturen nach entsprechenden Zu-
weisungsalgorithmen verteilt werden.
Die Semantik dieser I-Struktur beruht
darauf, dass ein einzelnes Datenwort
nur einmal geschrieben, hingegen be-
liebig oft gelesen werden darf. Das
Abspeichern von Daten erfolgt mittels
spezieller I-Struktur-Write Tokens,
welche statt einer Instruktionsadresse
(Fig. 9) eine I-Struktur-Adresse bein-
halten. Nach jedem Einschreiben des
individuellen Datenwertes wird die
entsprechende Speicherzelle mit einem
Valid-Bit gekennzeichnet. Wird nun in
einer Programmsequenz ein I-Struk-
tur-Datum referenziert, wird ein ent-
sprechendes I-Structure-Read Token
generiert und zum entsprechenden
[-Struktur-Block iibertragen. Bei ver-
fiigbarem Datum wird eine Kopie des
fraglichen Datenwertes an jene In-
struktion zuriickgeschickt, welche im
[-Structure-Read Token spezifiziert
worden ist. Ist hingegen das Valid-Bit
nicht gesetzt, wird der Request so lan-
ge sistiert, bis das entsprechende Da-
tum mittels I-Structure-Write Tokens
in der I-Struktur abgelegt worden ist.
Auf diesem Datenkonzept lassen sich
hohere Datenstrukturen aller Art auf-
bauen.

Vorteile des
Datenflussprinzips

1. Ausniitzung der Parallelitit
yon Anwenderprogrammen

Die meisten der heute kommerziell
verfiigbaren Hochleistungsrechner er-
reichen uiblicherweise dann ihre maxi-

male Leistung, wenn die entsprechen-
den Programme ein hohes Mass an
Vektorisierbarkeit aufweisen. Es gilt
daher, mittels optimierender (z.B. For-
tran-) Compiler die Anwendungen so
zu programmieren, dass diese Anfor-
derung moglichst gut erfiillt ist. Abge-
sehen von speziellen Applikationen
(wie Aerodynamik, Seismik, Luft-
raumiiberwachung usw.), wo replizier-
te Berechnungen vieler gleicher Objek-
te (mit unterschiedlichen Daten bzw.
Randwerten) vorliegen konnen, wei-
sen jedoch viele allgemeine Program-
me ein dusserst kleines Mass an Vekto-
risierbarkeit auf, und die mittlere Lei-
stung der erwidhnten Rechnersysteme
fdllt drastisch zusammen. Die Daten-
flussrechner sind diesbeziiglich nahezu
unempfindlich, da, dank der funktio-
nalen Programmierweise, jegliche Art
von Parallelitit eines Programms
automatisch und umfassend durch den
Compiler aufgedeckt und durch die
Maschine ausgeniitzt werden kann.

2. Elimination des
Memory-Latency-Problems

Ein wichtiges Problem bei konven-
tionellen Multiprozessoren, sowohl
bei gemeinsamen wie auch bei verteil-
ten Speichern, wird als Memory Laten-
¢y (Speicher-Zugriffsverzogerung) be-
zeichnet. Man versteht darunter die
Tatsache, dass, wann immer bei der
(von-Neumann-artigen) Ausfithrung
einer Instruktion eine Referenz auf
einen Datenwert ausgefiithrt wird (Da-
ten-Fetch), mit Wartezeiten gerechnet
werden muss. Im Fall des gemeinsa-
men Speichers ist dies auf Speicherzu-
griffskollisionen zuriickzufiihren, da
mehrere Rechner zur gleichen Zeit auf
die gleiche Speicherbank zugreifen
oder aber der Zugriff {iber einen ge-
meinsamen Bus erfolgt. Bei verteilten
Speichern wird die Wartezeit in vielen
Féllen noch lianger, da ein Zugriffs-
pfad vom Prozessor zur entsprechen-
den nichtlokalen Speicherzelle eta-
bliert werden muss. In beiden Fillen
wird der entsprechende Prozessor in
einen mehr oder weniger langen War-
tezustand versetzt.

In Datenflussrechnern mit verteilten
Speichern ist dieses Problem entschei-
dend entschirft, da die Beschaffung
der Daten von der zugehoérigen Verar-
beitung entkoppelt ist und die entspre-
chende Latenzzeit durch die Abarbei-
tung anderer ausfiihrbarer Instruktio-
nen uberbriickt werden kann. Dies er-
moglicht eine wesentlich bessere Pro-
zessorausniitzung und somit eine ho-

here spezifische Rechenleistung (An-
zahl Instruktionen pro Zeiteinheit und
Prozessor).

3. Synchronisationsaspekte

Die durch die Datenverfiigbarkeit
gesteuerte Programmabarbeitung des
Datenflussrechners eliminiert das in
vielen Parallelrechnerkonzepten nur
schwerfillig l6sbare Problem der Da-
tensynchronisation zwischen kommu-
nizierenden Unterprogrammen. Kom-
plizierte und verhiltnisméssig rechen-
intensive Synchronisationsmechanis-
men wie Semaphoren, Rendez-vous,
Fork-and-Joins usw. entfallen, da die
zur Synchronisation nétigen Operatio-
nen (z.B. die W/M Section in Figur 10)
hardwaremissig implementiert wer-
den konnen. Die bekannten Lese-War-
te-Sequenzen (ein konsumierender
Prozessor will ein Datum lesen, bevor
es vom entsprechenden produzieren-
den Prozessor generiert wurde) entfal-
len vollstandig. Bei verteilten Daten-
speichern ermoglicht die Einfiihrung
expliziter Data-Fetch- bzw. Data-
Store-Operationen (im Kapitel «Da-
tenstrukturen»), Prozessoren auch im
Fall von Referenzen auf nichtlokale
Daten fiir andere Operationen freizu-
behalten. Kontextumschaltungen sind
vollstdndig zeitverzugslos, weil kon-
zeptionell jede individuelle Instruk-
tion ihren eigenen Kontext aufweist.

4. Erweiterbarkeit

Wie im folgenden Kapitel gezeigt
wird, sollte sich der Programmierer
von Parallelrechnersystemen fiir allge-
meine Anwendungen nicht um den
Grad der durch die Maschine verar-
beitbaren Parallelitdt kiimmern miis-
sen. Diese Aufgaben sollen durch
einen entsprechenden Compiler iiber-
nommen werden, der den vollstindi-
gen parallelisierten Programmgraphen
entwickelt. Die zur Laufzeit anfallen-
den Programm- bzw. Lastzuweisungen
werden durch entsprechende Kompo-
nenten eines (ebenfalls als Datenfluss-
programm implementierten) Betriebs-
systemkerns iibernommen. Erweite-
rungen des Rechnersystems durch Im-
plementation zusitzlicher Prozessoren
bedingen daher keine Anderungen des
Anwenderprogramms. Das Laufzeit-
system kann, mit Ausnahme spezieller
Systemkonfigurationstabellen, unver-
iandert ibernommen werden.

5. Realisierbarkeit

Ein wichtiger Punkt bei der Ab-
schiatzung der Qualitdt eines Rechner-

348

Bulletin ASE/UCS 79(1988)7, 9 avril

/6 G) 20'tvy L1d

oN-euoydajoL

SR 3.88

@ |
B Q
:ainjeubig S|]
e -
@ 0
£ o
=
2 ©
x
. <t 3
8leq 1 SJUBWINDOP SBp 10AUS,| Inod 8ssaIpY w0 =
"SNSSOP-10 90UBID}9I BP SOIQWINU XNBP S8 JUBWSSIBA 8p ulld|ing 18 8ouepuodsaliod 81no) ins Janbipul,p aiglld N~ 2
‘pie} snid ne gge L tew 2| 9| :uonduosul,| inod 1ejgeg O <
‘Jiejd snoA |1,s 1ul0l-19 JUBWBSIaA ap ulld|iNg Np UsAow ne sjuswaled W S
b © 5
2 ;5 g
@ o =
I Z 9
§ O <
-) 2E =
g9 g
G = °©
£C S
° 5 =
S E|E AN E
g9 o 8
20 c
. B | 8 © 5
Y R EET S 5 ™ £
aileg -3 S e -3 12} 3
=83 25 |a23| 5 assaipy wouald woN | @ O 3
tgal 'Sl T8 z
=@ g =8 E g > |
- z 8 . |
- . £ - -
siuaiddy g] -
/sjuelpnig o 2 { |
:uonedioned ap auen 55 = .w q i
23 8 %
¢006€9 ¥9/9 'ON uonduosul ‘auswidwi,p sae ua no - 9 E © |
= = auiyoew ej e 1939|dwod zajnap S 4 39 2 S 4
< N .3 ! j
XN3.ijUO|\ ap oulise) ‘886 1L lew LE ‘IpJB\ — XN3JJUO £ .S 2 2 u |
g N W = (3] |
in| €5) = | i
2ipnoj e] a11uod uoijoajoid ap suoljejjeisui s9| Jnod 5 g it
3JSV.| 9P SuollepuewWOosdl SI||9ANOU SO <
3SV.| ap uoneuuojul p aguinop
YoLNZ €08 ‘ele1sod 8sed ‘SjeNSIuILUPE S80IAISS ‘SUBIONI08|] Sep 7] i
9SSING UOIIBI0SSY, | B 8861 1ew /| 8] JueAe uonduosul p une|ing 82 Jeuinojal ap aialid : £ ;m, =
2 & 1 ¢
uonduasuj : s
£ L 2 o £
23 S
. > = ©
/ s .m 56 w S
sy B 885
(3SV) suaid11109|3 sap assIng uoleoSsy ASE s gEN
, E £$8 22 .
V 7 AmWe ook

800061332>

Datenflussrechner

Figur 10
Rechenelement
Network (Processing Element)
o] Input des Tagged-
| Token Token-Datenfluss-
Y rechners
Waiting- nach [3]
Matching
Section
’ ‘ Op-Code,
; Destination
I-Structure ::nsttrﬁctlon- Address(es)| Program
Memory Uii(t: il ~1 Memory
Arg. 1 ! ’Arg. 2
A4
Op-Code ALU
Result Destination
Output Address(es)
Section
Output
Token
Y
/ Network "\

konzepts betrifft die Realisierungs-
moglichkeiten einer entsprechenden
Rechnerhardware. Eine diesbeziigli-
che Beurteilung der verschiedenen
Komponenten eines dynamischen Da-
tenflussrechners zeigt, dass zu deren
Implementation weder exotische
Technologien noch unverhéltnismais-
sig komplexe Bausteine ndtig sind. Die
Verfiigbarkeitvon Halbleiter-Speicher-
elementen grosser Kapazitit sowie die
vielfdltigen Maoglichkeiten, leistungs-
fahige Netzwerke fiir Paketvermitt-
lung zu realisieren [9], unterstreichen
das Potential dieser Rechnerarchitek-
tur.

Programmierung von
Datenflussrechnern

Wie in allen parallelen Rechner-
systemen spielt die Frage der Program-
mierung auch bei Datenflussrechnern
eine ausserordentlich wichtige Rolle.
Stichworte wie Mdchtigkeit, Modulari-
tdat, Benutzerakzeptanz usw. miissen
entsprechend beriicksichtigt werden.
Ein grosses Gewicht muss auch den
marktstrategischen Aspekten beige-
messen werden, da viele Endbeniitzer
nur dann Rechnersysteme akzeptieren
werden, welche in einer neuen Sprache
zu programmieren sind, wenn eine si-
gnifikante Erhdhung der Computer-
rechenleistung garantiert wird oder be-

deutende Vorteile bei der Erstellung
korrekter, den Spezifikationen ent-
sprechender Programme geboten wer-
den.

Da eine umfassende Darstellung der
Eigenschaften von Programmierspra-
chen fiir Datenflussrechner den vorlie-
genden Rahmen sprengen wiirde, wird
im folgenden nur eine Auswahl der
wichtigsten Punkte gemdiss [10] gege-
ben. Zur Vertiefung sei auf [10] (Spra-
che VAL), [11] (Sprache Id) oder [12]
(Sprache SISAL) verwiesen.

1. Freiheit von Seiteneffekten

Seiteneffekte treten z.B. dann auf)
wenn in einem konventionellen Multi-
prozessor eine gemeinsame Variable
von mehreren Prozessoren modifiziert
werden kann. Sofern nicht durch
strenge Zugriffsrechte eine verbindli-
che Schreibe- und Lesedisziplin er-
zwungen wird, konnen fehlerhafte Re-
sultate produziert werden. In Daten-
flussrechnern existieren keine Varia-
blen im Sinne von Sprachen wie For-
tran, Pascal usw., da Zwischenwerte in
Form von Datenpaketen (Tokens)
ibermittelt werden und keine effekti-
ven (Daten-) Speicherplitze belegen
(Call by-Value statt Call by-Refer-
ence). Dadurch konnen bei der Ver-
wendung von skalaren Argumenten
auch keine Seiteneffekte auftreten. Da

hingegen auch in Datenflussrechnern
fiir Datenstrukturen Speicherbereiche
vorgesehen sind, welche von mehreren
Prozessoren bearbeitet werden, muss
das Seiteneffektproblem trotzdem ge-
16st werden. Die entsprechende Regel
besteht darin, dass Daten enthaltende
Speicherzellen nicht {iberschrieben
werden diirfen. Konsequenterweise
muss daher bei jeder beabsichtigten
Schreiboperation in einen bereits mit
giiltigen Daten versehenen Array oder
Record usw. ein vollstindig neuer Da-
tenbereich erstellt werden, in den der
neue Wert an der entsprechenden Stel-
le eingeschrieben und alle unveriander-
ten Daten in die weiteren Pléitze ko-
piert werden. Diese enorm aufwendige
Arbeit kann durch die Einfiihrung
hierarchischer Datenstrukturen we-
sentlich verringert werden. Eine viel-
versprechende, das Problem weiter
entschdrfende Methode besteht in der
Verwendung von sogenannten
I-Strukturen (vgl. Kapitel «Daten-
strukturen» [3].

2. Lokalitétsprinzip (im Sinne der
Verwendung von Variablennamen)

Das Lokalitatsprinzip ist grundsétz-
lich dann gewihrleistet, wenn die In-
struktionen eines Programms keine
unnétigen, weitreichenden Datenab-
hingigkeiten aufweisen. Es wird z.B.
dann verletzt, wenn in einem Pro-
gramm gleiche Variablennamen an
verschiedenen Stellen beniitzt werden,
obwohl zwischen ihnen kein Zusam-
menhang existiert. Diese Methode
wird oft verwendet, um in einem kon-
ventionellen Rechner Speicherplitze
zu sparen. Optimierende Compiler
sind heute zwar in der Lage, mit ent-
sprechendem Aufwand die meisten
derartigen Pseudoabhidngigkeiten zu
entflechten, um dadurch eine parallele
Verarbeitung zu ermdglichen. Da, wie
erwihnt, in einem Datenflusskonzept
keine Speicherpldtze belegenden Va-
riablen existieren, entféllt die Notwen-
digkeit derartiger Speicheroptimierun-
gen und somit die Verwendung glei-
cher Variablennamen. Compiler wer-
den dadurch wesentlich einfacher, und
Parallelverarbeitungen werden nicht
mehr unnotig eingeschrankt.

3. Einfachzuweisungen
(Single Assignment)

Datenflussprogramme miissen in
eindeutige, gerichtete Graphen umge-
wandelt werden kdnnen. Konsequen-
terweise diirfen Variablennamen auf
der linken Seite von Zuweisungen in-

Bulletin SEV/VSE 79(1988)7, 9. April

349

Einfuhrung

Datenflussrechner

nerhalb eines zusammenhdngenden
Programmbereichs nur einmal vor-
kommen.

4. Spezielle Notationen zur
Programmierung von Iterationen

Damit in Iterationen Loop-Zihler
der Art i:=i +1 realisiert werden kon-
nen, wird eine spezielle Notation der
Art new i :=i +1 eingefiihrt (z.B. [11]).
Dies ermdglicht dem Compiler, eine
Entflechtung der einzelnen Loop-
Durchginge vorzunehmen und zudem
Hilfsinstruktionen in den Programm-
graphen einzufiigen, welche in den To-
ken Tags (Fig. 9) die entsprechenden
Iteration-Count-Felder inkrementie-
ren, damit eine parallele Abarbeitung
mehrerer Loop-Instanzen moglich
wird.

Ausblick, offene Fragen

Datenflussrechner sind nach wie vor
Gegenstand intensiver Forschungsar-
beiten. Trotz den zahlreichen positiven
Aspekten kann deren Erfolg noch
nicht endgiiltig abgeschitzt werden.
Die wichtigsten, zurzeit noch nicht be-
friedigend geldsten Probleme betref-
fen die Last- und Datenverteilungs-
strategien sowie die technologischen
Aspekte fiir eine kosteneffiziente Im-
plementation. Die Frage der Lastver-
teilung ist nicht nur datenflussspezi-
fisch, sie muss in jedem Parallelpro-
zessorkonzept fiir technisch-wissen-
schaftliche Anwendungen allgemeiner
Art (General Purpose) geldst werden.
Obwohl beim Datenflusskonzept
durch die Generierung eines Pro-
grammgraphen wichtige Informatio-
nen, wie z.B. der Grad der Parallelitit
im Applikationsprogramm usw., in
vielen Fillen explizit vorliegen und

durch den Compiler/Optimizer wich-
tige Eingangswerte fiir eine Lastvertei-
lungsstrategie gewonnen werden kon-
nen, miussen trotzdem wihrend der
Laufzeit Entscheide iiber die Zuwei-
sung von Programmteilen zu Prozesso-
ren vorgenommen werden. Kriterien
dazu sind etwa die momentane Last
einzelner Prozessoren oder die zusitz-
liche Belastung durch den neuen Auf-
trag. Hier treten aber nichttriviale Pro-
bleme auf, da die Belastung eines Pro-
zessors kaum exakt, allenfalls sogar
nur grob angenédhert werden kann.

Intensive Vertiefung erfordert auch
die Organisation und Zuweisung von
Datenstrukturen in den Speicherblok-
ken der verschiedenen Prozessoren.
Dazu gehoren Strategien, welche mit-
tels Anlegens von mehreren Kopien
einzelner Datenstrukturen die Effi-
zienz eines Rechners erhdhen sollen,
sowie die Datenduplikationen, welche
durch den funktionalen Programmier-
stil erzwungen werden.

Ebenfalls Gegenstand von Untersu-
chungen ist die Frage, ob Datenfluss
mit sehr feiner Granularitit (Fine-
Grain Parallelism) tatsachlich effizient
ist oder ob ein grobkdrniges Konzept
(Coarse-Grain Parallelism) [13] ver-
folgt werden soll, bei dem im Daten-
flussgraphen gemiss Figur | anstelle
von einzelnen einfachen Instruktionen
in den Knoten Blocke von Instruktio-
nen (Codeblocks) vorgesehen werden
sollen, welche in den einzelnen Prozes-
soren von-Neumann-artig abgearbei-
tet werden sollen.

Eine Ubersicht iiber laufende For-
schungsprojekte auf dem Gebiet Da-
tenflussrechner, vertiefende Diskus-
sionen uber die verschiedenen Aspekte
dieser neuen Rechnergeneration sowie
umfassende Literaturreferenzen kon-
nen z.B. in [4; 8; 14;...;17] gefunden
werden.

Literaturverzeichnis

[11 D.D. Gajski a.0.: A second opinion on data
flow machines and languages. IEEE Compu-
ter 15(1982)2, p. 58...69.

[2] J.R. Gurd, C.C. Kirkham and I. Watson: The
Manchester prototype dataflow computer.
Communications of the ACM 28(1985)1, p.
34..52.

[3] Arvind a.0.: The tagged token dataflow archi-
tecture. Memo of the Computation Structu-
res Group/Laboratory for Computer
Science. Cambridge/Mass., Massachusetts
Institute of Technology (MIT), 1983.

[4] P.C. Treleaven and I.G. Lima: Future com-
puters: Logic, data flow, ..., control flow?
IEEE Computer 17(1984)3, p. 47...58.

[5] T. Agerwala and Arvind: Data flow systems.
IEEE Computer 15(1982)2, p. 10...13.

[6] T. Gunzinger: Synchroner Datenflussrechner
zur Echtzeitbildverarbeitung. Mustererken-
nung 1986. 8. DAGM-Symposium (Deutsche
Arbeitsgemeinschaft fir Mustererkennung).
Informatik-Fachberichte 125. Berlin u.a.,
Springer-Verlag, 1986; S. 123...128.

[7] A. Kiindig: Parallelverarbeitung in elektroni-
schen Systemen - eine Ubersicht. Bull.
SEV/VSE 78(1988)7, S. 338...343.

[8]1 P.C. Treleaven, D.R. Brownbridge and R.P.
Hopkins: Data-driven and demand-driven
computer architectures. ACM Computing
Surveys 14(1982)1, p.93...143.

[9] H.J. Siegel: Interconnection networks for
large-scale parallel processing. Theory and
case studies. Lexington/Mass./Toronto,
Lexington Books, 1985.

[10] W.B. Ackermann: Data flow languages.
IEEE Computer 15(1982)2, 15...25.

[11] R.S. Nikhil, K. Pingali and Arvind: 1d nou-
veau. Memo 265 of the Computation Struc-
tures Group/Laboratory for Computer
Science. Cambridge/Mass., Massachusetts
Institute of Technology (MIT), 1986.

[12] J. McGraw: SISAL - Streams and iteration
in a single assignment language. Language
reference manual. Livermore/California,
Livermore National Laboratory, 1983.

[13] R. Buehrer and K. Ekanadham: Incorpora-
ting data flow ideas into Von Neumann pro-
cessors for parallel execution. IEEE Trans.
on Computers 36(1987)12, p. 1515...1522.

[14] Data flow systems. Special issue. IEEE Com-
puter 15(1982)2.

[15] J.-L. Gaudiot: Structure handling in data-
flow systems. IEEE Trans. on Computers
35(1986)6, p. 489...502.

[16] V.P. Srini: An architectural comparison of
dataflow systems. IEEE Computer
19(1986)3, p. 68...88.

[17] A.H. Veen: Dataflow machine architecture.
ACM Computing Surveys 18(1986)4, p.
365...396.

[18] J.B. Dennis: Data flow supercomputers.
IEEE Computer 13(1980)4, p. 48...56.

350

Bulletin ASE/UCS 79(1988)7, 9 avril

	Datenflussrechner : Konzepte und Anwendungen

