
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 79 (1988)

Heft: 7

Artikel: Parallelverarbeitung in elektronischen Systemen : eine Übersicht

Autor: Kündig, A.

DOI: https://doi.org/10.5169/seals-904013

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904013
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Übersicht

Parallelverarbeitung in elektronischen
Systemen - eine Übersicht
A. Kündig

Methoden der Parallelverarbeitung
spielen in elektronischen Systemen
eine zunehmend grössere Rolle. Der
Beitrag zeigt verschiedene Beweggründe

für diese Tendenz auf, so
den Wunsch nach Leistungssteigerung,

neue technologische Möglichkeiten,

aber auch «natürliche
Parallelität», wie Gleichzeitigkeit der
Ereignisse, Multiplizität der Daten,
welche von der Umgebung her an
rechnergestützte Steuer- und
Regelsysteme herangetragen wird.
Anschliessend werden einige wichtige

Begriffe erläutert, und es wird
ein Ausblick auf die nachfolgenden
Beiträge gegeben.

Les méthodes de traitement parallèle

jouent un rôle de plus en plus
important dans les systèmes
électroniques. L'article met en évidence
les diverses raisons de cette
tendance, par exemple le désir
d'augmentation de puissance, de
nouvelles possibilités technologiques,
mais aussi la «parallélité naturelle»
(simultanéité des événements,
multiplicité des données) apportée par
l'environnement aux systèmes de
commande et de réglage assistés
par calculateur. Puis suit l'explication

de quelques termes importants
et une vue sur les articles consécutifs.

Adresse des Autors
Prof. Dr. Albert Kündig, Institut für Elektronik,
ETH-Zentrum, 8092 Zürich

Motive für die
Parallelverarbeitung

Anlässlich der Verleihung des
prestigereichen Turing Award an den
Computerpionier J. Backus hielt der
Geehrte 1978 einen inzwischen
vielzitierten Vortrag mit dem Titel «Can
Computer Programming be liberated
from the von Neumann-Style?» [1],
Backus zeigte, dass die klassische, von
Neumann zugeschriebene
Rechnerarchitektur mit einem Rechenwerk,
einem gemeinsamen Daten- und
Programmspeicher, einem Steuerwerk
sowie einer Einheit für die Ein- und
Ausgabe von Daten in seiner Leistungsfähigkeit

grundsätzlich beschränkt ist;
namentlich der Transfer von Befehlen
und Daten zwischen dem Arbeitsspeicher

und den übrigen Einheiten - zum
Beispiel über einen Bus - legt letztlich
die Arbeitsgeschwindigkeit des ganzen
Rechners fest. So setzt sich zum
Beispiel die Zeit für die Ausführung einer
arithmetischen oder logischen Operation

aus den folgenden Anteilen
zusammen:

- Abrufen des nächsten Befehls
(Instruction Fetch),

- Befehlsdecodierung,
- Abrufen der Operanden (Operand

Fetch),
- Ausführung der Operation,
- Abspeichern der Resultate.

Die Kritik von Backus ist sachlich
ohne Zweifel berechtigt, und sie mag
den Anstrengungen, leistungsfähigere
neue Rechner zu entwickeln, neuen
Auftrieb gegeben haben. Anderseits
fasste Backus in bezug auf die
Rechnerarchitektur Erkenntnisse prägnant
zusammen, die an sich schon lange
Zeit vorher bekannt waren und denn
auch schon viel früher zu unzähligen
Ansätzen für Computerstrukturen
führten, deren interne Abläufe einen
höheren Grad an Parallelität aufweisen.

Wenn darüber hinaus der Titel des

Backus-Vortrages zur Assoziation füh¬

ren würde, dass sozusagen von
Neumann mit seinem Rechnerkonzept
eine Entwicklung in erfolgversprechendere

Richtungen verhindert hätte,
so wäre dies völlig fehl am Platz.
Erstens hat sich der klassische Rechner
bekanntlich gerade wegen seines
bestechend einfachen Konzepts millionenfach

bewährt - in Applikationen, welche

vom Taschenrechner und vom
elektronisch gesteuerten Alltagsgerät
bis zum Grosscomputer reichen. Und
zweitens hat gerade von Neumann vor
mehr als dreissig Jahren erste Überlegungen

zu dem wieder hochaktuellen
Thema von Neuronennetzen publiziert
[2], einem Ansatz für informationsverarbeitende

Maschinen mit hochgradiger
Parallelität! Allerdings müssen wir

auch den eigentlichen Verdiensten von
Backus gerecht werden. Sein provozierender

Vortrag zielte weniger auf die
Architektur der von-Neumann-Ma-
schine ab, sondern prangerte mit
gewissem Recht den dadurch geprägten
Programmierstil an. Backus hat daraus
die Konsequenzen gezogen und eine
neuartige funktionale Programmiersprache

(FP) vorgeschlagen.
Das Stichwort Neuronennetze weist

auf das wohl natürlichste Motiv für
unser Suchen nach parallelen Methoden

der Informationsverarbeitung hin:
Wo immer wir auch um uns blicken,
stellt sich die Natur als ein ausserordentlich

komplexes System mit einer
Unzahl von gleichzeitigen, meistens
wohlkoordinierten Prozessen dar. Was
liegt näher, als uns die Natur in der
Gestaltung von informationsverarbeitenden

Maschinen zum Vorbild zu
nehmen! Ganz besonders eindrückliche

Beispiele sind bekanntlich im
Bereich der Sinnesorgane von Lebewesen
zu suchen - man denke nur an das
menschliche Auge und den menschlichen

Gesichtssinn. Verwandt mit diesen

Vorstellungen ist nun aber auch
die Problematik, mit welcher sich der
Entwickler von rechnergestützten
Steuer- und Regelsystemen konfron-

338 Bulletin ASE/UCS 79(1988)7, 9 avril

Parallelrechner

Externer Prozess

21> _A1>

IT) Echtzeitsystem

S3 ^ ~Ä?>

Figur 1 Eingebettetes System
S Sensor
A Aktor

tiert sieht: Auch wenn er seine Anlage
oder sein Gerät auf einem klassischen
Rechner - also einem Einprozessorsystem

- implementiert, werden die
umgebenden Prozesse im allgemeinen zu
nicht voraussehbaren Zeiten Interaktionen

verlangen. Wie die Figur 1

zeigt, muss bei einem solchen eingebetteten

System der interne Rechenpro-
zess mit den umgebenden (physikalischen,

chemischen Prozessen
synchronisiert werden. In diesem Falle
liegt es nahe, für die Verwirklichung
der Steuerung mehrere Rechner vorzusehen,

indem zum Beispiel mit
peripheren Prozessoren bestimmte
Echtzeitanforderungen abgedeckt und
weniger zeitkritische Aufgaben im Bereiche

Bedienung und Datenverwaltung
durch separate Prozessoren getragen
werden.

Ein eingebettetes System stellt also
ein Beispiel für natürliche Parallelität
dar, und zwar für Parallelität auf
der Ebene von Prozessen. Das bereits
erwähnte Vorbild des menschlichen
Auges aber beruht auf einer anderen
Art der natürlichen Parallelität: Parallelität

auf der Ebene der Daten (Operationen

können auf gleichartige, in ein
räumliches Gitter eingebundene
Datenelemente gleichzeitig angewendet
werden).

Neben diesen natürlichen
Beweggründen für das Studium der parallelen

Informationsverarbeitung gibt es

aber auch durchaus handfeste
wirtschaftliche und technische Argumente:

- Die immer höheren Ansprüche an
die Leistung von datenverarbeitenden
Systemen im wissenschaftlichen und
technischen Bereich lassen schon lange

an Lösungen denken, bei welchen
durch eine geeignete Kopplung von
k-Rechnern eine Verarbeitungsleistung

erbracht werden kann, welche
möglichst nahe an das k-fache der
Leistung eines einzelnen Rechners
herankommt (die tatsächlich gemessene Lei¬

stungssteigerung wird als Speed-up
bezeichnet). Darüber hinaus erhofft man
sich von solchen Lösungen, dass bei
wachsenden Ansprüchen ein System
um zusätzliche Rechner erweitert werden

kann (Modularität).
- Bei der Regelung oder Steuerung
industrieller Systeme sieht man sich
neben Echtzeitproblemen oft mit hohen
Anforderungen an die Verfügbarkeit
dieser Systeme konfrontiert. Auch in
diesem Falle besteht ein naheliegender
Ansatz darin, die Verarbeitungsleistung

in einer Weise auf parallel arbeitende

Subsysteme aufzuteilen, dass ein
Ausfall eines dieser Teile höchstens zu
einer partiellen Degradation führt.
Besonders interessant sind Lösungsansätze,

bei welchen die replizierten
Subsysteme nicht redundant sind, sondern
im Normalbetrieb zur Funktionalität
und Leistung des Gesamtsystems
einen wesentlichen Beitrag erbringen.
Diese Technik der hochverfügbaren
Rechnersysteme hat ihrerseits viele
wertvolle Anstösse zur Entwicklung
auf dem Gebiet der Parallelverarbeitung

gegeben.

Argumente gegen die
Parallelverarbeitung
Wir wollen nicht verschweigen, dass

die Idee einer Leistungssteigerung in
der Informationsverarbeitung dank
parallelem Rechnen auch immer wieder

der Kritik ausgesetzt war. Die am
häufigsten vorgebrachten Argumente
können etwa wie folgt zusammenge-
fasst werden:

- Man befürchtet, dass der zusätzliche
Aufwand für die Koordination paralleler

Rechner den Leistungsgewinn
ganz oder teilweise kompensieren
könnte.
- Systeme mit parallelen Prozessen
sind wesentlich komplexer als solche
mit rein sequentieller Datenverarbei¬

tung. Es treten neue Phänomene wie
Verklemmungen (Deadlocks) auf; die
Synchronisation paralleler Prozesse
sowie die wirkungsvolle Verwaltung
gemeinsamer Betriebsmittel sind
schwierig zu lösende Probleme.

- Die rasche und nach wie vor
ungebremste technologische Entwicklung
zieht fortlaufende Leistungssteigerungen

bei den konventionellen
Einprozessorsystemen nach sich. Diese
Leistungssteigerungen könnten den
Verbesserungen bei den Multiprozessor-
systemen noch lange voraneilen.

Bekannte Autoren glaubten in der
Vergangenheit sogar, diese Kritik in
eigentliche Gesetzmässigkeiten
zusammenfassen zu können. Wohl das
bekannteste dieser Gesetze ist dasjenige
von Minsky [3], welches wir zusammen
mit dem sogenannten 1. Gesetz von
Amdahl [4] in Figur 2 dem Idealfall
eines linearen Speed-up (~k) sowie
praktischen Ergebnissen von Kuck bei
der Parallelisierung von Fortran
gegenüberstellen. Es bleibt dem Leser
überlassen, diese Voraussagen anhand
der weiteren Beiträge im vorliegenden
Heft einer kritischen Würdigung zu
unterziehen. Besonders ernst zu nehmen

ist allerdings das von Amdahl
vorgebrachte Argument, dass in den
meisten praktischen Anwendungsfällen

ein Teil der Aufgaben gar nicht
parallelisierbar ist. Die Figur 3 zeigt
sein 2. Gesetz, welches den erzielbaren
Gewinn (Speed-up) als Funktion des
Anteils s von nur sequentiell ausführbaren

Programmteilen ausweist.

Einige Begriffe
Im folgenden sollen einige bereits

erwähnte Begriffe besser definiert und
zum Teil auch illustriert werden.
Zunächst vergleicht die Figur 4 einige
Varianten von Rechnerarchitekturen mit
dem klassischen von-Neumann-Rech-
ner, welcher stark vereinfacht in Teil

Figur 2 30
Systemleistung Pbei
k Prozessoren

Verschiedene
Prognosen für die 2 0
Leistungssteigerung
durch Parallelisierung.
Bezugsgrösse ist die
Leistung eines

Einprozessorsystems. 10
© Linearer Speed-up
© Praktisch erreichte

Resultate von Kuck
© 1. Gesetz von

Amdahl
© Gesetz von Minsky

;1f 0 .3k
k/log9k

© log2k

20 40 60 80 100

Bulletin SEV/VSE 79(1988)7,9. April 339

Übersicht

100

p

80

60

40

20

k =10/̂k= 5(

k=2.

1 yl\/ J

J

,k= 10

Figur 3
2. Gesetz von Amdahl

P= [s + (l-ij/fc)"1
5 Anteil der nur

sequentiell
ausführbaren
Programmteile

P Systemleistung
k Anzahl Prozessoren

0 10 15 20 s[%] 25

Ml M2 Mk

Figur 4 Einige Varianten von Rechnerarchitekturen
a Einprozessorsystem
b, c, d Varianten von Mehrprozessorsystemen mit zunehmender Autonomie der Subsysteme
Pl...Pk Prozessoren

Lokale Arbeitsspeicher
Ma...Mz Segmente des zentralen Speichers
N Kommunikationsnetzwerk

(4a) dargestellt wird. Steuerwerk und
Rechenwerk werden in dieser Figur
zum Prozessor P zusammengefasst;
Programme und Daten befinden sich
im Arbeitsspeicher M, welcher vom
Prozessor aus über ein «Netzwerk» N
zugänglich ist. Netzwerk steht dabei
stellvertretend für irgendeine rechnerinterne

Kommunikations-Infrastruk-
tur - in den meisten einfachen Fällen

wird es sich um ein Bussystem
handeln. Die Figur 4b zeigt den klassischen

Multiprozessor, bei welchem
k-Prozessoren über ein Netzwerk
Zugang zu einem gemeinsamen Speicher
M besitzen. Damit muss hardware -

und softwaremässig sichergestellt werden,

dass eine konfliktfreie Benützung
dieses Arbeitsspeichers möglich ist;
anderseits kann über gemeinsame

Speicherbereiche die Kommunikation
verschiedener Prozesse mittels globaler

Variablen (Shared Variables)
bewerkstelligt werden. In Figur 4c ist die
Struktur von 4b in dem Sinne
weiterentwickelt worden, als durch Aufteilung

des Arbeitsspeichers in die
Segmente Ma Mz ein gleichzeitiger
Zugriff auf physisch getrennte Speicherbereiche

ermöglicht wird (sofern auch
das Netzwerk dies unterstützt). In
Figur 4d schliesslich ist jeder Prozessor
mit einem eigenen lokalen Arbeitsspeicher

ausgerüstet worden; darüber hinaus

stehen aber sämtlichen Prozessoren

über das Netzwerk die gemeinsam
benützbaren Speichersegmente Ma...
Mz zur Verfügung.

An dieser Stelle muss unbedingt
auch der Begriff Prozess definiert werden.

Wir wollen darunter die schrittweise

Abarbeitung eines sequentiellen
Programmes verstehen, dabei aber die
Möglichkeit vorsehen, dass zwischen
verschiedenen Prozessen mittels geeigneter

Mechanismen Information
ausgetauscht werden kann. Dieser
Informationsaustausch kann über gemeinsame

Variablen erfolgen; es ist aber
auch denkbar, dafür Meldungen (im
Sinne von transient vorhandener
Information) zu benutzen (sogenanntes
Message Passing Dieses zweite
Verfahren stellt gerade eines der wesentlichen

Merkmale einer weiteren
Systemarchitektur dar, des sogenannten
verteilten Systems (Distributed System).

Die Figur 5 versucht, ein derartiges
System zu illustrieren. Von der Hardware

her gesehen fällt auf, dass nun
kein gemeinsamer Speicher mehr
vorhanden ist; die Prozesskommunikation

muss also notwendigerweise auf
Meldungen abgestützt werden, welche
durch das Netzwerk N zu übermitteln
sind. Darüber hinaus kann für solche
Systeme angenommen werden, dass
die Übermittlungszeit für eine
Meldung wesentlich grösser ist als ein
elementarer Arbeitsschritt auf einem der
beteiligten Prozessoren; mithin wird es

nicht sinnvoll sein, das Programm so
auf die verschiedenen Prozessoren
aufzuteilen, dass ein zu häufiger
Informationsaustausch notwendig wird.
Wir streben also eine Lösung mit loser
Kopplung der parallelen Prozesse an.
Lose Kopplung wird hier im Sinne
seltener Interaktionen gebraucht; aus der
Sicht zuverlässiger Systeme kann aber
lose Kopplung auch bedeuten, dass
ein fehlerhafter Prozess keine Störungen

bei den andern, korrekt ablaufenden

Prozessen provoziert.
Der Vollständigkeit halber wollen

340 Bulletin ASE/UCS 79(1988)7,9 avril

Parallelrechner

Figur 5

Verteiltes System

Verhalten des Systems

Organisation

Dynamisches Zusammenspiel der
Komponenten und Verwaltung der
gemeinsamen Betriebsmittel

Struktur
Hardwareblöcke und

ihre Verbindung

Implementierung

Figuré
Rechnerarchitektur
im engeren und
weiteren Sinne

wir noch vermerken, dass in deutschen
Texten anstelle des Begriffes Parallelität

oft der Ausdruck Nebenlüufigkeit
verwendet wird; statt von parallelen
Prozessen spricht man dann von
nebenläufigen Prozessen.

Die bisher gezeigten Systemkonzepte
entsprechen natürlicherweise einer

Ausnützung von Parallelität auf der
Ebene von Prozessen. Typische Vertreter

werden im Beitrag [5] dieses Heftes
vorgestellt. Demgegenüber sind die
Beiträge [6] und [7] eher den Architekturen

zuzuordnen, welche die Parallelität

der zu verarbeitenden Daten
ausnutzen.

Schliesslich scheint auch ein Kom¬

mentar zum Begriff Rechnerarchitektur

angebracht. Wie in Figur 6 gezeigt
wird, kann es dabei im engsten Sinne
nur gerade um die Hardwarearchitektur

gehen, wie sie ja auch den
Klassierungsversuchen in den Figuren 4 und 5

zugrunde lag. Diese statische Beschreibung

eines Rechnersystems genügt
aber bei weitem nicht, um dessen
Eigenschaften befriedigend vorauszusagen.

Dazu muss auch das darüberlie-
gende Betriebssystem bekannt sein,
welches unter anderem für die Verwaltung

der gemeinsamen Betriebsmittel
wie Speicher, Netzwerk und Prozessoren

verantwortlich ist. Den Anwender
schliesslich interessiert eigentlich nur

das Verhalten nach aussen, welches
zusätzlich durch die Applikationsprogramme

sowie durch die Implementierung

in einer bestirnten Technologie
gegeben wird.

Klassische Formen
der parallelen
Informationsverarbeitung
Einleitend zeigen wir in Figur 7 eine

implizite Definition verschiedener
Computergenerationen, indem wir
jene neuen Merkmale angeben, welche
zum Übergang von einer Generation
zu einer nächsten Generation geführt
haben. Schon in der 1. Computergeneration

wurde versucht, einen
Leistungsgewinn durch Parallelverarbeitung

zu erzielen. Allerdings handelte
es sich um eine sehr primitive Form
von Parallelität, bei der Daten- und
Adresspfade eine parallele Übermittlung

der Bits eines Wortes erlaubten,
und auch Steuer- und Rechenwerke
für die wortparallele Verarbeitung
ausgerüstet wurden. Bereits in der 2.

Generation wurde dann versucht,
durch geschickte zeitliche Überlappung

der bereits früher erwähnten
Phasen der Ausführung einer Instruktion

einen Zeitgewinn zu realisieren
(sogenanntes Pipelining auf der Ebene
elementarer Operationen). Aber auch
vom Benutzer her gesehen ist bereits in
den sechziger Jahren Parallelität sichtbar

geworden: Sogenannte Timeshar-
/ng-Betriebssysteme erlauben die
quasigleichzeitige Benutzung eines Rechners

durch mehrere Anwender, indem
durch Multiplexierung sozusagen
verschiedene virtuelle Maschinen
geschaffen werden; jede virtuelle
Maschine wird zum Träger eines separaten

Anwenderprozesses. Schliesslich
zeigen sich erste Ansätze zu eigentlichen

Mehrprozessorsystemen, indem
die Steuerung und Verwaltung externer

Speichermedien (Magnetband und
-platte) auf spezielle Prozessoren
ausgelagert wird. Wieder andere, heute
bei den meisten Rechnersystemen
anzutreffende Formen von paralleler
oder quasiparalleler Ausführung von
Arbeitsschritten betreffen den Einsatz
von virtuellen Speichern und Caches',
die Verwendung von spezialisierten,
dem Rechenwerk beigefügten
Verarbeitungseinheiten (zum Beispiel für

1 Schneller Arbeitsspeicher, welcher jene
Programmteile und Daten enthält, auf die am häufigsten

zugegriffen wird.

Bulletin SEV/VSE 79(1988)7, 9. April 341

Übersicht

1. Generation

-Transistor

2. Generation

-IBM-System/360
-Timesharing
-Mikroprogrammierung

3. Generation
v

-LSI/VLSI
-leistungsfähige Betriebssysteme
-SW-HW-Migration
-SpezialProzessoren
-Geschwindigkeit, Speicherkapazität
-leistungsfähige E/A-Systeme
inkl. LAN-Anschluss

-Multiprozessoren

4. Generation

-Parallel-Verarbeitung
-KI
-Funktionale Programmierung
-Logische Programmierung?

5. Generation

Figur 7

Computergenerationen
Die Fragezeichen beim Übergang von der 4. zur
5. Generation sollen andeuten, dass noch keine
allgemein anerkannten Kriterien für einen

Computer der 5. Generation existieren.

die Ausführung von Gleitkommaoperationen),

den Einsatz bestimmter
Verfahren des direkten Speicherzugriffs
(Cycle Stealing) usw.

Zwar können alle diese Massnahmen

zu einer wesentlichen
Leistungssteigerung von Rechnersystemen
beitragen, dennoch führen sie aber im
Prinzip nicht weg vom Flaschenhals
des klassischen Einprozessorsystems -
dem «von-Neumann-Bottleneck» von
Backus.

Neue Formen der
Parallelverarbeitung
Ansätze, welche zum Teil wesentlich

weitergehen als die bereits nahezu
klassischen Mehrprozessorlösungen
von Figur 3, wurden in den letzten 15

Jahren vermehrt zur Diskussion
gestellt. Letztlich stehen dahinter 3

verschiedene Beweggründe:

- Es wird nach Architekturen gesucht,

welche eine entscheidende
Leistungssteigerung versprechen.
- Man möchte die Möglichkeiten der
modernen VLSI-Technik möglichst
gut ausnutzen.
- Schliesslich - und dies könnte
langfristig entscheidend werden - möchte
man Rechnerarchitekturen schaffen,
die eine besonders effiziente
Implementierung von Programmen in
neuartigen Programmiersprachen erlauben.

Zu beachten ist, dass die heutigen
Technologien es durchaus gestatten,
Parallelverarbeitungsmethoden
sowohl in Mehrzweckrechnern wie auch
in sehr anwendungsspezifischen Systemen

(bis hin zu reinen
Hardwareimplementationen, beispielsweise im
Bereiche der Signalverarbeitung)
einzusetzen.

Es stellt sich als recht schwierig heraus,

die verschiedenen neuen
Rechnerarchitekturen nach einigen wenigen
prägnanten Merkmalen zu klassieren.
Vor allem zeigt sich, dass an sich
bewährte und weitverbreitete Schemas zu
wenig ausdrucksfähig sind. Immerhin
müssen wir die klassischen Bezeichnungen

von Flynn [8] erwähnen, welche

von den bereits erwähnten
Unterschieden hinsichtlich Parallelität der
Prozesse und Daten ausgehen. Flynn
prägte die folgenden Rechnerklassen:

- SISD: Single Instruction Stream,
Single Data Stream

- SIMD: Single Instruction Stream,
Multiple Data Stream

- MISD: Multiple Instruction Stream,
Single Data Stream

- MIMD: Multiple Instruction
Stream, Multiple Data Stream

Wie man unschwer errät, handelt es
sich beim SISD-Typ um den klassischen

von-Neumann-Rechner, während

Rechner im Sinne der Figuren 4b,
4c und 4d sowie Figur 5 als MIMD-
Anwärter identifiziert werden können.
Rechner des SIMD-Typs findet man
im Bereiche der Signalverarbeitung
und der Mustererkennung, wo eine
einzelne Instruktion auf eine Menge
von Datenelementen angewendet
wird. Über die praktische Bedeutung
der MISD-Klasse gehen die Meinungen

hingegen auseinander, da die
gleichzeitige Anwendung verschiedener

Instruktionen auf das gleiche
Datenelement gar nicht konfliktfrei möglich

ist. Wenn allerdings eine losere
Interpretation zugelassen wird, so könnten

die sogenannten Pipeline-Computer
dieser Klasse zugerechnet werden.

Bei einem Pipeline-Rechner werden

mehrere Prozessoren in Serie geschaltet,

und ein Datenstrom «fliesst»
durch diese Kette von Verarbeitungseinheiten.

Treleaven führte 1982 die folgenden
Unterscheidungsmerkmale für die
Beschreibung neuartiger Rechnerarchitekturen

ein [9]:

- Control Flow: Maschinen, bei
welchen das Arbeitsprinzip im wesentlichen

auf der klassischen sequentiellen
Abarbeitung einer Instruktionsfolge
mit zentraler Steuerung beruht.

- Data Driven: Maschinen mit mehreren

elementaren Verarbeitungseinheiten,
welche immer dann eine Operation

ausführen, sobald alle dafür
notwendigen Operanden bereit sind. Es

handelt sich also um eine dezentrale
Form der Ablaufsteuerung.

- Demand Driven: Maschinen, deren
Architektur direkt die sogenannte
Reduktion von mathematischen
Ausdrücken unterstützt.

Maschinen der 2. Kategorie werden
normalerweise Datenfluss-Rechner
genannt (Data Flow Machines). Da einer
der folgenden Beiträge [10] eine
Einführung in die Funktionsweise solcher
Rechner enthält, verzichten wir hier
auf weitere Erklärungen. Die Maschinen

der dritten Kategorie werden
sinngemäss als Reduktionsmaschinen
(Reduction Machines) bezeichnet. Treleaven

hat dafür das Merkmal Demand
Driven geprägt, weil bei der systematischen

Reduktion mathematischer
Ausdrücke schrittweise komplexere Terme
durch einfachere ersetzt werden - es

werden entsprechende Operanden
angefordert (demanded) -, bis schliesslich

eigentliche Werte verknüpft werden

können. In diesem Sinne besteht
eine starke Verwandtschaft zur Technik

der tabellengesteuerten Syntaxanalyse

bei Compilern. Während mit
verschiedenen Typen von Datenfluss-
rechnern bereits praktische Erfahrungen

gesammelt werden konnten, ist
ähnliches über Reduktionsmaschinen
kaum bekannt.

Es würde den Rahmen dieser
Einführung sprengen, wenn wir auch
noch auf die sogenannt massiv parallelen

Rechner eingehen würden, Rechner
also, bei welchen unter Umständen
Tausende von Verarbeitungseinheiten
in ein spezielles Kommunikationsnetz
eingebunden werden. Solche Konzepte

sind unter anderem unter den
Begriffen Systolic Arrays [11] oder Wave-
front Processors bekanntgeworden.
Spezielle Beachtung findet auch die

342 Bulletin ASE/UCS 79(1988)7,9 avril

Parallelrechner

bereits kommerzialisierte Connection
Machine [12] mit 65 536 Prozessoren
für Anwendungen im Gebiet der
künstlichen Intelligenz.

Wo stehen wir heute?
Es fehlt also nicht an vielversprechenden

Vorschlägen für neuartige
Rechnerarchitekturen. Darüber hinaus

ist es namentlich im Bereich
anwendungsspezifischer Rechner (z. B.
für die Signalverarbeitung) gelungen,
einigen der neuen Konzepte auch
wirtschaftlich zum Durchbruch zu verhelfen.

Dennoch können wir nicht
verschweigen, dass noch viel in der
Forschung und Entwicklung zu tun bleibt,
wenn die radikaleren der neuen
Konzepte voll verstanden und beherrscht
werden sollen. Dabei genügt es nicht,
die neuen Rechner auf der Ebene der
Hardwarearchitektur einigermassen
zu verstehen; vielmehr muss es um die
Beherrschung aller Entwicklungsschritte,

von der Formulierung einer
neuen Applikation bis zur Implementierung,

gehen. In Anlehnung an die
Ausführungen in [13] versuchen wir,
diese Situation in Figur 8 zu illustrieren:

- Noch ganz wenig beackert ist das

ganze Gebiet paralleler Algorithmen.

Der klassischen Sammlung von Knuth
steht in diesem Bereich noch nichts
gegenüber!

- Neuartige Algorithmen werden
ihrerseits in neuartigen Programmiersprachen

mit möglichst hoher
Ausdruckskraft formuliert werden müssen.

Interessante Vertreter sind zum
Beispiel funktionale Programmiersprachen,

welche es besonders einfach
machen, Parallelität darzustellen (die
Summe von zwei Funktionen kann
parallel evaluiert werden). Für diese
neuen Programmiersprachen sind
entsprechende Compiler zu entwickeln.
- Schliesslich wird es auch - abgesehen

von sozusagen fest verdrahteten
Spezialmaschinen - bei den neuartigen
Rechnern eines Betriebssystems
bedürfen, welches eine effiziente Ausnutzung

der vorhandenen Betriebsmittel
für eine breite Klasse von
Anwendungsprogrammen erlaubt.

Schlussbemerkungen
Neue Konzepte für die Parallelverarbeitung

in elektronischen Systemen
haben vor allem im Zusammenhang
mit sogenannten Superrechnern
Beachtung gefunden. In jüngster Zeit
wurde sogar der Begriff «Mini-Super-

rechner» für eine neue Klasse von
preiswerten, kommerziell erhältlichen
Parallelrechnern mit bislang
unerreichtem Preis-Leistungs-Verhältnis
geprägt. Von den Publikationen her
könnte man versucht sein, hier einmal
mehr die Schweiz in einem technologischen

Rückstand zu sehen. Um so
erfreulicher ist es, dass im Rahmen der
ITG-Informationstagung, welche
Gegenstand dieses Heftes ist, einige For-
schungs- und Entwicklungsprojekte
an Schweizer Hochschulen vorgestellt
werden konnten. Besonders interessant

scheinen uns die Projekte auch
deshalb zu sein, weil von allem
Anfang an Anwendungen im industriellen

Bereich im Vordergrund stehen.

Literatur
[1] J. Backus: Can programming be liberated

from the Von Neumann style? Communications

of the ACM 21(1978)8, p. 613...641.
[2] J. Von Neumann: Probabilistic logics and the

synthesis of reliable organisms from unreliable

components. Automata studies. Princeton,

Princeton University Press, 1956.

[3] M. Minsky and S. Papert: On some associa¬
tive, parallel and analog computations. In:
Associative information techniques - New
York, Elsevier, 1971.

[4] G.M. Amdahl: Validity of the single proces¬
sor approach to achieving large scale
computing capabilities. Proceedings AFI PS

30(1967)-, p. 483...485.

[51 P.G. Kropf: Paralleles Rechnen mit Transputers.
Bull. SEV/VSE 78(1988)7, S. 356...361.

[6] M. Hufschmid und Ch. Löffler: Modularer
Parallelrechner für die Signalverarbeitung.
Bull. SEV/VSE 78(1988)7, S. 368..J72.

[7] A. Gunzinger, S. Mathis und W. Guggenbühl:
Synchroner Datenflussrechner zur
Echtzeitbildverarbeitung. Bull. SEV/VSE 78(1988)7,
S. 362...367.

[8] M.J. Flynn: Some computer organizations
and their effectiveness. IEEE Trans.
C-21 (1972)9, p. 948...960.

[9] P.C. Treleaven a.o.: Data-driven and
demand-driven computer architecture. ACM
Computing Surveys 14(1982)1, p. 93...143.

[10] R. Biihrer: Datenflussrechner - Konzepte
und Anwendungen. Bull. SEV/VSE
78(1988)7, S. 344...350.

[IIa] J.A.B. Fortes and B.W. Wah: Systolic
arrays—from concept to implementation.
IEEE Computer 20(1987)7, p. 12...17.

[lib] J.A.B. Fortes a.o.: Systolic arrays. A survey
of seven projects. IEEE Computer
20(1987)7, p. 91...103.

[12] D.L. Waltz: Applications of the connection
machine. IEEE Computer 20(1987)1, p.
85...97.

[13] P.C. Patton: Multiprocessors —Architecture
and applications. IEEE Computer
18(1985)6, p. 29...40.

Figur 8 Forschungsthemen im Bereich Parallelverarbeitung
- Ausdruckskraft: Vermögen einer Sprache, leistungsfähige Konzepte kompakt und dennoch präzis

und anwenderfreundlich darzustellen.
- Effizienz: Möglichst gute Ausnutzung der Verarbeitungs- und Speicherelemente.

Bulletin SEV/VSE 79(1988)7,9. April 343

	Parallelverarbeitung in elektronischen Systemen : eine Übersicht

