Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 78 (1987)

Heft: 11

Artikel: Computers for VLSI Design

Autor: Lamb, P.

DOl: https://doi.org/10.5169/seals-903871

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903871
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

CAD Systems

Computers for VLSI Design

P. Lamb

The choice of computer systems for
VLSI Computer-Aided Design (CAD)
is enormously wide. In this article,
the selection of computer systems
is looked at from the point of view
of the typical CAD tasks which are
performed in VLSI design and what
sort of hardware can be effectively
used in the major areas of the
design problem. Finally, the pro-
blems of maintaining a mixed com-
puter environment, and the trade-
offs which must be made in such an
environment, are briefly addressed.

Die Auswahl an Computersyste-
men, die sich fiir den Entwurf (CAD)
von VLSI-Schaltungen eignen, ist
gross. In diesem Beitrag werden
Auswahlkriterien besprochen, die
sich aus den typischen Hard- und
Softwareaufgaben beim VLSI-
Design ergeben. Es werden auch
kurz die Probleme einer gemischten
Computerumgebung sowie die
Kompromisse, welche diese ver-
langt, besprochen.

Le choix des systemes d’ordina-
teurs, qui conviennent pour |’assis-
tance a la conception de circuits
VLSI, est considérable. Discussion
de ses critéres, qui résultent des
tiches typiques concernant le
matériel et le logiciel. Bref apercu
des problemes d’un environnement
mixte de I’ordinateur et des com-
promis a admettre.

Address of the author

Peter Lamb, dipl. Ing., Institute for Integrated
Systems, ETH-Zentrum, 8092 Ziirich.

In deciding on the computing re-
sources needed for VLSI design, it is
important first to look at the tasks
which are commonly done in VLSI
computer-aided design (CAD), and
the computing resources which are
desirable to carry out the task. In the
following the CAD area is divided into
three major groups: VLSI circuit and
layout design, simulation and layout
verification.

1. VLSI circuit and
layout design

Table I shows this area divided in
two major applications: graphic entry
programs and programs for conver-
sion of symbolic (so-called ‘‘sticks™)
layout into VLSI mask geometry.

1.1 Graphic entry programs and
graphics devices

Graphic entry programs are typical-
ly conventional two-dimensional
drawing programs, with drawing on
multiple layers. The ability to repre-
sent multiple layers is less important
for schematic capture than for layout,
although it may be desirable to handle
and display logically distinct parts of
the schematic on different layers and
in different colours, or in different line
styles on monochrome devices. Sche-
matic capture applications tend to-
wards line graphics, while layout pro-

grams use filled areas far more, espe-
cially filled and pattern-filled rectan-
gles.

True vector graphics devices have
almost disappeared from the market
for VLSI CAD applications, so we will
concentrate here on the characteristics
of raster graphics devices. The resolu-
tion of a displayed image is a result of
the digital resolution of the stored ras-
ter image, the quality of the digital/
analog converters and video ampli-
fiers in the graphics interface and
monitor and the quality of the monitor
tube itself. Low cost is usually an indi-
cator that the quality of one or more of
the key components is lower than de-
sirable. High cost does not always in-
dicate the reverse.

The quality of color monitors varies
considerably. It is a deciding factor on
the strain placed on a designer work-
ing with such a system. The main vari-
ables are the resolution of the final im-
age, the amount of flicker, the size of
the screen and environmental factors
such as the type of lighting, sources of
reflection, and noise produced by the
monitor and any other associated
hardware.

The type of image displayed by
VLSI layout editors is also such that
low quality in any of these areas is ac-
centuated. Typically, the image dis-
played contains large numbers of ver-
tical and horizontal edges, so that any
distortion of the image shape is imme-

Table I

Problem area

Algorithm style Computation needs

VLSI circuit and
layout design

Schematic capture

jLayoul editing
\

Graphics Moderate CPU-screen
bandwidth
Graphics Moderate to high

CPU-screen bandwidth,
colour.

Symbolic layout compaction

Large, complex data structures | Fast integer arithmetic,
array indexing and
pointer manipulation;
large real and virtual

memory spaces.

612

Bulletin ASE/UCS 78(1987)11, 6 juin

CAD Systems

diately noticeable. The edges delineate
areas of high colour contrast, so that
any small misalignment of the red,
green and blue components of the im-
age results in bands of the incorrect co-
lour at these boundaries. Finally there
are often large areas which should be
of constant colour (such as the back-
ground of the image), which some-
times are not constant when displayed.
All of these factors are relatively unim-
portant for displays of natural scen-
ery, where there are fewer long,
straight edges, weaker colour contrast
and usually no large areas of constant
colour.

In order to display a flicker-free im-
age the monitor should have a high
scan rate (70 Hz or more) and not use
interlacing. Displays with a scan rate
which is a multiple of the mains power
supply should be avoided, since their
flicker is particularly bad in rooms
with artificial lighting. Interlacing
should be avoided, since this can cause
extremely bad flicker for particular
types of pattern. A pattern which is
made up of horizontal lines on every
second scan line of an interlaced dis-
play is most disturbing. Monochrome
displays can reduce this problem by
using screen phosphors with a long
time constant, but this is usually not
possible for color screens.

In general, smaller monitors render
a sharper and better aligned picture
than larger monitors. However, as the
cost of memory decreases, and more
resolution becomes available from the
digital hardware, smaller monitors be-
gin to approach the limits of the visi-
bility of small graphic objects (letter-
ing in particular).

Graphics application software is
now demanding higher data band-
widths between the CPU and the gra-
phic display. Graphic entry programs
become annoying when there is an ap-
preciable delay between a user action
(typing a key, or “pointing” using a
mouse or graphics tablet) and the reac-
tion of the system. This is often the
case when the user communicates over
a serial line at limited speed, and the
application is running on an over-
loaded timesharing system. It is in this
area where graphics workstations
should excel. In such a workstation,
the CPU is local, so there is no compe-
tition for the CPU from other users,
the raster graphics device is usually
memory-mapped so that it can be ac-
cessed at full CPU speed, and there is
often hardware assistance for graphics
operations.

The most popular devices for gra-
phic input are the graphic tablet and
the “mouse”. The graphic tablet con-
sists of a special surface and either a
stylus or a small box which can be
moved over the surface in order to in-
dicate position. The stylus or box
(puck) has buttons to indicate when
the coordinates shown should be
transmitted to the application pro-
gram. Mice, in the computer graphics
sense, come in two varieties: one uses a
mechanical movement sensor, and can
be used on any surface that is not too
smooth, and the other variety uses an
optical sensor which must be used over
a special surface. The main difference
between the mouse and the graphic
tablet is that the same position on the
graphic tablet always indicates the
same position on the graphics screen,
where the mouse returns only relative
position. The two devices are quite
similar in their use apart from the fact,
that a tablet can be used with an off-
screen command menu (by using an
overlay on the tablet surface) and a
mouse can be effectively used in a
much smaller space.

1.2 Symbolic layout compaction

Symbolic layout is becoming a more
widely used mechanism for construct-
ing a VLSI mask layout. This method
requires that the user lay out an ap-
proximate view of the final mask
layout. This approximate or symbolic
layout consists of transistors, wires
and contacts only, laid out on an undi-
mensioned grid. The final mask details
and the spacing between the elements
is then calculated by program, a sym-
bolic layout compacter.

When an entire chip is constructed
in this manner, the amount of data
which is processed by the compacter is

enormous. Compaction of the Flint-
stone! datapath e.g. takes -approxi-
mately 17Y2 hours, requires more than
100 Mbyte of virtual memory space on
a computer with 8 Mbyte of physical
memory, and, not surprisingly, pages?
heavily (about 600000 page faults).
Similar experiences have been noted
for other chips using this technique.
The computation requirements for
this task are for a large virtual address
space, in order to deal with the pro-
blem at all, a large physical memory
space in order to reduce the amount of
paging activity and so use the CPU
speed effectively, and fast disks for
when the paging occurs. For the com-
paction mentioned above, a Sun
3/160C workstation with 8 Mbyte me-
mory, running SunOS (Sun’s version
of the Unix operating system) was
used. Paging took place remotely over
Ethernet on a Sun file server. This con-
figuration falls somewhat short of the
ideal, because of the relatively small
amount of memory available, and the
indirect access to the paging device.

2. Simulation

Simulation plays an important role
in VLSI design. The requirements on
analytical and event-driven simulators
are listed in Table II.

! This 20 000 transistor microprocessor, which
is being developed in the Institute for Integrated
Systems, ETHZ, is described by the article by T.
von Eicken, also in this issue.

? Since the virtual memory used is so much
larger than physical memory, program pages
must be frequently exchanged between main
memory and disk.

Table I1 Problem area

Algorithm style Computation needs

Simulation Process

Device

Circuit

Numerical analysis Fast floating point pro-
cessing, vector process-
ing.

Fast floating point pro-
cessing, vector process-
ing.

Fast floating point pro-
cessing, vector process-

ing.

Numerical analysis

Numerical analysis

Gate/switch

RTL/architecture

Event-driven Fast integer arithmetic,
array indexing and
pointer manipulation.
Fast integer arithmetic,
array indexing and
pointer manipulation.

Event- or clock-driven

Bulletin SEV/VSE 78(1987)11, 6. Juni

613

CAD Systems

2.1 Floating-point intensive
simulation

VLSI wafer processing simulation,
device modelling in two and three di-
mensions and circuit analysis, particu-
larly transient analysis are large con-
sumers of CPU time in VLSI design.
The algorithms used in these simula-
tors are generally linear algebraic ma-
nipulations of large sparse matrices?,
and so are typically heavy users of
floating-point arithmetic. These prob-
lems are often amenable to calculation
on vector processors such as the Cray,
or less expensive ‘“‘near-supercomput-
ers” like the Alliant and Convex.

However, careful analysis of the ap-
plication programs with program flow
tracing software is necessary (in order
to find the computationally intensive
parts of a program) before deciding on
one of these machines, since the per-
formance of vector processors heavily
depends on the existence of easily vect-
orizable operations on long vectors or
arrays. If the problem does not have
these characteristics, the performance
of the machine may be disappointing
in comparison to conventional com-
puters of similar cost.

Most programs written for conven-
tional processors will need some re-
writing in order that a vector processor
can approach its maximum perfor-
mance. This will usually consist of in-
serting compiler directives in the code
in order to permit the compiler to vect-
orize loops which in the most general
case are not strictly vectorizable. For
example:

SUBROUTINE MULT (A, B, C, N)
REAL A(N), B(N), C(N)

DO 10I=1,N

10 A(I) = B(I) * C(I)
RETURN
END

At first sight this FORTRAN sub-
routine looks perfect for vectorization;
but consider a call of this subroutine
as:

REAL X(100)
CALL MULT (X(3), X(2), X(1), 98)

Since the formal parameters of
MULT now correspond to actual pa-
rameters which are parts of the same
array and therefore overlapping in me-
mory, the result returned by a vector
processor will be different from that

3 matrices with a large number of zeros.

returned by a conventional computer.
The compiler, then, should not auto-
matically vectorize MULT. A pro-
grammer must decide that MULT is
not used in such a peculiar manner
anywhere in the program which will
use the subroutine. In a large program,
and for routines less simple than
MULT, this is not always an easy mat-
ter.

Occasionally, a program may run
faster if selected pieces of code are not
automatically vectorized. Since there
is usually a significant setup time for
the vector hardware (filling and emp-
tying the vector pipeline), small loops
may run faster if they are not vecto-
rized. The compiler should recognize
this automatically if the length of the
loop is known at compile time and not
vectorize if the loop length is too small.
If the loop length can only be deter-
mined at run time, then the decision
must be made by the programmer.

A third change that may need to be
made is inversion of some program
loops:

One way to loop:
DO 101 = 1,10000

DO10J=14
10 A(1,J) = B(I,J) +.C(1,))
The other way...
DO10J=1,4
DO 101 = 1,10000
10 A(LJ) = B(I,)) + C(1,))

The second loop will vectorize far
better than the first (it will also have
better paging behavior on a conven-
tional computer).

Deciding between a conventional
and a vector processor depends on the
amount of computation used by pro-
grams which can be vectorized, on the
extent of modifications which need to
be made to the applications in order to
use the power of the vector processor
and, of course, the relative costs of
conventional machines and vector
Processors.

2.2 Event-driven simulation

Event-driven simulation generally
has different characteristics from ana-
lytical simulation. By simplifying the
model used in the simulation to tran-
sistor switches or to gate level or high-
er abstractions, the concentration on
floating-point arithmetic and on solu-
tion of the whole circuit at each time
point moves to solution of only those
parts of the circuit which are changing,
to discretized values for nodes and of-
ten discretized time intervals.

As the level of simulation gets high-
er, the main computational load
moves from iterative floating-point
operations on large sparse arrays to
event list manipulation and discrete
evaluation of node and device lists,
now effectively randomly accessed un-
der the control of the event manager.
Vectorization of such programs is dif-
ficult, special floating-point hardware
helps little (even if it helps speed up in-
teger multiplication and division, too).
What is needed with current compiler
technology is simply the fastest integer
operations possible on conventional
computers.

Virtual address space is also not
such a great problem: switch-level sim-
ulation of the Flint Stone processor
mentioned earlier causes no particular
problems for our computer systems,
apart from Speed. Our testing of low-
cost vector machines so far has been
disappointing for problems like this
and the symbolic compaction men-
tioned earlier.

3. VLSI layout verification

Before fabrication, VLSI Layouts
must be checked for consistency
against design rules. This includes
checking the layout geometry, extract-
ing the circuit netlist and checking this
netlist for electrical consistency (Table
I11).

Problem area

Table III

Algorithm style Computation needs

Layout verification Geometrical check

Circuit extraction

Polygon algebra Fast sorting of large
files, fast disk /O, fast
integer/bit manipula-
tion.

Fast sorting of large
files, fast disk /O, fast
integer/bit manipula-
tion.

Polygon algebra

Electrical consistency check

Fast integer arithmetic,
array indexing and
pointer manipulation.

Complex data structures

614

Bulletin ASE/UCS 78(1987)11, 6 juin

CAD Systems

Geometrical checking and circuit
extraction for VLSI handle large
amounts of data. Most algorithms for
these tasks require that the layout data
is sorted in at least one axis, but once
this is done, the amount of input data
in the program at any one time is sim-
ply all objects crossing a narrow band
which moves across the chip: as it
moves, objects are read in and dis-
carded as needed. The sort operation is
often one of the more time-consuming
parts of this process, and requires an
efficient sorter, capable of handling
large data collections, and fast disk
I/0 support on the computer. Electri-
cal consistancy checking requires the
program to trace through the electrical
netlist to find transistors which are not
properly connected to the circuit. This
requires similar processing capabilities
to digital simulation of the circuit.

4. Miscellaneous

Format conversion between various
data formats used in VLSI design tools
is an uninteresting but vital part of any
design system built up from parts ob-
tained from different suppliers (and
sometimes from the same supplier). In
general it requires fast disk I/0, since
the files are often fully expanded re-
presentations of the design, and so
quite large. Fast conversion is needed
between representation in the input
file and a common internal representa-
tion and between this internal form
and the output form. This is doubly
important if the conversion goes
through a common external represen-
tation in a two-stage conversion pro-
cess. This two-stage conversion bet-
ween formats reduces the number of
conversion programs required to cover
all possible format conversions, but at
the cost of a double conversion each
time.

5. Conclusion

A the moment it appears that there
is no single computer which recom-

mends itself to the solution of all the

processing problems of VLSI CAD.

Workstations are effective for graphic

input, moderate-size digital simula-

tions and small analog simulations.

Conventional mainframe computers

can cover large digital simulations,

analog simulations of subsystems and
tasks which require high 1/0 band-
width either for file operations or pag-
ing. Super-computer architectures do
not always provide a cost-effective
coverage of computing tasks which are
not vector based, such as symbolic
layout compaction and event-driven
simulations. Once a mixed solution is
needed, the problems of communica-
tion and compatibility between the
computers become the main impedi-
ment. This can be attacked only by
covering the three following problems

a. compatibility of communications
hardware and protocols,

b. reduction of training and other
overheads by the use of a common
operating environment,

c. the use of portable high-level lan-
guages and language environments
in software written for use on more
than one type of machine.

The third problem here has been so
much discussed that I hesitate to add
more to this almost-won argument.
Important here is that the language en-
vironment, especially its run-time li-
braries are portable, as well as the lan-
guage constructs themselves. The other
two problems can be approached in
two ways. One is to restrict the choice
of computers to one manufacturer, in
the knowledge that while the machines
may today be a cost-effective choice,
they may not remain so, and the cost
of a changeover to another manufac-
turer may be very high. The other is to
select a mixed hardware solution and a
common operating and networking
system. At the moment this is reason-
able only with the Unix operating sys-
tem and TCP/IP networking proto-
cols on Ethernet hardware. This allows
a very wide choice of hardware possi-
bilities from personal computers

through to the fastest supercomputers;
Unix is available for almost all com-
puter systems, either as the only, or as
an alternative operating system.

Sometimes Unix, because of its por-
tability, does not use the full hardware
capability fo operating system support
available for a machine—this is simi-
lar to the lower speed obtainable from
a high-level language compiler in com-
parison to assembly coding. Portabili-
ty in computer systems is rarely with-
out a small efficiency penalty.

The tendency in the workstation
market is clearly towards Unix. The
cost of developing a new operating
system is so high that it cannot be un-
dertaken by the relatively small com-
panies involved in this market, espe-
cially when they are under strong pres-
sure for continuous hardware im-
provement.

An example of a mixed
computing system for VLSI
design

The hardware spectrum in the Insti-
tute for Integrated Systems, ETH Zu-
rich, is not very broad —there are ma-
chines from two manufacturers — DEC
and Sun Microsystems. Currently, the
upgrade of the VAX 11/785 to some
high-performance machine is being
considered. Computers from the two
manufacturers already represented
come into consideration, of course,
but also “‘near-supercomputers” and
high-performance conventional com-
puters from other suppliers. Experi-
ence with benchmarking some of these
alternative machines, and of porting
software between VAX and Sun (both
running Unix) has been convincing
that there are relatively few problems
to be expected in introducing another
computer manufacturer.

4+ 3 VAX 11/785, 2 microVAX, 35 Sun work-
stations, 5 Sun file Servers and 2 Symbolics LISP
machines.

Bulletin SEV/VSE 78(1987)11, 6. Juni

615

	Computers for VLSI Design

