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Grundlagen

Digitale Signalverarbeitung :
Theoretische Grundlagen
Teil 4: Praktische Aspekte digitaler Systeme

A. W.M. van den Enden und N.A. M. Verhoeckx

In diesem letzten von vier Teilen

1 stehen praktische Aspekte
von digitalen Systemen im
Vordergrund. Es werden die
Umwandlung analoger Signale in
zeitdiskrete und später in
wertediskrete sowie die damit verbundenen

Begriffe wie Abtasttheorem

und Quantisierungsfehler
behandelt.

Cette quatrième partie traite
principalement des aspects
pratiques de systèmes numériques,
notamment de la conversion de
signaux analogiques en signaux
discrets temporels ou de valeur,
ainsi que des notions y relatives,
telles que le théorème d'exploration

et les erreurs de quantification.

Diese Aufsatzserie ist eine Ubersetzung des

gleichnamigen englischen Beitrags in Philips
Techn. Review 42(1985)4. Die Übersetzung

besorgte H. Ochsner, dipt Ing. ETH, Institut

für Kommunikationstechnik, ETH Zürich

Bull. SEV/VSE 77(1986)1 1, 15, 17

Adresse der Autoren
A.W.M. van den Enden
und N.A.M. Verhoeckx.
Philips Research Laboratories,
NL-5600 JA Eindhoven.

4.1 Von der kontinuierlichen zur
diskreten Zeit und umgekehrt
Soll ein analoges Signal xa(f) durch

ein zeitdiskretes System verarbeitet
werden, so stellt sich zuerst das
Problem, das analoge Signal ohne bzw.
mit möglichst wenig Verlust an
Information in ein zeitdiskretes umzuwandeln.

Ob und wann dies möglich ist,
wird durch das Abtasttheorem1
angegeben:

Enthält das Signal xa(f) keine
Frequenzanteile oberhalb <ümax 27r/max

rad/s. so ist sämtliche Information
über xa(t) in den Werten x3(nT)
enthalten, falls TfA 7/(2fmax) gilt.

tastrate f 1/7) Definiert man nun
das diskrete Signal zu

x[n] xd(nT) (90)

so ist der Übergang von
zeitkontinuierlichen zu zeitdiskreten Signalen
vollzogen (Fig. 43). Die Art und Weise,
wie diese Abtastwerte repräsentiert
werden, beispielsweise durch ganze
Zahlen oder Ladungspakete, ist
vorläufig unwichtig. Der spektrale
Zusammenhang zwischen dem Spektrum
Xa(jco) von xa(f) und X{daT) des
diskreten Signals x[n] kann einfach durch
periodische Wiederholung von Xa(ja>)
und eine Skalierung mit \/T gewonnen

werden:

Die Werte xa(nT) gewinnt man
durch Abtastung von xa(t) mit der Ab-

1 Das Abtasttheorem wird normalerweise C.E.
Shannon zugeschrieben. Er formulierte es im
Rahmen seiner Informationstheorie in den vierziger

Jahren. Beinahe gleichzeitig bewies es aber
auch V.A. Kotelnikov in der Sowjetunion. Die
theoretische Grundlage legten jedoch bereits 1915

E.T. und J.M. Whittaker, so dass man besser die
Formulierung von A.J. Jerri [18] verwendet und
den Begriff « WKS-Abtasttheorem», gebildet aus
den Anfangsbuchstaben der drei Namen, verwendet.

X{d°>T)=— t *.(7« -J-
2Tin

(91)

Die Figur 44 zeigt die Spektren des

abgetasteten Signals für zwei Fälle; im
einen Fall ist das Abtasttheorem
erfüllt, im andern nicht. Man sieht in der
Figur 44b, dass sich die einzelnen
Teilspektren teilweise überlappen. Dieser
Effekt wird mit dem englischen Begriff

Figur 43. Abtastung
Um ein kontinuierliches Signal in ein zeitdiskretes umzuwandeln, ist eine Abtastung (CT DT) notwendig;

die Rückgewinnung des ursprünglichen kontinuierlichen Signals geschieht mittels Tiefpassfilterung
(DT/CT). CT bedeutet continuous time, DT steht für discrete time. fs bezeichnet die Abtastrate.
T 1 //s das Abtastintervall.
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Grundlagen

Figur 44. Abtasttheorem
a Erfüllt die Abtastung der Figur 43 das Abtasttheorem, so ist das Spektrum X (eiC!}T) der Sequenz x[n]

lediglich eine wiederholte und skalierte Version des Spektrums X;l j(•>) des ursprünglichen, analogen
Signals xa(r).

b Ist dies nicht der Fall, so überlappen sich die verschiedenen Wiederholungen; diesen Effekt bezeichnet

man mit Aliasing. In diesem Fall kann das Signal xa(r) nicht mehr aus der Impulsfolge zurückgewonnen

werden.

Aliasing bezeichnet. Offenbar hat die
spektrale Überlappung zur Folge, dass
das ursprüngliche Spektrum Xa(ja>)
und damit das Signal xa(f) nicht mehr
aus dem abgetasteten Signal x[n]
gewonnen werden kann. Aus der
Figur 44a, wo das Abtasttheorem befriedigt

wird, ist zu ersehen, dass das
Grundintervall von X{daT) bis auf
eine Skalierung identisch ist zu Xa(/cu).
Hier erfolgt die Rückwandlung des

abgetasteten Signals in ein kontinuierliches

durch eine ideale kontinuierliche
Tiefpassfilterung. Dieses Filter hat die
Verstärkung T innerhalb des Bereichs
[cu| < n/Tbzw. die Verstärkung 0
ausserhalb. Nun lässt sich aber so ein Filter

in der Praxis nicht realisieren, da
sich seine Stossantwort von I - oo

nach t oo ausdehnen würde.
Eine praktische Anordnung der

Abtastung und Rückwandlung ist in der
Figur 45 zu sehen. Vor der eigentlichen
Abtastung befindet sich ein Vorfilter
mit Tiefpasscharakteristik, dessen
Durchlassbereich bis zur halben
Abtastrate reicht. Dadurch wird ein Aliasing,

welches durch zu hohe Frequenzen

- beispielsweise von Rauschsignalen

- verursacht würde, verhindert. Bei
der Rückwandlung bildet man aus den
Abtastwerten zuerst ein stückweise
konstantes Signal xa(f). Das Spektrum
dieser Approximation zeigt nun
gegenüber dem Frequenzverlauf des

ursprünglichen gefilterten Signals xa(0
Verzerrungen, welche als (sin x)/

x-Verzerrungen bekannt sind. Zudem
sind die Frequenzen ausserhalb des
Grundintervalls unvollständig
unterdrückt. Die Unterdrückung dieser
Anteile kann durch ein nachfolgendes
Tiefpassfilter verbessert werden,
schliesslich liegt ein geglättetes Signal
x At) vor.

Das Signal xa(0 in der Figur 45
besteht aus einer Reihe von
Rechteckimpulsen, deren Fouriertransformation

die Form einer (sin x/x)-Funk-

tion hat. Dieselbe Verzerrung ist natürlich

auch in Xa(ja) von xa(Ü für |co|

< n/T vorhanden. Normalerweise
wird diese Verzerrung durch eine
entsprechende x/(sin x)-Vorverzerrung
im Grundintervall zwischen den Punkten

2 und 3 (Fig. 45) rückgängig
gemacht [19].

4.2 Unterschiedliche Abtastraten

Bislang wurden lediglich diskrete
Systeme mit einer einzigen Abtastfrequenz

behandelt. Sowohl Eingangs-,
Ausgangs- als auch die internen Signale

besassen alle die Abtastrate /s
1/T. Wie aber aus dem letzten
Abschnitt bekannt ist, kann bei der Abtastung

f beliebig gewählt werden,
solange das Abtasttheorem (fs 2/max)

eingehalten wird. Dann ergibt jedes
zeitdiskrete Signal, unabhängig von fs,
eine vollständige Darstellung des

ursprünglichen kontinuierlichen Signals
(Fig. 46).

Bei der digitalen Signalverarbeitung
ist die Anzahl Rechenoperationen,
welche pro Sekunde ausgeführt werden

müssen, unmittelbar mit der
Abtastrate verbunden: Je höher /s, desto
mehr Operationen müssen pro Sekunde

durchgeführt werden. Man ist
deshalb interessiert,/s so tief wie möglich,
am besten möglichst in der Nähe von
2/max, zu halten. Nun kann aber die
Maximalfrequenz /max für verschiedene

Signale innerhalb eines Systems
sehr unterschiedlich sein, in einem
Tiefpassfilter ist beispielsweise fmdK des
Ausgangssignals kleiner, oft sogar we-

Figur 45. Praktische Abtastung und Rückgewinnung
In der praktischen Realisierung wird das analoge Signal xa(/) vor der Abtastung durch einen Vorfilter
mit Tiefpasscharakteristik gefiltert, um sicherzustellen, dass das Abtasttheorem eingehalten wird. Bei
der Rückwandlung der Impulsfolge wird die Funktion zuerst durch das Signal x a (Schrittfunktion)
approximiert. Die anschliessende erneute Tiefpassfilterung entfernt die Unstetigkeiten. Im unteren Bilddrittel

sind die dazugehörigen Spektren dargestellt.
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sentlich kleiner als dasjenige des
Eingangssignals. Bei einem digitalen
Modulator ist genau das umgekehrte der
Fall, das Ausgangssignal besitzt dort
die grössere Maximalfrequenz. In
derartigen Systemen bietet sich deshalb
die Verwendung unterschiedlicher
Abtastraten für verschiedene Signale an
(Fig. 47). Voraussetzung hierzu ist aber
ein Abtastratenumwandler, bei
welchem ein Eingangssignal einer gewissen

Rate^i in eines einer andern Rate

f2 umgesetzt wird.

Wir beschränken uns hier auf den
Fall, wo bzw. f\ //s2 eine ganze
Zahl R ist. Ist f2 < /si, so wird die
Abtastrate um den Faktor R reduziert,
diese Schaltung sei mit SRD (Sampling

Rate Decreaser) bezeichnet.
Umgekehrt wird bei fe > f\ die Abtastrate
um R erhöht, die Schaltung heisse SRI
(Sampling Rate Increaser). Diese
Schaltungen seien durch spezielle
Schaltungsblöcke, wie sie in der Figur
48 zu sehen sind, dargestellt. In dieser
Abbildung ist die Arbeitsweise eines
SRD bzw. eines SRI zu ersehen: Bei

einem SRD erscheint jeweils nach R

Abtastwerten am Eingang genau ein
Wert am Ausgang. Der SRI hingegen
fügt jedem Eingangswert R -I zusätzliche

Abtastpunkte mit Wert 0 hinzu.
Derartige Schaltungen sind offensicht-

Figur46
Änderung der
Abtastrate
Ein kontinuierliches
Signal XaC) und drei
diskrete Signale
xi[nT|], xi[nT2] und
x3[nT3], welchedurch
Abtastung von xd(l) mit
verschiedenen
Abtastraten gewonnen
wurden. Die
dazugehörigen
Spektren zeigen, dass
das Abtasttheorem in
allen drei Fällen
eingehalten wurde; alle
drei diskreten Signale
sind also vollständige
Darstellungen des

analogen Signals.

lieh einfach zu realisieren, hingegen ist
ihr Einfluss auf die Arbeitsweise eines

ganzen Systems schwieriger zu bestimmen.

Sowohl SRD als auch SRI sind
zwar linear, aber zeitvariant. Aus
diesem Grund können sie nicht durch
Systemfunktion, Übertragungsfunktion

oder Impulsantwort beschrieben
werden.

Man kann nun allerdings das
Verhalten auf eine andere Art und Weise

sehr einfach bestimmen. Zu diesem
Zweck zeigt die Figur 48 für den Fall
R 3 die zu einem SRD bzw. SRI
gehörenden Ein- und Ausgangsspektren.
Man sieht so beispielsweise, dass das
Grundintervall des Ausgangsspektrums

im Fall des SRD (Fig. 48a) um
den Faktor R kleiner wird; die
gestrichelten Linien zeigen, dass in Y(d,aTn
ein spektrales Überlappen (Aliasing)
auftreten kann, falls das Spektrum
X(d'oTi) nicht genügend schmal ist.
Dies ist offenbar dann der Fall, wenn
eine Abtastung von x[nT\] mit /,: das
Abtasttheorem verletzt. Umgekehrt
wird bei einem SRI das Grundintervall

des Ausgangssignals um den Faktor

R grösser, wobei X(d'oTi) im
Grundintervall von Y(d°>Ti) genau R

mal repetiert wird.

Um ein spektrales Überlappen zu
verhindern, ist vor dem SRD ein ideales
diskretes Tiefpassfilter, das einen Durchlassbereich

|o>| < n/ T2 und eine Abtastfrequenz
1/7) besitzt, zu schalten. Diese Kombination

wird als Dezimator bezeichnet und
kann nur approximativ realisiert werden.

Die periodischen Wiederholungen
innerhalb des Grundintervalls des
Ausgangssignalsspektrums Y(daTz) eines SRI können

durch ein ideales diskretes Tiefpassfilter,
das einen Durchlassbereich |«| < n/T\

und eine Abtastfrequenz 1/7*2 besitzt,
entfernt werden; man erhält so einen Interpolator,

welcher aber ebensowenig exakt
realisiert werden kann. Sein Ausgangssignal
ist geglättet, d. h. enthält nicht mehr die vielen

Abtastpunkte mit Wert 0 wie y[n77].

In der Praxis findet man den SRD
meistens einem diskreten Filter
nachfolgend. Eine derartige Kombination
von Netzwerken bezeichnet man als
Dezimatorfilter, weil die Abtastrate sei-

xa(t) xlnT] ylnT] Ya(t)

XilnTi] y-ilnTj x2[nT2] y2lnT2]
CTX

SI u,/ S2 dt/
/DT /hl /CT

ya(t)

f<si ftSI ftS2 ftS2

Figur 47. Diskrete Verarbeitung eines analogen Signals
a Es wird nur eine Abtastrate J's verwendet. Diese muss hoch genug sein, um sicherzustellen, dass das

Abtasttheorem an allen Punkten im diskreten System S eingehalten wird,
b Ist die höchste vorkommende Frequenz nicht an allen Orten gleich, so kann es sinnvoll sein, in

verschiedenen Systemteilen (S|. S:) verschiedene Abtastraten (./si- ,/s2) zu verwenden: diese werden in
einem geeigneten Umwandler angepasst.
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Figur 48. Umwandlung der Abtastrate
a Ein SRD (sampling rate decreaser) ist eine Schaltung, welche die Abtastrate um einen ganzzahligen

Faktor R =/s i / fsj Tz/7) reduziert, indem sie jeweils R - I Abtastwerte entfernt. In diesem Beispiel
wurde R 3 gewählt. Gl bezeichnet das Grundintervall,

b Ein SRI (sampling rate increaser) ist eine Schaltung, welche die Abtastrate um einen ganzzahligen
Faktor R /s2//s| T\/T2 erhöht, indem sie jeweils R - l Abtastwerte mit dem Wert hinzufügt.
Auch in diesem Beispiel ist R — 3.

das Interpolationsfilter keine LTD-
Schaltung. Eine wichtige Anwendung
von Dezimator- und Interpolationsfiltern

findet man bei der Abtastung und
der Rückwandlung diskreter in
kontinuierliche Signale. Erlauben die
tatsächlichen Wandler eine erhöhte
Abtastrate, so können die Vor- bzw.
nachfolgenden analogen Filter durch die
Anwendung von Dezimatoren und In-
terpolatoren wesentlich vereinfacht
werden [19]. Durch eine geeignete
Wahl von Dezimator- und
Interpolationsfiltern können übrigens auch
rationale Abtastratenverhältnisse R

erreicht werden [20].

4.3 Von kontinuierlichen zu
diskreten Werten
Im ersten Teil dieser Reihe wurde

erwähnt, dass digitale Signale nur
einen aus einer endlich grossen Anzahl
diskreter Werte annehmen können.
Dies gilt auch für andere Grössen
eines digitalen Systems, wie z.B. für
die Koeffizienten der Filter. Nun wird
aber bei der praktischen Anwendung
digitaler Systeme oft von analogen -
demnach wertekontinuierlichen -
Signalen ausgegangen, wie dies in den
bisherigen Betrachtungen auch der
Fall war.

Der Übergang von wertekontinuierlichen

zu wertediskreten Signalen lässt
sich nun nie mehr völlig rückgängig
machen, da die Anzahl erlaubter
Signalwerte in jedem Fall reduziert wird,
das heisst Information verlorengeht.
Drei Punkte sind bei diesem Übergang
zu beachten: die Quantisierung, der
Überlauf und die Zahlendarstellung
der Signal werte.

nes Ausgangssignals niedriger ist als
diejenige des Eingangs. Es ist aber zu
beachten, dass dieses Filter kein lineares

zeitinvariantes diskretes System
LTD-System) ist. Nun ist es aber nicht

sehr sinnvoll, im Filter Abtastwerte zu
bestimmen, um sie anschliessend im
SRD zu ignorieren. Vielmehr können
die Schaltungen geeignet miteinander
verflochten werden, dies ist in der
Figur 49 zu ersehen.

Die Kaskade eines SRI und eines
diskreten Filters bezeichnet man als

Interpolationsfilter. Auch hier kann
man von der Tatsache Gebrauch
machen, dass eine grosse Zahl von
Abtastpunkten den Wert 0 besitzt und so
eine geeignetere verflochtene Schaltung

finden (Fig. 50). Offenbar ist auch

Figur 49
Dezimatorfilter
a Kombinationeines

diskreten Filters mit
einem SRI) von
R 2. In dieser
Schaltung sind vier
Multiplikationen pro
Intervall T\

notwendig,
b Durch Verwendung

mehrerer SRI) kann
dasselbe Signal
v[n T2] mit lediglich
vier Multiplikationen
pro Intervall
T2 =2 7] gewonnen
werden.

Bulletin SEV/VSE 78(1987)1, 10. Januar 33
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a Die Interpolation wird durch Kombination eines diskreten Filters mit
einem SRI erreicht und benötigt sechs Multiplikationen pro Intervall T\.

b Durch geeignete Verflechtung der SRI kann die Anzahl der Multiplikationen
auf vier pro Intervall T\ 2 Ti reduziert werden.

Xp

t
X

Xp

Î

// X

xp

t

44'/I
—-4v ox~* -*\/x

3

0 X -X /- K*

b <

°*U*

Figur 52. Overflow
Drei Möglichkeiten des Overflow-Verhaltens sind:
a Sättigung
b Zurücksetzen auf Null
c Repetition des Quantisierungsbereichs

Quantisierung
Unter Quantisierung versteht man

den Vorgang, bei welchem eine Grösse
x derart in ein xq umgewandelt wird,
dass xq zwar ungefähr gleich gross ist
wie x, aber aus weniger Werten aufgebaut

ist. Den Zusammenhang
zwischen xq und x bezeichnet man als
Quantisierungscharakteristik. Die
gebräuchlichsten Methoden sind in der
Figur 51 zu sehen: Rundung auf die
nächstgelegene Schwelle, Quantisierung

auf den nächstkleineren Wert
und Quantisierung auf den Wert mit
nächstgelegenem kleinerem Betrag. In
diesen Beispielen ist die Differenz q
zwischen zwei aufeinanderfolgenden
Werten von xq konstant.

Überlauf (Overflow)
Ein Überlauf tritt dann ein, wenn

der Signalwert x ausserhalb eines be¬

grenzten Intervalls (-X, X) zu liegen
kommen sollte, wobei dies vom
System aber verunmöglicht wird. For-
melmässig wird also x derart in ein xp
umgewandelt, dass

[ x \x\ < X
-Yp|<* |*| > AT

(92)

Den Zusammenhang zwischen x
und xp bezeichnet man als Overflow-
Charakteristik. Auch hier sind drei
Beispiele solcher Charakteristiken zu
sehen (Fig. 52): Sättigung, Zurücksetzen

auf Null und Repetition des
Quantisierungsbereichs (Sägezahn-Over-
flow). Theoretisch kann jedes beliebige
Quantisierungsverhalten mit jedem
beliebigen Overflow-Verhalten kombiniert

werden.

Zahlendarstellung
In einem digitalen System werden

Grössen normalerweise durch eine
Gruppe (Wort) von beispielsweise B
Bits dargestellt. Die Quantisierung
(inklusive Overflow-Behandlung) hat
demnach 2B verschiedene Werte zur
Verfügung. Jeder dieser Werte
entspricht dann genau einer Bit-Kombination.

Welche Kombination zu
welchem Wert gehört, wird durch die
verwendete Zahlendarstellung bestimmt.
Auch hier sind verschiedene Möglichkeiten

denkbar. Die vier gebräuchlichsten
Methoden sind in der Tabelle II

Dezimalwert Vorzeichen

und
Betrag

komplement komplement

Oflset-
Binür-
code

+ 4 _ _ _ 1 1 1

+ 3 01 1 011 011 110

+ 2 010 010 010 101

+ 1 001 001 001 100

+ 0 000 000 000 -
-0 100 111 - 01 1

- 1 101 110 111 010
-2 110 101 110 001

-3 111 100 101 000
-4 - - 100 -

Tabellen. Beispiele für die binäre
Darstellung von Zahlen

für den Fall B 3 zu sehen. Es zeigt
sich, dass je nach verwendeter
Quantisierung, bzw. Overflow-Behandlung
die eine oder die andere Zahlendarstellung

geeigneter ist.
Die Tatsache, dass die Wortlänge B

in digitalen Systemen immer endlich

a b c

Figur 51. Quantisierung
Die Figur zeigt drei Möglichkeiten der Quantisierung (mit Quantisierungsintervall q):
a Rundung auf die nächstgelegene Schwelle
b Quantisierung auf den nächstkleineren Wert
c Quantisierung auf den Wert mit nächstgelegenem kleinerem Betrag

34 Bulletin ASE/UCS 78(1987)1, lOjanvier
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gross ist, hat einige wichtige
Konsequenzen, welche im nächsten
Abschnitt behandelt werden sollen. Vorher

soll aber noch einmal darauf
hingewiesen werden, dass der Prozess,
welchen man normalerweise mit
Analog/Digitalwandlung (A/D-Wand-
lung) bezeichnet, aus zwei Schritten
besteht, nämlich der Umwandlung
von zeitkontinuierlichen in zeitdiskrete

Signale und der Quantisierung von
wertekontinuierlichen zu wertediskreten

Signalen.

4.4 Der Einfluss endlicher
Wortlängen
In diesem Abschnitt werden drei

Situationen betrachtet, bei welchen
endliche Wortlängen einen wesentlichen
Einfluss ausüben: Die A/D-Wand-
lung, der Entwurf digitaler Filter und
die Arithmetik digitaler Berechnungen.

A/D-Wandlung
Bei der Quantisierung wertediskreter

Signale x[n] in Xq[h] nimmt man
normalerweise an, dass Xq[h] durch
Addition eines Rauschsignals e[n]
xq[/i] - x[n] aus x[n] (Fig. 53) gewonnen

wurde. Für den Fall, wo die
Rundungsquantisierung verwendet wird,
kann man die Leistung dieses
sogenannten Quantisierungsgeräuschs
berechnen zu

1

Pe — (93)
12

wobei q die Schrittweite der
Amplitudenquantisierung bezeichnet. Nimmt
man weiter an, dass die Abtastwerte

Figur 53
Quantisierungsgeräusch

a Die Umwandlung
eines diskreten
Signals x[n] mit
kontinuierlicher
Amplitude in ein
wertediskretes Signal
xq[h] kann als
Addition eines
Rauschsignals
e[n] XQ[n]-x[n]
aufgefasst werden,

b Ersatzschaltung des
Rauschquellenmodells

von xq['i] durch Worte der Länge B
dargestellt werden und dass das
ursprüngliche Signal x[n] ein Sinussignal
ist, dessen Amplitude gerade so gross
ist, dass kein Overflow auftritt, dann
kann das Signal/Quantisierungsge-
räusch-Verhältnis in dB bestimmt werden

zu

Px

— =6ß+l,76 (dB) (94)
Pe

Aus dieser Gleichung kann eine
wichtige allgemeingültige Folgerung
abgeleitet werden: Wird die Wortlänge
B eines digitalen Systems um ein Bit
erhöht, dann beträgt die Verbesserung
des Signal/Quantisierungsgeräusch-
Verhältnisses maximal 6 dB.

Entwurf digitaler Filter
Im dritten Teil wurden Methoden

für den Entwurf digitaler Filter
angegeben. Diese liefern normalerweise
beliebig exakte Werte für die Filterkoeffizienten.

In einem praktischen Digi¬

talfilter ist nun aber die Anzahl Bits
für die Darstellung dieser Koeffizienten

schon aus Preisgründen so klein
wie möglich zu halten. Die gefundenen
Koeffizientenwerte müssen demnach
quantisiert werden, was eine Änderung

der Filtercharakteristik zur Folge
hat [21 ] z. B. weil die Lage der Pole und
Nullstellen verändert wurde. Diese
Änderung kann derart ausgeprägt
sein, dass das Filter mit den quantisier-
ten Koeffizienten die ursprünglichen
Spezifikationen nicht mehr erfüllt
(Fig. 54) oder unter Umständen sogar
instabil wird. Das Filter bleibt aber
trotz der Quantisierung der
Koeffizienten linear, zeitinvariant und vom
Eingangssignal unabhängig. Lediglich
die Charakteristik ändert sich, und
zwar in einer Weise, die berechnet werden

kann.
Nun reagieren gewisse Filterstrukturen

empfindlicher auf die Quantisierung

der Koeffizienten als andere. So
wurde bereits im Abschnitt über
diskrete Filterstrukturen erwähnt, dass
die Sensitivität auf solche Änderungen
um so kleiner ist, je kleiner die Anzahl
Koeffizienten ist, von denen die Pole
und Nullstellen abhängen.

Ein anderer wichtiger Effekt ist,
dass - wegen der Quantisierung der
Koeffizienten - sich die möglichen
Positionen für Pole und Nullstellen bei
verschiedenen Filterstrukturen (mit an
sich gleichen Übertragungsfunktionen)

verschieden über die z-Ebene
verteilen. Der Unterschied kann recht
beträchtlich sein, vor allem dann, wenn
die Dichte der möglichen Positionen
klein ist.

Die Figur 55 zeigt diesen Effekt für
zwei verschiedene, rein rekursive Filter

zweiter Ordnung. Für jedes Filter
sind die möglichen Positionen für die
Pole eingezeichnet, falls die
Koeffizienten auf vier Bit (eines davon das
Vorzeichen) quantisiert sind. Wegen

e
0 n/2 k

Figur 54. Quantisierungsfehler bei einem Transversalfilter
Die Figur zeigt die Amplitudencharakteristik eines Transversalfilters mit 49 Stützstellen, einerseits mit
unquantisierten Koeffizienten (ausgezogene Kurve), anderseits mit auf 12 Bit gerundeten Koeffizienten
(gestrichelte Kurve).
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Figur 55. Pole eines Digitalfilters
a Rein rekursives Filter zweiter Ordnung von Direkt-Form-Struktur, rechts die Lage der möglichen

Pole in der z-Ebene, falls die Koeffizienten a\ und ai auf vier Bit (inklusive ein Vorzeichenbit) quan-
tisiert werden.

b Rekursives Filter zweiter Ordnung mit einer Kaskadenstruktur und einer Rückführung. Bei gleicher
Quantisierung der Koeffizienten a und b wie in a ergeben sich wesentliche Unterschiede in der Lage
der möglichen Pole.

der Symmetrie der Pole ist in der Figur
lediglich ein Quadrant der r-Ebene
abgebildet.

Digitale Arithmetik
Den störendsten Einfluss hat eine

Begrenzung der Wortlänge dort, wo
Zwischenresultate in digitalen Systemen

quantisiert werden müssen [22].
Addition und Multiplikation zweier
Grössen erhöhen hier die Anzahl Stellen

(bzw. Bits) des Resultats. Insbesondere

in rekursiven Schaltungen bringt
dies jedoch Probleme mit sich, da dieses

Resultat in der nachfolgenden
Berechnung erneut verwendet wird.
Dazu sei beispielsweise die Figur 55a
betrachtet: Haben sowohl y[n] als auch
ch eine Wortlänge von vier Bits, so
kann deren Produkt bereits sieben Bits
besitzen. Durch die Addition mit dem
nächsten Eingangswert kann das
Signal vor dem ersten Verzögerungsglied
bereits wieder zusätzliche Bits benötigen.

Bei rekursiven Strukturen ist man
also gezwungen, die Wortlänge von
Zwischenresultaten zu begrenzen. Bei
nichtrekursiven Strukturen kann deren

Anzahl Stellen bei quantisierten
Eingangssignalen und Koeffizienten
zwar nicht unendlich wachsen, häufig

ist aber trotzdem eine Begrenzung auf
eine relativ kleine Anzahl Bits notwendig.

Auch bei den Zwischenresultaten
kann man zwischen den verschiedenen
Formen von Quantisierung und Over-
flow-Behandlung auswählen und
erhält so Filter mit unterschiedlichem
Verhalten.

Die Analyse der Einflüsse einer
derartigen Wortlängenbegrenzung ist
deshalb schwierig, weil das Filter
genaugenommen nichtlinear ist. So ergibt
sich eine starke Verzerrung des Signals
bei Overflow, es kann sogar geschehen,

dass wegen der Begrenzung
Schwingungen mit grosser Amplitude
auftreten. Die Filter sind deshalb so zu
entwerfen, dass dieser Fall nicht oder
nur sehr selten auftritt. Dies geschieht
durch sogenannte Skalierung bei
Filtern, die aus einzelnen kaskadierten
Stufen bestehen. Man führt dazu eine
Multiplikation mit einem konstanten
Faktor F < 1 zwischen den Stufen ein,
um einen Überlauf in der folgenden
Stufe zu verhindern. Hat dieser Faktor
die Form F 2~", wobei n eine ganze
Zahl ist, dann entspricht die Multiplikation

einer Rechtsverschiebung der
Zahl um eine oder mehrere binäre Stellen.

Gelegentlich kann auch eine
Multiplikation mit einem Faktor F > 1

eingeführt werden, falls es sich während

dem Filterentwurf zeigt, dass sonst die
höchstwertigen Bits unbenutzt bleiben
würden. Nach diesen Massnahmen
braucht der Overflow nicht mehr weiter

berücksichtigt zu werden.
Als nächstes wird versucht, den

Einfluss der Quantisierung der Zwischenresultate

zu bestimmen. Es zeigt sich,
dass hier ein unerwünschtes «Rauschsignal»,

ähnlich dem der A/D-Wand-
lung, erscheint. Dieses Rauschen
entsteht überall dort, wo ein Signal quantisiert

wird. Ausserdem erfährt es auf
dem Weg zum Ausgang eine Filterung,
so dass sein Anteil in y[n] gefärbt ist.
Um eine quantitative Aussage zu
erhalten, wird ein Rauschmodell eingeführt,

welches auch bei der
A/D-Wandlung verwendet wurde:
jeder Quantisierer wird durch Zusetzen
eines Rauschsignals ersetzt (Fig. 56).
Es wird angenommen, dass jede dieser
Quellen ein Rauschen mit einem
bestimmten spektralen Verlauf erzeuge.
Im Fall von Rundungsquantisierung
hat das Rauschen beispielsweise einen
flachen Verlauf und die Leistung
q1/12. Nun kann der Rauschanteil
jeder Quelle im Ausgangssignal
bestimmt werden.

Eine derartige Analyse ergibt häufig
sehr nützliche Resultate, obwohl sie
auf einigen Annäherungen beruht, die
in der Realität nicht zutreffen. So wird
etwa angenommen, die Rauschquellen
seien sowohl untereinander als auch
von den Signalen im Filter unabhängig.

Dies ist dann ungefähr richtig,
wenn das Eingangssignal ,v[/?] genügend

unregelmässig ist. Ist das Signal
hingegen über längere Zeit konstant2
oder periodisch, dann können periodische

Interferenzsignale, sogenannte
Grenzzyklen, im Ausgangssignal
auftreten. Handelt es sich bei x[n]
beispielsweise um ein Sprachsignal, dann
treten diese Grenzzyklen in Sprechpausen

auf, also genau dort, wo sie am
störendsten wirken. Man betrachte
beispielsweise das einfache Filter der
Figur 57, wo das Zwischenresultat
durch Rundung auf die nächstgelegene

ganze Zahl gerundet wird. Es sei

beispielsweise x[n] 0 für n > 0 und
y[0] Iq, dann ist sofort zu ersehen.

: Anm. des Übersetzers: Ein ähnlicher Fall
liegt vor, wenn das Digitalsystem eine sehr kleine
Anzahl Bits zur Quantisierung verwendet: Bei
Deltamodulation beispielsweise findet eine 1-Bit-
Quantisierung statt.
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Figur 56. Wortlängenbegrenzung bei einem digitalen Filter
a Beispiel eines digitalen Filters, bei welchem die «Zwischenresultate» nach jeder Multiplikation quan-

tisiert werden.
b Das Rauschverhalten kann anhand des Rauschquellenmodells veranschaulicht werden, indem jeder

der Quantisierer Q\durch eine Rauschsequenz e\[n],...,es[n] ersetzt wird. Bei Rundungsquantisierung

besitzt jede dieser Rauschquellen eine Leistung von q2/12 und ein flaches («weisses») Spektrum.

Die Rauschsignale werden nun entsprechend ihrer Lage innerhalb der Schaltung mehr oder
weniger stark gefiltert. In diesem Beispiel erscheinen die Signale C3[n], [n] und e$[n] ungefiltert im
Ausgangssignal y[n], während e\[n] und C2[n] exakt wie das Eingangssignal x[n] gefiltert werden.

dass eine Schwingung mit der Amplitude

5q und der Periode N 2 auftritt.
In rekursiven Filtergliedern höherer
Ordnung sind derartige Grenzzyklen

y[n]

0-SL
Q

wQ[nps w[n]

n w/n]=-0.91 yln-1] yln] wQ[n]

0 7q
1 - 6.37q -6q
2 5J»6q 5q
3 -4.55q -5q
4 4 55g 5q
5 -4 55 q -5q

Figur 57. Grenzzyklus
In diesem einfachen digitalen Filter erscheint
offenbar ein Grenzzyklus mit Periode N 2 und
Amplitude 5ij, falls x(n] 0 für n > 0 und der
Anfangsbedingung y[0] 7q. Der Quantisierer Q
rundet auf das nächstgelegene Vielfache der
Schwelle q.

ein bekanntes Problem und müssen im
allgemeinen genau untersucht werden.
Man findet beispielsweise, dass eine
Quantisierung durch Begrenzung auf
den nächstkleineren Wert des Betrags
(Fig. 51c) weniger anfällig auf Grenzzyklen

ist als etwa andere
Quantisierungsverfahren. Mann kann ausserdem

durch Verkleinerung der
Quantisierungsschwelle q, d.h. durch Ver-
grösserung der Anzahl Bits in einem
Wort, die Amplitude der Grenzzyklen
absolut gesehen - beispielsweise in
Volt, nicht aber in Quantisierungsschritten

- verringern. Durch erneute,
etwas gröbere Quantisierung des
Ausgangssignals y[n] kann man die
Grenzzyklen scheinbar zum
Verschwinden bringen.

5. Zusammenfassung
Die digitale Signalverarbeitung

zeichnet sich durch zwei grundlegende
Charakteristiken aus: Prozesse ändern
sich nur zu gewissen diskreten
Zeitpunkten, ausserdem können sie nur ge¬

wisse diskrete Werte annehmen.
Theoretische Analysen für zeitdiskrete
Prozesse benötigen besondere Werkzeuge,
wie die Fouriertransformation für
diskrete Signale, die z-Transformation,
die diskrete und die schnelle
Fouriertransformation (DFT und FFT) sowie
die Differenzengleichungen. Flier wird
der wertediskrete Aspekt ausser acht
gelassen. Mit diesen Werkzeugen findet

man viele Parallelen zu der analogen

System- und Signaltheorie. Es

zeigt sich deshalb, dass analoge Techniken

(etwa der Filterentwurf) als
Ausgangspunkt für den Entwurf digitaler
Systeme dienen können. Der Übergang

von zeitkontinuierlichen zu
zeitdiskreten sowie von wertekontinuierlichen

zu wertediskreten Signalen und
Systemen ergibt eine Vielzahl neuer
Schaltungen, aber auch eine Vielzahl
neuer Probleme; erwähnt wurden
Aliasing, Instabilität, Quantisierungsrauschen.

Diese Probleme bilden einen
eigenen Bereich in der Theorie der
digitalen Signalverarbeitung.
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Korrigenda
Im Teil I, Heft 77(1986)1 I, haben

sich bei der Übertragung ins Deutsche
leider ein paar Druckfehler eingeschlichen.

Bitte korrigieren Sie:

Gl. 4 und 5:

Gl. 22c:

Gl. 29a, 29b,
29d:

Gl. 29c:

Fussnote 2:

falls n> 0

x[n-i] ,y~ß]

/"'statt %
x[n-i]= p-'\z-'X(z)\
Literaturhinweis [9] fällt
weg
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