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Grundlagen

Digitale Signalverarbeitung:
Theoretische Grundlagen

Teil 4: Praktische Aspekte digitaler Systeme

A.W.M. van den Enden und N.A.M. Verhoeckx

In diesem letzten von vier Tei-
len' stehen praktische Aspekte
von digitalen Systemen im
Vordergrund. Es werden die
Umwandlung analoger Signale in
zeitdiskrete und spater in werte-
diskrete sowie die damit verbun-
denen Begriffe wie Abtasttheo-
rem und Quantisierungsfehler
behandelt.

Cette quatrieme partie traite
principalement des aspects pra-
tiques de systémes numériques,
notamment de la conversion de
signaux analogiques en signaux
discrets temporels ou de valeur,
ainsi que des notions y relatives,
telles que le théoreme d’explora-
tion et les erreurs de quantifica-
tion.

Diese Aufsatzserie ist eine Ubersetzung des
gleichnamigen englischen Beitrags in Philips
Techn. Review 42(1985)4. Die Ubersetzung
besorgte H. Ochsner, dipl. Ing. ETH, Institut
fur Kommunikationstechnik, ETH Zurich

' Bull. SEV/VSE 77(1986)11, 15,17

Adresse der Autoren

A.W.M.van den Enden

und N.A.M. Verhoeckx,
Philips Research Laboratories,
NL-5600 JA Eindhoven.

4.1 Von der kontinuierlichen zur
diskreten Zeit und umgekehrt

Soll ein analoges Signal x,(t) durch
ein zeitdiskretes System verarbeitet
werden, so stellt sich zuerst das Pro-
blem, das analoge Signal ohne bzw.
mit moglichst wenig Verlust an Infor-
mation in ein zeitdiskretes umzuwan-
deln. Ob und wann dies moglich ist,
wird durch das Abtasttheorem' ange-
geben:

Enthdlt das Signal x,(t) keine Fre-
quenzanteile oberhalb Wmax = 27Tfmax
rad/s, so ist samtliche Information
iiber x,(t) in den Werten x,(nT) ent-
halten, falls T< 1/(2fnax) gilt.

Die Werte x.(nT) gewinnt man
durch Abtastung von x,(t) mit der Ab-

' Das Abtasttheorem wird normalerweise C.E.
Shannon zugeschrieben. Er formulierte es im
Rahmen seiner Informationstheorie in den vierzi-
ger Jahren. Beinahe gleichzeitig bewies es aber
auch V.A. Kotelnikov in der Sowjetunion. Die
theoretische Grundlage legten jedoch bereits 1915
E.T. und J.M. Whittaker, so dass man besser die
Formulierung von A.J. Jerri [18] verwendet und
den Begriff « WKS-Abtasttheorem», gebildet aus
den Anfangsbuchstaben der drei Namen, verwen-
det.

tastrate f = 1/T. Definiert man nun
das diskrete Signal zu
x[n]= x,(nT) (90)
so ist der Ubergang von zeitkonti-
nuierlichen zu zeitdiskreten Signalen
vollzogen (Fig. 43). Die Art und Weise,
wie diese Abtastwerte reprisentiert
werden, beispielsweise durch ganze
Zahlen oder Ladungspakete, ist vor-
laufig unwichtig. Der spektrale Zu-
sammenhang zwischen dem Spektrum
X.(jw) von x,(t) und X(eiT) des dis-
kreten Signals x[n] kann einfach durch
periodische Wiederholung von X,(jo)
und eine Skalierung mit 1/ T gewon-
nen werden:

oo

X(e,w)=LT Z (JCU J$) 1)

Die Figur 44 zeigt die Spektren des
abgetasteten Signals fir zwei Félle; im
einen Fall ist das Abtasttheorem er-
fullt, im andern nicht. Man sieht in der
Figur 44b, dass sich die einzelnen Teil-
spektren teilweise iiberlappen. Dieser
Effekt wird mit dem englischen Begriff

xa(f} x[n] xa{z‘)

202 —n
cT oT
o— o —so0 o—| o —o0
! !
fs fs

Figur 43. Abtastung

Um ein kontinuierliches Signal in ein zeitdiskretes umzuwandeln, ist eine Abtastung (CT/DT) notwen-
dig: die Riickgewinnung des urspriinglichen kontinuierlichen Signals geschieht mittels Tiefpassfilterung
(DT/CT). CT bedeutet continuous time, DT steht fiir discrete time. f, bezeichnet die Abtastrate,

= 1/f; das Abtastintervall.
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Figur44. Abtasttheorem

a Erfiillt die Abtastung der Figur 43 das Abtasttheorem, so ist das Spektrum X (e/©T) der Sequenz x[n]
lediglich eine wiederholte und skalierte Version des Spektrums X, (jo) des urspringlichen, analogen
Signals x,(1).

b Ist dies nicht der Fall, so iiberlappen sich die verschiedenen Wiederholungen; diesen Effekt bezeich-
net man mit Aliasing. In diesem Fall kann das Signal x,(f) nicht mehr aus der Impulsfolge zuriick ge-

wonnen werden.

Aliasing bezeichnet. Offenbar hat die
spektrale Uberlappung zur Folge, dass
das urspriingliche Spektrum X,(jo)
und damit das Signal x,(f) nicht mehr
aus dem abgetasteten Signal x[n] ge-
wonnen werden kann. Aus der Fi-
gur 44a, wo das Abtasttheorem befrie-
digt wird, ist zu ersehen, dass das
Grundintervall von X(e/©T) bis auf
eine Skalierung identisch ist zu X,(jo).
Hier erfolgt die Riickwandlung des ab-
getasteten Signals in ein kontinuierli-
ches durch eine ideale kontinuierliche
Tiefpassfilterung. Dieses Filter hat die
Verstarkung T innerhalb des Bereichs
|ow| < 7/ Tbzw. die Verstirkung 0 aus-
serhalb. Nun lisst sich aber so ein Fil-
ter in der Praxis nicht realisieren, da
sich seine Stossantwort von t = — o
nach t = co ausdehnen wiirde.

Eine praktische Anordnung der Ab-
tastung und Riickwandlung ist in der
Figur 45 zu sehen. Vor der eigentlichen
Abtastung befindet sich ein Vorfilter
mit Tiefpasscharakteristik, dessen
Durchlassbereich bis zur halben Ab-
tastrate reicht. Dadurch wird ein Alia-
sing, welches durch zu hohe Frequen-
zen - beispielsweise von Rauschsigna-
len - verursacht wiirde, verhindert. Bei
der Riickwandlung bildet man aus den
Abtastwerten zuerst ein stiickweise
konstantes Signal %,(). Das Spektrum
dieser Approximation zeigt nun ge-
genliber dem Frequenzverlauf des ur-
springlichen gefilterten Signals Xx,(t)
Verzerrungen, welche als (sinx)/

x-Verzerrungen bekannt sind. Zudem
sind die Frequenzen ausserhalb des
Grundintervalls unvollstindig unter-
driickt. Die Unterdriickung dieser An-
teile kann durch ein nachfolgendes
Tiefpassfilter  verbessert  werden,
schliesslich liegt ein geglittetes Signal

X.(1) vor.

Das Signal X,(¢) in der Figur 45 be-
steht aus einer Reihe von Rechteck-
impulsen, deren Fouriertransforma-
tion die Form einer (sin x/x)-Funk-

tion hat. Dieselbe Verzerrung ist natiir-
lich auch in X,(jo) von X.(f) fir |o]
<n/T vorhanden. Normalerweise
wird diese Verzerrung durch eine ent-
sprechende x/(sin x)-Vorverzerrung
im Grundintervall zwischen den Punk-
ten 2 und 3 (Fig.45) riickgéngig ge-
macht[19].

4.2 Unterschiedliche Abtastraten

Bislang wurden lediglich diskrete
Systeme mit einer einzigen Abtastfre-
quenz behandelt. Sowohl Eingangs-,
Ausgangs- als auch die internen Signa-
le besassen alle die Abtastrate f;
1/T. Wie aber aus dem letzten Ab-
schnitt bekannt ist, kann bei der Abta-
stung f; beliebig gewihlt werden, so-
lange das Abtasttheorem (fy > 2fiux)
eingehalten wird. Dann ergibt jedes
zeitdiskrete Signal, unabhingig von f;,
eine vollstdndige Darstellung des ur-
springlichen kontinuierlichen Signals
(Fig. 46).

Bei der digitalen Signalverarbeitung
ist die Anzahl Rechenoperationen,
welche pro Sekunde ausgefiihrt wer-
den mussen, unmittelbar mit der Ab-
tastrate verbunden: Je hoher fs, desto
mehr Operationen miissen pro Sekun-
de durchgefiihrt werden. Man ist des-
halb interessiert, f; so tief wie moglich,
am besten moglichst in der Nihe von
2fmax, zu halten. Nun kann aber die
Maximalfrequenz fim.x flir verschiede-
ne Signale innerhalb eines Systems
sehr unterschiedlich sein, in einem
Tiefpassfilter ist beispielsweise fr.x des
Ausgangssignals kleiner, oft sogar we-

Xg(t) X (1) x[n] Xalt) Xq(t)
— t — ¢ —=n — —t
CT oT
Jo—u = . 02 Jo—| e t  leol
L P

Xaljw) Ko jfU/ /ef“/ Kaljw) Xaljw)
- Ed x s 2% x 2r 214 x
A T T T T T T T T T

— w —w —w —w — w
Figur45. Praktische Abtastung und Riickgewinnung

In der praktischen Realisierung wird das analoge Signal x,(f) vor der Abtastung durch einen Vorfilter
mit Tiefpasscharakteristik gefiltert, um sicherzustellen, dass das Abtasltheorem eingehalten wird. Bei
der Riickwandlung der Impulsfolge wird die Funktion zuerst durch das Signal b (Schrittfunktion) app-
roximiert. Die anschliessende erneute Tiefpassfilterung entfernt die Unstetigkeiten. Im unteren Bilddrit-
tel sind die dazugehorigen Spektren dargestellt.
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sentlich kleiner als dasjenige des Ein-
gangssignals. Bei einem digitalen Mo-
dulator ist genau das umgekehrte der
Fall, das Ausgangssignal besitzt dort
die grossere Maximalfrequenz. In der-
artigen Systemen bietet sich deshalb
die Verwendung unterschiedlicher Ab-
tastraten fiir verschiedene Signale an
(Fig. 47). Voraussetzung hierzu ist aber
ein Abtastratenumwandler, bei wel-
chem ein Eingangssignal einer gewis-
sen Rate f in eines einer andern Rate
Jfs> umgesetzt wird.

Wir beschrianken uns hier auf den
Fall, wo f/fu bzw. f/f> eine ganze
Zahl Rist. Ist fio < fo1, so wird die Ab-
tastrate um den Faktor R reduziert,
diese Schaltung sei mit SRD (Samp-
ling Rate Decreaser) bezeichnet. Um-
gekehrt wird bei fo > f die Abtastrate
um R erhoht, die Schaltung heisse SRI
(Sampling Rate Increaser). Diese
Schaltungen seien durch spezielle
Schaltungsblocke, wie sie in der Figur
48 zu sehen sind, dargestellt. In dieser
Abbildung ist die Arbeitsweise eines
SRD bzw. eines SRI zu ersehen: Bei
einem SRD erscheint jeweils nach R
Abtastwerten am Eingang genau ein
Wert am Ausgang. Der SRI hingegen
fligt jedem Eingangswert R — 1 zusitz-
liche Abtastpunkte mit Wert 0 hinzu.
Derartige Schaltungen sind offensicht-

lich einfach zu realisieren, hingegen ist
ihr Einfluss auf die Arbeitsweise eines
ganzen Systems schwieriger zu bestim-
men. Sowohl SRD als auch SRI sind
zwar linear, aber zeitvariant. Aus die-
sem Grund konnen sie nicht durch
Systemfunktion, Ubertragungsfunk-
tion oder Impulsantwort beschrieben
werden.

Man kann nun allerdings das Ver-
halten auf eine andere Art und Weise

sehr einfach bestimmen. Zu diesem
Zweck zeigt die Figur 48 fir den Fall
R =3 die zu einem SRD bzw. SRI ge-
horenden Ein- und Ausgangsspektren.
Man sieht so beispielsweise, dass das
Grundintervall des Ausgangsspek-
trums im Fall des SRD (Fig. 48a) um
den Faktor R kleiner wird; die gestri-
chelten Linien zeigen, dass in Y(eioT2)
ein spektrales Uberlappen (Aliasing)
auftreten kann, falls das Spektrum
X(e/®Tr) nicht geniigend schmal ist.
Dies ist offenbar dann der Fall, wenn
eine Abtastung von x[nT|] mit f.» das
Abtasttheorem verletzt. Umgekehrt
wird bei einem SRI das Grundinter-
vall des Ausgangssignals um den Fak-
tor R grosser, wobei X(e/©T/) im
Grundintervall von Y(e/©72) genau R
mal repetiert wird.

Um ein spektrales Uberlappen zu ver-
hindern, ist vor dem SRD ein ideales dis-
kretes Tiefpassfilter, das einen Durchlass-
bereich|w| < 7/ T> und eine Abtastfrequenz
1/ T, besitzt, zu schalten. Diese Kombina-
tion wird als Dezimator bezeichnet und
kann nur approximativ realisiert werden.

Die periodischen Wiederholungen in-
nerhalb des Grundintervalls des Ausgangs-
signalsspektrums Y(e/©T2) eines SRI kon-
nen durch ein ideales diskretes Tiefpassfil-
ter, das einen Durchlassbereich || < 7/ T,
und eine Abtastfrequenz 1/ T> besitzt, ent-
fernt werden; man erhilt so einen Interpo-
lator, welcher aber ebensowenig exakt rea-
lisiert werden kann. Sein Ausgangssignal
ist gegldttet, d.h. enthilt nicht mehr die vie-
len Abtastpunkte mit Wert 0 wie y[nT>].

In der Praxis findet man den SRD
meistens einem diskreten Filter nach-
folgend. Eine derartige Kombination
von Netzwerken bezeichnet man als
Dezimatorfilter, weil die Abtastrate sei-

Xalt) =7 *ihv] yInT] 157 Yalt)
© oT s T er ¢
a fs fs fs

x:nT]  wiInTy]  xo2[nTo]  yo2[nTo]
xlt)[er fss o7, yc’”i
| or S fs2 512 cr
b fs fs1 fs2 fs2

Figur 47.

Diskrete Verarbeitung eines analogen Signals

a Es wird nur eine Abtastrate /i verwendet. Diese muss hoch genug sein. um sicherzustellen. dass das
Abtasttheorem an allen Punkten im diskreten System S eingehalten wird.

b Ist die hochste vorkommende Frequenz nicht an allen Orten gleich. so kann es sinnvoll sein. in ver-
schiedenen Systemteilen (S;. S») verschiedene Abtastraten (/i1. fi2) zu verwenden: diese werden in

einem geeigneten Umwandler angepasst.
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Figur48. Umwandlung der Abtastrate

a Ein SRD (sampling rate decreaser) ist eine Schaltung, welche die Abtastrate um einen ganzzahligen
Faktor R = f,1/f,2 = T»/ T reduziert, indem sie jeweils R - | Abtastwerte entfernt. In diesem Beispiel

wurde R = 3 gewihlt. Gl bezeichnet das Grundintervall.

b Ein SRI (sampling rate increaser) ist eine Schaltung, welche die Abtastrate um einen ganzzahligen
Faktor R = f2/fs1 = T,/ T> erhoht, indem sie jeweils R - 1 Abtastwerte mit dem Wert hinzufiigt.

Auch in diesem Beispiel ist R = 3.

nes Ausgangssignals niedriger ist als
diejenige des Eingangs. Es ist aber zu
beachten, dass dieses Filter kein linea-
res zeitinvariantes diskretes System
(LTD-System) ist. Nun ist es aber nicht
sehr sinnvoll, im Filter Abtastwerte zu
bestimmen, um sie anschliessend im
SRD zu ignorieren. Vielmehr kdnnen
die Schaltungen geeignet miteinander
verflochten werden, dies ist in der
Figur 49 zu ersehen.

Die Kaskade eines SRI und eines
diskreten Filters bezeichnet man als
Interpolationsfilter. Auch hier kann
man von der Tatsache Gebrauch ma-
chen, dass eine grosse Zahl von Ab-
tastpunkten den Wert 0 besitzt und so
eine geeignetere verflochtene Schal-
tung finden (Fig. 50). Offenbar ist auch

Figur 49

Dezimatorfilter

a Kombination eines
diskreten Filters mit
einem SRD von
R = 2.In dieser
Schaltung sind vier
Multiplikationen pro
Intervall T,
notwendig.

b Durch Verwendung
mehrerer SRD kann
dasselbe Signal
yInT>]mitlediglich
vier Multiplikationen
pro Intervall
T> = 2T, gewonnen
werden.

das Interpolationsfilter keine LTD-
Schaltung. Eine wichtige Anwendung
von Dezimator- und Interpolationsfil-
tern findet man bei der Abtastung und
der Riickwandlung diskreter in konti-
nuierliche Signale. Erlauben die tat-
sdchlichen Wandler eine erhéhte Ab-
tastrate, so konnen die Vor- bzw. nach-
folgenden analogen Filter durch die
Anwendung von Dezimatoren und In-
terpolatoren wesentlich vereinfacht
werden [19]. Durch eine geeignete
Wahl von Dezimator- und Interpola-
tionsfiltern konnen iibrigens auch ra-
tionale Abtastratenverhéltnisse R er-
reicht werden [20].

4.3 Yon kontinuierlichen zu
diskreten Werten

Im ersten Teil dieser Reihe wurde
erwdhnt, dass digitale Signale nur
einen aus einer endlich grossen Anzahl
diskreter Werte annehmen kdnnen.
Dies gilt auch fir andere Grossen
eines digitalen Systems, wie z.B. fir
die Koeffizienten der Filter. Nun wird
aber bei der praktischen Anwendung
digitaler Systeme oft von analogen -
demnach wertekontinuierlichen - Si-
gnalen ausgegangen, wie dies in den
bisherigen Betrachtungen auch der
Fall war.

Der Ubergang von wertekontinuier-
lichen zu wertediskreten Signalen ldsst
sich nun nie mehr vollig riickgingig
machen, da die Anzahl erlaubter Si-
gnalwerte in jedem Fall reduziert wird,
das heisst Information verlorengeht.
Drei Punkte sind bei diesem Ubergang
zu beachten: die Quantisierung, der
Uberlauf und die Zahlendarstellung
der Signalwerte.

Bulletin SEV/VSE 78(1987)1, 10. Januar
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Figur 52. Overflow
Drei Moglichkeiten des Overflow-Verhaltens sind:
a Sittigung
b Zuriicksetzen auf Null
¢ Repetition des Quantisierungsbereichs
Figur 50. Interpolationsfilter
a Die Interpolation wird durch Kombination eines diskreten Filters mit
einem SRI erreicht und bendtigt sechs Multiplikationen pro Intervall Tj.
b Durch geeignete Verflechtung der SRI kann die Anzahl der Multiplikatio-
nen auf vier pro Intervall T = 2 T> reduziert werden.
Quantisierung grenzten Intervalls (-X, X) zu liegen Zahlendarstellung

Unter Quantisierung versteht man
den Vorgang, bei welchem eine Grosse
x derart in ein xo umgewandelt wird,
dass xqg zwar ungefihr gleich gross ist
wie x, aber aus weniger Werten aufge-
baut ist. Den Zusammenhang zwi-
schen xq und x bezeichnet man als
Quantisierungscharakteristik. Die ge-
brauchlichsten Methoden sind in der
Figur 51 zu sehen: Rundung auf die
ndchstgelegene Schwelle, Quantisie-
rung auf den néchstkleineren Wert
und Quantisierung auf den Wert mit
ndchstgelegenem kleinerem Betrag. In
diesen Beispielen ist die Differenz g
zwischen zwei aufeinanderfolgenden
Werten von xq konstant.

Uberlauf (Overflow)

Ein Uberlauf tritt dann ein, wenn
der Signalwert x ausserhalb eines be-

kommen sollte, wobei dies vom Sy-
stem aber verunmdoglicht wird. For-
melméssig wird also x derart in ein x,
umgewandelt, dass

o]

Den Zusammenhang zwischen x
und x, bezeichnet man als Overflow-
Charakteristik. Auch hier sind drei
Beispiele solcher Charakteristiken zu
sehen (Fig.52): Sattigung, Zuriickset-
zen auf Null und Repetition des Quan-
tisierungsbereichs  (Sdgezahn-Over-
flow). Theoretisch kann jedes beliebige
Quantisierungsverhalten mit jedem be-
liebigen Overflow-Verhalten kombi-
niert werden.

=x
<X

| x| <X

x| > X F2)

Xa

/

<

29

— X

Figur 51. Quantisierung

Die Figur zeigt drei Moglichkeiten der Quantisierung (mit Quantisierungsintervall g):

a Rundung auf die nachstgelegene Schwelle
b Quantisierung auf den nichstkleineren Wert

¢ Quantisierung auf den Wert mit nachstgelegenem kleinerem Betrag

In einem digitalen System werden
Grossen normalerweise durch eine
Gruppe (Wort) von beispielsweise B
Bits dargestellt. Die Quantisierung (in-
klusive Overflow-Behandlung) hat
demnach 28 verschiedene Werte zur
Verfiigung. Jeder dieser Werte ent-
spricht dann genau einer Bit-Kombi-
nation. Welche Kombination zu wel-
chem Wert gehort, wird durch die ver-
wendete Zahlendarstellung bestimmt.
Auch hier sind verschiedene Mdglich-
keiten denkbar. Die vier gebriuchlich-
sten Methoden sind in der Tabelle 11

Dezimal- | Vorzei- Einer- Zweier- | Offset-
wert chenund |komple- |komple- |Binir-
Betrag ment ment code

+4 - - = 111
+3 011 011 011 110
+2 010 010 010 101
+1 001 001 001 100
+0 000 000 000 -
=0 100 111 - 011
—1 101 110 111 010
—2 110 101 110 001
-3 111 100 101 000
-4 = = 100 —

Tabelle II.  Beispiele fiir die binire Dar-

stellung von Zahlen

fiir den Fall B = 3 zu sehen. Es zeigt
sich, dass je nach verwendeter Quanti-
sierung, bzw. Overflow-Behandlung
die eine oder die andere Zahlendarstel-
lung geeigneter ist.

Die Tatsache, dass die Wortldnge B
in digitalen Systemen immer endlich
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le[n/

Figur 53
Quantisierungs-
geriusch

a Die Umwandlung
eines diskreten
Signals x[n] mit
kontinuierlicher
Amplitude in ein
wertediskretes Signal
xq[n] kann als
Addition eines
Rauschsignals
e[n] = xq[n] - x[n]
aufgefasst werden.

b Ersatzschaltung des
Rauschquellen-
modells

gross ist, hat einige wichtige Konse-
quenzen, welche im nédchsten Ab-
schnitt behandelt werden sollen. Vor-
her soll aber noch einmal darauf hin-
gewiesen werden, dass der Prozess,
welchen man normalerweise mit Ana-
log/Digitalwandlung  (A/D-Wand-
lung) bezeichnet, aus zwei Schritten
besteht, ndmlich der Umwandlung
von zeitkontinuierlichen in zeitdiskre-
te Signale und der Quantisierung von
wertekontinuierlichen zu wertediskre-
ten Signalen.

4.4 Der Einfluss endlicher
Wortldngen

In diesem Abschnitt werden drei Si-
tuationen betrachtet, bei welchen end-
liche Wortlingen einen wesentlichen
Einfluss ausiiben: Die A/D-Wand-
lung, der Entwurf digitaler Filter und
die Arithmetik digitaler Berechnun-
gen.

A/D-Wandlung

Bei der Quantisierung wertediskre-
ter Signale x[n] in xg[n] nimmt man
normalerweise an, dass xg[n] durch
Addition eines Rauschsignals e[n] =
xo[n] - x[n] aus x[n] (Fig. 53) gewon-
nen wurde. Fiir den Fall, wo die Run-
dungsquantisierung verwendet wird,

kann man die Leistung dieses soge--

nannten Quantisierungsgerduschs be-
rechnen zu

a

P.=
12

93)

wobei g die Schrittweite der Amplitu-
denquantisierung bezeichnet. Nimmt
man weiter an, dass die Abtastwerte

von xg[n] durch Worte der Linge B
dargestellt werden und dass das ur-
spriingliche Signal x[n] ein Sinussignal
ist, dessen Amplitude gerade so gross
ist, dass kein Overflow auftritt, dann
kann das Signal/Quantisierungsge-
rdusch-Verhiltnis in dB bestimmt wer-
den zu

X

=6B+ 1,76 (dB) (94)

e

Aus dieser Gleichung kann eine
wichtige allgemeingiiltige Folgerung
abgeleitet werden: Wird die Wortlange
B eines digitalen Systems um ein Bit
erhoht, dann betrigt die Verbesserung
des Signal/Quantisierungsgerdausch-
Verhiltnisses maximal 6 dB.

Entwurf digitaler Filter

Im dritten Teil wurden Methoden
fiir den Entwurf digitaler Filter ange-
geben. Diese liefern normalerweise be-
liebig exakte Werte fiir die Filterkoef-
fizienten. In einem praktischen Digi-

talfilter ist nun aber die Anzahl Bits
fiir die Darstellung dieser Koeffizien-
ten schon aus Preisgriinden so klein
wie moglich zu halten. Die gefundenen
Koeffizientenwerte miissen demnach
quantisiert werden, was eine Ande-
rung der Filtercharakteristik zur Folge
hat [21] z. B. weil die Lage der Pole und
Nullstellen verdndert wurde. Diese
Anderung kann derart ausgeprigt
sein, dass das Filter mit den quantisier-
ten Koeffizienten die urspriinglichen
Spezifikationen nicht mehr erfiillt
(Fig. 54) oder unter Umsténden sogar
instabil wird. Das Filter bleibt aber
trotz der Quantisierung der Koeffi-
zienten linear, zeitinvariant und vom
Eingangssignal unabhéngig. Lediglich
die Charakteristik dndert sich, und
zwar in einer Weise, die berechnet wer-
den kann.

Nun reagieren gewisse Filterstruktu-
ren empfindlicher auf die Quantisie-
rung der Koeffizienten als andere. So
wurde bereits im Abschnitt liber dis-
krete Filterstrukturen erwéhnt, dass
die Sensitivitit auf solche Anderungen
um so kleiner ist, je kleiner die Anzahl
Koeffizienten ist, von denen die Pole
und Nullstellen abhangen.

Ein anderer wichtiger Effekt ist,
dass - wegen der Quantisierung der
Koeffizienten - sich die moglichen Po-
sitionen fir Pole und Nullstellen bei
verschiedenen Filterstrukturen (mit an
sich gleichen Ubertragungsfunktio-
nen) verschieden tiber die z-Ebene ver-
teilen. Der Unterschied kann recht be-
trachtlich sein, vor allem dann, wenn
die Dichte der moglichen Positionen
klein ist.

Die Figur 55 zeigt diesen Effekt fiir
zwei verschiedene, rein rekursive Fil-
ter zweiter Ordnung. Fiir jedes Filter
sind die moglichen Positionen fiir die
Pole eingezeichnet, falls die Koeffi-
zienten auf vier Bit (eines davon das
Vorzeichen) quantisiert sind. Wegen

0
0dB
-50
20 log Afe”’)
-100 I

Figur 54.

Quantisierungsfehler bei einem Transversalfilter

Die Figur zeigt die Amplitudencharakteristik eines Transversalfilters mit 49 Stiitzstellen, einerseits mit
unquantisierten Koeffizienten (ausgezogene Kurve). anderseits mit auf 12 Bit gerundeten Koeffizienten

(gestrichelte Kurve).
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Figur 55. Pole eines Digitalfilters

a Rein rekursives Filter zweiter Ordnung von Direkt-Form-Struktur, rechts die Lage der mdglichen
Pole in der z-Ebene, falls die Koeffizienten a| und a auf vier Bit (inklusive ein Vorzeichenbit) quan-

tisiert werden.

b Rekursives Filter zweiter Ordnung mit einer Kaskadenstruktur und einer Riickfiithrung. Bei gleicher
Quantisierung der Koeffizienten a und b wie in a ergeben sich wesentliche Unterschiede in der Lage

der moglichen Pole.

der Symmetrie der Pole ist in der Figur
lediglich ein Quadrant der z-Ebene ab-
gebildet.

Digitale Arithmetik

Den storendsten Einfluss hat eine
Begrenzung der Wortlinge dort, wo
Zwischenresultate in digitalen Syste-
men quantisiert werden missen [22].
Addition und Multiplikation zweier
Grossen erhohen hier die Anzahl Stel-
len (bzw. Bits) des Resultats. Insbeson-
dere in rekursiven Schaltungen bringt
dies jedoch Probleme mit sich, da die-
ses Resultat in der nachfolgenden Be-
rechnung erneut verwendet wird.
Dazu sei beispielsweise die Figur 55a
betrachtet: Haben sowohl y[n] als auch
a> eine Wortlinge von vier Bits, so
kann deren Produkt bereits sieben Bits
besitzen. Durch die Addition mit dem
ndchsten Eingangswert kann das Si-
gnal vor dem ersten Verzogerungsglied
bereits wieder zusitzliche Bits bendti-
gen. Bei rekursiven Strukturen ist man
also gezwungen, die Wortlinge von
Zwischenresultaten zu begrenzen. Bei
nichtrekursiven Strukturen kann de-
ren Anzahl Stellen bei quantisierten
Eingangssignalen und Koeffizienten
zwar nicht unendlich wachsen, hdufig

ist aber trotzdem eine Begrenzung auf
eine relativ kleine Anzahl Bits notwen-
dig. Auch bei den Zwischenresultaten
kann man zwischen den verschiedenen
Formen von Quantisierung und Over-
flow-Behandlung auswéhlen und er-
hdlt so Filter mit unterschiedlichem
Verhalten.

Die Analyse der Einfliisse einer der-
artigen Wortldngenbegrenzung ist des-
halb schwierig, weil das Filter genau-
genommen nichtlinear ist. So ergibt
sich eine starke Verzerrung des Signals
bei Overflow, es kann sogar gesche-
hen, dass wegen der Begrenzung
Schwingungen mit grosser Amplitude
auftreten. Die Filter sind deshalb so zu
entwerfen, dass dieser Fall nicht oder
nur sehr selten auftritt. Dies geschieht
durch sogenannte Skalierung bei Fil-
tern, die aus einzelnen kaskadierten
Stufen bestehen. Man fihrt dazu eine
Multiplikation mit einem konstanten
Faktor F < | zwischen den Stufen ein,
um einen Uberlauf in der folgenden
Stufe zu verhindern. Hat dieser Faktor
die Form F = 27", wobei n eine ganze
Zahl ist, dann entspricht die Multipli-
kation einer Rechtsverschiebung der
Zahl um eine oder mehrere binire Stel-
len. Gelegentlich kann auch eine Mul-
tiplikation mit einem Faktor F > | ein-
gefiihrt werden, falls es sich wihrend

dem Filterentwurf zeigt, dass sonst die
hoéchstwertigen Bits unbenutzt bleiben
wiirden. Nach diesen Massnahmen
braucht der Overflow nicht mehr wei-
ter beriicksichtigt zu werden.

Als nichstes wird versucht, den Ein-
fluss der Quantisierung der Zwischen-
resultate zu bestimmen. Es zeigt sich,
dass hier ein unerwiinschtes «Rausch-
signal», dhnlich dem der A/D-Wand-
lung, erscheint. Dieses Rauschen ent-
steht tiberall dort, wo ein Signal quan-
tisiert wird. Ausserdem erfdhrt es auf
dem Weg zum Ausgang eine Filterung,
so dass sein Anteil in y[n] gefarbt ist.
Um eine quantitative Aussage zu er-
halten, wird ein Rauschmodell einge-
fihrt, welches auch bei der
A/D-Wandlung verwendet wurde: je-
der Quantisierer wird durch Zusetzen
eines Rauschsignals ersetzt (Fig. 56).
Es wird angenommen, dass jede dieser
Quellen ein Rauschen mit einem be-
stimmten spektralen Verlauf erzeuge.
Im Fall von Rundungsquantisierung
hat das Rauschen beispiclsweise einen
flachen Verlauf und die Leistung
g>/12. Nun kann der Rauschanteil
jeder Quelle im Ausgangssignal be-
stimmt werden.

Eine derartige Analyse ergibt haufig
sehr niitzliche Resultate, obwohl sie
auf einigen Annidherungen beruht, die
in der Realitdt nicht zutreffen. So wird
etwa angenommen, die Rauschquellen
seien sowohl untereinander als auch
von den Signalen im Filter unabhéin-
gig. Dies ist dann ungefihr richtig,
wenn das Eingangssignal x[n] genii-
gend unregelméssig ist. Ist das Signal
hingegen iiber lingere Zeit konstant?
oder periodisch, dann kdnnen periodi-
sche Interferenzsignale, sogenannte
Grenzzyklen, im Ausgangssignal auf-
treten. Handelt es sich bei x[n] bei-
spielsweise um ein Sprachsignal, dann
treten diese Grenzzyklen in Sprech-
pausen auf, also genau dort, wo sie am
storendsten wirken. Man betrachte
beispielsweise das einfache Filter der
Figur 57, wo das Zwischenresultat
durch Rundung auf die nichstgelege-
ne ganze Zahl gerundet wird. Es sei
beispielsweise x[n] = 0 fiir n > 0 und
v[0] = 74, dann ist sofort zu ersehen,

> Anm. des Ubersetzers: Ein dhnlicher Fall
liegt vor, wenn das Digitalsystem eine sehr kleine
Anzahl Bits zur Quantisierung verwendet: Bei
Deltamodulation beispielsweise findet eine |-Bit-
Quantisierung statt.
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Figur56. Wortlingenbegrenzung bei einem digitalen Filter
a Beispiel eines digitalen Filters, bei welchem die «Zwischenresultate» nach jeder Multiplikation quan-

tisiert werden.

b Das Rauschverhalten kann anhand des Rauschquellenmodells veranschaulicht werden, indem jeder
der Quantisierer Qj,...,Qs durch eine Rauschsequenz e|[n],...,es[n] ersetzt wird. Bei Rundungsquanti-
sierung besitzt jede dieser Rauschquellen eine Leistung von g2/12 und ein flaches («weisses») Spek-
trum. Die Rauschsignale werden nun entsprechend ihrer Lage innerhalb der Schaltung mehr oder we-
niger stark gefiltert. In diesem Beispiel erscheinen die Signale e3[n], e4[n] und es[n] ungefiltert im
Ausgangssignal y[n], wihrend e [n] und e;[n] exakt wie das Eingangssignal x[n] gefiltert werden.

dass eine Schwingung mit der Ampli-
tude 5q und der Periode N = 2 auftritt.
In rekursiven Filtergliedern hoherer
Ordnung sind derartige Grenzzyklen

x[n]

Wy [n w[n

yin]

n|\win]=-091 y[n-1]|y[n]=wgln]
0 . 7q
1 -6.37q -6q
3 5469 5q
3 -4.55q -5q
4 4.55q 5q
5 -4 55¢q -5q
Figur57. Grenzzyklus

In diesem einfachen digitalen Filter erscheint of-
fenbar ein Grenzzyklus mit Periode N = 2 und
Amplitude 5¢, falls x[n] = 0 fir n > O und der An-
fangsbedingung v[0] = 7¢. Der Quantisierer Q
rundet auf das nichstgelegene Vielfache der
Schwelle g.

ein bekanntes Problem und mussen im
allgemeinen genau untersucht werden.
Man findet beispielsweise, dass eine
Quantisierung durch Begrenzung auf
den nichstkleineren Wert des Betrags
(Fig. S1c) weniger anfillig auf Grenz-
zyklen ist als etwa andere Quantisie-
rungsverfahren. Mann kann ausser-
dem durch Verkleinerung der Quanti-
sierungsschwelle ¢, d.h. durch Ver-
grosserung der Anzahl Bits in einem
Wort, die Amplitude der Grenzzyklen
absolut gesehen - beispielsweise in
Volt, nicht aber in Quantisierungs-
schritten - verringern. Durch erneute,
etwas grobere Quantisierung des Aus-
gangssignals  y[n] kann man die
Grenzzyklen scheinbar zum Ver-
schwinden bringen.

5. Zusammenfassung

Die digitale Signalverarbeitung
zeichnet sich durch zwei grundlegende
Charakteristiken aus: Prozesse dndern
sich nur zu gewissen diskreten Zeit-
punkten, ausserdem kdnnen sie nur ge-

wisse diskrete Werte annehmen. Theo-
retische Analysen flir zeitdiskrete Pro-
zesse bendtigen besondere Werkzeuge,
wie die Fouriertransformation fiir dis-
krete Signale, die z-Transformation,
die diskrete und die schnelle Fourier-
transformation (DFT und FFT) sowie
die Differenzengleichungen. Hier wird
der wertediskrete Aspekt ausser acht
gelassen. Mit diesen Werkzeugen fin-
det man viele Parallelen zu der analo-
gen System- und Signaltheorie. Es
zeigt sich deshalb, dass analoge Tech-
niken (etwa der Filterentwurf) als Aus-
gangspunkt fiir den Entwurf digitaler
Systeme dienen konnen. Der Uber-
gang von zeitkontinuierlichen zu zeit-
diskreten sowie von wertekontinuierli-
chen zu wertediskreten Signalen und
Systemen ergibt eine Vielzahl neuer
Schaltungen, aber auch eine Vielzahl
neuer Probleme; erwdhnt wurden
Aliasing, Instabilitdt, Quantisierungs-
rauschen. Diese Probleme bilden einen
eigenen Bereich in der Theorie der di-
gitalen Signalverarbeitung.
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Korrigenda

Im Teil 1, Heft 77(1986)11, haben

sich bei der Ubertragung ins Deutsche
leider ein paar Druckfehler eingeschli-
chen. Bitte korrigieren Sie:

Gl.4und S fallsn >0

Gl.22¢: x[n-il= Fp'|edX (/)|
Gl.29a, 29b, )

29d: 3 sta )

Gl. 29c: x[n-il= Pz X(2)|
Fussnote 2: Literaturhinweis [9] fallt

weg!
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