
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 78 (1987)

Heft: 1

Artikel: Modulare Programmierung mit Modula-2

Autor: Gutknecht, J.

DOI: https://doi.org/10.5169/seals-903794

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903794
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Software

Modulare Programmierung mit Modula-2
J. Gutknecht

Modula-2 führt den
Modulbegriff ins Software-Engineering
ein. Damit lassen sich komplexe
Programme dank klarer
Schnittstellendefinition konsequent
strukturieren. Der Beitrag
beschreibt die Konzepte von
Modula-2, ohne vom Leser explizite

Kenntnisse dieser Sprache
zu verlangen. Modula-2 wurde
wie übrigens auch Pascal von
Nikiaus Wirth an der ETH Zürich
entwickelt.

Modula-2 introduit la notion de
module dans le domaine du logiciel

et permet de structurer
systématiquement des programmes
complexes grâce à une définition

claire des interfaces. L'article

décrit la conception de
Modula-2 sans exiger des
connaissances particulières de
ce langage. Comme Pascal,
Modula-2 a été conçu par
Niklaus Wirth, de l'EPF de
Zurich.

Adresse des Autors
Prof. Dr. Jiirg Gutknecht, Institut für Informatik,
ETH-Zentrum, 8092 Zürich.

1. Das Software-Modul
Die tragende Idee der Modularisierung

ist die Gliederung von Konstruktionen

in autonome funktionale
Einheiten, sogenannte Module (Tab. I).
Im Gegensatz zu zahlreichen technischen

Produkten, wie z. B. Bauwerke,
TV- und Hi-Fi-Anlagen, Fotoapparate,

Computer und elektronische
Schaltungen, entbehrten Softwaresysteme
bis vor kurzem einer expliziten modu-
laren Struktur. Das Konzept des
Software-Moduls geht auf David Parnas

zurück [1]. Parnas erkannte, dass zur
Meisterung der Komplexität grosser
Programmsysteme neue Methoden des

Software-Engineerings erforderlich
sind. Wenig überraschend schlugen
sich diese Ideen alsbald in einer
qualitativen Weiterentwicklung der
Programmiersprachen nieder. Tatsächlich
ist in der Zwischenzeit eine Generation

neuer, modularer Sprachen
entstanden. Wir erwähnen in chronologischer

Reihenfolge Mesa (Xerox
PARC), Modula-2 [2], Chili und Ada.

Figur 1

Schema eines
modularen
Softwaresystems

Hauptmodule
Q Anwendermodule
B Bibliotheksmodule

Betriebssystemmodule

D Definitionsteil
I Implementations¬

teil
— Pfeilrichtung

bezeichnet
Importrichtung.
Bsp. Modul M
importiert, d.h.
benützt die Module
S, U, T. Man
beachte, dass
Definitions- und
Implementationsteile

Objekte
importieren
können.

Erstes Programm Zweites Programm

S
M 0

sa

a m
£

m m
8 Bulletin ASE/UCS 78(1987)1, 10 janvier

Software

Modula-2-Begriffe
Compiler

Übersetzer. Übersetzt Programme, die
in der Quellensprache (z. B. Modula-2)
geschrieben sind, in die Maschinensprache
des betreffenden Computers.

Importieren
In Modula-2 lassen sich Objekte aus

fremden Modulen, genauer aus deren
Definitionsteil, in eigenen Modulen verwenden.

Im Gebrauch besteht zwischen diesen
importierten und den eigenen Objekten
kein Unterschied.

Konstrukt
Syntaktische Einheit einer

Programmiersprache, z.B. eine Deklaration oder
eine Anweisung.

Modul
In sich abgeschlossener Programmteil.

Enthält Datenstrukturen und Operationen
(Prozeduren) auf diesen Datenstrukturen.
In Modula-2 zerfällt jedes Modul in einen
Definitions- und einen Implementationsteil.

Modul-Definition
Spezifikation der Schnittstelle und der

Funktion des Moduls. Die Modul-Definition
enthält die Deklaration öffentlicher

(d.h. ausserhalb des Moduls gültigen)
Konstanten, Typen und, in seltenen Fällen,

öffentlicher Variablen. Ferner sind
die Namen und Parameterlisten der vom
entsprechenden Modul zur Verfügung
gestellten (exportierten) Prozeduren wesentlicher

Bestandteil der Modul-Definition.

Tabelle 1

Modul-Implementation
Die Implementation enthält private,

d.h. rein modulinterne Daten und die
eigentlichen Programm-Routinen, die zu
den in der Definition spezifizierten Prozeduren

gehören.

Monitor
Aktuell im Zusammenhang mit Systemen,

in welchen (quasi-)gleichzeitig mehrere

Prozesse ablaufen. Monitoren sind
Module, welche kritische Programmabschnitte

enthalten, d.h. Abschnitte, die auf
gemeinsamen Datenstrukturen operieren.
Monitoren garantieren gegenseitigen
Ausschluss, d.h. sie gewährleisten, dass zu keiner

Zeit mehr als ein Prozess einen
kritischen Programmabschnitt durchläuft.
Modula-2-Module werden durch die
Angabe einer Priorität als Monitoren
gekennzeichnet.

Objekt
Element eines Modula-2-Programms.

Typische Objekte sind Konstanten,
Variablen und Prozeduren. Datentypen werden

ebenfalls als Objekte, gewissermassen
als Objekte «höherer Stufe», betrachtet.

Prozedur
Programm-Routine, d.h. Unterprogramm.

Eine Parameterliste spezifiziert
die dem Unterprogramm beim Aufruf zu
übergebenden Parameter. Prozeduren
können in Modula-2 als Funktionen
auftreten indem sie ein explizites Resultat
zurückliefern. Ist z. B. sin eine Funktionsprozedur,

die ein REAL-Resultat zurückliefert,

so bewirkt die Anweisung y: sin(x)

die Zuweisung des Resultates an die
REAL-Variable y. Der Resultattyp einer
Funktion darf nicht strukturiert sein.

Prozess

Ablauf einer logisch zusammengehörigen
Folge von Aktionen.

Typ
In Modula-2 ist jede Konstante und

jede Variable einem Typ zugeordnet, der
den möglichen Wertebereich bzw. die
Struktur der Konstanten oder Variablen
angibt. Standard-Typen sind INTEGER
(Ganzzahl), REAL (reelle Zahl), BOOLEAN

(Boolesche Grösse), CHAR
(alphanumerisches Zeichen), BITSET (Zahlenmenge)

usw. Ferner sind eigene Typen
möglich, z.B. Aufzählungstypen (Color
(red, yellow, green)) oder strukturierte
Typen, nämlich Folgen (ARRAY) und
Datensätze (RECORD). In den
Programmfragmenten dieses Textes treten z.B. die
eigenen Typen File, Viewer und Event auf.

Zeiger
Zeiger sind Hilfsmittel zur Konstruktion

von dynamischen Datenstrukturen
wie Listen und Bäume. In Modula-2 sind
Zeiger verbunden mit einem Basistyp.
Jeder Zeiger zeigt auf ein Objekt des
entsprechenden Basistyps. In einem Binärbaum
mit Knoten des Typs T enthält beispielsweise

jeder Knoten zwei Zeiger zu den beiden

«Söhnen» dieses Knotens. Zeiger
werden in Form von Speicheradressen
realisiert.

Zielmaschine

Computer, in deren Maschinensprache
ein Compiler übersetzt.

Die zweite dieser Sprachen, Modula-2,
ist Gegenstand des vorliegenden
Aufsatzes. Sie wurde von Nikiaus Wirth
definiert und trat um 1980 die Nachfolge

von Pascal an.
Als bemerkenswertes Faktum ist zu

erwähnen, dass Modula-2 aus Modula-1,

einer Studie zur Programmierung
gleichzeitig ablaufender Prozesse,
hervorgegangen ist. In Modula-1 spielen
die Module die Rolle sogenannter
Monitoren, das sind kritische Programmabschnitte,

die nicht gleichzeitig von
verschiedenen Prozessen durchlaufen
werden dürfen. In Modula-2 sind
Monitoren durch Hinzufügen einer Priorität

zum Modulnamen gekennzeichnet.
Die wichtigere und allgemeinere
Bedeutung des Modulkonzeptes trat erst
später in den Vordergrund.

Wesentlich zum Verständnis modu-
larer Systeme ist die Erkenntnis, dass

die einzelnen Module zwar autonom,
nicht aber unabhängig voneinander
sind. Vielmehr sind sie in einem Netz
von Abhängigkeiten verwoben. Der
Konstrukteur eines Moduls wird seine
Arbeit auf vorhandene, möglicherweise

anderswo entwickelte Module
abstützen. Entscheidend dabei ist, dass er
zwar deren Schnittstellen, d.h. funktionale

Definitionen (s. Begriffe), genau
kennen muss, nicht aber die Methoden
der Implementation, zumindest nicht
in allen Details.

Verweilen wir einen Moment bei
diesem letzten Punkt. Er hat die weitreichende

Konsequenz, dass keine direkten

Abhängigkeiten zwischen den
Implementationen der verschiedenen
Module bestehen. Nach der Festlegung

der funktionalen Definitionen
(Schnittstellen) lassen sich in einem
solchen System sämtliche Implemen¬

tationen (eigentliche Programmroutinen)
unabhängig voneinander

ausarbeiten. Ohne das konstruktive Gebäude
als Ganzes zu erschüttern, kann

jede Implementation jederzeit durch
eine neue ersetzt werden.

Betrachten wir nun das in Figur 1

abgebildete Softwaresystem. Ausser
den beiden obersten Modulen besteht
jedes Modul aus einem Defiinitionsteil
und einem Implementationsteil. Auf
den beiden obersten Modulen wird
nicht weiter aufgebaut. Sie können als
Hauptmodule interpretiert werden, die
den dynamischen Ablauf steuern,
sobald ihnen die Kontrolle übergeben
wird. Ein Hauptmodul, zusammen mit
allen direkt und indirekt importierten,
d.h. verwendeten Modulen wird als
Programm bezeichnet.

Wir bemerken, dass verschiedene
Programme nicht notwendigerweise

Bulletin SEV/VSE 78(1987)1, 10. Januar 9

Software

DEFINITION MODULE InOut; KOMMENTAR
FROM FileSystem IMPORT File;
VAR Done: BOOLEAN; Resultat der letzten Operation

in, out; File; Ein- und Ausgabefiles
PROCEDURE Openlnput (defext: ARRAY OF CHAR);Eröffne Eingabefile mit Namens-Suffix defext
PROCEDURE OpenOutput (defext: ARRAY OF CHAR);Eröffne Ausgabefile mit Suffix defext
PROCEDURE Closelnput; Schliesse Eingabefile (Rückkehr zur Tastatur)
PROCEDURE CloseOutput; Schliesse Ausgabefile (Rückkehr zu Bildschirm)
PROCEDURE Read (VAR ch: CHAR); Lies nächstes Zeichen vom Eingabefile
PROCEDURE ReadString (VAR s: ARRAY OF CHAR);Lies Zeichenkette vom Eingabefile
PROCEDURE Write (ch: CHAR); Schreibe nächstes Zeichen auf Ausgabefile
PROCEDURE WriteLn; Schliesse Zeile ab
PROCEDURE WriteString (s: ARRAY OF CHAR);Schreibe Zeichenkette auf Ausgabefile

END InOut;

DEFINITION MODULE SYSTEM; FürMotorola 68000
TYPE ADDRESS POINTER TO BYTE; Adresse Zeiger zu irgend einem Byte

BYTE; Kleinste adressierbare Einheit
PROCEDURE ADR (VAR x: AnyType): ADDRESS;Speicheradresse der Variablen x
PROCEDURE TSIZE (AnyType): INTEGER; Grösse in Bytes von AnyType
PROCEDURE VAL (NewType; x: AnyType): NewType;Uminterpretation der Grosse x als NewType

END SYSTEM;

Tabelle II. Definitionsteile der Module InOut und System

modulfremd sind. Beispielsweise werden

die Module M und N von beiden
in Figur 1 dargestellten Programmen
importiert. Module, die so ausgelegt
sind, dass sie in mehreren Programmen

verwendet werden können, heis-
sen Bibliotheksmodule. Bestimmte, in
der Hierarchie weit unten (in Fig. 1

ebenfalls unten) angesiedelte
Bibliotheksmodule stellen die Schnittstellen
zu den Ressourcen des Computers wie
Prozessor, Speicher, Disk, Netzwerk,
Bildschirm, Eingabegeräte usw. dar.
In ihrer Gesamtheit bilden sie das
Betriebssystem.

Da sich alle Module in einheitlicher
Form präsentieren, wirkt ihre Einteilung

in verschiedene Klassen künstlich.

Tatsächlich tritt in modularen
Softwaresystemen die traditionelle
Strukturierung in die horizontalen
Schichten Betriebssystem, Bibliothek
und Anwendung zugunsten einer
thematischen Gliederung in vertikale
Programme in den Hintergrund.

2. Das Modula-Konzept
2.1 Grundlagen
Eine wichtige Folge der im letzten

Abschnitt besprochenen Neuorientierung

der Struktur modularer Systeme
ist die Forderung nach einer grossen
Einsatzbandbreite der Programmiersprache.

Neben dem Angebot an Kon-
strukten zur Formulierung abstrakter
Abläufe und Datenstrukturen ist die
Möglichkeit der «maschinennahen»
Programmierung von zentraler Bedeutung.

Der prinzipielle Aufbau von
Modula-2, fortan kurz Modula genannt,
zeigt eine interessante Lösung, die sich
das Modulkonzept selbst zunutze
macht. Die eigentliche Sprache besteht
aus einem minimalen Satz allgemeiner,
maschinenunabhängiger Konstrukte.
Alle systemabhängigen Objekte werden

über Modulschnittstellen (Definitionen)

zur Verfügung gestellt, so
beispielsweise Objekte zur Behandlung
von Ein- und Ausgabe sowie von Files.
Das Standardmodul SYSTEM nimmt
eine Sonderstellung ein. Es stellt ge-
wissermassen die Verbindung der
Sprache mit dem Computer her und
ermöglicht dadurch eine maschinennahe

Programmierung. Beispielsweise
lässt sich mit Hilfe dieses Moduls die
Abbildung abstrakter Datenstrukturen
in den Speicher explizit programmieren.

Zur Illustration flechten wir an dieser

Stelle Auszüge aus den Definitionsteilen

der Module InOut und SY¬

STEM' ein (Tab. II). Sie lassen erkennen,

dass Operationen in Form von
Prozedurköpfen definiert werden. Die
IMPORT-Anweisung spezifiziert die
aus fremden Modulen übernommenen
Objekte, die übrigen Deklarationen
des Definitionsteils legen die Objekte
fest, die von anderen Modulen
verwendet (importiert) werden können.
In Modula ist jedem Objekt ein
bestimmter, wohldefinierter Typ
zugeordnet. Beispielsweise besitzt Done
im Modul InOut den Standardtyp
BOOLEAN, und in den von FileSystem

importierten Typ File. Operationen

sind nur dann legal, wenn die
Typen der beteiligten Objekte verträglich
sind2. Der Typ ARRAY OF BYTE
gehört in die Kategorie der sogenannten
dynamischen Arraytypen. Dynamische
Arrays sind eines von drei wichtigen
Modula-Konzepten, die eng mit dem

Modulprinzip verknüpft sind. Bei den
beiden anderen handelt es sich um
abstrakte Objekttypen und
Prozedurvariablen.

1 Modula unterscheidet zwischen Gross- und
Kleinbuchstaben.

2 Die erwähnte Möglichkeit der maschinennahen

Programmierung bei der Verwendung des
Moduls SYSTEM beruht zu einem guten Teil auf
den grosszügigen Verträglichkeitsregeln der
Typen BYTE und ADDRESS. ADDRESS ist mit
jedem Zeigertyp und mit ganzen Zahlen verträglich,

BYTE mit jedem Typ von Bytegrösse, und
ARRAY OF BYTE mit jedem Typ überhaupt. Es

wird betont, dass, im Gegensatz zu Pointern, eine
Variable vom Typ ADDRESS nicht notwendigerweise

zur Basis eines Datensatzes zeigen muss.
Adressen können beliebige Speicherpositionen
ansprechen. Adressarithmetik wird durch die
Verträglichkeit von Adressen mit ganzen Zahlen
ermöglicht.

2.2 Dynamische Arrays
In Bibliotheksprozeduren, die einen

Array als Parameter aufweisen, ist die
Spezifikation der Länge des Arrays oft
unerwünscht. Der Kreis der potentiellen

Kunden der Prozedur ist viel grösser,

wenn beim Aufruf ein Array beliebiger

Länge akzeptiert wird. Dies kann
in Modula dadurch erreicht werden,
dass der Indexbereich in der
Prozedurdeklaration offengelassen wird.

Beispiele:
PROCEDURE WriteString
(s: ARRAY OF CHAR);
PROCEDURE InnerProduct
(a, b: ARRAY OF REAL): REAL;
PROCEDURE WriteBlock
(f: File; b: ARRAY OF BYTE)

WriteString schreibt eine Zeichenkette

s beliebiger Länge auf den
Bildschirm. InnerProduct ist eine Funktion.
Sie akzeptiert Zahlenvektoren a und b
beliebiger (gleicher) Länge und gibt
deren Skalarprodukt als Resultat (vom
Typ REAL) zurück. WriteBlock erweitert

das File f um einen Block b beliebiger

Grösse und Struktur.

2.3 Abstrakte Objekttypen
Die Modulidee ist dann in besonders

reiner Form verwirklicht, wenn
innerhalb des Moduls eine bestimmte
Art von Objekten vollständig
abgehandelt wird, d.h. wenn der Modul
selbst sämtliche für diese Objektart
benötigten Operationen zur Verfügung
stellt. In diesem Fall ist die Struktur
der Objekte für die Kunden des Mo-

10 Bulletin ASE/UCS 78(1987)1. lOjanvier

Software

duls belanglos. Es ist z.B. für den Be-
nützer eines Moduls ComplexNum-
bers unwesentlich, ob komplexe Zahlen

die Struktur
TYPE Complex ARRAY [1...2] OF REAL
oder

TYPE Complex RECORD re, im: REAL
END
aufweisen. Durch Weglassen jeglicher
Strukturbeschreibung deklariert man
den abstrakten TYPE Complex.

2.4 Prozedurvariablen

Moderne interaktive Systeme sind
gelegentlich «ereignisgesteuert». Dies
bedeutet, dass das Ablaufs-Kontroll-
programm die Ereignisse (Eingabe,
Zeigen auf ein am Bildschirm
dargestelltes Objekt, Alarm der internen
Uhr usw.) feststellt und den interessierten

Programmen zur Behandlung
übergibt. Es müssen also Module von
tieferer Hierarchiestufe übergeordnete
Module anstossen können. Dies setzt
aber voraus, dass in den ersteren
Behandlungsprozeduren installiert werden

können. In Modula lassen sich
Prozeduren als Parameter übergeben
und als Prozedurvariablen (im hierarchisch

tieferen Modul) registrieren.

Beispiel:
TYPE Handler PROCEDURE
(Viewer, Event);
PROCEDURE OpenViewer
(VAR v: Viewer; h: Handler)

Viewer und Event sind in diesem
Beispiel Datentypen, die ein
Bildschirmfenster bzw. ein Ereignis
beschreiben. Beim Aufruf von OpenViewer

wird eine Behandlungsprozedur h

übergeben. Diese wird als Prozedurvariable

des Fensterobjektes v registriert
und aufgerufen, wenn auf das betreffende

Fenster gezeigt wird.

2.5 Weitere Aspekte der
Modularisierung
Damit kennen wir alle wichtigen

modulorientierten Einrichtungen von
Modula. Die Erfahrung hat gezeigt,
dass ihre sinnvolle Verwendung, d.h.
die gute Modularisierung, viel schwieriger

ist, als man auf den ersten Blick
vermutet. Der Modul-Designer sieht
sich häufig mit kontroversen Zielsetzungen

konfrontiert. Die folgenden
Ausführungen mögen dies beleuchten.

Wir rufen zunächst in Erinnerung,
dass kein Modul - was die Struktur
angeht - von der Implementation eines
anderen Moduls abhängig ist. Deshalb
hat die Veränderung einer Implementation

überhaupt keine Auswirkungen
auf die Umgebung. Hingegen
beeinflussen Modifikationen einer Modul-
Definition prinzipiell alle direkt oder
indirekt abhängigen Module.
Beispielsweise invalidiert die Modifikation

der Definition von P in Figur 1 die
Module Q, R, T, U, M und N, da Q
und R direkt und T, U, M und N indirekt

von P abhängig sind. Der Modul

S hingegen bleibt gültig, d.h. strukturell

intakt, da nur der Implementationsteil

betroffen ist, was definitions-
gemäss nach aussen nicht sichtbar ist.
Unerwünschte Kettenreaktionen bei
der Invalidierung von Modulen entstehen

stets dann, wenn abhängige
Modul-Definitionen (wie R und T) ins
Spiel kommen. Deshalb sollte auf
grösstmögliche Unabhängigkeit der
Modul-Definitionen geachtet werden.
Anderseits ist natürlich der intensive
Gebrauch der bestehenden Module ein
Grundziel. Eine weitere Kontroverse
betrifft die Art der in die Modul-
Schnittstelle aufgenommenen
Operationen. Je grösser die Komplexität, desto

enger der Verwendungsbereich der
Operation, je geringer die Komplexität,

desto grösser der Verwendungsbereich,

aber um so geringer der Nutzen.
Gute Modularisierung bedeutet
Suchen nach dem goldenen Mittelweg.
Dieser ist im allgemeinen abhängig
von der Art des Moduls. Der interessierte

Leser möge sich überlegen, welche

der genannten kontroversen
Zielsetzungen bei Anwendermodulen und
welche bei Bibliotheksmodulen im
Vordergrund stehen.

3. Modula-Compiler
als Beispiel der
Modularisierung
Zur Illustration der Modularisierung

soll ein besonders wichtiges und
attraktives Programm, nämlich ein
Modula-Compiler, dienen. Der eigentlichen

Behandlung der Modularisierungsfrage

schicken wir einige
Bemerkungen über die Aufgabe und
Funktionsweise des Compilers voraus, die
von übergeordnetem Interesse sind.

Ein Programmsystem stellt eine
Spezifikation von Abläufen dar. Damit

diese Abläufe vom Computer aus¬

geführt werden können, muss das

Programmsystem in der Maschinensprache
des Computers vorliegen. Die

Hauptaufgabe des Compilers ist die
Übersetzung von Programmtexten in
Folgen von Maschinenbefehlen. Es

wäre natürlich unpraktisch, wenn
nach der geringsten Änderung das

ganze System neu übersetzt werden
müsste. Wir wissen beispielsweise
bereits, dass sich eine Änderung innerhalb

einer Implementation nicht auf
die Umgebung auswirkt. Deshalb
macht der Modula-Compiler
Implementationsteile einer separaten
Übersetzung zugänglich. Im Gegensatz zur
viel einfacher zu realisierenden
unabhängigen Übersetzung wird bei der
separaten Übersetzung die Konsistenz
mit dem zugehörigen Definitionsteil
und mit den importierten Modulen
überprüft.

Nach dieser kurzen Beschreibung
der Aufgabe des Compilers wenden
wir uns nun seiner Konstruktion zu.
Da der Modula-Compiler selbst ein
Programm ist, kommt sofort die Idee
auf, ihn in seiner eigenen Sprache, also
in Modula, zu formulieren. Diese Idee
erhält noch mehr Gewicht durch den

folgenden Sachverhalt; Nach der
Fertigstellung eines Compilers wird häufig

der Wunsch laut, ihn einer neuen
Zielmaschine (Tab. I) anzupassen. Die
Anpassung geht natürlich um so leichter

von der Hand, je besser der zielma-
schinenabhängige Teil isoliert ist. Im
Idealfall besteht die Anpassung lediglich

im Austausch eines Moduls.
Die Figur 2a zeigt den modularen

Aufbau des Modula-Compilers. Es

handelt sich um einen sogenannten
Einphasencompiler, der Programmtexte

in einem einzigen Durchlauf in
Maschinenbefehle übersetzt. Die Themen
der Module entsprechen den Stationen,

die bei der Verarbeitung der
Texteinheiten zu Befehlsfolgen durchlaufen

werden müssen.
Der Scanner übersetzt die Zeichenfolge

in eine Folge von Modula-
Sprachsymbolen, der Parser prüft die
syntaktische Korrektheit der Symbolfolge,

der ImportHandler liest die
importierten Objekte ein und prüft ihre
gegenseitige Konsistenz, der Table-
Handler nimmt die deklarierten

Objekte mit ihren Attributen in die
sogenannte Symboltabelle auf, und der
CodeGenerator schliesslich erzeugt die
Folge der Maschinenbefehle.

Einige ergänzende Bemerkungen
sind angebracht. Sie mögen dem Leser
einen Blick hinter die Kulissen dieses

Programmaufbaues verschaffen. Zu¬

Bulletin SEV/VSE 78(1987)1, 10. Januar 11

Software

TableHandler
ImportHandler I

Parser j L J L I

Scanner I M II II M II -Zeit

Figur 2

Einphasen-Modula-
Compiler
a Modularer Aufbau
b Zeitdiagramm

Scanner
Parser

Import -
Handler

Table-
Generator

Code-
Generator

- zeit

Figur 3

Ablauf einer
Mehrphasenübersetzung

4. Entwicklung eines
Modula-Programms
Wir wenden uns einem letzten

Problem zu: Anhand einer einfachen
Textformatieraufgabe soll versucht
werden, eine kurze, exemplarische
Einführung in die Programmierung mit
Modula zu geben. Die Problemstellung

lautet: Es soll ein Programm
erstellt werden, das einen Text (Tab. 111)

in mehrspaltige Blocksatzform giesst
und seitenweise ausdruckt (Tab. IV).
Der Ausgangstext liegt in Form einer
Folge von Zeilen willkürlicher Länge
vor. Eine Leerzeile signalisiere das
Ende eines Paragraphen.

Die dynamische Struktur des
Formatierers liegt auf der Hand: Fortgesetztes

Lesen der Eingabe-Textzeilen
und seitenweiser Aufbau des formatierten

Textes im Speicher. Sobald eine

ganze Seite aufgebaut ist, sollte diese
ausgegeben werden, so dass im Speicher

Platz für eine neue Seite geschaf-

nächst erwähnen wir, dass der Parser
gleichzeitig die Rolle des Dirigenten
der Übersetzung einnimmt. Der
Parser-Modul steuert als Hauptprogramm
den dynamischen Ablauf (höchste
Hierarchiestufe). Der bisher
unerwähnte Modul Data zeigt eine interessante

Spielart des Software-Moduls.
Seine Aufgabe besteht nicht in der
Ausführung irgendwelcher Operationen,

sondern in der Präsentierung der
gemeinsamen globalen Datentypen
und Daten. Die Figur 2b zeigt das
Zeitdiagramm einer Einphasenübersetzung

und zum Vergleich die Figur 3

den Ablauf einer sogenannten
Mehrphasenübersetzung. In der letzteren
findet in jeder Phase eine bestimmte
Transformation des Eingabestromes
in einen Ausgabestrom statt. Der
Eingabestrom der ersten Phase ist der
Programmtext, der Ausgabestrom der letzten

Phase ist die Folge der Maschinenbefehle.

Die Themen der einzelnen
Phasen entsprechen ziemlich genau
den Themen der Module in Figur 2a.

Im Gegensatz zur statischen Gliederung

des Programms in Module handelt

es sich bei der Mehrphasen-Com-
pilation um eine dynamische Gliederung

in Phasen. Zum Schluss dieses
Abschnitts sei darauf hingewiesen,
dass CodeGenerator der einzige
wesentlich von der Zielmaschine abhängige

Modul ist. Damit sind wir dem
Ziel einer leichten Übertragbarkeit des

Compilers auf neue Zielmaschinen
ziemlich nahe gekommen.

Programmierung

Im vorangehenden Abschnitt haben wir gesehen,
dass ein Computer U durch Vorgabe eines Programmes P

auf eine bestimmte Anwendung zugeschnitten werden kann,
ja sogar zugeschnitten werden muss.
Im Laufe der Zeit stellte sich heraus, dass die Tätigkeit
des Programmierens bestimmten Gesetzen gehorcht und Gedankengänge erfordert,
die weitgehend unabhängig von der speziellen,
ins Auge gefassten Anwendung sind.

Als Folge davon sind im Laufe der Zeit Regeln, Methoden
und Techniken entstanden,
welche die Wissenschaft der Programmierung an sich begründeten.
Das Programmieren im allgemeinsten Sinne hat sich geradezu
zum Kern der Informationsverarbeitung oder Informatik entwickelt.
Was also ist Programmieren?
Wir haben ein Programm bereits als eine Folge von Befehlen erklärt,
die auf eine bestimmte Menge von Daten wirkt.

Natürlich verbindet sich mit dem Begriff Programm die Vorstellung
seiner Ausführung. Tatsächlich läuft Programmieren darauf hinaus,
einen dynamischen Prozess als statischen Text zu formulieren.
Die Dinge werden jedoch noch komplizierter.
Im allgemeinen erwartet ein Programm Eingabedaten oder Parameter,
von welchen seine Ausführung abhängt.
(Das Universalprogramm U beispielsweise erwartet ein Programm P als Parameter.)
Deshalb beschreibt ein Programmtext im allgemeinen nicht nur einen,
sondern eine ganze Klasse von Prozessen.
Ein Programm als korrekt zu bezeichnen bedeutet offensichtlich,
dass alle diese Prozesse korrekt ablaufen,
d.h. (in endlicher Zeit) die korrekten Resultate erzeugen.
Korrekte Programme zu schreiben ist mehr als nur ein edles Ziel,
falls diese Programme zur Steuerung von Flugzeugen
oder Atomkraftwerken vorgesehen sind.

In den meisten Fällen ist das "Auffächern" eines Programmes in alle Prozesse,
die es beschreibt, hoffnungslos kompliziert.
Eine vielversprechendere Methode zum Beweis der Korrektheit
sind Absicherungen im (statischen) Programmtext selbst.
Programmieren in diesem rigorosen Sinne ist
eine hochgradig mathematische Tätigkeit.
Interessanterweise sind die Rollen im Laufe der Zeit vertauscht worden:
die Mathematik ist zu einem Instrument der Informatik geworden.

Tabelle III. Beispiel: Unformatierter Text

12 Bulletin ASE/UCS 78(1987)1. lOjanvier

Software

Programm!erung

Im vorangehenden Abschnitt
haben wir gesehen, dass ein
Computer U durch Vorgabe eines
Programmes P auf eine
bestimmte Anwendung
zugeschnitten werden kann, ja
sogar zugeschnitten werden
muss. Im Laufe der Zeit
stellte sich heraus, dass die
Tätigkeit des Programmierens
bestimmten Gesetzen gehorcht
und Gedankengänge erfordert,
die weitgehend unabhängig von
der speziellen, ins Auge
gefassten Anwendung sind.

Als Folge davon sind im Laufe
der Zeit Regeln, Methoden und
Techniken entstanden, welche
die Wissenschaft der
Programmierung an sich
begründeten. Das Programmieren
im allgemeinsten Sinne hat
sich geradezu zum Kern der
Informationsverarbeitung oder
Informatik entwickelt. Was

also ist Programmieren? Wir
haben ein Programm bereits als

eine Folge von Befehlen
erklärt, die auf eine
bestimmte Menge von Daten
wirkt.
Natürlich verbindet sich mit
dem Begriff Programm die
Vorstellung seiner Ausführung.
Tatsächlich läuft
Programmieren darauf hinaus,
einen dynamischen Prozess als
statischen Text zu
formulieren. Die Dinge werden
jedoch noch komplizierter. Im

allgemeinen erwartet ein
Programm Eingabedaten oder
Parameter, von welchen seine
Ausführung abhängt. (Das
Universalprogramm U

beispielsweise erwartet ein
Programm P als Parameter.)
Deshalb beschreibt ein
Programmtext im allgemeinen
nicht nur einen, sondern eine
ganze Klasse von Prozessen.
Ein Programm als korrekt zu
bezeichnen bedeutet
offensichtlich, dass alle
diese Prozesse korrekt
ablaufen, d.h. (in endlicher

Zeit) die korrekten Resultate
erzeugen. Korrekte Programme
zu schreiben ist mehr als nur
ein edles Ziel, falls diese
Programme zur Steuerung von
Flugzeugen oder
Atomkraftwerken vorgesehen
sind.

In den meisten Fällen ist das
"Auffächern" eines Programmes
in alle Prozesse, die es
beschreibt, hoffnungslos
kompliziert. Eine
vielversprechendere Methode
zum Beweis der Korrektheit
sind Absicherungen im

(statischen) Programmtext
selbst. Programmieren in
diesem rigorosen Sinne ist
eine hochgradig mathematische
Tätigkeit. Interessanterweise
sind die Rollen im Laufe der
Zeit vertauscht worden: die
Mathematik ist zu einem
Instrument der Informatik
geworden.

Tabelle IV. Beispiel : Formatierter Text

fen wird. Natürlich laufen die Aktivitäten

«Lesen einer Zeile» und «Schreiben

einer Seite» asynchron ab.

Als funktionale Einheit bietet sich
das Auslegen und Drucken einer Seite
an. Wir ordnen ihr den Modul Layouter

Fig. 4) zu. Wie sieht die Schnittstelle
dieses Moduls aus? Im wesentlichen

besteht sie aus einer einzigen Operation,

genannt Layout, welche eine
geeignete Texteinheit übernimmt und
auslegt. Als Texteinheit bietet sich
natürlich der Paragraph an. Damit ist die
ursprüngliche Aufgabe auf das
paragraphenweise Lesen des Eingabetextes
und Übergeben an den Modul Layouter

reduziert. Diese reduzierte Aufgabe
überlassen wir dem Hauptmodul
Formatter. Damit besteht unser System bis
jetzt aus zwei Modulen, von denen das
eine, Formatter, das anderen, Layout,
importiert. Ferner verwenden wir das
Bibliotheksmodul InOut, dem wir
bereits früher begegnet sind. Es wird von
Formatter für die Eingabe und von
Layout für die Ausgabe importiert.

Bevor wir mit der eigentlichen
Programmierung beginnen, legen wir die
Datenstrukturen der beiden Module
fest. Das Hauptmodul muss sicher
einen Zeichenpuffer zur Aufnahme
eines Paragraphen enthalten. Wir nennen

ihn buf. Sein Füllzustand wird
durch den Positionszeiger lim
markiert. Im Layoutmodul wird ein
zweidimensionaler Array page zur Darstellung

der formatierten Seite verwendet.
Die Koordinaten row und col legen
den Formatierzustand der Seite fest,
d.h. sie geben die aktuelle Position des

gerade behandelten Zeichens an.

Wir beginnen die Programmierung
mit der Definition des Moduls Layouter.

Bei genauer Überlegung stellen wir
fest, dass die Schnittstelle neben der
Prozedur Layout eine Prozedur
OutPage zur Ausgabe der gerade
formatierten Seite umfassen sollte.
Normalerweise wird OutPage vom Layouter

selbst aufgerufen, sobald eine ganze
Seite ausgelegt ist. Beim Erreichen

des Endes des Eingabe-Textes jedoch
muss der Impuls zur Ausgabe der letzten,

nur teilweise gefüllten Seite vom
Hauptprogramm gegeben werden.

DEFINITION MODULE Layouter;
PROCEDURE Layout
(VAR buf: ARRAY OF CHAR;
lim: INTEGER);
PROCEDURE OutPage;

END Layouter

Man beachte die Verwendung eines
dynamischen Arrays als Parameter.

Figur4. Beispiel Textformatierer

Der Präsentation der Implementation
stellen wir zum besseren

Verständnis, aber auch zur allgemeinen
Information, einige Punkte voran, in
denen Modula syntaktisch oder
semantisch von Pascal abweicht.

1. Die Verwendung von Konstanten-
Ausdrücken ist erlaubt.

2. LOOP END ist ein Konstrukt zur
Programmierung von Schleifen mit
Ausgängen (EXIT) in beliebiger
Anzahl und an beliebigen Stellen.

3. Die IF-und die WHILE-Anweisun-
gen sind mit einem expliziten END-
Symbol abgeschlossen. Die
Klammerung BEGIN END von
Anweisungsfolgen erübrigt sich deshalb.

4. Die IF-Anweisung enthält in ihrer
allgemeinsten Form eine beliebige
Anzahl ELSIF-Teile.
Beispiel:

IF sym comma THEN GetSym
ELSIF sym ident THEN err(l 1)

ELSIF sym varTHEN err(l 1); GetSym
ELSE EXIT
END

5. INC und DEC sind Standardfunktionen

zur schnellen Inkrementie-
rung und Dekrementierung.

6. Das Zeichen «#» bedeutet «nicht
gleich».

7. Boolesche Ausdrücke werden be¬

dingt ausgewertet. Ihre exakte
Definition ist:

a OR b IF a THEN TRUE ELSE b END
a&b IFaTHENb ELSE FALSE END

Beispiel:
Das folgende Programm sucht das
Element x im Array a[0],..., a[N— 1]:

i: 0;

WHILE (i # N) & (a[i] # x) DO INC(i) END

8. Die Anweisungsfolge zwischen
BEGIN und END eines
Implementationsmoduls wird nach dem
Laden des Moduls automatisch
abgearbeitet. Sie dient der Initialisierung

der globalen Modulvariablen.

Bei der Implementation des Text-
formatierprogrammes empfiehlt es

sich, mit dem Hauptmodul «Formatter»

zu beginnen, da es die gesamte
Ablaufstruktur widerspiegelt. In
Tabelle V ist das vollständige Programm
dargestellt und kommentiert. Zum
besseren Verständnis seien noch folgende
Erklärungen zum Modul InOut beigefügt:

Die in InOut enthaltenen Prozeduren

Openlnput und OpenOutput bieten
die interessante Möglichkeit, die Quelle

der Eingabe und das Ziel der Ausga-

Bulletin SEV/VSE 78(1987)1, 10. Januar 13

Software

be zur Laufzeit des Programmes inter- Tabelle V
aktiv anzugeben. Alle Read-Operatio- Textformatier-
nen beziehen sich auf die angegebene Programm

Quelle und alle kPn'te-Operationen auf
das angegebene Ziel. Done ist eine
Boolesche Variable, die den Erfolg der
letzten Eingabe- oder Ausgabeoperation

anzeigt.

5. Schlusswort
Modula ist eine moderne

Programmiersprache zur Konstruktion von
grossen modularen Softwaresystemen.
Als Strukturelement ist das Modul in
seiner Relevanz durchaus mit der
Prozedur und dem damit verbundenen
Lokalitätsprinzip vergleichbar. Die
separate Übersetzung ist gleichzeitig
Garantie für effizienten Unterhalt und
dauernde Konsistenz des Gesamtsystems.

Obwohl einfach in seiner
Konzeption, hat sich das Modul als ein
überraschend schwierig zu
beherrschendes Hilfsmittel herausgestellt. Es
tritt in vielfältiger Gestalt auf, z.B. als
Package von Prozeduren, als
Verwaltungsinstanz von Ressourcen, als
Schnittstelle zur Hardware, als Black
Box zur Verarbeitung von Objekten,
als Monitor und als Datenbasis. Das
modulare Denken eröffnet neue
Horizonte und führt zu weitreichenden und
oft unerwarteten Konsequenzen, sogar
für Betriebssystem-Designer und
Computer-Architekten. Beispielsweise
hat die Modulorganisation bereits
ihren Niederschlag in neueren
Mikroprozessor-Architekturen gefunden, so
etwa in der Prozessor-Familie 32000
von National Semiconductor.

Literatur
[1] D.L. Parnas: On the criteria to be used in

decomposing systems into modules.
Communications of the ACM 15(1972)12,
p. 1053...1058.

[2] N. Wirth: Programming in Modula-2 Third
edition. - Texts and monographs in
computer science - Berlin/Heidelberg, Springer-
Verlag, 1985.

MODULE Formatter:
FROM Layouter IMPORT Layout. OutPage; Importiere Prozeduren Layout und OutPage
FROM InOut IMPORT Openlnput, OpenOutput, Importiere Prozeduren zur Ein- und Ausgabe

Closelnput. CloseOutput,
Read, Done;

CONST EOL-36C; 36C Ist ASCII-Code des Zeilenabschlusses
VAR ch: CHAR; lim: INTEGER; Hilfsvariablen

buf: ARRAY [0-1000] OF CHAR; Puffer für den nlchsten Textparagraphen
BEGIN

Openlnput("TXT");OpenOutput("DOK"); Eröffne Ein- und Ausgabefiles
lim 0; Read(ch); Initialisierung
WHILE Done DO Solange ein Zeichen gelesen wurde

WHILE ch # EOLDO Fülle nächste Zeile in den Puffer
INC(lim); buf [lim J ch; Read(ch)

END;
INC(lim); buf (lim 1 :- " *;Read(ch);
IF ch - EOLTHEN Falls zusätzliche Leerzeile

Layouttbuf, lim); lim > 0; Read(ch) Aktiviere Paragraph-Layouter
END

END;
OutPage; Forciere Ausgabe der letzten Seite
CloseOutput; Closelnput Schliesse Ein- und Ausgabefiles

END Formatter.

DEFINITION MODULE Layouter;

PROCEDURE Layout (VAR buf: ARRAY OF CHAR; Ilm: INTEGER);
PROCEDURE OutPage;

END Layouter.

IMPLEMENTATION MODULE Layouter
FROM InOut IMPORT Write;
CONST

EOL-36C; 36C Ist ASCII-Code des Zeilenabschlusses
EOP-14C; 14C ist ASCII-Code des Seitenabschlusses
len - 30; wid - 33; Layout-Konstanten
maxRow - 70; maxCol - 3»len;
bndCol » maxCol - len;

VAR row. col: INTEGER; Momentane Koordinaten
page: ARRAY [0_maxRow-1], t0_maxCol-1] OF CHAR;Seitenpuffer

PROCEDURE OutPage; Prozedurzur Ausgabe der Seite
VAR c, r. p: INTEGER;

BEGIN r> 0;
WHILE r # maxRow DO c :- 0; Schleife zur Ausgabe der Zeilen

WHILE c # col DO p 0; Schleife zur Ausgabe der Spalten
WHILE p# len DO

Write(page [r, c p]); INC p
END;
WHILE p # wid DO Writet" "); INC(p) END;
c :- c len Nichste Spalte

END;
IF r < row THEN p > 0; Ausgabe der letzten Spalte

WHILE p # len DO
Write(page(r, c»p]); INC(p)

ENO
END;
Write(EOL);
INC(r) Nichste Zeile

END;
Write(EOP) Seitenende

END OutPage;

PROCEDURE Layout (VAR buf; ARRAY OF CHAR; lim: INTEGER);Formatier-Prozedur
VAR beg. cur, end, pos, wds, spc, rem: INTEGER;

BEGIN

beg:- 0;cur:-0;
REPEAT INC(cur) UNTIL buftcur] - " Bestimme erstes Wort
REPEAT wds :- 0; INC(beg); Schleife zur Behandlung der Zeilen

LOOP Schleife zur Bestimmung der nächsten Zeile
INC(wds); end cur Erhöhe Anzahl Wörter dieser Zeile
IF end - lim THEN spc 0; rem > 0; EXIT END.Paragraphenende erreicht
REPEAT INC(cur) UNTIL buf [cur] - • Bestimme nächstes Wort
IF cur - beg > len THEN Falls Zeilenllnge überschritten

IF wds >1 THEN

spc :- (len beg - end) DIV (wds - 1);Berechne zusätzlichen Wortzwischenraum
rem > (len beg - end MOD (wds -1)Berechne restliche Leerstellen

END;
EXIT Ende Bestimmung der Zeile

END
END;
pos 0;
WHILE pos < len DO Initialisiere Zeile

pagelrow, col pos] > " ";INC(pos)
END;
pos 0;
WHILE beg# end DO Layout der Zeile im Seitenpuffer

pagelrow. col pos] :- buf (beg];
IF buf [beg] - ' " THEN pos pos spc; Wortzwischenraum

IF rem > 0 THEN INC(pos); DEC(rem) ENDZusltzliches Leerzeichen
END;
INC(pos);INC(beg)

END;
INC (row); Nächste Zeile
IF row - maxRow THEN Spaltenllnge erreicht

IF col - bndCol THEN OutPage; col > 0 Seitenausgabe, nichste Seite
ELSE col > col len Nichste Spalte

END;
row >0

END
UNTIL end-lim

END Layout;

BEGIN col :- 0; row >0
END Layouter.

14 Bulletin ASE/UCS 78(1987)1. lOjanvier

	Modulare Programmierung mit Modula-2

