Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 78 (1987)

Heft: 1

Artikel: Modulare Programmierung mit Modula-2

Autor: Gutknecht, J.

DOl: https://doi.org/10.5169/seals-903794

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-903794
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Software

Modulare Programmierung mit Modula-2

J. Gutknecht

Modula-2 fihrt den Modul-
begriff ins Software-Engineering
ein. Damit lassen sich komplexe
Programme dank klarer Schnitt-
stellendefinition konsequent
strukturieren. Der Beitrag
beschreibt die Konzepte von
Modula-2, ohne vom Leser expli-
zite Kenntnisse dieser Sprache
zu verlangen. Modula-2 wurde
wie lbrigens auch Pascal von
Niklaus Wirth an der ETH Ziirich
entwickelt.

Modula-2 introduit la notion de
module dans le domaine du logi-
ciel et permet de structurer sys-
tématiquement des programmes
complexes grédce a une défini-
tion claire des interfaces. L ar-
ticle décrit la conception de
Modula-2 sans exiger des
connaissances particulieres de
ce langage. Comme Pascal,
Modula-2 a été concu par
Niklaus Wirth, de I’'EPF de
Zurich.

Adresse des Autors

Prof. Dr. Jiirg Gutknecht, Institut fir Informatik,
ETH-Zentrum, 8092 Ziirich.

1. Das Software-Modul

Die tragende Idee der Modularisie-
rung ist die Gliederung von Konstruk-
tionen in autonome funktionale Ein-
heiten, sogenannte Module (Tab.]I).
Im Gegensatz zu zahlreichen techni-
schen Produkten, wie z.B. Bauwerke,
TV- und Hi-Fi-Anlagen, Fotoappara-
te, Computer und elektronische Schal-
tungen, entbehrten Softwaresysteme
bis vor kurzem einer expliziten modu-
laren Struktur. Das Konzept des Soft-
ware-Moduls geht auf David Parnas

zuriick [1]. Parnas erkannte, dass zur
Meisterung der Komplexitdt grosser
Programmsysteme neue Methoden des
Software-Engineerings erforderlich
sind. Wenig iiberraschend schlugen
sich diese Ideen alsbald in einer quali-
tativen Weiterentwicklung der Pro-
grammiersprachen nieder. Tatsédchlich
ist in der Zwischenzeit eine Genera-
tion neuer, modularer Sprachen ent-
standen. Wir erwdhnen in chronologi-
scher Reihenfolge Mesa (Xerox
PARC), Modula-2 [2], Chill und Ada.

Figur1l

Schema eines
modularen
Softwaresystems
Hauptmodule
Anwendermodule
Bibliotheksmodule
Betriebssystem-
module
Definitionsteil
Implementations-

—o Oomoa0

Erstes Programm

Zweites Programm

— Pfeilrichtung
bezeichnet
Importrichtung.
Bsp. Modul M
importiert, d.h.
beniitzt die Module

ﬁ% I
teil S .

L]

S, U, T.Man
beachte, dass
Definitions- und
Implementations-

teile Objekte

importieren
kénnen.

4

Yo e
o)

Zi

Bulletin ASE/UCS 78(1987)1, 10 janvier

Software

Modula-2-Begriffe

Compiler

Ubersetzer. Ubersetzt Programme, die
in der Quellensprache (z. B. Modula-2) ge-
schrieben sind, in die Maschinensprache
des betreffenden Computers.

Importieren

In Modula-2 lassen sich Objekte aus
fremden Modulen, genauer aus deren De-
finitionsteil, in eigenen Modulen verwen-
den. Im Gebrauch besteht zwischen diesen
importierten und den eigenen Objekten
kein Unterschied.

Konstrukt

Syntaktische Einheit einer Program-
miersprache, z.B. eine Deklaration oder
eine Anweisung.

Modul

In sich abgeschlossener Programmteil.
Enthélt Datenstrukturen und Operationen
(Prozeduren) auf diesen Datenstrukturen.
In Modula-2 zerfillt jedes Modul in einen
Definitions- und einen Implementations-
teil.

Modul-Definition

Spezifikation der Schnittstelle und der
Funktion des Moduls. Die Modul-Defini-
tion enthélt die Deklaration offentlicher
(d.h. ausserhalb des Moduls giiltigen)
Konstanten, Typen und, in seltenen Fal-
len, offentlicher Variablen. Ferner sind
die Namen und Parameterlisten der vom
entsprechenden Modul zur Verfiigung ge-
stellten (exportierten) Prozeduren wesent-
licher Bestandteil der Modul-Definition.

Modul-Implementation

Die Implementation enthélt private,
d.h. rein modulinterne Daten und die
eigentlichen Programm-Routinen, die zu
den in der Definition spezifizierten Proze-
duren gehoren.

Monitor

Aktuell im Zusammenhang mit Syste-
men, in welchen (quasi-)gleichzeitig meh-
rere Prozesse ablaufen. Monitoren sind
Module, welche kritische Programmab-
schnitte enthalten, d.h. Abschnitte, die auf
gemeinsamen Datenstrukturen operieren.
Monitoren garantieren gegenseitigen Aus-
schluss, d.h. sie gewihrleisten, dass zu kei-
ner Zeit mehr als ein Prozess einen kriti-
schen Programmabschnitt durchléuft.
Modula-2-Module werden durch die An-
gabe einer Prioritit als Monitoren gekenn-
zeichnet.

Objekt

Element eines Modula-2-Programmes.
Typische Objekte sind Konstanten, Va-
riablen und Prozeduren. Datentypen wer-
den ebenfalls als Objekte, gewissermassen
als Objekte «hoherer Stufe», betrachtet.

Prozedur

Programm-Routine, d.h. Unterpro-
gramm. Eine Parameterliste spezifiziert
die dem Unterprogramm beim Aufruf zu
ibergebenden Parameter. Prozeduren
konnen in Modula-2 als Funktionen auf-
treten indem sie ein explizites Resultat zu-
riickliefern. Ist z. B. sin eine Funktionspro-
zedur, die ein REAL-Resultat zurticklie-
fert, so bewirkt die Anweisung y:=sin(x)

die Zuweisung des Resultates an die
REAL-Variable y. Der Resultattyp einer
Funktion darf nicht strukturiert sein.

Prozess
Ablauf einer logisch zusammengehori-
gen Folge von Aktionen.

Typ

In Modula-2 ist jede Konstante und
jede Variable einem Typ zugeordnet, der
den moglichen Wertebereich bzw. die
Struktur der Konstanten oder Variablen
angibt. Standard-Typen sind INTEGER
(Ganzzahl), REAL (reelle Zahl), BOOLE-
AN (Boolesche Grosse), CHAR (alpha-
numerisches Zeichen), BITSET (Zahlen-
menge) usw. Ferner sind eigene Typen
moglich, z. B. Aufzidhlungstypen (Color =
(red, yellow, green)) oder strukturierte Ty-
pen, ndmlich Folgen (ARRAY) und Da-
tensitze (RECORD). In den Programm-
fragmenten dieses Textes treten z.B. die
eigenen Typen File, Viewer und Event auf.

Zeiger

Zeiger sind Hilfsmittel zur Konstruk-
tion von dynamischen Datenstrukturen
wie Listen und Bdaume. In Modula-2 sind
Zeiger verbunden mit einem Basistyp. Je-
der Zeiger zeigt auf ein Objekt des entspre-
chenden Basistyps. In einem Bindrbaum
mit Knoten des Typs T enthdlt beispiels-
weise jeder Knoten zwei Zeiger zu den bei-
den «Sohnen» dieses Knotens. Zeiger
werden in Form von Speicheradressen
realisiert.

Zielmaschine
Computer, in deren Maschinensprache
ein Compiler iibersetzt.

Tabelle I

Die zweite dieser Sprachen, Modula-2,
ist Gegenstand des vorliegenden Auf-
satzes. Sie wurde von Niklaus Wirth
definiert und trat um 1980 die Nach-
folge von Pascal an.

Als bemerkenswertes Faktum ist zu
erwidhnen, dass Modula-2 aus Modu-
la-1, einer Studie zur Programmierung
gleichzeitig ablaufender Prozesse, her-
vorgegangen ist. In Modula-1 spielen
die Module die Rolle sogenannter Mo-
nitoren, das sind kritische Programm-
abschnitte, die nicht gleichzeitig von
verschiedenen Prozessen durchlaufen
werden diirfen. In Modula-2 sind Mo-
nitoren durch Hinzufiigen einer Priori-
tat zum Modulnamen gekennzeichnet.
Die wichtigere und allgemeinere Be-
deutung des Modulkonzeptes trat erst
spéter in den Vordergrund.

Wesentlich zum Verstdndnis modu-
larer Systeme ist die Erkenntnis, dass

die einzelnen Module zwar autonom,
nicht aber unabhingig voneinander
sind. Vielmehr sind sie in einem Netz
von Abhingigkeiten verwoben. Der
Konstrukteur eines Moduls wird seine
Arbeit auf vorhandene, moglicherwei-
se anderswo entwickelte Module ab-
stiitzen. Entscheidend dabei ist, dass er
zwar deren Schnittstellen, d.h. funktio-
nale Definitionen (s. Begriffe), genau
kennen muss, nicht aber die Methoden
der Implementation, zumindest nicht
in allen Details.

Verweilen wir einen Moment bei
diesem letzten Punkt. Er hat die weitrei-
chende Konsequenz, dass keine direk-
ten Abhdngigkeiten zwischen den Im-
plementationen der verschiedenen
Module bestehen. Nach der Festle-
gung der funktionalen Definitionen
(Schnittstellen) lassen sich in einem
solchen System sdmtliche Implemen-

tationen (eigentliche Programmrouti-
nen) unabhédngig voneinander ausar-
beiten. Ohne das konstruktive Gebiu-
de als Ganzes zu erschittern, kann
jede Implementation jederzeit durch
eine neue ersetzt werden.

Betrachten wir nun das in Figur |
abgebildete Softwaresystem. Ausser
den beiden obersten Modulen besteht
jedes Modul aus einem Definitionsteil
und einem Implementationsteil. Auf
den beiden obersten Modulen wird
nicht weiter aufgebaut. Sie konnen als
Hauptmodule interpretiert werden, die
den dynamischen Ablauf steuern, so-
bald ihnen die Kontrolle iibergeben
wird. Ein Hauptmodul, zusammen mit
allen direkt und indirekt importierten,
d.h. verwendeten Modulen wird als
Programm bezeichnet.

Wir bemerken, dass verschiedene
Programme nicht notwendigerweise

Bulletin SEV/VSE 78(1987)1, 10. Januar

Software

modulfremd sind. Beispielsweise wer-
den die Module M und N von beiden
in Figur | dargestellten Programmen
importiert. Module, die so ausgelegt
sind, dass sie in mehreren Program-
men verwendet werden konnen, heis-
sen Bibliotheksmodule. Bestimmte, in
der Hierarchie weit unten (in Fig. 1
ebenfalls unten) angesiedelte Biblio-
theksmodule stellen die Schnittstellen
zu den Ressourcen des Computers wie
Prozessor, Speicher, Disk, Netzwerk,
Bildschirm, Eingabegeridte usw. dar.
In ihrer Gesamtheit bilden sie das Be-
triebssystem.

Da sich alle Module in einheitlicher
Form présentieren, wirkt ihre Eintei-
lung in verschiedene Klassen kiinst-
lich. Tatsédchlich tritt in modularen
Softwaresystemen die traditionelle
Strukturierung in die horizontalen
Schichten Betriebssystem, Bibliothek
und Anwendung zugunsten einer the-
matischen Gliederung in vertikale Pro-
gramme in den Hintergrund.

2. Das Modula-Konzept

2.1 Grundlagen

Eine wichtige Folge der im letzten
Abschnitt besprochenen Neuorientie-
rung der Struktur modularer Systeme
ist die Forderung nach einer grossen
Einsatzbandbreite der Programmier-
sprache. Neben dem Angebot an Kon-
strukten zur Formulierung abstrakter
Abldufe und Datenstrukturen ist die
Moglichkeit der «maschinennahen»
Programmierung von zentraler Bedeu-
tung. Der prinzipielle Aufbau von Mo-
dula-2, fortan kurz Modula genannt,
zeigt eine interessante Losung, die sich
das Modulkonzept selbst zunutze
macht. Die eigentliche Sprache besteht
aus einem minimalen Satz allgemeiner,
maschinenunabhingiger Konstrukte.
Alle systemabhdngigen Objekte wer-
den iiber Modulschnittstellen (Defini-
tionen) zur Verfiigung gestellt, so bei-
spielsweise Objekte zur Behandlung
von Ein- und Ausgabe sowie von Files.
Das Standardmodul SYSTEM nimmt
eine Sonderstellung ein. Es stellt ge-
wissermassen die Verbindung der
Sprache mit dem Computer her und
ermoglicht dadurch eine maschinen-
nahe Programmierung. Beispielsweise
lasst sich mit Hilfe dieses Moduls die
Abbildung abstrakter Datenstrukturen
in den Speicher explizit programmie-
ren.

Zur Illustration flechten wir an die-
ser Stelle Ausziige aus den Definitions-
teilen der Module InOut und SY-

DEFINJTION MODULE InOut; KOMMENTAR
FROM FileSystem IMPORT File;
VAR Done: BOOLEAN; Resultat der letzten Operation

in, out: File; Ein- und Ausgabefiles

"RCCEDURE Openlnput (defext: ARRAY OF CHAR);Eroffne Eingabefile mit Namens-Suffix defext
PROCEDURE OpenOutput (defext: ARRAY OF CHAR):Eroffne Ausgabefile mit Suffix defext
PROCEDURE Closelnput: Schliesse Eingabefile (Riickkehr zur Tastatur)
PROCEDURE CloseQutput; Schliesse Ausgabefile (Riickkehr zu Bildschirm)
PROCEDURE Read (VAR ch: CHAR); Lies ndchstes Zeichen vom Eingabefile
PROCEDURE ReadString (VAR's: ARRAY OF CHAR)Lies Zeichenkette vom Eingabefile
PROCEDURE Write (ch: CHAR); Schreibe nachstes Zeichen auf Ausgabefile
PROCEDURE WriteLn; Schliesse Zeile ab
PROCEDURE WriteString (s: ARRAY OF CHAR);Schreibe Zeichenkette auf Ausgabefile

END InOut;

DEFINITION MODULE SYSTEM;
TYPE ADDRESS = POINTER TO BYTE; Adresse = Zeiger zu irgend einem Byte
BYTE; Kleinste adressierbare Einheijt
PROCEDURE ADR (VAR x: AnyType): ADDRESS;Speicheradresse der Variablen x
PROCEDURE TSIZE (AnyType): INTEGER; Grosse in Bytes von AnyType
PROCEDURE VAL (NewType; x: AnyType): NewType;Uminterpretation der Grésse x als NewType
END SYSTEM;

Fiir Motorola 68000

Tabelle II. Definitionsteile der Module InOut und System

STEM?! ein (Tab. II). Sie lassen erken-
nen, dass Operationen in Form von
Prozedurkdpfen definiert werden. Die
IMPORT-Anweisung spezifiziert die
aus fremden Modulen iibernommenen
Objekte, die iibrigen Deklarationen
des Definitionsteils legen die Objekte
fest, die von anderen Modulen ver-
wendet (importiert) werden konnen.
In Modula ist jedem Objekt ein be-
stimmter, wohldefinierter Typ zu-
geordnet. Beispielsweise besitzt Done
im Modul InOut den Standardtyp
BOOLEAN, und in den von FileSy-
stem importierten Typ File. Operatio-
nen sind nur dann legal, wenn die Ty-
pen der beteiligten Objekte vertraglich
sind2. Der Typ ARRAY OF BYTE ge-
hort in die Kategorie der sogenannten
dynamischen Arraytypen. Dynamische
Arrays sind eines von drei wichtigen
Modula-Konzepten, die eng mit dem
Modulprinzip verkniipft sind. Bei den
beiden anderen handelt es sich um ab-
strakte Objekttypen und Prozedur-
variablen.

' Modula unterscheidet zwischen Gross- und
Kleinbuchstaben.

2 Die erwahnte Moglichkeit der maschinenna-
hen Programmierung bei der Verwendung des
Moduls SYSTEM beruht zu einem guten Teil auf
den grossziigigen Vertraglichkeitsregeln der Ty-
pen BYTE und ADDRESS. ADDRESS ist mit je-
dem Zeigertyp und mit ganzen Zahlen vertrig-
lich, BYTE mit jedem Typ von Bytegrosse, und
ARRAY OF BYTE mit jedem Typ iiberhaupt. Es
wird betont, dass, im Gegensatz zu Pointern, eine
Variable vom Typ ADDRESS nicht notwendiger-
weise zur Basis eines Datensatzes zeigen muss.
Adressen konnen beliebige Speicherpositionen
ansprechen. Adressarithmetik wird durch die Ver-
triaglichkeit von Adressen mit ganzen Zahlen er-
moglicht.

2.2 Dynamische Arrays

In Bibliotheksprozeduren, die einen
Array als Parameter aufweisen, ist die
Spezifikation der Linge des Arrays oft
unerwiinscht. Der Kreis der potentiel-
len Kunden der Prozedur ist viel gros-
ser, wenn beim Aufruf ein Array belie-
biger Lange akzeptiert wird. Dies kann
in Modula dadurch erreicht werden,
dass der Indexbereich in der Prozedur-
deklaration offengelassen wird.

Beispiele:
PROCEDURE WriteString
(s: ARRAY OF CHAR);
PROCEDURE InnerProduct
(a,b: ARRAY OF REAL): REAL;
PROCEDURE WriteBlock
(f: File; b: ARRAY OF BYTE)

WriteString schreibt eine Zeichen-
kette s beliebiger Liange auf den Bild-
schirm. InnerProduct ist eine Funktion.
Sie akzeptiert Zahlenvektoren a und b
beliebiger (gleicher) Liange und gibt
deren Skalarprodukt als Resultat (vom
Typ REAL) zuriick. WriteBlock erwei-
tert das File f um einen Block b belie-
biger Grosse und Struktur.

2.3 Abstrakte Objekttypen

Die Modulidee ist dann in beson-
ders reiner Form verwirklicht, wenn
innerhalb des Moduls eine bestimmte
Art von Objekten vollstindig abge-
handelt wird, d.h. wenn der Modul
selbst sdmtliche fiir diese Objektart be-
notigten Operationen zur Verfligung
stellt. In diesem Fall ist die Struktur
der Objekte fiir die Kunden des Mo-

10

Bulletin ASE/UCS 78(1987)1, 10 janvier

Software

duls belanglos. Es ist z.B. fiir den Be-
niitzer eines Moduls ComplexNum-
bers unwesentlich, ob komplexe Zah-
len die Struktur

TYPE Complex = ARRAY[1..2] OF REAL
oder

TYPE Complex = RECORD re, im: REAL
END

aufweisen. Durch Weglassen jeglicher
Strukturbeschreibung deklariert man
den abstrakten TYPE Complex.

2.4 Prozedurvariablen

Moderne interaktive Systeme sind
gelegentlich «ereignisgesteuert». Dies
bedeutet, dass das Ablaufs-Kontroll-
programm die Ereignisse (Eingabe,
Zeigen auf ein am Bildschirm darge-
stelltes Objekt, Alarm der internen
Uhr usw.) feststellt und den interessier-
ten Programmen zur Behandlung
libergibt. Es miissen also Module von
tieferer Hierarchiestufe iibergeordnete
Module anstossen kdnnen. Dies setzt
aber voraus, dass in den ersteren Be-
handlungsprozeduren installiert wer-
den koénnen. In Modula lassen sich
Prozeduren als Parameter iibergeben
und als Prozedurvariablen (im hierar-
chisch tieferen Modul) registrieren.

Beispiel:
TYPE Handler = PROCEDURE
(Viewer, Event);
PROCEDURE OpenViewer
(VAR v: Viewer; h: Handler)

Viewer und Event sind in diesem
Beispiel Datentypen, die ein Bild-
schirmfenster bzw. ein Ereignis be-
schreiben. Beim Aufruf von OpenVie-
wer wird eine Behandlungsprozedur h
iibergeben. Diese wird als Prozedurva-
riable des Fensterobjektes v registriert
und aufgerufen, wenn auf das betref-
fende Fenster gezeigt wird.

2.5 Weitere Aspekte der
Modularisierung

Damit kennen wir alle wichtigen
modulorientierten Einrichtungen von
Modula. Die Erfahrung hat gezeigt,
dass ihre sinnvolle Verwendung, d.h.
die gute Modularisierung, viel schwie-
riger ist, als man auf den ersten Blick
vermutet. Der Modul-Designer sieht
sich hdufig mit kontroversen Zielset-
zungen konfrontiert. Die folgenden
Ausflihrungen mogen dies beleuchten.

Wir rufen zunéchst in Erinnerung,
dass kein Modul - was die Struktur an-
geht - von der Implementation eines
anderen Moduls abhéngig ist. Deshalb
hat die Verdnderung einer Implemen-
tation tiberhaupt keine Auswirkungen
auf die Umgebung. Hingegen beein-
flussen Modifikationen einer Modul-
Definition prinzipiell alle direkt oder
indirekt abhdngigen Module. Bei-
spielsweise invalidiert die Modifika-
tion der Definition von Pin Figur 1 die
Module Q, R, T, U, M und N, da Q
und R direkt und T, U, M und N indi-
rekt von P abhingig sind. Der Mo-
dul S hingegen bleibt giiltig, d.h. struk-
turell intakt, da nur der Implementa-
tionsteil betroffen ist, was definitions-
gemadss nach aussen nicht sichtbar ist.
Unerwiinschte Kettenreaktionen bei
der Invalidierung von Modulen entste-
hen stets dann, wenn abhidngige Mo-
dul-Definitionen (wie R und T) ins
Spiel kommen. Deshalb sollte auf
grosstmogliche Unabhidngigkeit der
Modul-Definitionen geachtet werden.
Anderseits ist natiirlich der intensive
Gebrauch der bestehenden Module ein
Grundziel. Eine weitere Kontroverse
betrifft die Art der in die Modul-
Schnittstelle aufgenommenen Opera-
tionen. Je grosser die Komplexitét, de-
sto enger der Verwendungsbereich der
Operation, je geringer die Komplexi-
tit, desto grosser der Verwendungsbe-
reich, aber um so geringer der Nutzen.
Gute Modularisierung bedeutet Su-
chen nach dem goldenen Mittelweg.
Dieser ist im allgemeinen abhédngig
von der Art des Moduls. Der interes-
sierte Leser moge sich iberlegen, wel-
che der genannten kontroversen Ziel-
setzungen bei Anwendermodulen und
welche bei Bibliotheksmodulen im
Vordergrund stehen.

3. Modula-Compiler
als Beispiel der
Modularisierung

Zur Illustration der Modularisie-
rung soll ein besonders wichtiges und
attraktives Programm, ndmlich ein
Modula-Compiler, dienen. Der eigent-
lichen Behandlung der Modularisie-
runigsfrage schicken wir einige Bemer-
kungen iber die Aufgabe und Funk-
tionsweise des Compilers voraus, die
von Ubergeordnetem Interesse sind.

Ein Programmsystem stellt eine
Spezifikation von Abldufen dar. Da-
mit diese Abldufe vom Computer aus-

gefiihrt werden konnen, muss das Pro-
grammsystem in der Maschinenspra-
che des Computers vorliegen. Die
Hauptaufgabe des Compilers ist die
Ubersetzung von Programmtexten in
Folgen von Maschinenbefehlen. Es
wire natlirlich unpraktisch, wenn
nach der geringsten Anderung das
ganze System neu iubersetzt werden
miisste. Wir wissen beispielsweise be-
reits, dass sich eine Anderung inner-
halb einer Implementation nicht auf
die Umgebung auswirkt. Deshalb
macht der Modula-Compiler Imple-
mentationsteile einer separaten Uber-
setzung zuginglich. Im Gegensatz zur
viel einfacher zu realisierenden unab-
hingigen Ubersetzung wird bei der se-
paraten Ubersetzung die Konsistenz
mit dem zugehorigen Definitionsteil
und mit den importierten Modulen
uberprift.

Nach dieser kurzen Beschreibung
der Aufgabe des Compilers wenden
wir uns nun seiner Konstruktion zu.
Da der Modula-Compiler selbst ein
Programm ist, kommt sofort die Idee
auf, ihn in seiner eigenen Sprache, also
in Modula, zu formulieren. Diese Idee
erhélt noch mehr Gewicht durch den
folgenden Sachverhalt: Nach der Fer-
tigstellung eines Compilers wird héu-
fig der Wunsch laut, ihn einer neuen
Zielmaschine (Tab. I) anzupassen. Die
Anpassung geht natiirlich um so leich-
ter von der Hand, je besser der zielma-
schinenabhingige Teil isoliert ist. Im
Idealfall besteht die Anpassung ledig-
lich im Austausch eines Moduls.

Die Figur 2a zeigt den modularen
Aufbau des Modula-Compilers. Es
handelt sich um einen sogenannten
Einphasencompiler, der Programmtex-
te in einem einzigen Durchlauf in Ma-
schinenbefehle Gbersetzt. Die Themen
der Module entsprechen den Statio-
nen, die bei der Verarbeitung der Text-
einheiten zu Befehlsfolgen durchlau-
fen werden miissen.

Der Scanner iibersetzt die Zeichen-
folge in eine Folge von Modula-
Sprachsymbolen, der Parser priift die
syntaktische Korrektheit der Symbol-
folge, der ImportHandler liest die im-
portierten Objekte ein und priift ihre
gegenseitige Konsistenz, der Table-
Handler nimmt die deklarierten Ob-
jekte mit ihren Attributen in die soge-
nannte Symboltabelle auf, und der
CodeGenerator schliesslich erzeugt die
Folge der Maschinenbefehle.

Einige ergidnzende Bemerkungen
sind angebracht. Sie mogen dem Leser
einen Blick hinter die Kulissen dieses
Programmaufbaues verschaffen. Zu-

Bulletin SEV/VSE 78(1987)1, 10. Januar

11

Software

a I |
Parser

i

Figur 2 4. Entwicklung eines
Einphasen-Modula- Modula-Prosramms
Compiler g

a Modularer Aufbau Wir wenden uns einem letzten Pro-

] b Zeitdiagramm blem zu: Anhand einer einfachen Text-

LTableHandIer] |ITnportHand|er l

ICodeGenerator I

formatieraufgabe soll versucht wer-

den, eine kurze, exemplarische Ein-

fihrung in die Programmierung mit

1

Modula zu geben. Die Problemstel-

[Scanner |

r Data

J lung lautet: Es soll ein Programm er-
stellt werden, das einen Text (Tab. I1I)

b

CodeGenerator

in mehrspaltige Blocksatzform giesst
und seitenweise ausdruckt (Tab. IV).
Der Ausgangstext liegt in Form einer
Folge von Zeilen willkiirlicher Linge

TableHandler

vor. Eine Leerzeile signalisiere das

importHandler [I[T [T

Ende eines Paragraphen.

Parser IR

Die dynamische Struktur des For-

Scanner 1 NN

Zeit matierers liegt auf der Hand: Fortge-

setztes Lesen der Eingabe-Textzeilen
und seitenweiser Aufbau des forma-

tierten Textes im Speicher. Sobald eine

Table-
Generator

Scanner
Parser

Import -
Handler

Figur 3 ' . 4
Code- Ablauf einer ganze Seite aufgebaut ist, sollte diese
Generator . Mehrphasen- ausgegeben werden, so dass im Spei-
Zeit | ibersetzung cher Platz fiir eine neue Seite geschaf-

ndchst erwdhnen wir, dass der Parser
gleichzeitig die Rolle des Dirigenten
der Ubersetzung einnimmt. Der Par-
ser-Modul steuert als Hauptprogramm
den dynamischen Ablauf (hdchste
Hierarchiestufe). Der bisher uner-
wihnte Modul Data zeigt eine interes-
sante Spielart des Software-Moduls.
Seine Aufgabe besteht nicht in der
Ausfiihrung irgendwelcher Operatio-
nen, sondern in der Prdsentierung der
gemeinsamen globalen Datentypen
und Daten. Die Figur 2b zeigt das Zeit-
diagramm einer Einphaseniiberset-
zung und zum Vergleich die Figur3
den Ablauf einer sogenannten Mehr-
phaseniibersetzung. In der letzteren
findet in jeder Phase eine bestimmte
Transformation des Eingabestromes
in einen Ausgabestrom statt. Der Ein-
gabestrom der ersten Phase ist der Pro-
grammtext, der Ausgabestrom der letz-
ten Phase ist die Folge der Maschinen-
befehle. Die Themen der einzelnen
Phasen entsprechen ziemlich genau
den Themen der Module in Figur 2a.
Im Gegensatz zur statischen Gliede-
rung des Programms in Module han-
delt es sich bei der Mehrphasen-Com-
pilation um eine dynamische Gliede-
rung in Phasen. Zum Schluss dieses
Abschnitts sei darauf hingewiesen,
dass CodeGenerator der einzige we-
sentlich von der Zielmaschine abhén-
gige Modul ist. Damit sind wir dem
Ziel einer leichten Ubertragbarkeit des
Compilers auf neue Zielmaschinen
ziemlich nahe gekommen.

Programmierung

Im vorangehenden Abschnitt haben wir gesehen,

dass ein Computer U durch Vorgabe eines Programmes P

auf eine bestimmte Anwendung zugeschnitten werden kann,

ja sogar zugeschnitten werden muss.

Im Laufe der Zeit stellte sich heraus, dass die Tatigkeit

des Programmierens bestimmten Gesetzen gehorcht und Gedankengidnge erfordert,
die weitgehend unabhingig von der speziellen,

ins Auge gefassten Anwendung sind.

Als Folge davon sind im Laufe der Zeit Regeln, Methoden

und Techniken entstanden,

welche die Wissenschaft der Programmierung an sich begriindeten.

Das Programmieren im allgemeinsten Sinne hat sich geradezu

zum Kern der Informationsverarbeitung oder Informatik entwickelt.
Was also ist Programmieren?

Wir haben ein Programm bereits als eine Folge von Befehlen erklirt,
die auf eine bestimmte Menge von Daten wirkt,

Natirlich verbindet sich mit dem Begriff Programm die Vorstellung
seiner Ausfihrung. Tatsdchlich liauft Programmieren darauf hinaus,
einen dynamischen Prozess als statischen Text zu formulieren.

Die Dinge werden jedoch noch komplizierter.

Im allgemeinen erwartet ein Programm Eingabedaten oder Parameter,
von welchen seine Ausfihrung abhingt.

(Das Universalprogramm U beispielsweise erwartet ein Programm P als Parameter.)
Deshalb beschreibt ein Programmtext im allgemeinen nicht nur einen,
sondern eine ganze Klasse von Prozessen.

Ein Programm als korrekt zu bezeichnen bedeutet offensichtlich,
dass alle diese Prozesse korrekt ablaufen,

d.h. (in endlicher Zeit) die korrekten Resultate erzeugen.

Korrekte Programme zu schreiben ist mehr als nur ein edles Ziel,
falls diese Programme zur Steuerung von Flugzeugen

oder Atomkraftwerken vorgesehen sind.

In den meisten Fdllen ist das "Auffachern" eines Programmes in alle Prozesse,
die es beschreibt, hoffnungslos kompliziert.

Eine vielversprechendere Methode zum Beweis der Korrektheit

sind Absicherungen im (statischen) Programmtext selbst.

Programmieren in diesem rigorosen Sinne ist

eine hochgradig mathematische Tatigkeit.

Interessanterweise sind die Rollen im Laufe der Zeit vertauscht worden:

die Mathematik ist zu einem Instrument der Informatik geworden.

Tabelle II1. Beispiel: Unformatierter Text

12

Bulletin ASE/UCS 78(1987)1, 10 janvier

Software

Titigkeit des Programmierens statischen

also ist Programmieren? Wir diese

haben ein Programm bereits als

Programmierung eine Folge von Befehlen Zait) die korrekten Resultate
erklirt, die auf eine erzeugen. Korrekte Programme
Im vorangehenden Abschnitt bestimmte Menge von Daten zu schrelben(ist mehr a]s_nur
haben wir gesehen, dass ein wirkt. ein edles Ziel, falls diese
Computer U durch Vorgabe eines . X . Programme zur Steuserung wvon
Programmes P auf eine Natirlich verbindet sich mit Flugzeugen oder
bestimmte Anwendung dem Begriff PrcgramT die AFumkra(twerken vorgesehen
zugeschnitten werden kann, ja Vorstellung seiner Ausfuhang. sind.
sogar zugeschnitten werden Tatsdchlich ‘Iauft) . .
muss . Im Laufe der Zeit Programmieren darauf hinaus, In dgn meisten Fdllen ist das
stellte sich heraus, dass die einen dynamischen Prozess als "Auffdchern" @eines Programmes

Text zu in alle

bestimmten Gesetzen gehorcht formulieren. Die pinge werden beschreibt, hoffnungs!as
und Gedankenginge erfordert, jedoch noch komplizierter. ;m kqmp11zxert. Eine
die weitgehend unabhingig von allgemeinen erwartet ein v1a|versprgchendare Hathc@e
der speziellen, ins Auge Programm Eingabedaten aoder zum Beweis der Korrektheit
gefassten Anwendung sind. Parameter, von welchen seine sind) Absicherungen im
Ausfihrung abhingt. (Das (statischen) Programmtaft
Als Folge davon sind im Laufe Universalprogramm u sglbst. .Prugramm197en in
der Zeit Regeln, Methoden und beispielsweise erwartet ein dYESem rigorosen Sinne ist
Techniken entstanden, welche Pragramm P Parameter.) eine hochgradig mathematxsqhe
die Wissenschaft der Deshalb beschreibt ein T;t1gks1t. Intara;santarw@lsa
Fraogrammierung an sich Programmtext al1geme|han s1pd die Rollen im Laufe d?r
begrundeten. Das Programmieren nicht nur einen, sondern eine Zeit va?tauscht worden: .dla
im allgemeinsten Sinne bhat ganze Klasse von Prozessen. Mathematik ist zu einem
sich geradezu zum Kern der Ein Programm als korrekt zu Instrument der Informatik
Informationsverarbeitung oder bezeichnen bedsutet geworden .,
Informatik entwickelt. Was offensichtlich, dass alle

Prozesse
ablaufen, d.h.

Prozesse, die es

korrekt
(in endlicher

Tabelle IV. Beispiel : Formatierter Text

fen wird. Natiirlich laufen die Aktivi-
tdten «Lesen einer Zeile» und «Schrei-
ben einer Seite» asynchron ab.

Als funktionale Einheit bietet sich
das Auslegen und Drucken einer Seite
an. Wir ordnen ihr den Modul Layou-
ter (Fig. 4) zu. Wie sieht die Schnittstel-
le dieses Moduls aus? Im wesentlichen
besteht sie aus einer einzigen Opera-
tion, genannt Layout, welche eine ge-
eignete Texteinheit iibernimmt und
auslegt. Als Texteinheit bietet sich na-
tiirlich der Paragraph an. Damit ist die
urspriingliche Aufgabe auf das para-
graphenweise Lesen des Eingabetextes
und Ubergeben an den Modul Layou-
ter reduziert. Diese reduzierte Aufgabe
iiberlassen wir dem Hauptmodul For-
matter. Damit besteht unser System bis
jetzt aus zwei Modulen, von denen das
eine, Formatter, das anderen, Layout,
importiert. Ferner verwenden wir das
Bibliotheksmodul InOut, dem wir be-
reits frither begegnet sind. Es wird von
Formatter fir die Eingabe und von
Layout fiir die Ausgabe importiert.

Bevor wir mit der eigentlichen Pro-
grammierung beginnen, legen wir die
Datenstrukturen der beiden Module
fest. Das Hauptmodul muss sicher
einen Zeichenpuffer zur Aufnahme
eines Paragraphen enthalten. Wir nen-
nen ihn buf. Sein Fiillzustand wird
durch den Positionszeiger lim mar-
kiert. Im Layoutmodul wird ein zwei-
dimensionaler Array page zur Darstel-
lung der formatierten Seite verwendet.
Die Koordinaten row und col legen
den Formatierzustand der Seite fest,
d.h. sie geben die aktuelle Position des
gerade behandelten Zeichens an.

Wir beginnen die Programmierung
mit der Definition des Moduls Layou-
ter. Bei genauer Uberlegung stellen wir
fest, dass die Schnittstelle neben der
Prozedur Layout eine Prozedur
OutPage zur Ausgabe der gerade for-
matierten Seite umfassen sollte. Nor-
malerweise wird OutPage vom Layou-
ter selbst aufgerufen, sobald eine gan-
ze Seite ausgelegt ist. Beim Erreichen
des Endes des Eingabe-Textes jedoch
muss der Impuls zur Ausgabe der letz-
ten, nur teilweise gefiillten Seite vom
Hauptprogramm gegeben werden.

DEFINITION MODULE Layouter;

PROCEDURE Layout

(VAR buf: ARRAY OF CHAR;
lim: INTEGER);
PROCEDURE OutPage;

END Layouter

Man beachte die Verwendung eines
dynamischen Arrays als Parameter.

Formatter

i

D}
Layout

.
In/Qut o |

Figur4. Beispiel Textformatierer

Der Prisentation der Implementa-
tion stellen wir zum besseren Ver-
standnis, aber auch zur allgemeinen
Information, einige Punkte voran, in
denen Modula syntaktisch oder se-
mantisch von Pascal abweicht.

1. Die Verwendung von Konstanten-
Ausdriicken ist erlaubt.

2. LOOP END ist ein Konstrukt zur
Programmierung von Schleifen mit
Ausgingen (EXIT) in beliebiger
Anzahl und an beliebigen Stellen.

3. Die IF-und die WHILE-Anweisun-
gen sind mit einem expliziten END-
Symbol abgeschlossen. Die Klam-
merung BEGIN END von Anwei-
sungsfolgen eriibrigt sich deshalb.

4. Die IF-Anweisung enthélt in ihrer
allgemeinsten Form eine beliebige
Anzahl ELSIF-Teile.

Beispiel:
IF sym = comma THEN GetSym
ELSIF sym = ident THEN err(11)
ELSIF sym = var THEN err(11); GetSym
ELSE EXIT
END

5. INC und DEC sind Standardfunk-
tionen zur schnellen Inkrementie-
rung und Dekrementierung.

6. Das Zeichen «#» bedeutet «nicht
gleich».

7. Boolesche Ausdriicke werden be-
dingt ausgewertet. lhre exakte Defi-
nition ist:

aORb=I1FaTHEN TRUE ELSE b END
a&b=IFaTHENDbELSE FALSE END

Beispiel:
Das folgende Programm sucht das
Element x im Array a[0], ..., a[N-1]:
=0
WHILE (i # N) & (a[i] # x) DO INC(i) END

8. Die Anweisungsfolge zwischen
BEGIN und END eines Implemen-
tationsmoduls wird nach dem La-
den des Moduls automatisch abge-
arbeitet. Sie dient der Initialisie-
rung der globalen Modulvariablen.

Bei der Implementation des Text-
formatierprogrammes empfiehlt es
sich, mit dem Hauptmodul «Format-
ter» zu beginnen, da es die gesamte
Ablaufstruktur widerspiegelt. In Ta-
belle V ist das vollstandige Programm
dargestellt und kommentiert. Zum bes-
seren Verstdndnis seien noch folgende
Erklarungen zum Modul InOut beige-
fugt:

Die in InOut enthaltenen Prozedu-
ren Openinputund OpenOutput bieten
die interessante Moglichkeit, die Quel-
le der Eingabe und das Ziel der Ausga-

Bulletin SEV/VSE 78(1987)1, 10. Januar

13

Software

be zur Laufzeit des Programmes inter-
aktiv anzugeben. Alle Read-Operatio-
nen beziehen sich auf die angegebene
Quelle und alle Write-Operationen auf
das angegebene Ziel. Done ist eine
Boolesche Variable, die den Erfolg der
letzten Eingabe- oder Ausgabeopera-
tion anzeigt.

5. Schlusswort

Modula ist eine moderne Program-
miersprache zur Konstruktion von
grossen modularen Softwaresystemen.
Als Strukturelement ist das Modul in
seiner Relevanz durchaus mit der Pro-
zedur und dem damit verbundenen
Lokalitédtsprinzip vergleichbar. Die se-
parate Ubersetzung ist gleichzeitig Ga-
rantie fir effizienten Unterhalt und
dauernde Konsistenz des Gesamtsy-
stems. Obwohl einfach in seiner Kon-
zeption, hat sich das Modul als ein
iiberraschend schwierig zu beherr-
schendes Hilfsmittel herausgestellt. Es
tritt in vielfaltiger Gestalt auf, z.B. als
Package von Prozeduren, als Verwal-
tungsinstanz von Ressourcen, als
Schnittstelle zur Hardware, als Black
Box zur Verarbeitung von Objekten,
als Monitor und als Datenbasis. Das
modulare Denken eroffnet neue Hori-
zonte und fihrt zu weitreichenden und
oft unerwarteten Konsequenzen, sogar
fir Betriebssystem-Designer und
Computer-Architekten. Beispielsweise
hat die Modulorganisation bereits ih-
ren Niederschlag in neueren Mikro-
prozessor-Architekturen gefunden, so
etwa in der Prozessor-Familie 32000
von National Semiconductor.

Literatur

[1] D.L. Parnas: On the criteria to be used in
decomposing systems into modules. Com-
munications of the ACM [5(1972)12,
p. 1053...1058.

[2] N. Wirth: Programming in Modula-2 Third
edition. - Texts and monographs in com-
puter science - Berlin/Heidelberg, Springer-
Verlag, 1985.

Tabelle V
Textformatier-
programm

MODULE Formatter;
FROM Layouter INPORT Layout, OutPage; Importiere Prozeduren Layout und OutPage
FROM InOut IMPORT Openlinput, OpenOutput, Importiere Prozeduren zur Ein- und Ausgabe
Closelnput. CloseOutput,
Read, Done;
CONSTEOL = 36C;
VAR ch: CHAR; lim: INTEGER;
buf: ARRAY [0.1000] OF CHAR;
BEGIN
Openlinput(*TXT*); OpenOutput("DOK");
lim := 0; Read(ch):
WHILE Done DO
WHILE ch # EOLDO
INC(lim); buf(lim] = ch; Read(ch)

36C Ist ASCII-Code des Zeilenabschlusses
Hilfsvariablen
Puffer fir den nichsten Textparagraphen

Erdffne Ein- und Ausgabefiles
Initlalisierung

Solange ein Zeichen gelesen wurde
FOlle nichste Zeile in den Puffer

END;
INC(lim): buf(lim] := * *; Read(ch);
iF ch = EOLTHEN
Layout(buf, lim); lim := 0; Read(ch)
END
END:
OutPage; Forciere Ausgabe der letzten Seite
CloseQutput; Closelnput Schliesse Ein- und Ausgabefiles
END Formatter.

Falls zusitzliche Leerzeile
Aktiviere Paragraph-layouter

DEFINITION MODULE Layouter;

PROCEDURE Layout (VAR buf: ARRAY OF CHAR; lim: INTEGER);
PROCEDURE QutPage;

END Layouter.

IMPLEMENTATION MODULE Layouter;
FROM InOut IMPORT Write;

CONST
EOL = 36C; 36C Ist ASCII-Code des Zeilenabschlusses
EQP = 14C; 14Cist ASCII-Code des Seitenabschlusses

len = 30; wid = 33;
maxRow = 70; maxCol = 3slen;
bndCol = maxCol - len;

VAR row, col: INTEGER; Momentane Koordinaten
page: ARRAY [0.maxRow-1], [0.maxCol-1] OF CHARSeitenpuffer

layout-Konstanten

PROCEDURE QutPage;
VAR ¢, 1, p: INTEGER;
BEGINr:=0;
WHILE r # maxRow DO ¢ = 0;
WHILE c#col DO p:= 0;
WHILE p # len DO
Write(page(r,c +p]); INC(p)
END;
WHILE p # wid DO Write(" *);INC(p) END;
C.'-CQFE" Nichste Spalte
END;
IFr<row THEN p := 0;
WHILE p # len DO
Write(pagelr, c+pl); INC(p)

Prozedur zur Ausgabe der Seite

Schleife zur Ausgabe der Zeilen
Schleife zur Ausgabe der Spalten

Ausgabe der letzten Spalte

END
END;
Write(EOL);
INC(r) Nichste Zeile
END:
Write(EOP) Seitenende
END OutPage;

PROCEDURE Layout (VAR buf: ARRAY OF CHAR; lim: INTEGER);Formatier-Prozedur
VAR beg, cur, end, pos, wds, spc, rem: INTEGER;
BEGIN
beg:=0;cur:==0;
REPEAT INC(cur) UNTILbuflcur] = **; Bestimme erstes Wort
REPEAT wds := 0; INC(beg); Schleife zur Behandlung der Zeilen
Loor Schleife zur Bestimmung der nichsten Zeile
INC(wds); end := cur; Erhdhe Anzahl Warter dieser Zeile
IF end = lim THEN spc := 0; rem := 0; EXIT END:Paragraphenende erreicht
REPEAT INC (cur) UNTILbuf(cur] = " =; Bestimme nichstes Wort
IF cur - beg > len THEN Falls Zeilenldnge Uberschritten
IF wds > 1 THEN
spc:= (len + beg - end) DIV (wds - 1);Berechne zusatzlichen Wortzwischenraum
rem := (len + beg - end) MOD (wds - 1)Berechne restliche Leerstellen
END;
EXIT Ende Bestimmung der Zeile
END
END;
pos :=0;
WHILE pos < len DO
pagelrow, col + pos] == * ", INC(pos)
END;
pos = 0;
WHILE beg # end DO
pagelrow, col + pos] := buf(beg]:
IF buf[beg]) = ~ " THEN pos := pos + spc; Wortzwischenraum
IF rem > O THEN INC(pos); DEC(rem) ENDZusdtzliches Leerzeichen

Initialisiere Zeile

Layout der Zeile im Seitenpuffer

END:
INC(pos); INC(beg)

END;

INC(row); Nichste Zeile

IF row = maxRow THEN Spaltenlange erreicht
IF col = bndCol THEN OutPage; col := 0 Seitenausgabe, nichste Seite

ELSE col == col + len Nichste Spalte

END;
row :=0

END

UNTILend = lim
END Layout;

BEGIN col := 0;row := 0
END Layouter.

Bulletin ASE/UCS 78(1987)1, 10 janvier

	Modulare Programmierung mit Modula-2

