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Impedanzen und Verluste koaxialer,
ferromagnetischer Leiteranordnungen
H. Brakelmann

Ferromagnetische Leiteranordnungen

sind sowohl in der
Energietechnik (z. B. Kabelkapselung)

als auch in der
Informationstechnik (Abschirmung) von
Bedeutung. Für feldunabhängige

Permeabilität (llr const.)
gibt es verschiedene
Berechnungsverfahren. An zwei
Beispielen koaxialer Leiter wird
gezeigt, dass die nichtlineare
Abhängigkeit von Ur iterativ
berücksichtigt werden und dass
die Annahme jUr const, zu
beträchtlichen Fehlern in der
Verlustberechnung führen kann.

Des dispositions ferromagnétiques

de conducteurs sont importantes

en énergétique (p. ex.
blindage de câbles), ainsi qu'en
informatique (écrans). Plusieurs
méthodes de calcul sont
connues pour le cas de la
perméabilité indépendante du
champs (pr const.). Par deux
exemples de conducteurs
coaxiaux on montre que l'on
peut tenir compte itérativement
de la dépendance non linéaire de

Hr et que le cas jir const, peut
donner lieu à d'importantes
erreurs dans le calcul des
pertes.

Adresse des Autors
Priv.-Doz. Dr. Ing. H. Brakelmann,
Universität-GH-Duisburg, Fachgebiet
Elektrische Energieübertragung,
Postfach 10 1629, D-4100 Duisburg 1.

Die Impedanzen und Verluste
ferromagnetischer Leiter sind in vielen
Bereichen der elektrischen Energietechnik

sowie bei den Beeinflussungs- und
Abschirmungsfragen der elektrischen
Messtechnik und der Nachrichtentechnik

von Bedeutung. Beispiele der
Energietechnik sind ein- oder
mehrphasige ferromagnetische Kapselungen,

Rohrkabel (z. B. Druckkabel)
oder rohrverlegte Kabel, oder auch
geschichtete Leiteranordnungen wie
beispielsweise DHÜ-oder HGÜ-Freilei-
tungsseile [1], Die Fragestellungen zielen

oft auf die Bestimmung von
Impedanzen (z.B. Kurzschluss- oder
Nullimpedanzen), von Verlusten oder auch
von Abschirmfaktoren.

Werden für die ferromagnetischen
Leiter feldunabhängige Permeabilitäten

vorausgesetzt, so kommen - auch
für nicht-koaxiale Anordnungen -
unterschiedliche Berechnungsverfahren
in Betracht, so beispielsweise das
Teilleiterverfahren [2; 3; 4] oder auch das
Rückwirkungsverfahren [5; 6], die unter

den genannten Voraussetzungen
vom Aufwand her den Gitterverfahren
überlegen sind.

Wie im folgenden an Beispielen
gezeigt wird, kann die Voraussetzung
von der Feldstärke unabhängiger
Permeabilitäten zu spürbaren Rechenfehlern

führen. Sollen hingegen die
nichtlinearen Abhängigkeiten der
Permeabilitäten berücksichtigt werden, so
kann dies im Falle beliebiger,
unsymmetrischer Leiteranordnungen wohl
nur noch mit Hilfe von Gitterverfahren,

z.B. des Finite-Elemente-Verfah-
rens, erreicht werden. Für den Sonderfall

koaxialer Anordnungen ferromagnetischer

Leiter mir kreiszylindrischen
Querschnitten können die genannten
Fragestellungen jedoch noch mit
verhältnismässig geringem Aufwand, und
zwar mit Hilfe einer analytischen
Lösung mit übergeordneter Permeabili-
täts-Iteration, gelöst werden. Dieser
Lösungsweg soll im folgenden aufgezeigt

werden.

1. Berechnungsverfahren
Gegenstand der Untersuchungen sei

eine Leiteranordnung nach Figur 1:

Ein kreiszylinderförmiger Leiter mit
dem Innenradius Rt und dem Aussen-
radius Ra führe den Längsstrom 7a und
umschliesse gegebenenfalls weitere
koaxiale Leiter, die insgesamt den
Längsstrom /, führen mögen. Zur
Berechnung der Feldgrössen im betrachteten

Leiter wird diesem eine nichtlineare

Abhängigkeit seiner Permeabilität

von der magnetischen Feldstärke
zugestanden.

Der in diesem Abschnitt beschriebene

Lösungsweg besteht aus zwei sich
wiederholenden Schritten: zum einen
die analytische Berechnung der
Feldverteilung in einem geschichteten Leiter,

dessen einzelne Schichten
unterschiedliche, aber innerhalb der Schichten

schrittweise konstante Permeabilitäten

aufweisen; zum anderen die
Anpassung dieser Permeabilitäten an die
magnetischen Feldstärken, die zuvor
in den einzelnen Schichten berechnet
wurden.

1.1 Analytische Lösung

Zur Beschreibung des vorliegenden
Wirbelstromproblems wird der be-

Fig. 1 In zehn Schichten unterteilter Leiter, der
den Längsstrom /a führt und den Längsstrom l\
koaxial umfasst

Eingezeichnet sind die Poyntingvektoren an den
Leiteroberflächen
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trachtete Leiter in N Schichten unterteilt

gedacht. Die Permeabilitäten
seien für jede einzelne Schicht -
möglicherweise unterschiedlich - vorgegeben

und werden für die Durchführung
der analytischen Lösung als
feldstärkeunabhängig aufgefasst, um
anschliessend, wie im nächsten Abschnitt
beschrieben, feldstärkeabhängig ite-
riert zu werden. Die Verteilungen von
Stromdichte und magnetischer
Feldstärke eines solchen geschichteten Leiters

können noch analytisch bestimmt
werden.

Bei Vernachlässigung von
Verschiebungsströmen im Leiter kann die
stationäre Stromdichteverteilung aus den
Maxwellschen Gleichungen zu

A G jco^KG C2 • G (1)

angegeben werden [7]. Für Anordnungen
mit Zylindersymmetrie geht Gl. (1)

in die Besseische Differentialgleichung
nullter Ordnung

d2G I 3G
—T + -— -C2G=0 (2)
dr r dr

über und hat für eine Schicht vdes Leiters

nach Figur 1 die allgemeine
Lösung

Gv=kviI0(r^)+kv2K0(r^) (3a)

und

Hv bi /, (r('0) _ hl Kt (r(v>) (5a)
C\> cv

wobei noch die Abkürzung

Cv VjöjUvKv mit r(v) çv r

eingeführt wurde.
Als Randbedingungen können

folgende Beziehungen herangezogen werden:

a) Stetigkeit der magnetischen Tan-
gentialfeldstärke an der äusseren
Oberfläche der Schicht v [v 1...

(AM)]:

f/v(rav) Hy+\ (nv+i) (6)

Hieraus ergeben sich (JV—1)

Bestimmungsgleichungen.

b) Stetigkeit der elektrischen Tan-
gentialfeldstärke bzw. -stromdichte an
der äusseren Oberfläche der Schicht v
[ v 1...( TV— 1 ] :

G\ (ray)/kv — Gv+i (rj5 v.+ i)/tcv +1 (7)

G(r)= ktI0(Cr)+k2K0(Cr) (3)

In den Gleichungen 1) bis (3) sind

G Stromdichte
co Kreisfrequenz
H Hq-Hr Permeabilität
« elektrische Leitfähigkeit
ku ki Koeffizienten
/o, Ko modifizierte Besselfunktionen

nullter Ordnung, erster und
zweiter Art

Mit rot H= G (4)

Hieraus folgen ebenfalls (IV-1)
Bestimmungsgleichungen.

Die beiden zur Bestimmung der 2N
unbekannten Koeffizienten kvi, kv2 (v

1...JV) noch fehlenden Gleichungen
folgen aus den Magnetfeldstärken an
der inneren und an der äusseren
Leiteroberfläche:

c) Innere Leiteroberfläche (d.h.
v 1 ; nv R\):

H.(n
h

2 n R]
(8)

folgt aus Gl. (3) die allgemeine Formulierung

für die magnetische Feldstärke
H zu

H(r)= ^ h (Çr)- & Ki (Cr) (5)

Randbedingungen

Für den in Figur 1 betrachteten,
geschichteten Leiter geben die Gleichungen

(3) und (5) die räumlichen Verteilungen

der Feldgrössen G und H in
jeder Schicht v an:

d) Äussere Leiteroberfläche (d.h.
v= V; ràv Rd):

Hn (r-dN) - Ii+h
2 71 Ra

(9)

Die 2 N Bestimmungsgleichungen
nach den Gleichungen (6) bis (9) in
Verbindung mit den Feldgleichungen
(3a) und (5a) sollen im folgenden in
einem Gleichungssystem zusamenge-
fasst werden.

Gleichungssystem

Gleichung (7) kann in Verbindung
mit Gleichung (3a) zu

0 kv|£v+k„2ftv+kv+l.l£v+l +kv+l,2£(v+l (10)

v I (JV)

zusammengefasst werden, wenn die
Abkürzungen

«V lo I Çav' j

g -- ^ /„ r.Vv)

dv Ko

eingeführt werden. Ebenso ergibt sich
aus Gl. (6) in Kombination mit Gl.
(5a)

9 ~ k vi_£v + kv2fv "t" ky+ 1,1 j> v+ 1 "k k Vf ] ,2_h V 1

(H)

mit v 1 (AM

Çv h (raMj/Cv

8v -Ii (li(vv))/Cv

fv - K,

hv-Ki (ç.'v'j/Çv

Die Gleichungen (8) und (5a) für die
äusseren Leiteroberflächen führen
schliesslich zu

-fcn gi-knh\ ~ (12)
2 n R,

/cni CN+ /CN2/N T—(13)~ ~ ~ ~ 2 n Rd

Diese Bestimmungsgleichungen (10)
bis (13) können in einem System von
2N Gleichungen der matriziellen Form

/= [M] k (14)

zusammengefasst werden, wobei k der
Vektor der gesuchten Koeffizienten
kvi, kV2 (v I...N) ist. Die Systemmatrix

[M] ist spärlich besetzt: Sie
weist in den Zeilen 1 bis (2 • N-2)
jeweils vier Nicht-Null-Elemente auf,

1502 (A 852) Bull. ASE/UCS 77(1986)23, 6 décembre



Nicht-Null-Elemente der Matrix [M]sowie Elemente der
Vektoren h und k nach Gl. (14) Tabelle I

Schicht v l...(N-l):
Zeilen z 1 (2N-2)

Zeile M(z. 2v-1 Miz. 2v) M(z.2v + 1) M(z. 2v + 2) 1(2) k(2)

z 2v-l a y bv C v d 0 kVi
z 2v ev />' gv hv 0 kv2

Schicht v N:

Zeile M (z, 1 M(z. 2) M(z,2N-\) M(z.2N) 1(2) k(z)

z 2 TV— 1 "gl -hi 0 0 I\/(2jtR\) jÇNl

z 2N 0 0 £N /n 2 n R\
fcN2

deren Grösse der Tabelle 1 entnommen

werden kann, ebenso wie die
jeweils zwei Nicht-Null-Elemente der
beiden letzten Zeilen. Der Erregungsvektor

/ weicht nur in seinen beiden
letzten Elementen von null ab; diese
beiden Elemente beinhalten die
magnetischen Feldstärken an den beiden
Leiteroberflächen entsprechend den
Gleichungen (12) und (13).

Das Gleichungssystem (14) wird
daher zweckmässigerweise unter Ausnutzung

seiner «sparse»-Eigenschaft
aufgelöst, beispielsweise durch ein topo-
logisch gesteuertes iteratives
Lösungsverfahren.

1.2 Berücksichtigung
feldstärkeabhängiger Permeabilität

Die bisher beschriebene Lösung
beschränkt sich auf konstante
Materialeigenschaften. Im folgenden soll
jedoch von einem nichtlinearen Verhalten

des Leitermaterials ausgegangen
werden, wie es beispielsweise durch
die Magnetisierungskennlinie in
Figur 2 beschrieben wird, die für einen
Stahl, der für Druckkabelrohre
Verwendung findet, messtechnisch ermittelt

wurde [8].

V

500

400

300

200

100

0

_
3000 5000A/m

H-

Fig. 2 Magnetisierungskennlinie und feldstärkeabhängige,

relative Permeabilitätszahl

Im folgenden soll die aus der
Magnetisierungskennlinie abzuleitende,
ebenfalls in Figur 2 dargestellte
Amplitudenpermeabilität zur Berechnung
der Wechselstrom-Impedanzen und
-Verluste herangezogen werden; es

kann jedoch auch eine ebenfalls von
der Aussteuerungsamplitude abhängige

«effektive» Permeabilität berücksichtigt

werden, die nach [9] eine
verbesserte Nachbildung der Induktionszeitflächen

erlaubt.
Beginnend mit Startwerten für die

Permeabilitäten aller Leiterschichten
wird eine erste Stromdichte- und
Magnetfeldstärke-Verteilung nach den in
Abschnitt 1.1 angegebenen Beziehungen

ermittelt. Die so erhaltene
Magnetfeldstärke erlaubt es nun, die
Permeabilitäten in allen Leiterschichten
für die dort herrschenden magnetischen

Feldstärken aus der
Magnetisierungskennlinie in Figur 2 neu zu
bestimmen. Sodann werden diese
Permeabilitäten wiederum als konstant
innerhalb der einzelnen Leiterschichten

aufgefasst und eine erneute
Berechnung durchgeführt. Die so berechnete,

neue Verteilung der magnetischen

Feldstärke im Leiter führt zu
einer weiteren Iteration der Permeabilitäten

aller Leiterschichten, die solange

wiederholt werden kann, bis die
schrittweise noch entstehenden
Abweichungen der Ergebnisse vernachlässigbar

gering bleiben. Wie die folgenden
Beispiele zeigen werden, sind hierzu
nur sehr wenige Iterationen - meist
nicht mehr als drei - erforderlich.

1.3 Bestimmung der Verluste

Die im Leiter nach Figur 1

entstehenden Verluste können mit einer ra¬

dialen Integration aus den zuvor
bestimmten Stromdichteverteilungen
ermittelt werden. Wesentlich einfacher
wird dies jedoch über eine Flächenintegration

der Leistungseinströmungen
an der inneren und an der äusseren
Leiteroberfläche, d.h. aus den dort
gegebenen Poyntingvektoren, erreicht.
Der Poyntingvektor an der inneren
Oberfläche eines Leiters beträgt

Spi= £(Ä0 (15)

und an der äusseren Oberfläche

SPa=E(Ra) -H*(Ra) (16)

wenn dieser Leiter den Längsstrom /a
führt und den Strom [, umfasst.
Multiplikation der beiden Poyntingvektoren
mit den Flächenbelägen (2nRà) bzw.
(2nR\) sowie Differenzbildung führt
schliesslich zu dem vom Leiter aus
dem Feld aufgenommenen komplexen
Leistungsbelag

(17)

v=/r G(R-,) G(Ra)

x(Ri) x(R.d)
,* G(R.d)

~ * A

X(«a)

Aus Gleichung (17) folgt, dass im
Falle des Koaxialkabelbetriebes (7a

-Ii - 1) Impedanz- und Verlustbelag
des Aussenleiters durch die Stromdichte

an seiner inneren Oberfläche
bestimmt sind:

Zf=R' + jX' G(R,) / [.x(/îj /] (18)

Führt der betrachtete Leiter jedoch
keinen Längsstrom (/a 0; /, /;
Wirbelstromproblem), so sind die
Stromdichten beider Leiteroberflächen
bestimmend:

19)

Z' — /?' + jX' G(R i) G(Ra)

x(Rt)-l x(Rd) I

Die Leiterverlustbeläge folgen dann
aus den Gleichungen (17), (18) oder
(19) mit

P' Re (Sj) bzw. P' Re (Z( • I2).

2. Beispiele
Betrachtet werde ein Stahlrohr mit

einem Innendurchmesser von 60 mm
und einem Aussendurchmesser von
70 mm, das die gemessene Magnetisie-
rungskennlinie [8] nach Figur 2
aufweisen möge. Zwei Fälle sollen
unterschieden werden:
(a) Das Stahlrohr führe selber keinen

Längsstrom. Es umschliesse aber

Bull. SEV/VSE 77( 1986)23,6. Dezember (A 853) 1503
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Fig. 3 Radiale Verteilungen der relativen Per-
meabilitätszahl (A) und der magnetischen
Feldstärke (B)
(a) Ia 0; 1, — 500 A, d.h. Wirbelstromverteilung
(b) 1,-0; h 1000 A

Ausgezogene Feldlinie: fiT nach Figur 3a

Rohrabmessungen: R, 30 mm; Ra 35 mm

einen Leiter, der den Längsstrom
Ii I führt. Der Rückleiter befinde
sich weit entfernt oder sei koaxial
ausgeführt, so dass keine Rückwirkungen

von ihm zu erwarten sind,
(b) Das Stahlrohr führe einen Längs¬

strom /a / h 0). Für den Rückleiter

gelten dieselben Aussagen
wie zu (a).

Die Figuren 3 und 4 geben die
Ergebnisse zu diesen beiden Fällen wieder.

Zu erkennen sind einerseits die
stark inhomogenen Verteilungen der
relativen Permeabilitätszahlen, anderseits

der die Verteilung der magnetischen

Feldstärke prägende Skineffekt,
der im Falle des Längsstromes (b)
einseitig und im Falle des Wirbelstromproblems

(a) zu beiden Leiteroberflächen

hin ausgeprägt ist.

Fig. 5

Radiale Verteilungen
der relativen
Permeabilitätszahlen
mit der Anzahl der
Iterationschritte als
Parameter

500

400

300

200

100

I.= 500 A
l

~i r
Längsstrom
ia= iooo a;

rbelstromverluste

Fig. 4 Radiale Verteilungen der Stromdichten für
die beiden Beispiele (a) und (b) nach Figur 3

Figur 4 gibt die entsprechenden
radialen Verteilungen der Stromdichte
wieder; auch hier wird der Einfluss des
Skineffektes deutlich.

Ergänzend sind in den Figuren 3

und 4 diejenigen Verteilungen der
Feldgrössen dargestellt, die sich bei
Annahme konstanter Permeabilität
ergeben würden. Zugrunde gelegt wurden

hierbei der jeweils auftretende
Höchstwert der relativen Permeabilität
(jUr ** 400) sowie eine Grösse, die der
magnetischen Feldstärke an der äusseren

Rohroberfläche in etwa entspricht
(jir 200 bzw. ßr 300). Zu erkennen
ist, dass die auftretenden Abweichungen

von der Wahl der konstanten
Permeabilitätszahl abhängen, wobei die
Stromdichteverteilungen insbesondere
zu den Leiteroberflächen hin stark
vom tatsächlichen Verlauf abweichen
können. Auf die hierdurch bewirkten
Fehler bei der Bestimmung der
Leiterverluste wird im folgenden noch
eingegangen.

Zunächst soll jedoch anhand der
Figur 5 der in Abschnitt 1.2 beschriebene
Iterationsablauf verdeutlicht werden:
Aufgetragen sind für die beiden Fälle

100 200 300 400

»
500

Fig. 6 Verlustleistungsbeläge

Ausgezogene Kurven: in Funktion der
feldstärkeunabhängig angenommenen relativen Permeabilitätszahl

O Verlustleistungsbeläge für feldstärkeabhängige
relative Permeabilitätszahl

Gestrichelt: mögliche Rechenfehler bei Abschätzung

von jiT aus den magnetischen Feldstärken
an den Leiterobeflächen
Ergebnis bei der Auswahl der grössten, aus der
Berechnung sich ergebenden relativen
Permeabilitätszahl (/ir 400)

nach (a) und (b) die radialen
Verteilungen der relativen Permeabilitätszahl,

wie sie sich im Rechenablauf
ergeben. Parameter ist die Anzahl der
Permeabilitäts-Iterationen: Die
Berechnung beginnt mit ßr 100 als
willkürlicher Startgrösse. Die Abbildung
macht deutlich, dass bereits nach zwei
Iterationen eine gute Annäherung an
die tatsächliche Verteilung erreicht ist,
die sich dann nach dem dritten
Iterationsschritt im Rahmen der
Zeichengenauigkeit endgültig eingestellt hat.

Zur Abschätzung der Rechenfehler,
die bei Annahme konstanter Permeabilität

auftreten können, soll Figur 6

eine Hilfe geben. Dargestellt sind die
bei Voraussetzung konstanter Perinea¬

le 1000 A
a

o

30

(a) /3-"

N ^

(b) 3... oo/
©V

r vx\
,0

32,5 mm 35 30

r
32,5 mm 35
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bilitätszahlen auftretenden Verlustbeläge.

In diese beiden Kennlinien wurden

die der Magnetisierungskennlinie
in Figur 2 und den Verteilungen in den
Figuren 3 und 4 entsprechenden,
tatsächlich auftretenden Verluste
eingetragen.

Will man die vorliegenden
Problemstellungen bei näherungsweiser
Annahme konstanter Permeabilität
berechnen, so wird man um eine
möglichst gute Auswahl dieser Grösse bei
Berücksichtigung der
Magnetisierungskennlinie sowie der vorgegebenen

Leiterströme bemüht sein. So ist es

beispielsweise denkbar, diejenigen
relativen Permeabilitätszahlen der
Berechnung zugrunde zu legen, die sich
aus den an den Leiteroberflächen
auftretenden magnetischen Feldstärken
ergeben würden: Diese Feldstärken
sind mit den Gleichungen (8) und (9)
noch ohne Kenntnis der Feldverteilungen

im Leiterinneren leicht
bestimmbar. Die sich aus dieser Überlegung

ergebenden Verlustbeläge grenzen

Bereiche der Abschätzung ein, die
längs der beiden Kennlinien in Figur 6

gestrichelt eingezeichnet sind. Zu
erkennen ist, dass die mit Hilfe dieser
Abschätzung möglicherweise
bestimmten Verlustbeläge teilweise
erheblich von den tatsächlich auftretenden

Verlustbelägen abweichen können.

Eine zweite Näherung könnte es

sein, die erkennbar grösste auftretende
relative Permeabilitätszahl der Berechnung

zugrunde zu legen: /ir 400. Die
sich hieraus ergebenden Verlustbeläge
sind ebenfalls in Figur 6 eingezeichnet.
Man sieht, dass auch bei dieser
Abschätzung spürbare Rechenfehler
auftreten können.

Die durch die Voraussetzung
konstanter Permeabilität möglicherweise
auftretenden Rechenfehler sind von
den vorzugebenden Leiter-Längsströ-
men abhängig. Dies soll abschliessend
durch die Figur 7 verdeutlicht werden,
in der zunächst einmal die
Verlustleistungsbeläge für konstante Permeabilität

(nach Fig. 6) aufgetragen sind,
wobei sie auf denjenigen
Verlustleistungsbelag P'0 bezogen wurden, der
sich bei der relativen Permeabilitätszahl

/j.r 400 const, ergibt. In diese
Kennlinien eingetragen wurden nun
die sich für unterschiedliche
Längsströme bei feldstärkeabhängiger
Permeabilität ergebenden
Verlustleistungsbeläge, ebenfalls bezogen auf
diejenigen Verlustleistungsbeläge, die
sich für den jeweiligen Längsstrom
und für nr 400 const, errechnen.

Ur

Fig. 7 Bezogene Kennlinien der Verlustleistungsbeläge

analog Figur 6 zu den beiden Fällen (a) und
(b)
O Für unterschiedliche Ströme bei feldstärke¬

abhängiger Permeabilitätszahl berechnete
Verlustleistungsbeläge

Ur 400

Die senkrechten Pfeile entsprechen den in Figur 6

gestrichelt dargestellten Fehlerbereichen.
Die schraffierten Flächen kennzeichnen die sich
insgesamt ergebenden Bereiche möglicher
Rechenfehler bei Annahme konstanter Permeabilitäten.

Diesen Kennlinienpunkten könnte
somit eine für die jeweiligen Längsströme

und für die vorgegebene Betriebsart

gültige «effektive Permeabilität»
zugeordnet werden, deren relative
Grösse auf der Abzisse abgelesen werden

kann.
Zu den vorgegebenen Längsströmen

wurden als vertikale Pfeile die bereits
in Figur 6 dargestellten Ergebnisbereiche

eingezeichnet, die sich bei
Abschätzung der relativen Permeabilitätszahl

aus den Magnetfeldstärken an
den Leiteroberflächen ergeben. Die

Vorgabe der grössten, aus den berechneten

Magnetfeldstärken folgenden
Permeabilität als feldstärkeunabhängige

Rechengrösse liefert eine obere
Abgrenzung des Bereiches möglicher
Rechenfehler.

Die durch die Voraussetzung
feldstärkeunabhängiger Permeabilität
möglichen Rechenfehler bei der
Verlustleistungsbestimmung liegen somit
- je nach Abschätzung - innerhalb von
Bereichen, die für die beiden Beispiele
in der Figur 7 schraffiert dargestellt
sind. Dieser Figur 7 kann entnommen
werden,

- dass bei Voraussetzung konstanter
Permeabilität erhebliche Rechenfehler

auftreten können,
- dass diese Rechenfehler vom Werkstoff,

von der Betriebsart bzw.
Längsstromverteilung und von der
Grösse der Längsströme abhängen
und

- dass es schwierig ist, objektivierbare
Kriterien zur bestmöglichen Auswahl

einer feldstärkeunabhängigen
«effektiven» Permeabilität, d.h. zur
Rechenfehler-Minimierung, zu
entwickeln.
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