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Impedanzen und Verluste koaxialer,
ferromagnetischer Leiteranordnungen

H. Brakelmann

Ferromagnetische Leiteranord-
nungen sind sowohl in der Ener-
gietechnik (z. B. Kabelkapse-
lung) als auch in der Informa-
tionstechnik (Abschirmung) von
Bedeutung. Fiir feldunabhan-
gige Permeabilitit ([L, = const.)
gibt es verschiedene Berech-
nungsverfahren. An zwei Bei-
spielen koaxialer Leiter wird
gezeigt, dass die nichtlineare
Abhangigkeit von [, iterativ
beriicksichtigt werden und dass
die Annahme [L, = const. zu
betrdchtlichen Fehlern in der
Verlustberechnung fiihren kann.

Des dispositions ferromagnéti-
ques de conducteurs sont impor-
tantes en énergétique (p. ex.
blindage de cables), ainsi qu’en
informatique (écrans). Plusieurs
méthodes de calcul sont
connues pour le cas de la per-
méabilité indépendante du
champs (1L, = const.). Par deux
exemples de conducteurs
coaxiaux on montre que I'on
peut tenir compte itérativement
de la dépendance non linéaire de
U, et que le cas [L, = const. peut
donner lieu a d’importantes
erreurs dans le calcul des
pertes.

Adresse des Autors

Priv.-Doz. Dr. Ing. H. Brakelmann,
Universitdt-GH-Duisburg, Fachgebiet
Elektrische Energielibertragung,
Postfach 101629, D-4100 Duisburg 1.

Die Impedanzen und Verluste ferro-
magnetischer Leiter sind in vielen Be-
reichen der elektrischen Energietech-
nik sowie bei den Beeinflussungs- und
Abschirmungsfragen der elektrischen
Messtechnik und der Nachrichten-
technik von Bedeutung. Beispiele der
Energietechnik sind ein- oder mehr-
phasige ferromagnetische Kapselun-
gen, Rohrkabel (z.B. Druckkabel)
oder rohrverlegte Kabel, oder auch ge-
schichtete Leiteranordnungen wie bei-
spielsweise DHU-oder HGU-Freilei-

‘tungsseile [1]. Die Fragestellungen zie-

len oft auf die Bestimmung von Impe-
danzen (z.B. Kurzschluss- oder Null-
impedanzen), von Verlusten oder auch
von Abschirmfaktoren.

Werden fir die ferromagnetischen
Leiter feldunabhingige Permeabilité-
ten vorausgesetzt, so kommen - auch
fiir nicht-koaxiale Anordnungen - un-
terschiedliche Berechnungsverfahren
in Betracht, so beispielsweise das Teil-
leiterverfahren [2; 3; 4] oder auch das
Riickwirkungsverfahren [5; 6], die un-
ter den genannten Voraussetzungen
vom Aufwand her den Gitterverfahren
tiberlegen sind.

Wie im folgenden an Beispielen ge-
zeigt wird, kann die Voraussetzung
von der Feldstirke unabhingiger Per-
meabilitdten zu spiirbaren Rechenfeh-
lern fithren. Sollen hingegen die nicht-
linearen Abhingigkeiten der Permea-
bilitdten beriicksichtigt werden, so
kann dies im Falle beliebiger, unsym-
metrischer Leiteranordnungen wohl
nur noch mit Hilfe von Gitterverfah-
ren, z.B. des Finite-Elemente-Verfah-
rens, erreicht werden. Fiir den Sonder-
fall koaxialer Anordnungen ferromag-
netischer Leiter mir kreiszylindrischen
Querschnitten konnen die genannten
Fragestellungen jedoch noch mit ver-
haltnisméssig geringem Aufwand, und
zwar mit Hilfe einer analytischen Lo-
sung mit libergeordneter Permeabili-
tats-Iteration, gelost werden. Dieser
Losungsweg soll im folgenden aufge-
zeigt werden.

1. Berechnungsverfahren

Gegenstand der Untersuchungen sei
eine Leiteranordnung nach Figur 1:
Ein kreiszylinderférmiger Leiter mit
dem Innenradius R; und dem Aussen-
radius R, fithre den Ldngsstrom I, und
umschliesse gegebenenfalls weitere
koaxiale Leiter, die insgesamt den
Lingsstrom I; fithren mégen. Zur Be-
rechnung der Feldgréssen im betrach-
teten Leiter wird diesem eine nichtli-
neare Abhdngigkeit seiner Permeabili-
tdt von der magnetischen Feldstirke
zugestanden.

Der in diesem Abschnitt beschriebe-
ne Losungsweg besteht aus zwei sich
wiederholenden Schritten: zum einen
die analytische Berechnung der Feld-
verteilung in einem geschichteten Lei-
ter, dessen einzelne Schichten unter-
schiedliche, aber innerhalb der Schich-
ten schrittweise konstante Permeabili-
tdten aufweisen; zum anderen die An-
passung dieser Permeabilititen an die
magnetischen Feldstirken, die zuvor
in den einzelnen Schichten berechnet
wurden.

1.1 Analytische Losung

Zur Beschreibung des vorliegenden
Wirbelstromproblems wird der be-

Fig. 1 In zehn Schichten unterteilter Leiter, der
den Lingsstrom I, fiihrt und den Lingsstrom I
koaxial umfasst

Eingezeichnet sind die Poyntingvektoren an den
Leiteroberflachen
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trachtete Leiter in N Schichten unter-
teilt gedacht. Die Permeabilitdten
seien fiir jede einzelne Schicht - mog-
licherweise unterschiedlich - vorgege-
ben und werden fiir die Durchfiihrung
der analytischen Losung als feldstér-
keunabhingig aufgefasst, um an-
schliessend, wie im niachsten Abschnitt
beschrieben, feldstdrkeabhdngig ite-
riert zu werden. Die Verteilungen von
Stromdichte und magnetischer Feld-
stiarke eines solchen geschichteten Lei-
ters kdnnen noch analytisch bestimmt
werden.

Bei Vernachlidssigung von Verschie-
bungsstromen im Leiter kann die sta-
tiondre Stromdichteverteilung aus den
Maxwellschen Gleichungen zu

AG=jouxG=C*-G (1)

angegeben werden [7]. Fir Anordnun-
gen mit Zylindersymmetrie geht GI. (1)
in die Besselsche Differentialgleichung
nullter Ordnung

Ozg
or

1 oG
+— — -C*G=0 2)
r or

tiber und hat fiir eine Schicht v des Lei-

ters nach Figurl die allgemeine Lo-
sung

G(r) = kilo(Cr) + k2Ko(Cr) (3)
In den Gleichungen (1) bis (3) sind

Stromdichte

Kreisfrequenz

Permeabilitat

elektrische Leitfihigkeit
Koeffizienten

modifizierte Besselfunktionen
nullter Ordnung, erster und
zweiter Art

ela

>lxAE

¥ e I

==

=) 1) E
E

Mit rot H= G (4)
folgt aus GI. (3) die allgemeine Formu-

lierung fiir die magnetische Feldstirke
Hzu

>~

H(r)= L(Cr- == Ki(Cr) (5)

oY kax
oY

Randbedingungen

Fiir den in Figur 1 betrachteten, ge-
schichteten Leiter geben die Gleichun-
gen (3) und (5) die rdumlichen Vertei-
lungen der Feldgrossen G und H in je-
der Schicht v an: o

Go= ko lo(r'™) + kKo (r'™) (3a)
und
Ho= By B2 ey sa)

wobei noch die Abkiirzung
C,=vVjou,xy mit r=Cr

eingefiihrt wurde.

Als Randbedingungen konnen fol-
gende Beziehungen herangezogen wer-
den:

a) Stetigkeit der magnetischen Tan-
gentialfeldstirke an der 4dusseren
Oberflache der Schicht v [v = 1..
(N-1)]:

Hv(ra\')=ﬂv+l(ri\'+l) (6)

Hieraus ergeben sich (N-1) Bestim-
mungsgleichungen.

b) Stetigkeit der elektrischen Tan-
gentialfeldstdrke bzw. -stromdichte an
der dusseren Oberfldache der Schicht v
[v=1..(N-D1)]:

Gy(ray) /Ky = Guri(ri,v+1)/ K+ (7

Hieraus folgen ebenfalls (N-1) Be-
stimmungsgleichungen.

Die beiden zur Bestimmung der 2N
unbekannten Koeffizienten kyi, kv (v
= 1...N) noch fehlenden Gleichungen
folgen aus den Magnetfeldstirken an
der inneren und an der &dusseren
Leiteroberfliche:

¢) Innere Leiteroberfliche (d.h.
v=1;r,= Rj):
H\(r))= = 8
H,(rin) TR (8)

d) Aussere Leiteroberfldche (d.h.
v= N;rav= R,):

Li+ I,
=5k

)

Die 2N Bestimmungsgleichungen
nach den Gleichungen (6) bis (9) in
Verbindung mit den Feldgleichungen
(3a) und (5a) sollen im folgenden in
einem Gleichungssystem zusamenge-
fasst werden.

Gleichungssystem

Gleichung (7) kann in Verbindung
mit Gleichung (3a) zu

0=kviavtkoby+ky+11cv+1+ky+12dv+1 (10)

v=1..(N)

zusammengefasst werden, wenn die
Abkiirzungen

ay = 10 (fa(\y))

év = K()(fa(ly))

Ky-1

& == —— Iy (_r.(v‘))
Ky
Ky_

év = v Ky (fl(\v))
Ky

eingefiihrt werden. Ebenso ergibt sich
aus Gl. (6) in Kombination mit GI.
(52)

0 =l_(vl_9v+1(v2_fv+l_cv+I,l£v+l+i(v+l,2ﬁ\‘+l

(11
mit v =1..(N-1)

)
[

I (fa('\y))/g\'

Die Gleichungen (8) und (5a) fiir die

dusseren Leiteroberflichen fiihren
schliesslich zu
o o B b (12)
K11 81-Ki2m 27R;

L+1,
knient+k === 13
knien+kno fN 27R, (13)

Diese Bestimmungsgleichungen (10)
bis (13) konnen in einem System von
2 N Gleichungen der matriziellen Form
I1=[M] -k (14)
zusammengefasst werden, wobei k der
Vektor der gesuchten Koeffizienten
kyi, kya (v = 1..N) ist. Die System-
matrix [M] ist spirlich besetzt: Sie
weist in den Zeilen 1 bis (2 - N-2) je-
weils vier Nicht-Null-Elemente auf,

1502 (A 852)
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Nicht-Null-Elemente der Matrix [M | sowie Elemente der

Vektoren h und k nach Gl. (14) Tabelle I
Schichtv =1...(N-1):
Zeilenz=1...(2N-2)
Zeile Mz2v-l) | M(z.2v) MEow+l) | M@z2v+2) | 1(2) k()
z=2v-1 ay Qv Cy gv 0 Evl
z=2v ey fv 8v hy 0 kv2
Schichtv= N:
Zeile Mz 1) M(z,2) M(z,2N-1) M(z,2N) I(z) k(z)
z=2N-1 -81 —ﬁ] 0 0 Li/(27R;) kni
L+ 1y

=2N 0 0 ] P

z €N IN 2 7R L(Nz

deren Grosse der Tabellel entnom-
men werden kann, ebenso wie die je-
weils zwei Nicht-Null-Elemente der
beiden letzten Zeilen. Der Erregungs-
vektor I weicht nur in seinen beiden
letzten Elementen von null ab; diese
beiden Elemente beinhalten die ma-
gnetischen Feldstdarken an den beiden
Leiteroberfldchen entsprechend den
Gleichungen (12) und (13).

Das Gleichungssystem (14) wird da-
her zweckmaissigerweise unter Ausnut-
zung seiner «sparse»-Eigenschaft auf-
gelOst, beispielsweise durch ein topo-
logisch gesteuertes iteratives Losungs-
verfahren.

1.2 Beriicksichtigung
feldstirkeabhdngiger Permeabilitiit

Die bisher beschriebene Losung be-
schrankt sich auf konstante Material-
eigenschaften. Im folgenden soll je-
doch von einem nichtlinearen Verhal-
ten des Leitermaterials ausgegangen
werden, wie es beispielsweise durch
die Magnetisierungskennlinie in Fi-
gur 2 beschrieben wird, die fiir einen
Stahl, der fir Druckkabelrohre Ver-
wendung findet, messtechnisch ermit-
telt wurde [8].

500, 1,5
T
1400 1,2/\ T
300! 0,9
2008 0.6 - I S
100f 0,348
0 0
0 1000 _ 3000  5000A/m
H—b

Fig.2 Magnetisierungskennlinie und feldstirke-
abhingige, relative Permeabilititszahl

Im folgenden soll die aus der Ma-
gnetisierungskennlinie abzuleitende,
ebenfalls in Figur2 dargestellte Am-
plitudenpermeabilitdt zur Berechnung
der Wechselstrom-Impedanzen und
-Verluste herangezogen werden; es
kann jedoch auch eine ebenfalls von
der Aussteuerungsamplitude abhingi-
ge «effektive» Permeabilitit beriick-
sichtigt werden, die nach [9] eine ver-
besserte Nachbildung der Induktions-
zeitflachen erlaubt.

Beginnend mit Startwerten fir die
Permeabilitidten aller Leiterschichten
wird eine erste Stromdichte- und Ma-
gnetfeldstirke-Verteilung nach den in
Abschnitt 1.1 angegebenen Beziehun-
gen ermittelt. Die so erhaltene Ma-
gnetfeldstarke erlaubt es nun, die Per-
meabilitdten in allen Leiterschichten
fur die dort herrschenden magneti-
schen Feldstdarken aus der Magnetisie-
rungskennlinie in Figur2 neu zu be-
stimmen. Sodann werden diese Per-
meabilititen wiederum als konstant
innerhalb der einzelnen Leiterschich-
ten aufgefasst und eine erneute Be-
rechnung durchgefiihrt. Die so berech-
nete, neue Verteilung der magneti-
schen Feldstirke im Leiter fiihrt zu
einer weiteren Iteration der Permeabi-
litaten aller Leiterschichten, die solan-
ge wiederholt werden kann, bis die
schrittweise noch entstehenden Abwei-
chungen der Ergebnisse vernachldssig-
bar gering bleiben. Wie die folgenden
Beispiele zeigen werden, sind hierzu
nur sehr wenige Iterationen - meist
nicht mehr als drei - erforderlich.

1.3 Bestimmung der Verluste

Die im Leiter nach Figurl entste-
henden Verluste konnen mit einer ra-

dialen Integration aus den zuvor be-
stimmten Stromdichteverteilungen er-
mittelt werden. Wesentlich einfacher
wird dies jedoch iiber eine Flidchenin-
tegration der Leistungseinstromungen
an der inneren und an der dusseren
Leiteroberflache, d.h. aus den dort ge-
gebenen Poyntingvektoren, erreicht.
Der Poyntingvektor an der inneren
Oberflidche eines Leiters betrigt

Sei= E(R) - H*(R) (15)
und an der dusseren Oberfliache
Spa= E(R,) - H* (Ra) (16)

wenn dieser Leiter den Langsstrom I,
fiihrt und den Strom I; umfasst. Multi-
plikation der beiden Poyntingvektoren
mit den Fldachenbeldgen (27 R,) bzw.
(27 R;j) sowie Differenzbildung fiihrt
schliesslich zu dem vom Leiter aus
dem Feld aufgenommenen komplexen
Leistungsbelag

amn
gt | SBY BB e GiRs)
7 Lx(R) x(R) | T x(Ry)

Aus Gleichung (17) folgt, dass im
Falle des Koaxialkabelbetriebes (I, =
-I; = - I) Impedanz- und Verlustbelag
des Aussenleiters durch die Stromdich-
te an seiner inneren Oberfliche be-
stimmt sind:

Z'= R +jX" = G(R)/[x(R))- I]

(18)

Fihrt der betrachtete Leiter jedoch
keinen Ldngsstrom (I, = 0; I; = I; Wir-
belstromproblem), so sind die Strom-
dichten beider Leiteroberflichen be-
stimmend: (19)

G(Ry)
xX(Ry) -1

G(R))

Z= _
— x(R;) -1

R +jX =

Die Leiterverlustbeldge folgen dann
aus den Gleichungen (17), (18) oder
(19) mit

P’ =Re(S’) bzw. P'=Re(Z’- I?).

2. Beispiele

Betrachtet werde ein Stahlrohr mit
einem Innendurchmesser von 60 mm
und einem Aussendurchmesser von
70 mm, das die gemessene Magnetisie-
rungskennlinie [8] nach Figur2 auf-
weisen moge. Zwei Fille sollen unter-
schieden werden:

(a) Das Stahlrohr fiihre selber keinen
Liangsstrom. Es umschliesse aber

Bull. SEV/VSE 77(1986)23, 6. Dezember
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Fig.3 Radiale Verteilungen der relativen Per-
meabilititszahl (A) und der magnetischen Feld-
stirke (B)

(@) 1.=0; _f; =500 A, d.h. Wirbelstromverteilung
(b) Ij=0; I, = 1000A

Ausgezogene Feldlinie: g, nach Figur 3a
Rohrabmessungen: Ri=30mm; R; = 35mm

einen Leiter, der den Léngsstrom
I; = Ifihrt. Der Riickleiter befinde
sich weit entfernt oder sei koaxial
ausgefiihrt, so dass keine Riickwir-
kungen von ihm zu erwarten sind.

(b) Das Stahlrohr fiihre einen Lidngs-
strom I, = I(I; = 0). Fiir den Riick-
leiter gelten dieselben Aussagen
wie zu (a).

Die Figuren 3 und 4 geben die Er-
gebnisse zu diesen beiden Fillen wie-
der. Zu erkennen sind einerseits die
stark inhomogenen Verteilungen der
relativen Permeabilitdtszahlen, ander-
seits der die Verteilung der magneti-
schen Feldstirke pragende Skineffekt,
der im Falle des Léngsstromes (b) ein-
seitig und im Falle des Wirbelstrom-
problems (a) zu beiden Leiteroberfla-
chen hin ausgeprégt ist.

6
A
10652

5 .

u =400~

4 'y,

i

/

/

[ep]

34 mm 35
r —————

Fig.4 Radiale Verteilungen der Stromdichten fiir
die beiden Beispiele (a) und (b) nach Figur 3

Figur 4 gibt die entsprechenden ra-
dialen Verteilungen der Stromdichte
wieder; auch hier wird der Einfluss des
Skineffektes deutlich.

Ergdnzend sind in den Figuren 3
und 4 diejenigen Verteilungen der
Feldgrossen dargestellt, die sich bei
Annahme konstanter Permeabilitit er-
geben wiirden. Zugrunde gelegt wur-
den hierbei der jeweils auftretende
Hochstwert der relativen Permeabilitét
(ur ~ 400) sowie eine Grosse, die der
magnetischen Feldstérke an der dusse-
ren Rohroberflache in etwa entspricht
(1 = 200 bzw. u, = 300). Zu erkennen
ist, dass die auftretenden Abweichun-
gen von der Wahl der konstanten Per-
meabilititszahl abhdngen, wobei die
Stromdichteverteilungen insbesondere
zu den Leiteroberflichen hin stark
vom tatsdchlichen Verlauf abweichen
koénnen. Auf die hierdurch bewirkten
Fehler bei der Bestimmung der Leiter-
verluste wird im folgenden noch einge-
gangen.

Zunichst soll jedoch anhand der Fi-
gur 5 der in Abschnitt 1.2 beschriebene
Iterationsablauf verdeutlicht werden:
Aufgetragen sind fiir die beiden Fille

250 T T
W }éngsstrom
m Ia=1000 A
200 } i
pr (©)—| 7= 186 u/m
ol LA 1
/ [ [
Y. P'=110 W/m
\
1004 , |
7 a) A ~Wirbelstromverluste
flir T].=500A
50
0
.0 100 200 300 400 500
W, ——

Fig. 6 Verlustleistungsbelige

Ausgezogene Kurven: in Funktion der feldstirke-

unabhingig angenommenen relativen Permeabi-
litdtszahl

O Verlustleistungsbelage fiir feldstdrkeabhingi-
ge relative Permeabilitatszahl

Gestrichelt: mogliche Rechenfehler bei Abschit-
zung von /i aus den magnetischen Feldstiarken
an den Leiterobeflichen

O Ergebnis bei der Auswahl der gréssten, aus der
Berechnung sich ergebenden relativen Permea-
bilitdtszahl (i, ~ 400)

nach (a) und (b) die radialen Vertei-
lungen der relativen Permeabilitdts-
zahl, wie sie sich im Rechenablauf er-
geben. Parameter ist die Anzahl der
Permeabilitits-Iterationen: Die Be-
rechnung beginnt mit g, = 100 als will-
kiirlicher Startgrosse. Die Abbildung
macht deutlich, dass bereits nach zwei
Iterationen eine gute Anndherung an
die tatsiachliche Verteilung erreicht ist,
die sich dann nach dem dritten Itera-
tionsschritt im Rahmen der Zeichen-
genauigkeit endgiiltig eingestellt hat.

Zur Abschitzung der Rechenfehler,
die bei Annahme konstanter Permea-
bilitat auftreten konnen, soll Figur 6
eine Hilfe geben. Dargestellt sind die
bei Voraussetzung konstanter Permea-

Fig. 5 T T
Radiale Verteilungen - Ii_ A Ia_ ek
der relativen
Permeabilitiitszahlen (a) 3. (b) 3.
mit der Anzahl der 400
Iterationschritte als 2
Parameter ) 300 Ve "
r 2 1
200
0
100 L 0
0
30 32,5 mm 35 30 32,5 mm 35
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bilitdtszahlen auftretenden Verlustbe-
lage. In diese beiden Kennlinien wur-
den die der Magnetisierungskennlinie
in Figur 2 und den Verteilungen in den
Figuren 3 und 4 entsprechenden, tat-
sdchlich auftretenden Verluste einge-
tragen.

Will man die vorliegenden Problem-
stellungen bei nédherungsweiser An-
nahme konstanter Permeabilitdt be-
rechnen, so wird man um eine mog-
lichst gute Auswahl dieser Grosse bei
Beriicksichtigung der Magnetisie-
rungskennlinie sowie der vorgegebe-
nen Leiterstrome bemiiht sein. So ist es
beispielsweise denkbar, diejenigen re-
lativen Permeabilitdtszahlen der Be-
rechnung zugrunde zu legen, die sich
aus den an den Leiteroberflichen auf-
tretenden magnetischen Feldstidrken
ergeben wiirden: Diese Feldstirken
sind mit den Gleichungen (8) und (9)
noch ohne Kenntnis der Feldvertei-
lungen im Leiterinneren leicht be-
stimmbar. Die sich aus dieser Uberle-
gung ergebenden Verlustbeldge gren-
zen Bereiche der Abschitzung ein, die
langs der beiden Kennlinien in Figur 6
gestrichelt eingezeichnet sind. Zu er-
kennen ist, dass die mit Hilfe dieser
Abschitzung  moglicherweise  be-
stimmten Verlustbeldge teilweise er-
heblich von den tatsdchlich auftreten-
den Verlustbeldgen abweichen kon-
nen.

Eine zweite Naherung konnte es
sein, die erkennbar grésste auftretende
relative Permeabilitidtszahl der Berech-
nung zugrunde zu legen: u, = 400. Die
sich hieraus ergebenden Verlustbelige
sind ebenfalls in Figur 6 eingezeichnet.
Man sieht, dass auch bei dieser Ab-
schdtzung spilirbare Rechenfehler auf-
treten konnen.

Die durch die Voraussetzung kon-
stanter Permeabilitit moglicherweise
auftretenden Rechenfehler sind von
den vorzugebenden Leiter-Langsstro-
men abhéngig. Dies soll abschliessend
durch die Figur 7 verdeutlicht werden,
in der zundchst einmal die Verlustlei-
stungsbeldge fiir konstante Permeabi-
litit (nach Fig. 6) aufgetragen sind,
wobei sie auf denjenigen Verlustlei-
stungsbelag P; bezogen wurden, der
sich bei der relativen Permeabilitits-
zahl . = 400 = const. ergibt. In diese
Kennlinien eingetragen wurden nun
die sich fiir unterschiedliche Léngs-
strome bei feldstidrkeabhédngiger Per-
meabilitit ergebenden  Verlustlei-
stungsbeldge, ebenfalls bezogen auf
diejenigen Verlustleistungsbeliage, die
sich fiir den jeweiligen Lingsstrom
und fiir g, = 400 = const. errechnen.

(a) If:s 0 4i=250 A

0 [HMr=Hrmax
2000 A:

|
Eufurﬂ?i)%onst
3000 A u =ur(R )=const.
0,4

4000 A

0,2 5000 A

0 100 200 300 400 500

r
1,0 === =0~ =Op = =0~ o = -0~ — r——
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Fig.7 Bezogene Kennlinien der Verlustleistungs-
beliige analog Figur 6 zu den beiden Fillen (a) und
(b)

O Fiir unterschiedliche Strome bei feldstirke-
abhidngiger Permeabilitdtszahl berechnete Ver-
lustleistungsbeldge

O ur =400

Die senkrechten Pfeile entsprechen den in Figur 6

gestrichelt dargestellten Fehlerbereichen.

Die schraffierten Flachen kennzeichnen die sich

insgesamt ergebenden Bereiche moglicher Re-

chenfehler bei Annahme konstanter Permeabili-
taten.

Diesen Kennlinienpunkten konnte so-
mit eine fiir die jeweiligen Lingsstro-
me und fiir die vorgegebene Betriebs-
art gultige «effektive Permeabilitidt»
zugeordnet werden, deren relative
Grosse auf der Abzisse abgelesen wer-
den kann.

Zu den vorgegebenen Lingsstromen
wurden als vertikale Pfeile die bereits
in Figur 6 dargestellten Ergebnisberei-
che eingezeichnet, die sich bei Ab-
schitzung der relativen Permeabili-
titszahl aus den Magnetfeldstirken an
den Leiteroberflichen ergeben. Die

Vorgabe der grossten, aus den berech-
neten Magnetfeldstirken folgenden
Permeabilitdt als feldstdrkeunabhin-
gige Rechengrosse liefert eine obere
Abgrenzung des Bereiches moglicher
Rechenfehler.

Die durch die Voraussetzung feld-
starkeunabhidngiger Permeabilitat
moglichen Rechenfehler bei der Ver-
lustleistungsbestimmung liegen somit
- je nach Abschitzung - innerhalb von
Bereichen, die fiir die beiden Beispiele
in der Figur7 schraffiert dargestellt
sind. Dieser Figur 7 kann entnommen
werden, '

- dass bei Voraussetzung konstanter
Permeabilitit erhebliche Rechenfeh-
ler auftreten kdnnen,

- dass diese Rechenfehler vom Werk-
stoff, von der Betriebsart bzw.
Léingsstromverteilung und von der
Grosse der Langsstrome abhidngen
und

- dass es schwierig ist, objektivierbare
Kriterien zur bestmdglichen Aus-
wahl einer feldstirkeunabhingigen
«effektiven» Permeabilitiit, d.h. zur
Rechenfehler-Minimierung, zu ent-
wickeln.
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