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Digitale Signalverarbeitung :
Theoretische Grundlagen
Teil 3: Diskrete Filter

A. W. M. van den Enden und N. A. M. Verhoeckx

In den ersten zwei Teilen dieser
vierteiligen Aufsatzfolge1 wurden

die Grundlagen der diskreten

Signale und Systeme behandelt.

Der dritte Teil befasst sich
mit den wichtigsten Vertretern
der diskreten Systeme, den
linearen diskreten Filtern.
Insbesondere werden deren
grundsätzliche Eigenschaften und die
Methoden des diskreten
Filterentwurfs behandelt.

La première et la deuxième des
quatre parties de cet exposé1
traitaient des bases des signaux
et systèmes discrets. Cette
troisième partie concerne les
composantes les plus importantes
des systèmes discrets: les filtres
linéaires discrets, notamment
leurs particularités fondamentales

et les méthodes de leur
élaboration.

Diese Aufsatzserie ist eine Übersetzung des

gleichnamigen englischen Beitrags in Philips
Techn. Review 42(1985)4. Die Übersetzung

besorgte H. Ochsner, dipl. Ing. ETH, Institut
für Kommunikationstechnik, ETH Zürich.

' Bull. SEV/VSE 77(1986)11 und 15

Adresse der Autoren
A.W.M. van den Enden
und N.A.M. Verhoeckx,
Philips Research Laboratories,
NL-5600 JA Eindhoven.

3.1. Definitionen

Ein diskretes Filter ist eine Schaltung

(oder ein Algorithmus), welche
ein Eingangssignal derart in ein
Ausgangssignal umwandelt, dass dessen
Spektrum in einer vordefinierten Art
mit dem Spektrum des ersteren
verknüpft ist. So werden beispielsweise
gewisse Frequenzkomponenten
gedämpft oder ganz unterdrückt.

Genauso wie im analogen Fall werden

die diskreten Filter aufgrund ihrer
Übertragungsfunktion (d.h. Amplituden-

und Phasencharakteristik)
klassifiziert. Diejenigen Filter, die sich
durch einen ausgeprägten Amplitudengang

auszeichnen, können unterteilt

werden in

- Tiefpassfilter,
- Hochpassfilter,
- Bandpassfilter und
- Bandsperren.

Typische Beispiele derartiger Filter
zeigt die Figur 21. Wie bei den analogen

Filtern existieren Regeln, mit
deren Hilfe man ein diskretes Filter des
einen Typs in ein Filter eines andern
Typs umwandeln kann. Im weiteren
gibt es Filter, die sowohl spezifizierte
Amplituden- als auch Phasencharakteristiken

aufweisen. Zwei derartige Filter

wurden bereits im zweiten Teil
erwähnt: das Allpassfilter und das line-
arphasige Filter. Das erste weist eine
konstante Amplitudendämpfung und
einen vorgegebenen Phasengang auf.

Fig. 21

Beispiel des

Amplitudenganges
einiger idealer Filter
a Tiefpass
b Hochpass
c Bandpass
d Bandsperre

Die Übertragungsfunktionen

sind
periodisch,
Grundintervall
-7t ^ 9 < 71.
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Kombiniert man ein derartiges Filter
mit einem Filter aus der Figur 21, so
lassen sich Schaltungen realisieren, die
nicht nur einen vorgegebenen Amplituden-,

sondern auch einen vorgegebenen

Phasengang besitzen. Die linear-
phasigen Filter werden sehr häufig in
Fernsehempfängern und
Datenübertragungssystemen eingesetzt. Es wird
sich später zeigen, dass die Impulsantwort

derartiger linearphasiger Filter
ausgeprägte Symmetrien aufweist.

Weitere Beispiele spezieller Filter
sind
- der Differentiator

//D(eje) jÖ, - 7i < 0 < n (72)

- der Integrator

//i(ejö) 1/jö, — k < Ö < 7i (73)

- und der Hilbert-Transformator

77H(eJ
-j»
+ j»

— 7t < 0 < 0

0 < 6 < n
(74)

Oft werden die Filter auch aufgrund
ihrer Impulsantwort klassifiziert:
- Ist die Impulsantwort von endlicher

Dauer, spricht man von einem FI Ii-
Filter (Finite Impulse Response).

- Dauert sie hingegen unendlich lange,

so handelt es sich um ein IIR-Fil-
ter (Infinite Impulse Response).

Diese beiden Filterklassen
unterscheiden sich in vielfacher Hinsicht;
einige Unterschiede seien hier
erwähnt:

- Die Systemfunktion eines FIR-Fil-
ters enthält mit Ausnahme des

Ursprungs nur Nullstellen und keine
Pole, während ein IIR-Filter überall
Pole besitzen kann.

- Der Phasengang eines FIR-Filters
kann exakt linear sein.

- Ein FIR-Filter ist immer stabil,
während ein IIR-Filter dann instabil

ist, wenn sich Pole auf oder
ausserhalb des Einheitskreises befinden.

Einige weitere Unterschiede werden
später im Abschnitt über den Filterentwurf

erwähnt.

3.2 Diskrete Filterstrukturen

Neben den eher grundlegenden
Klassifikationen des vorangegangenen

Abschnittes lassen sich Filter auch
aufgrund ihrer durch das Blockschaltbild

gegebenen Struktur einteilen.
Einerseits zeigt sich, dass die Struktur

Fig. 22 Zusammengesetzte Filter
a Kaskadierung: Hc(z) H\ (z) • Hi{z)
b Parallelschaltung: Hp(z) Hi(z) + H^(z)

des Filters bereits gewisse Aussagen
über die Filtereigenschaften erlaubt,
anderseits kann ein Filter mit vorgegebenen

Eigenschaften meistens durch
verschiedene Strukturen realisiert werden.

Es lassen sich zudem wesentliche
Unterschiede zwischen den verschiedenen
Filterstrukturen beobachten, wenn man
Quantisierungserscheinungen durch begrenzte
Wortlängen in Betracht zieht. Davon wird
in späteren Abschnitten die Rede sein.

Zuerst soll gezeigt werden, wie
einzelne Filter oder Filterbausteine zu
komplexeren Filtern zusammengefasst
werden können. Dies geschieht
meistens durch Kaskadierung oder
Parallelschaltung (Fig. 22). Bei einer
Kaskadierung von Blöcken erhält man die
gesamte Systemfunktion durch
Multiplikation der einzelnen Systemfunktionen,

d.h.

Heiz) //i(z)//2(z)

Hviz) Hfiz) + H4(z) (76)

Auch hier sind die Pole des Gesamtfilters

durch die Pole der Teilsysteme
bestimmt, hingegen ist über die
Nullstellen des Gesamtsystems keine
allgemeine Aussage möglich.

Diskrete Filter werden ihrer Struktur

nach unterschieden in
- rekursive diskrete Filter (RDF), welche

mindestens einen Rückkopplungspfad

aufweisen (z. B. die
Schaltungen der Figuren 15h und c in der
letzten Folge), und

- nichtrekursive diskrete Filter
(NRDF), welche keine Rückkopplung

aufweisen (Fig. 15a).

Es wird häufig fälschlicherweise
angenommen, da.ss eine RDF-Struktur immer
zu einem IIR-Filter führe und ein FIR-Filter

immer eine NRDF-Struktur besitze.
Diese Annahme stimmt zwar häufig,
braucht aber nicht notwendigerweise
zuzutreffen. Vielmehr ist die umgekehrte
Formulierung richtig: ein IIR-Filter hat immer
eine RDF-Struktur und eine NRDF-Struktur

führt immer zu einem FIR-Filter
(Fig. 23).

(75)

Offenbar sind die Nullstellen von
Hc(z) gleich den Nullstellen von H\(z)
und F?2(z) zusammen, ebenso sind die
Pole von Hc(z) gleich den Polen von
H\(z) und H2(z), es sei denn, ein Pol
von H\(z) falle mit einer Nullstelle
von Hfiz) (oder umgekehrt) zusammen.

In diesem Fall heben sie sich
gerade auf und sind in Hc(z) nicht mehr
zu finden. Bei einer Parallelschaltung
von Blöcken addieren sich die
Teilsystemfunktionen:

Fig. 23 Filterstrukturen
Üblicherweise haben FIR-Filter eine nichtrekursive

(NRDF) und IIR-Filter eine rekursive (RDF)
Struktur. In seltenen Ausnahmefällen, wo alle
Pole mit Nullstellen zusammenfallen, findet sich
ein FIR-Filter mit RDF-Struktur.

Ein diskretes Filter wird als kanonisches
Filter bezeichnet, wenn es die minimale,
theoretisch notwendige Anzahl
Verzögerungselemente besitzt, um seine
Systemfunktion zu erfüllen.

Die Rückkopplungspfade einer RDF-
Struktur bewirken geschlossene Schleifen.
Damit das Filter realisierbar ist, müssen
alle diese Schleifen mindestens ein
Verzögerungsglied enthalten, ansonsten die
paradoxe Forderung erfüllt sein müsste, dass
ein Signalwert bekannt sein muss, bevor
sein Wert berechnet werden kann.

Nichtrekursive diskrete Filter

Ein Filter mit einer NRDF-Struktur
ist in der Figur 24a zu sehen. Seine
Systemfunktion und Impulsantwort sind

H(z) (a + bz :)(1 + cz x) a

+ (b + ae)z~l + bcz~2 (77)

h[n] aô[ri\ + (b + ac)ô[n - 1]

+ bcö[n - 2] (78)

Bull. SEV/VSE 77(1986)17,6. September (A 663) 1115



Es ist offensichtlich, dass die
Impulsantwort eines derartigen Filters
nie länger sein kann als die Anzahl seiner

Verzögerungselemente plus eins.
Der wichtigste Vertreter der Filter mit
NRDF-Struktur ist das sogenannte
Transversalfilter (Fig. 24h). In seinen
Verzögerungselementen ist immer nur
ein Abtastwert des Originaleingangssignals

x[n] vorhanden. Systemfunktion

H(z) und Impulsantwort h[n] lassen

sich bestimmen zu

H(z) bo + b\Z 1
+ + bj^z N

(79)

Fig. 24

Beispiele nichtrekursiver
Filter
a Beispiel eines beliebigen

nichtrekursiven
diskreten Filters,

b Transversalfilter:
Darunter versteht
man ein nichtrekursi-
ves Filter, bei
welchem die
Verzögerungselemente nur
das verschobene
Eingangssignal enthalten.

Beim Transversalfilter
sind die Abtastwerte

der Impulsantwort

gerade gleich
den Koeffizienten des

Filters.

derten oder Tausenden von Abtastwerten

bestehen [10]. In diesen Fällen
enthält die Systemfunktion natürlich
ebenso viele Nullstellen.

Rekursive diskrete Filter

Eine der möglichen RDF-Struktu-
ren folgt unmittelbar aus der allgemeinen

Beschreibung in Gleichung (43)
aus Teil 2, die hier nochmals
angeschrieben wird

N M

y[n] X b>x{" - '] + X ~ ']
;=o i=i

(43)

Sie ist in Figur 25a zu sehen und
wird als «direkte Form I» bezeichnet.
Sie besteht aus einem rein transversalen

Anteil mit den Koeffizienten bo,

hi,..., hjv und einem rein rekursiven
Anteil mit ai, az, üm. Diese Struktur

benötigt offensichtlich M+N
Verzögerungsglieder. Wird aber die
Reihenfolge der Teilfilter (die ja ihrerseits
lineare Filter sind) vertauscht, so
erhält man die «direkte Form II»
(Fig. 25h). Diese enthält nunmehr
lediglich M Verzögerungselemente falls
M > N, beziehungsweise N, falls N >
M. In beiden Fällen ist die
Systemfunktion dieselbe; die Nullstellen werden

durch die Koeffizienten h,, die
Pole durch die a, bestimmt. Beide
direkten Formen besitzen aber einen

grossen Nachteil, nämlich den, dass
jedes einzelne h, sämtliche Nullstellen
und jedes einzelne u, sämtliche Pole
beeinflusst. Demnach haben auch
geringe Änderungen eines einzelnen
Koeffizienten bereits einen wesentlichen

Einfluss auf das Frequenzverhalten
des gesamten Filters. Dies ist

insbesondere darum unerwünscht, weil
beispielsweise in digitalen Filtern quanti-
sierte, d.h. leicht modifizierte
Koeffizienten verwendet werden müssen.
Dieses Problem wird gelöst, indem
man das Gesamtfilter durch mehrere
Teilfilter, deren Pole und Nullstellen
durch wenige Koeffizienten bestimmt
werden, aufbaut. Sehr vorteilhaft er-

h[n] b0S[n] + b\ ô[n - 1] +

+ bNô[n - N] (80)

Da die Filterkoeffizienten unmittelbar

in die Impulsantwort eingehen,
lässt sich beispielsweise sofort bestimmen,

ob ein Transversalfilter einen
linearen Phasengang besitzt; es kann
nämlich gezeigt werden, dass die
Bedingung für einen linearen Phasengang

der Forderung nach einer
symmetrischen oder antisymmetrischen
Impulsantwort /i[i] h[N - i] oder
h[i] - h[N - i] für i 0,..., A
gleichkommt.

Es ist ebenfalls sofort ersichtlich,
dass ein NRDF-Filter mit Ausnahme
des Ursprungs keine Pole besitzen
kann.Trotzdem kann eine praktisch
beliebige Übertragungsfunktion durch
ein Transversalfilter approximiert
werden; seine Länge muss nur gross
genug gewählt werden. In der Praxis
können NRDF-Filter realisiert werden,

deren Impulsantwort aus Hun-

Fig. 25
Zwei Beispiele für
allgemeine Strukturen
rekursiver Filter
a Direkte Form I: Sie

benötigt M+N
Verzögerungselemente,

b Direkte Form II: In
diesem Beispiel ist M
> N, weshalb M
Verzögerungselemente

benötigt werden.
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x[n]

V'-
yln]

Glied ers ter Ordnung Glied zweiter Ordnung

Fig. 26

Filter dritter Ordnung,
realisiert durch
Kaskadierung zweier
Glieder erster und
zweiter Ordnung
Auf diese Art können
Filter beliebiger
Ordnung geschaffen
werden, welche
wesentlich kleinere
Sensitivitäten als die
direkten Formen
aufweisen.

weisen sich dabei Glieder erster und
zweiter Ordnung. Mit einem Glied
erster Ordnung kann ein reeller Pol und
eine reelle Nullstelle realisiert werden,
mit einem Glied zweiter Ordnung
bestimmt man je zwei Pole und zwei
Nullstellen, welche entweder reell sind
oder je ein konjugiert komplexes Paar
bilden (Fig. 26).

3.3 Spezielle Filterstrukturen

Kammfilter
Eine interessante Filterstruktur

erhält man aus einem beliebigen diskreten

Filter, indem man in seiner
Systemfunktion H(z) jede Einheitsverzö-

Fig. 27 Schematische Darstellung der
Übertragungsfunktionen //(et®), Gi (et®) und
C2(et®)

a Ursprüngliches Filter
b Kammfilter aus a fürN= 3

c Kammfilter aus a für N= 4

gerung durch eine JV-fache
Einheitsverzögerung ersetzt. Dieses Kammfilter

besitzt nun die Systemfunktion

G(z) H(zN) (81)

nen einzelner Teilfilter ziemlich insensitiv

ist. Sie werden häufig bei der
digitalen Sprachverarbeitung eingesetzt
[11].

Digitale Wellenfilter

Eine besondere Art von Filtern
bilden die digitalen Wellenfilter. Man
erhält sie durch direkte Übersetzung
eines gegebenen analogen Filters auf
der Basis der Wellengleichungen. So
wird eine Kapazität zu einem einfachen

Verzögerungsglied, eine Induktivität

zu einer Kaskadenschaltung eines
Verzögerungsgliedes und eines Inverters.

Diese Komponenten werden
durch Serie- und Paralleladapter, welche

Kombinationen von Addierern
und Multiplizierern enthalten, zusam-

Dies bedeutet nun, dass die
ursprüngliche Übertragungsfunktion im
Grundintervall — n < 8 < n Amal
wiederholt wird, wie dies in der
Figur 27 für die Fälle N 3 und N 4

gezeigt ist1. Ein oft verwendetes
Kammfilter zeigt die Figur 28. In der
Praxis kann N eine Grössenordnung
von mehreren 100 annehmen.

Ladder- und Lattice-Filter

In jüngerer Zeit haben Filterstrukturen,

die als Ladder- und Lattice-Filter2
bekannt sind, an Bedeutung gewonnen.

Einige typische Beispiele sind in
den Figuren 29 und 30 zu sehen; es gibt
allerdings eine Vielzahl möglicher
Formen. Die gemeinsame Eigenschaft
dieser Filter ist, dass sie aus
Grundbausteinen gebildet werden (schattierte

Bereiche in den Figuren), welche je
über zwei Eingänge und Ausgänge
verfügen. Der Grundbaustein eines
Lattice-Filters ist durch eine
Überkreuzung der Signale gekennzeichnet.
Beide Filterstrukturen zeichnen sich
dadurch aus, dass ihre Übertragungsfunktion

bezüglich kleiner Variatio-

Anm. des Übersetzers:
1 Man erinnere sich, dass bereits die ursprüngliche

Übertragungsfunktion periodisch ist.
2 Gelegentlich sind auch die deutschen Begriffe
«Brückenfilter» für das Ladder-, bzw. «Kettenfilter»

für das Lattice-Filter anzutreffen.
Insbesondere in der Schweiz sind aber die englischen
Begriffe üblich, weshalb sie auch in dieser Arbeit
verwendet werden.

a

«WHÏH
N-t N

t r — t

Im z
Î

20x

2tt/20

y
1

o -*Re z

—TT

Fig. 28 Die einfachste (und älteste) Form des

Kammfilters, wie es beispielsweise in Farbfernsehgeräten

verwendet wird

a Schaltung
b Zugehöriges Pol-Nullstellendiagramm für

N= 20

c Amplituden- und Phasengang für N 20
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x[n]

a

yln]

T 1 V

xln]

L I

yln]

mengeschaltet (Fig. 31). Diese Filter
zeigen ebenfalls eine sehr geringe Sen-
sitivität gegenüber Variationen der
Koeffizienten, zudem besitzen sie eine
ausgezeichnete Stabilität [12].

Transponierte Filter

Eine allgemeine Methode, ein Filter
einer bestimmten Struktur in ein anderes

Filter mit derselben Systemfunktion

umzuwandeln, fusst auf dem
Transpositionssatz, wonach die
Systemfunktion eines linearen diskreten
Systems unverändert bleibt, falls
- die Signale in Gegenrichtung flies-

sen (was heisst, dass Eingang und
Ausgang des Filters zu vertauschen
sind) und

- Addierer durch Knoten und Knoten
durch Addierer ersetzt werden.

Das Vorgehen illustriert die
Figur 32, welche ein Glied zweiter
Ordnung vor und nach der Transposition
zeigt. Die Transposition kann auf alle
linearen Filter und Systeme, die bis an-
hin behandelt wurden, angewandt
werden; das Verfahren lässt sich aber
noch auf eine viel weiter gefasste Klasse

von diskreten Systemen anwenden
[13].

Fig. 29
Beispiele für
Ladder-Filter

a Ein Ladder-Filter,
dessen
Systemfunktion H(z) nur
Pole besitzt,

b Die Pole dieses
Ladder-Filters
werden durch die
Koeffizienten am, die
Nullstellen durch die

bestimmt.

Schattiert dargestellt ist
der regelmässig
wiederkehrende Teil des
Filters.

Adaptive Filter

Eine weitere nützliche Klasse von
Filtern für die Signalverarbeitung
bilden die adaptiven Filter [14], deren
Koeffizienten keinen vordefinierten
festen Wert haben, sondern während
des Betriebs berechnet werden. Ein
adaptives Filter besteht deshalb aus
zwei Teilen (Fig. 33), aus dem eigentlichen

Filter, welches grundsätzlich jede
bis anhin besprochene Struktur haben
kann, wobei die Filterkoeffizienten
co[n], ci[«],..., cjy[n] nun zeitvariant
sind, und aus der Steuereinheit. Die
Koeffizienten werden in der Steuereinheit

aufgrund eines Kriteriums
automatisch berechnet. Dieses Kriterium
fordert normalerweise die Minimali-
sierung der Differenz e[n\ zwischen
dem Filterausgangssignal y[n] und
einem Referenzsignal g[n]. Adaptive
Filter besitzen fast ausschliesslich eine
transversale oder eine Lattice- bzw.
Ladder-Struktur [ 15].

Fig. 30

Beispiele für
Lattice-Filter
a Lattice-Filter, dessen

Systemfunktion H{z)
nur Pole besitzt,

b Lattice-Filter, dessen
Pole durch die
Koeffizienten a„?und
dessen Nullstellen
durch die ßn
bestimmt sind,

c Lattice-Filter, dessen

Systemfunktion nur
Nullstellen enthält.
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3.4 Entwurfsmethoden für
diskrete Filter

Ausgangspunkt für den Filterentwurf

ist normalerweise eine Spezifikation
des benötigten Frequenzverhaltens
des Filters. Diese Spezifikation

enthält dann Grenzbedingungen für
den Amplituden- und Phasengang,
wobei der Phasengang häufig unspezi-
fiziert bleibt. In andern Fällen wird ein
linearer Phasengang gefordert. Man
beachte übrigens, dass bei Filtern mit
reeller Impulsantwort eine Spezifikation

innerhalb des halben Grundinter-

Ein lineares System kann transponiert werden
und ergibt so ein Filter mit derselben Systemfunktion,

aber von unterschiedlicher Struktur.

Fig. 31

Digitales Wellenfilter
a Dieses wird durch

Anwendung der
Wellengleichungen und
durch «Umsetzen»
von analogen
Komponenten in diskrete
gewonnen, wie das
Beispiel für eine
Kapazität und eine
Induktivität zeigt.

b Die so bestimmten
diskreten Bausteine
werden durch
Verbindungsglieder, welche

nur Addierer und
Multiplizierer enthalten,

zum Wellenfilter
geformt.

valles, d.h. für 0 < 0 < n genügt. Die
Randbedingungen lassen sich als
sogenannte Toleranz- oder Stempelspezifikation,

wie sie beispielsweise in der
Figur 34 für ein Tiefpassfilter gezeigt ist,
darstellen. Der tatsächliche Amplitudengang

des Filters muss immer
ausserhalb der schraffierten Bereiche
verlaufen. Entlang der Frequenzachse
sind drei Bereiche zu sehen: der
Durchlassbereich (PB, passband), der
Übergangsbereich (TP, transition
band) und der Sperrbereich (SB, stop-
band). In diesem Beispiel ist gefordert,
dass die maximale Abweichung im
Durchlassbereich (0 < 9 <8i) nie mehr
als <5, betragen solle. Im Sperrbereich
(9h < 8 < rt) beträgt die maximale
Abweichung 82. Im Übergangsbereich (81

< 9 < 6h) bleibt der Amplitudenverlauf
unspezifiziert. Die Kurve A in der

Figur 34 genügt den Anforderungen
genau.

Im allgemeinen wird beim Entwurf
eines diskreten Filters folgendermas-
sen vorgegangen:

x[n] yIn]
Filter > m 0

c0[n] c,ln] cN[n]

Kontrolle/nheit

e[n]=yln]-g[n]

Fig. 33 Adaptives Filter
In einem adaptiven Filter sind die Koeffizienten
co[n], c/v[n] nicht konstant, sondern werden
dauernd durch eine Steuereinheit berechnet,
normalerweise mit dem Ziel, die Differenz e[n]
zwischen dem tatsächlichen Filterausgang y[n] und
einem Referenzsignal g[n] zu minimalisieren.

Fig. 34 Spezifikation eines Filters durch
sogenannte Stempel oder Toleranzbänder

Der Amplitudengang A(e 'ö) des Filters darf
nirgends in den schattierten Bereich reichen. Die
gezeichnete Charakteristik erfüllt diese Bedingung.

A Amplitude
PB Durchlassbereich (passband)
TB Übergangsbereich (transition band)
SB Sperrbereich (stopband)

- Man entscheidet sich, ob der geforderte

Frequenzgang mit einem FIR-
oder einem IIR-Filter erreicht werden

soll und schätzt die benötigte
Ordnung des Filters.

- Man berechnet Filterkoeffizienten,
welche die entsprechende
Systemfunktion möglichst gut approximieren.

- Man entscheidet sich für eine
Filterstruktur, wobei auch die
Quantisierungseffekte bei Digitalfiltern
berücksichtigt werden müssen.

- Man prüft, ob das entstandene Fil¬
ter die ursprünglichen Anforderungen

erfüllt. 1st dies nicht der Fall, so
muss der ganze Vorgang wiederholt
werden, wobei unter Umständen
Filtertyp, -Ordnung, -struktur oder
auch die Quantisierungsmethode
teilweise geändert werden müssen.

Gewöhnlich müssen im Verlauf des
Filterentwurfs gewisse Schritte mehrmals

wiederholt werden, der Filterentwurf

ist also ein iterativer Prozess.
Der zweite der oben aufgeführten

Schritte, die Bestimmung der
Filterkoeffizienten, ist der kritischste von
allen; mit ihm befasst sich der folgende
Abschnitt, wobei nur einige wenige
der vielen Möglichkeiten vorgestellt
werden sollen. Das eben beschriebene
Vorgehen wird nicht immer genau
befolgt, weil beispielsweise in gewissen
Fällen die Impulsantwort wichtiger ist
als die Systemfunktion. Häufig ist
auch nicht die Frequenzcharakteristik
vorgegeben, sondern ein analoges Filter,

welches möglichst genau durch ein
diskretes ersetzt werden soll.
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3.5 Entwurfvon FIR-Filtern
Inverse Fouriertransformation und
Zeilfenster
Bei dieser Methode wird von einem

vorgegebenen Frequenzgang Hd{eJe)
ausgegangen. Durch Anwendung der
inversen Fouriertransformation3 findet

man eine «ideale» Impulsantwort
hd[n]. Diese kann im allgemeinen
nicht unmittelbar verwendet werden,
da sie meistens sehr viele oder gar eine
unendliche Anzahl Stützstellen
enthält. Zudem ist sie häufig nicht kausal,
das heisst sie enthält Stützstellen hd[n]
+ 0 für gewisse n < 0. Man muss daher
hd[n] auf eine feste Anzahl N Stützstellen

begrenzen und so weit nach rechts
verschieben, bis die Kausalität
gewährleistet ist. Die Figur 35 erläutert
das Vorgehen anhand einer idealen
Tiefpasscharakteristik Hd{&8). Die
mittels der inversen Fouriertransfor-

3 Man beachte, dass in dieser Arbeit der
Begriff «Fouriertransformation» immer als
«Fouriertransformation für diskrete Signale» (s. Teil 1)

zu verstehen ist.

î

1

-7T ~0A TT 0 OAn TT

v7
L. hd[n]
D

t
T T

• a • t T 1 It a.« • 4 4 • l l il" * * *

—n
E

V
C hfnl

t

,1 ],
î* tl — n

çj h/n]

t.ro\ 12 * 4

Fig. 35 FIR-Filterentwurf mit Hilfe der inversen
Fouriertransformation und eines Zeitfensters

I Inverse Fouriertransformation
II Begrenzung der Anzahl Stützstellen durch

Zeitfenster
III Verschiebung

—- Q

b A2(e>6) N=21

0.5

^
0 0.1+TC n

—- e

C A3(e">) N=31

Fig. 36 Resultate eines FIR-Filterentwurfs

Die Güte eines nach der Methode der Figur 35
entworfenen Filters hängt stark von der gewählten

Anzahl Stützstellen Nab. Die Abbildung zeigt
den resultierenden Amplitudengang A(ei8) für
drei verschiedene Werte von N.

mation gewonnene Impulsantwort
hd[n] wird auf N Stellen beschränkt
(hi[n\) und nach rechts verschoben.
Die so erzeugte Impulsantwort h[n]
kann nun unmittelbar mit einem
Transversalfilter realisiert werden.

Die Begrenzung der Anzahl
Stützstellen hat eine veränderte
Amplitudencharakteristik zur Folge. Beispiele
dafür sind in der Figur 36 für N 11,
21 und 31 zu sehen. Die starke Verzerrung

wird durch den unmittelbaren
Übergang von Werten in ha [n], welche
unverändert in /ii[n] übernommen
werden, zu solchen, welche überhaupt
nicht in h\[n] übernommen werden,
verursacht. Viel besser wäre ein sanfter
Übergang, der mit Hilfe sogenannter
Fensterfunktionen w[n] erreicht werden

kann,

h\[n] hd[n] w[n] (82)

wobei w[n] die benötigte Länge N hat.
Einige der üblichen Fensterfunktionen
sind in [5;...;7] (erster Teil) zu finden
und in der Figur 37a dargestellt, während

die durch Anwendung dieser
Funktionen resultierenden
Tiefpasscharakteristiken in Figur 37b zu sehen
sind. Es ist offensichtlich, dass die
richtige Wahl der Fensterfunktion
einen entscheidenden Einfluss auf das
resultierende Frequenzverhalten hat.
Man beachte zudem, dass eine einfache

Beschränkung der Anzahl
Koeffizienten der Verwendung eines recht-
eckförmigen Filters gleichkommt.

a Fensterfunktionen, welche für den Übergang
von hd[n] nach h\[n] verwendet werden können

(Fig. 35). Aus Gründen der Übersichtlichkeit

sind die Funktionen w[n] kontinuierlich
dargestellt, obwohl es sich dabei natürlich um
diskrete Funktionen der Länge N handelt.
I Rechteck-Fenster, II Bartlett-Fenster, III
Hanning-Fenster, IV Kaiser-Fenster mitß 4,
V Kaiser-Fenster mit ß 10. Die Kaiser-Fenster
bilden eine ganze Familie mit ß als Parameter,

b Jedes dieser Fenster ergibt ein Filter mit
unterschiedlicher Amplitudencharakteristik. Die
Abbildung zeigt das Ergebnis nach Anwendung

der Fensterfunktionen I...V auf das Filter
der Figur 35, wobei eine gleichbleibende
Fensterlänge von N 31 verwendet wurde. Man
beachte den logarithmischen Massstab der
vertikalen Achse.
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Das Konzept der Fensterfunktionen
wird übrigens auch verwendet, wenn
zu lange oder unendlich lange Sequenzen

mittels einer N-Punkt-DFT
transformiert werden sollen. Durch Wahl
der richtigen Fensterfunktion kann
beispielsweise das im ersten Teil dieser
Reihe mit Leakage bezeichnete
Übersprechen zwischen den Stützstellen der
Transformierten entscheidend beein-
flusst werden.

Filter mit gleichmässiger Welligkeil

Offenbar hat die eben beschriebene
Entwurfsmethode eine Welligkeit im
Amplitudengang zur Folge. Häufig
wünscht man sich, dass die einzelnen
Wellen in den Durchlassbereichen
bzw. den Sperrbereichen gleiche Höhe
haben. Bei einem Entwurf, der ein Filter

mit gleichmässiger Welligkeit (engl.
equiripple filter) liefert, spricht man
von einer «gleichmässigen Approximation».

Die Kurve A in der Figur 34
besitzt offenbar eine gleichmässige
Welligkeit.

Die Bestimmung der Koeffizienten
für ein derartiges Filter ist sehr
aufwendig. Sie müssen meistens auf iterative

Weise mit Hilfe eines Computers
berechnet werden. Es gibt eine Vielzahl

von Computerprogrammen für
derartige Filter, die unter Umständen
zusätzlich noch linearphasig sein müssen

[16]. Mit ihrer Hilfe kann man
nicht nur Tiefpassfilter, sondern auch
Hochpass-, Bandpass- und Bandsperr-
Fdter, zum Teil auch mit mehreren
Durchlass- bzw. Sperrbereichen
entwerfen. Zudem kann die Methode
auch auf Filter mit allgemeineren
Dämpfungsverläufen erweitert werden.

Der Entwurf eines Filters von
gleichmässiger Welligkeit, wie es in

Fig. 39
Filterentwurf nach der
Methode der invarianten
Impulsantwort

Gezeigt wird der
Zusammenhang
zwischen den
Impulsantworten ha(t)
und hd[n] und den
dazugehörigen
Übertragungsfunktionen

Ha(jco) und
HdieJO).

hall)
t

1

hd[n]
Î

;

ht-ti
0

Ha (j ID)

>

— t ° y
Hdle'e)

\ t

\

— n

0 h 1
-37T -2TÜ -TT 0 TT 2JZ 3jZ^ ~T T T T T T

—UJ
~3TT ~2TT -tz 0 TZ 2TZ 3TZ

—e

der Figur 34 gegeben ist, benötigt
insgesamt fünf Parameter: die Länge N
der Impulsantwort, die maximalen
Abweichungen im Durchlass- und
Sperrbereich ôi und 82, sowie die
Grenzfrequenzen 0/ und Oh des
Übergangsbereichs. Es zeigt sich, dass
durch die Wahl von vier dieser
Parameter der fünfte bestimmt ist. Das
verwendete Computerprogramm
entscheidet dann, welche dieser vier
Parameter frei gewählt werden können.

In der Literatur sind eine ganze Reihe

von Faustregeln angegeben, welche
dem Entwerfer eine Idee über die
benötigten Grössenordnungen der
Parameter geben sollen. So findet man eine
grobe Schätzung für die Länge der
Impulsantwort eines FIR-Filters mit
gleichmässiger Welligkeit, welches den
Anforderungen (Fig. 34) genügen soll,
zu

jy
logio(<5i<52) +15
14(0h - 00/271

Ein Beispiel für den Einsatz des
Digitalrechners in der digitalen
Signalverarbeitung [17] ist in der Figur 38 zu
sehen.

3.6 Entwurfvon IIR-Filtern

Unveränderte Impulsantwort

Ausgangspunkt dieses Entwurfsverfahrens

ist ein analoges Filter mit der
Stossantwort ha(t). Zu entwerfen sei
ein HR-Filter mit einer Impulsantwort
hj[n] derart, dass

hd[n] hfinT) (84)

(83)

Fig. 38

Der Entwurf digitaler Filter

geschieht heute vorwiegend

mit Hilfe des
Digitalrechners (im Hintergrund)
Zusätzlich zu den
Berechnungen zum Entwurfund
der grafischen Darstellung

der resultierenden
Charakteristik können
Simulationen das Verhalten

eines entworfenen
Filters in der Praxis aufzeigen.

Die Fotografie zeigt
einen akustisch von der
Umgebung abgeschirmten

Raum, in welchem der
Einfluss der digitalen
Signalverarbeitung auf ton-
frequente Signale studiert
wird.

das heisst, dass hd[n] die abgetastete
Version von ha(t) ist. Man kann nun
zeigen, dass man die Übertragungsfunktion

HdleJ8) des diskreten Filters
durch periodische Fortsetzung des

Frequenzganges des ursprünglichen
analogen Filters gewinnen kann, wobei

die «Periode» der Fortsetzung 0
(oT 2 71 beträgt. Wählt man das
Abtastintervall T genügend klein, so wird
Hd(eie) im Grundintervall ungefähr
gleich Ha (ja>) (Fig. 39).

Die Berechnungen sind bei diesem
Entwurfsverfahren nicht sehr schwierig.

Nimmt man der Einfachheit halber

an, die Systemfunktion Ha(p) des

ursprünglichen analogen Filters besitze

bloss einfache Pole, dann kann diese

geschrieben werden als

Ha(p)

M

2
k= 1

Ak

P~ 1k
(85)

Daraus lässt sich als Funktion de
Ak, qk und T die diskrete Impulsant
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wort (Rücktransformation und Dis-
kretisierung)

M

hd[n]= AkeiK"T (86a)

k= 1

und die Systemfunktion4

M

Hd(z) (86b)
1 — eikT z~i

k 1

bestimmen und das Filter auf
unterschiedlichste Arten realisieren.

Bilineare Transformation

Ersetzt man in der Systemfunktion
Ha(p) eines analogen Filters die Variable

p durch

2 1 - z-1
p r (87)

T 1 + z"1

so erhält man die Systemfunktion
Hd(z) eines diskreten Filters, dessen
Übertragungsfunktion Hd(eie) in
direktem Zusammenhang mit dem
Frequenzgang Ha{j(o) des ursprünglichen
analogen Filters steht. Offenbar wird
nämlich der Bereich — oo < a> < oo

von Ha(ja>) in das Grundintervall - k
< 9 < 7i von Hd(e>e) abgebildet, und
zwar sowohl in der Amplitude als auch
in der Phase. Liegt beispielsweise

HAP) (88)
p - a

vor, so erhält man nach der Figur

mi - =-')
/ydU) " «r»2t[rf- 2)7-1 (89)

4 Anm. des Übersetzers: Dabei wurde die
Beziehung

oo

% \a"u[n]\= £ a"z~n=
*

für|a|<|z|
n 0

benutzt.

\Ha(jui!\

Î 1

-3000^ -1500t

IVe h
i L

0.5

1500TT 3000 TT

—»- w

-1000T -500T 0 500T 1000T
—» w

-7T -nl2 0 x/2 TT

—- e

Fig. 40 Filterentwurf mittels bilinearer Transformation

Im Beispiel wird die bilineare Transformation mit
T Viooo auf ein analoges Filter mit Ha{jco)
1000/(ja) + 1000) angewendet. Der Amplitudengang

\Hei(eJ0)\ des dabei entstandenen diskreten
Filters ist gleich dem entlang der Frequenzachse
komprimierten Amplitudengang \Ha{j(ö)\, wobei
der Wert, welchen Ha{j(o) bei co — oo erreicht,
von Hd(ej&) bereits bei cd n/T= lOOOrt
angenommen wird.

In der Figur 40 sind die beiden Am-
plitudencharakteristiken |//a(;'cu)| und
\Hd(e>e)\fm a 1000 und T= 1/1000
zu sehen. Die «Kompression» auf der
Frequenzachse ist offenbar nicht linear,

sie gehorcht einer Tangens-Funktion:
Die Kompression ist am

ausgeprägtesten bei den höchsten Frequenzen.

Dies ist am Beispiel des Equiripp-
le-Filters der Figur 41 deutlich zu
sehen. Trotz der offensichtlichen
Kompression des Frequenzganges ist aber

Fig. 41

Anwendung der
bilinearen
Transformation auf ein
analoges Bandpassfilter
Wie aus den
Schwankungen der
Amplitudengänge
ersichtlich ist, geschieht
die
Frequenzkompression nicht
gleichmässig. Sie wird
vielmehr für höhere
Frequenzen
ausgeprägter. Es ist aber
ebenfalls ersichtlich,
dass die Eigenschaft
gleichmässiger
Welligkeit erhalten
bleibt.

auch zu sehen, dass die gleichmässige
Welligkeit des Filters nach der
Transformation erhalten bleibt. Ein grosser
Vorteil dieser Filter ist deshalb, dass
sie durch Vorgabe von Durchlassbzw.

Sperrbereichen und entsprechenden
Toleranzbändern entworfen werden

können. Will man beispielsweise
ein Filter entwerfen, dessen
Übergangsbereiche in der Umgebung von
ß>4 und a>s (Fig. 41) liegen, so entwirft
man zuerst ein analoges Filter, dessen
Übergangsbereiche zwar bei ganz
verschiedenen Frequenzen co\ und coi
liegen, welches aber viel einfacher zu
bestimmen ist.

Elementweise Transformation

Auch bei diesem Verfahren geht
man von einem analogen Filter aus.
Dieses liegt häufig als LC-Filter vor.
Bei der elementweisen Transformation
wird jede Komponente dieser Schaltung

in einen zeitdiskreten Block
umgewandelt. Die einzelnen Blöcke werden

dann grundsätzlich wie die analogen

Komponenten zu einer Schaltung
zusammengefügt. Mit dieser Methode
bleiben einige der besonderen
Eigenschaften der LC-Filter, wie beispielsweise

die niedrige Sensitivität auf
Änderungen der Werte der Komponenten,

erhalten. Es wurde bereits
erwähnt, dass diese Methode beim
Entwurf von digitalen Wellenfiltern, aber
auch bei gewissen Ladder-Filtern
sowie den Filtern mit geschalteten
Kapazitäten Anwendung findet (Fig. 42, [3]).

—- in
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Optimierung mit Computer

Als letzte Methode des IIR-Filter-
entwurfs sei die Computeroptimierung
erwähnt. Dabei geht man von den
Spezifikationen im Frequenzbereich sowie
einer ersten Schätzung der Filterkoeffizienten

aus, wie sie beispielsweise
mit einer der bereits beschriebenen
Methoden gewonnen werden kann. In
mehreren iterativen Schritten versucht
das Computerprogramm, die Differenz

zwischen dem Frequenzgang des
Filters und dem vorgegebenen
Frequenzgang zu minimalisieren [16]. Die
einen Programme berücksichtigen nur
die Amplitudencharakteristik, die
andern zusätzlich auch den Phasengang
und damit den Verlauf der Gruppenlaufzeit,

welche der Ableitung des

Phasenganges entspricht.

(Letzte Folge in Heft 1/87)
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