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Digitale Signalverarbeitung:
Theoretische Grundlagen

Teil 3: Diskrete Filter

A.W.M. van den Enden und N.A. M. Verhoeckx

In den ersten zwei Teilen dieser
vierteiligen Aufsatzfolge ' wur-
den die Grundlagen der diskre-
ten Signale und Systeme behan-
delt. Der dritte Teil befasst sich
mit den wichtigsten Vertretern
der diskreten Systeme, den
linearen diskreten Filtern. Insbe-
sondere werden deren grund-
satzliche Eigenschaften und die
Methoden des diskreten Filter-
entwurfs behandelt.

La premiere et la deuxieme des
quatre parties de cet exposé’
traitaient des bases des signaux
et systemes discrets. Cette troi-
sieme partie concerne les com-
posantes les plus importantes
des systémes discrets: les filtres
linéaires discrets, notamment
leurs particularités fondamen-
tales et les méthodes de leur
élaboration.

Diese Aufsatzserie ist eine Ubersetzung des
gleichnamigen englischen Beitrags in Philips
Techn. Review 42(1986)4. Die Ubersetzung
besorgte H. Ochsner, dipl. Ing. ETH, Institut
fur Kommunikationstechnik, ETH Zurich.

! Bull. SEV/VSE 77(1986)11 und 15

Adresse der Autoren
A.W.M. van den Enden

und N.A.M. Verhoeckx,
Philips Research Laboratories,
NL-5600JA Eindhoven.

3.1. Definitionen

Ein diskretes Filter ist eine Schal-
tung (oder ein Algorithmus), welche
ein Eingangssignal derart in ein Aus-
gangssignal umwandelt, dass dessen
Spektrum in einer vordefinierten Art
mit dem Spektrum des ersteren ver-
kniipft ist. So werden beispielsweise
gewisse Frequenzkomponenten ge-
dampft oder ganz unterdrickt.

Genauso wie im analogen Fall wer-
den die diskreten Filter aufgrund ihrer
Ubertragungsfunktion (d.h. Amplitu-
den- und Phasencharakteristik) klassi-
fiziert. Diejenigen Filter, die sich
durch einen ausgeprigten Amplitu-
dengang auszeichnen, kénnen unter-
teilt werden in

Tiefpassfilter,

Hochpassfilter,

Bandpassfilter und

Bandsperren.

Typische Beispiele derartiger Filter
zeigt die Figur21. Wie bei den analo-
gen Filtern existieren Regeln, mit de-
ren Hilfe man ein diskretes Filter des
einen Typs in ein Filter eines andern
Typs umwandeln kann. Im weiteren
gibt es Filter, die sowohl spezifizierte
Amplituden- als auch Phasencharakte-
ristiken aufweisen. Zwei derartige Fil-
ter wurden bereits im zweiten Teil er-
wahnt: das Allpassfilter und das line-
arphasige Filter. Das erste weist eine
konstante Amplitudenddampfung und
einen vorgegebenen Phasengang auf.

Fig. 21 ; ‘
Beispiel des iAr(e/ / |
Amplitudenganges ! T ;
einiger idealer Filter a 1
I
a Tiefpass | |
b Hochpass L . : J . J
¢ Bandpass 3r 27 - 0 s 2 3
d Bandsperre | | —
Die Ubertragungs- Asle’) |
funktionen sind | ‘
periodisch, b | T |
Grundintervall [ s :
-n<£L0<m. —] I I I [—
| R 1 i 1 1 J
-3 =21 - 0 T 21 3
| | — 0
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|
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Kombiniert man ein derartiges Filter
mit einem Filter aus der Figur 21, so
lassen sich Schaltungen realisieren, die
nicht nur einen vorgegebenen Ampli-
tuden-, sondern auch einen vorgegebe-
nen Phasengang besitzen. Die linear-
phasigen Filter werden sehr héufig in
Fernsehempfingern und Dateniiber-
tragungssystemen eingesetzt. Es wird
sich spiter zeigen, dass die Impulsant-
wort derartiger linearphasiger Filter
ausgepriagte Symmetrien aufweist.
Weitere Beispiele spezieller Filter
sind
- der Differentiator

Hp(e'?) = jf. -t <f<n (72)

- der Integrator
Hi(e') = 1/j6, -n<6<n (73)
- und der Hilbert-Transformator

-1<60<0
0<<m

— 3,
+],

HH(CjH) _ { (74)

Oft werden die Filter auch aufgrund
ihrer Impulsantwort klassifiziert:

- Ist die Impulsantwort von endlicher
Dauer, spricht man von einem FIR-
Filter (Finite Impulse Response).

- Dauert sie hingegen unendlich lan-
ge, so handelt es sich um ein ITR-Fil-
ter (Infinite Impulse Response).

Diese beiden Filterklassen unter-
scheiden sich in vielfacher Hinsicht;
einige Unterschiede seien hier er-
wahnt:

- Die Systemfunktion eines FIR-Fil-
ters enthidlt mit Ausnahme des Ur-
sprungs nur Nullstellen und keine
Pole, wiahrend ein IIR-Filter tiberall
Pole besitzen kann.

- Der Phasengang eines FIR-Filters
kann exakt linear sein.

- Ein FIR-Filter ist immer stabil,
wihrend ein IIR-Filter dann insta-
bil ist, wenn sich Pole auf oder aus-
serhalb des Einheitskreises befin-
den.

Einige weitere Unterschiede werden
spéter im Abschnitt {iber den Filterent-
wurf erwihnt.

3.2 Diskrete Filterstrukturen

Neben den eher grundlegenden
Klassifikationen des vorangegange-
nen Abschnittes lassen sich Filter auch
aufgrund ihrer durch das Blockschalt-
bild gegebenen Struktur einteilen. Ei-
nerseits zeigt sich, dass die Struktur

Hy (z) f——0

o

Hy (z)

HCY( Z }

b Hy(z)

G

H,(z) j

HP(Z)

Fig.22 Zusammengesetzte Filter
a Kaskadierung: Hc(z) = Hi(z) - Ha(z)
b Parallelschaltung: Hp(z) = H3(z) + H4(z)

des Filters bereits gewisse Aussagen
iiber die Filtereigenschaften erlaubt,
anderseits kann ein Filter mit vorgege-
benen Eigenschaften meistens durch
verschiedene Strukturen realisiert wer-
den.

Es lassen sich zudem wesentliche Unter-
schiede zwischen den verschiedenen Filter-
strukturen beobachten, wenn man Quanti-
sierungserscheinungen durch begrenzte
Wortldngen in Betracht zieht. Davon wird
in spéteren Abschnitten die Rede sein.

Zuerst soll gezeigt werden, wie ein-
zelne Filter oder Filterbausteine zu
komplexeren Filtern zusammengefasst
werden konnen. Dies geschieht mei-
stens durch Kaskadierung oder Paral-
lelschaltung (Fig. 22). Bei einer Kaska-
dierung von Blocken erhidlt man die
gesamte Systemfunktion durch Multi-
plikation der einzelnen Systemfunk-
tionen, d.h.

Hc(z) = Hi(2)H2(2) (75)

Offenbar sind die Nullstellen von
H,(z) gleich den Nullstellen von H(z)
und H»(z) zusammen, ebenso sind die
Pole von H(z) gleich den Polen von
Hi(z) und Hy(z), es sei denn, ein Pol
von H,(z) falle mit einer Nullstelle
von Hj(z) (oder umgekehrt) zusam-
men. In diesem Fall heben sie sich ge-
rade auf und sind in H(z) nicht mehr
zu finden. Bei einer Parallelschaltung
von Blécken addieren sich die Teilsy-
stemfunktionen:

Hp(z) = H3(z) + Hy(2) (76)

Auch hier sind die Pole des Gesamt-
filters durch die Pole der Teilsysteme
bestimmt, hingegen ist iiber die Null-
stellen des Gesamtsystems keine allge-
meine Aussage moglich.

Diskrete Filter werden ihrer Struk-
tur nach unterschieden in
- rekursive diskrete Filter (RDF), wel-

che mindestens einen Rickkopp-

lungspfad aufweisen (z. B. die Schal-
tungen der Figuren 15b und ¢ in der
letzten Folge), und

- nichtrekursive diskrete Filter

(NRDF), welche keine Riickkopp-

lung aufweisen (Fig. 15a).

Es wird hdufig falschlicherweise ange-
nommen, dass eine RDF-Struktur immer
zu einem [IR-Filter fithre und ein FIR-Fil-
ter immer eine NRDF-Struktur besitze.
Diese Annahme stimmt zwar hiufig,
braucht aber nicht notwendigerweise zuzu-
treffen. Vielmehr ist die umgekehrte For-
mulierung richtig: ein IIR-Filter hat immer
eine RDF-Struktur und eine NRDF-Struk-

tur fithrt immer zu einem FIR-Filter
(Fig. 23).

NRDF < - > FIR

7z
7
%
%
ROF <:‘jl> IR

Fig.23 Filterstrukturen

Ublicherweise haben FIR-Filter eine nichtrekur-
sive (NRDF) und IIR-Filter eine rekursive (RDF)
Struktur. In seltenen Ausnahmefillen, wo alle
Pole mit Nullstellen zusammenfallen, findet sich
ein FIR-Filter mit RDF-Struktur.

Ein diskretes Filter wird als kanonisches
Filter bezeichnet, wenn es die minimale,
theoretisch notwendige Anzahl Verzoge-
rungselemente besitzt, um seine System-
funktion zu erfillen.

Die Riickkopplungspfade einer RDF-
Struktur bewirken geschlossene Schleifen.
Damit das Filter realisierbar ist, miissen
alle diese Schleifen mindestens ein Ver-
zdgerungsglied enthalten, ansonsten die pa-
radoxe Forderung erfiillt sein miisste, dass
ein Signalwert bekannt sein muss, bevor
sein Wert berechnet werden kann.

Nichtrekursive diskrete Filter

Ein Filter mit einer NRDF-Struktur
ist in der Figur 24a zu sehen. Seine Sy-
stemfunktion und Impulsantwort sind

Hz)=@+bz Y1 +czH=a

+(b+ac)z™t + bez? (77)

hln] = ad[n] + (b+ac)d[n — 1]

+ bcd[n — 2] (78)
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Fig. 24
Beispiele nichtrekursiver
Filter

a Beispiel eines beliebi-
gen nichtrekursiven
diskreten Filters.

b Transversalfilter:
Darunter versteht

b

man ein nichtrekursi-
ves Filter, bei wel-
chem die Verzoge-
rungselemente  nur
das verschobene Ein-
gangssignal enthal-
ten.

Beim Transversalfil-
ter sind die Abtast-
werte der Impulsant-

wort gerade gleich
den Koeffizienten des
Filters.

Es ist offensichtlich, dass die Im-
pulsantwort eines derartigen Filters
nie linger sein kann als die Anzahl sei-
ner Verzogerungselemente plus eins.
Der wichtigste Vertreter der Filter mit
NRDF-Struktur ist das sogenannte
Transversalfilter (Fig. 24b). In seinen
Verzégerungselementen ist immer nur
ein Abtastwert des Originaleingangs-
signals x[n] vorhanden. Systemfunk-
tion H(z) und Impulsantwort h[n] las-
sen sich bestimmen zu

H(z) = by + b1z} .+ bz
79

hln]l = by d[n] + b1 d[n — 1] +

+ bydn — NJ (80)

Da die Filterkoeffizienten unmittel-
bar in die Impulsantwort eingehen,
lasst sich beispielsweise sofort bestim-
men, ob ein Transversalfilter einen
linearen Phasengang besitzt; es kann
ndmlich gezeigt werden, dass die Be-
dingung fiir einen linearen Phasen-
gang der Forderung nach einer sym-
metrischen oder antisymmetrischen
Impulsantwort h[i] = h[N — i] oder
h[i]= — h[N — i]firi = 0,..., N gleich-
kommt.

Es ist ebenfalls sofort ersichtlich,
dass ein NRDF-Filter mit Ausnahme
des Ursprungs keine Pole besitzen
kann.Trotzdem kann eine praktisch
beliebige Ubertragungsfunktion durch
ein Transversalfilter approximiert
werden; seine Ldnge muss nur gross
genug gewihlt werden. In der Praxis
kdénnen NRDF-Filter realisiert wer-
den, deren Impulsantwort aus Hun-

derten oder Tausenden von Abtast-
werten bestehen [10]. In diesen Fallen
enthdlt die Systemfunktion natiirlich
ebenso viele Nullstellen.

Rekursive diskrete Filter

Eine der moglichen RDF-Struktu-
ren folgt unmittelbar aus der allgemei-
nen Beschreibung in Gleichung (43)
aus Teil 2, die hier nochmals ange-
schrieben wird

N M
ylnl = Y bixln — i1 + ) ayln — i]
i=0 i=1

Sie ist in Figur 25a zu sehen und
wird als «direkte Form I» bezeichnet.
Sie besteht aus einem rein transversa-
len Anteil mit den Koeffizienten b,
by, ..., by und einem rein rekursiven
Anteil mit a;, a, ..., ay. Diese Struk-
tur benotigt offensichtlich M+ N Ver-
zogerungsglieder. Wird aber die Rei-
henfolge der Teilfilter (die ja ihrerseits
lineare Filter sind) vertauscht, so er-
hilt man die «direkte Form II»
(Fig. 25b). Diese enthdlt nunmehr le-
diglich M Verzdgerungselemente falls
M > N, beziehungsweise N, falls N >
M. In beiden Fillen ist die System-
funktion dieselbe; die Nullstellen wer-
den durch die Koeffizienten b;, die
Pole durch die a; bestimmt. Beide di-
rekten Formen besitzen aber einen
grossen Nachteil, ndmlich den, dass je-
des einzelne b; sdmtliche Nullstellen
und jedes einzelne a; sdmtliche Pole
beeinflusst. Demnach haben auch ge-
ringe Anderungen eines einzelnen
Koeffizienten bereits einen wesentli-
chen Einfluss auf das Frequenzverhal-
ten des gesamten Filters. Dies ist insbe-
sondere darum unerwiinscht, weil bei-
spielsweise in digitalen Filtern quanti-
sierte, d.h. leicht modifizierte Koeffi-
zienten verwendet werden miissen.
Dieses Problem wird geldst, indem
man das Gesamtfilter durch mehrere
Teilfilter, deren Pole und Nullstellen
durch wenige Koeffizienten bestimmt
werden, aufbaut. Sehr vorteilhaft er-

(43)
Fig. 25
Zwei Beispiele fiir x[n] =
allgemeine Strukturen o [ 7]

rekursiver Filter

a Direkte Form I: Sie
benotigt M + N
Verzogerungs-

elemente.

b Direkte Form II: In
diesem Beispiel ist M
> N, weshalb M
Verzogerungselemen-
te bendtigt werden.

|
.r

:
ﬁ
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Fig. 26

Filter dritter Ordnung,
realisiert durch
Kaskadierung zweier
Glieder erster und
zweiter Ordnung

Auf diese Art kdnnen
Filter beliebiger
Ordnung geschaffen
werden, weiche
wesentlich kleinere
Sensitivitdten als die
direkten Formen
aufweisen.

Glied ers ter Ordnung

Glied zweiter Ordnung

weisen sich dabei Glieder erster und
zweiter Ordnung. Mit einem Glied er-
ster Ordnung kann ein reeller Pol und
eine reelle Nullstelle realisiert werden,
mit einem Glied zweiter Ordnung be-
stimmt man je zwei Pole und zwei
Nullstellen, welche entweder reell sind
oder je ein konjugiert komplexes Paar
bilden (Fig. 26).

3.3 Sperzielle Filterstrukturen

Kammfilter

Eine interessante Filterstruktur er-
hilt man aus einem beliebigen diskre-
ten Filter, indem man in seiner Sy-
stemfunktion H(z) jede Einheitsverzo-

H(e’?)

- 0 .y b3
G;(e’®)
b
FaVaWal
C GZT(ef")
AAMAL

_>8

Fig.27 Schematische Darstellung der Ubertra-
gungsfunktionen H(e/i0), Gj(ei%) und
G2(e/9)

a Urspriingliches Filter

b Kammfilter ausa firN=3

¢ Kammfilter ausa fir N=4

gerung durch eine N-fache Einheits-
verzogerung ersetzt. Dieses Kammfil-
ter besitzt nun die Systemfunktion
G(z) = H(zV) (81)

Dies bedeutet nun, dass die ur-
spriingliche Ubertragungsfunktion im
Grundintervall — n© < 6 < 1 Nmal
wiederholt wird, wie dies in der Fi-
gur 27 fiir die Falle N =3 und N =4
gezeigt ist'. Ein oft verwendetes
Kammfilter zeigt die Figur 28. In der
Praxis kann N eine Grossenordnung
von mehreren 100 annehmen.

Ladder- und Lattice-Filter

In jiingerer Zeit haben Filterstruktu-
ren, die als Ladder- und Lattice-Filter?
bekannt sind, an Bedeutung gewon-
nen. Einige typische Beispiele sind in
den Figuren 29 und 30 zu sehen; es gibt
allerdings eine Vielzahl moglicher
Formen. Die gemeinsame Eigenschaft
dieser Filter ist, dass sie aus Grund-
bausteinen gebildet werden (schattier-
te Bereiche in den Figuren), welche je
iber zwei Eingidnge und Ausgidnge
verfiigen. Der Grundbaustein eines
Lattice-Filters ist durch eine Uber-
kreuzung der Signale gekennzeichnet.
Beide Filterstrukturen zeichnen sich
dadurch aus, dass ihre Ubertragungs-
funktion beziiglich kleiner Variatio-

Anm. des Ubersetzers:

! Man erinnere sich, dass bereits die urspriing-
liche Ubertragungsfunktion periodisch ist.

2 Gelegentlich sind auch die deutschen Begrif-
fe «Briickenfilter» fiir das Ladder-, bzw. «Ketten-
filter» fiir das Lattice-Filter anzutreffen. Insbe-
sondere in der Schweiz sind aber die englischen
Begriffe iblich, weshalb sie auch in dieser Arbeit
verwendet werden.

nen einzelner Teilfilter ziemlich insen-
sitiv ist. Sie werden hdufig bei der digi-
talen Sprachverarbeitung eingesetzt

[11].

Digitale Wellenfilter

Eine besondere Art von Filtern bil-
den die digitalen Wellenfilter. Man er-
hilt sie durch direkte Ubersetzung
eines gegebenen analogen Filters auf
der Basis der Wellengleichungen. So
wird eine Kapazitidt zu einem einfa-
chen Verzogerungsglied, eine Indukti-
vitdt zu einer Kaskadenschaltung eines
Verzogerungsgliedes und eines Inver-
ters. Diese Komponenten werden
durch Serie- und Paralleladapter, wel-
che Kombinationen von Addierern
und Multiplizierern enthalten, zusam-

e 1 2 3
5% Thel{rer
b I";Z 27120
,f&&%ﬁy
¢ 20x % Rﬁm
T ¢¢‘Y—>Rez
Kkg 0P
4r
C Ale’?)
} 2\
7
- 0 T
_>0
ple’®) |
i
.
- 0
e
=1

Fig.28 Die einfachste (und ilteste) Form des

Kammfilters, wie es beispielsweise in Farbfernseh-

geriten verwendet wird

a Schaltung

b Zugehoriges Pol-Nullstellendiagramm fiir
N=20

¢ Amplituden- und Phasengang fiir N = 20

Bull. SEV/VSE 77(1986)17, 6. September

(A665) 1117



Xl N T

e
0

o)

)

O~
4

—C

<]

ORBS =

%

mengeschaltet (Fig.31). Diese Filter
zeigen ebenfalls eine sehr geringe Sen-
sitivitdt gegeniiber Variationen der
Koeffizienten, zudem besitzen sie eine
ausgezeichnete Stabilitat[12].

Transponierte Filter

Eine allgemeine Methode, ein Filter
einer bestimmten Struktur in ein ande-
res Filter mit derselben Systemfunk-
tion umzuwandeln, fusst auf dem
Transpositionssatz, wonach die Sy-
stemfunktion eines linearen diskreten
Systems unverdndert bleibt, falls
- die Signale in Gegenrichtung flies-

sen (was heisst, dass Eingang und

Ausgang des Filters zu vertauschen

sind) und
- Addierer durch Knoten und Knoten

durch Addierer ersetzt werden.

Das Vorgehen illustriert die Fi-
gur 32, welche ein Glied zweiter Ord-
nung vor und nach der Transposition
zeigt. Die Transposition kann auf alle
linearen Filter und Systeme, die bis an-
hin behandelt wurden, angewandt
werden; das Verfahren ldsst sich aber
noch auf eine viel weiter gefasste Klas-
se von diskreten Systemen anwenden

[13].

Fig. 30
Beispiele fiir
Lattice-Filter
a Lattice-Filter, dessen
Systemfunktion H (z)
nur Pole besitzt.
b Lattice-Filter, dessen
Pole durch die
Koeffizienten &, und
dessen Nullstellen
durch die 3,
bestimmt sind.
Lattice-Filter, dessen
Systemfunktion nur
Nullstellen enthalt.

O

Fig. 29

Beispiele fiir

Ladder-Filter

a Ein Ladder-Filter,
dessen System-
funktion H (z) nur
Pole besitzt.

b Die Pole dieses
Ladder-Filters
werden durch die
Koeffizienten o, die
Nullstellen durch die
S bestimmt.

Schattiert dargestellt ist

der regelmassig

wiederkehrende Teil des

Filters.

Adaptive Filter

Eine weitere niitzliche Klasse von
Filtern fiir die Signalverarbeitung bil-
den die adaptiven Filter [14], deren
Koeffizienten keinen vordefinierten
festen Wert haben, sondern wihrend
des Betriebs berechnet werden. Ein
adaptives Filter besteht deshalb aus
zwei Teilen (Fig. 33), aus dem eigentli-
chen Filter, welches grundsatzlich jede
bis anhin besprochene Struktur haben
kann, wobei die Filterkoeffizienten
cln], ci[n],..., en[n] nun zeitvariant
sind, und aus der Steuereinheit. Die
Koeffizienten werden in der Steuerein-
heit aufgrund eines Kriteriums auto-
matisch berechnet. Dieses Kriterium
fordert normalerweise die Minimali-
sierung der Differenz g[n] zwischen
dem Filterausgangssignal y[n] und
einem Referenzsignal g[n]. Adaptive
Filter besitzen fast ausschliesslich eine
transversale oder eine Lattice- bzw.
Ladder-Struktur[15].

[n]

X
0
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Fig. 31
Digitales Wellenfilter

a Dieses wird durch
Anwendung der Wel-
lengleichungen und
durch  «Umsetzen»
von analogen Kom-
ponenten in diskrete
gewonnen, wie das
Beispiel fir eine Ka-
pazitdt und eine In-

duktivitit zeigt.

b Die so bestimmten
diskreten Bausteine
werden durch Ver-
bindungsglieder, wel-
che nur Addierer und

Multiplizierer enthal-
ten, zum Wellenfilter
geformt.

3.4 Entwurfsmethoden fiir
diskrete Filter

Ausgangspunkt fiir den Filterent-
wurf ist normalerweise eine Spezifika-
tion des benétigten Frequenzverhal-
tens des Filters. Diese Spezifikation
enthidlt dann Grenzbedingungen fiir
den Amplituden- und Phasengang,
wobei der Phasengang hiufig unspezi-
fiziert bleibt. In andern Fillen wird ein
linearer Phasengang gefordert. Man
beachte iibrigens, dass bei Filtern mit
reeller Impulsantwort eine Spezifika-
tion innerhalb des halben Grundinter-

x/n]a

yin] x[n]
O—

Fig. 32 Transponiertes Filter

Ein lineares System kann transponiert werden
und ergibt so ein Filter mit derselben Systemfunk-
tion, aber von unterschiedlicher Struktur.

valles, d.h. fiir 0 < 6 < & geniigt. Die
Randbedingungen lassen sich als soge-
nannte Toleranz- oder Stempelspezifi-
kation, wie sie beispielsweise in der Fi-
gur 34 fiir ein Tiefpassfilter gezeigt ist,
darstellen. Der tatsachliche Amplitu-
dengang des Filters muss immer aus-
serhalb der schraffierten Bereiche ver-
laufen. Entlang der Frequenzachse
sind drei Bereiche zu sehen: der
Durchlassbereich (PB, passband), der
Ubergangsbereich (TP, transition
band) und der Sperrbereich (SB, stop-
band). In diesem Beispiel ist gefordert,
dass die maximale Abweichung im
Durchlassbereich (0 < 8 <#6;) nie mehr
als 0, betragen solle. Im Sperrbereich
(6y < 0 < 1) betrdgt die maximale Ab-
weichung 8. Im Ubergangsbereich (6,
< 6 < 6y) bleibt der Amplitudenver-
lauf unspezifiziert. Die Kurve A in der
Figur 34 geniigt den Anforderungen
genau.

Im allgemeinen wird beim Entwurf
eines diskreten Filters folgendermas-
sen vorgegangen:

x[n]

Filter y[n]

C7[n]

Kontrolleinhert
eln]=ylnl-gin]

Fig. 33 Adaptives Filter

In einem adaptiven Filter sind die Koeffizienten
coln], ..., cn[n] nicht konstant, sondern werden
dauernd durch eine Steuereinheit berechnet, nor-
malerweise mit dem Ziel, die Differenz g[n] zwi-
schen dem tatsichlichen Filterausgang y[n] und
einem Referenzsignal g[n]zu minimalisieren.

Ale’d)

1481

00 0/ bh n

_..0

Fig.34 Spezifikation eines Filters durch soge-
nannte Stempel oder Toleranzbiinder

Der Amplitudengang A(e /%) des Filters darf nir-
gends in den schattierten Bereich reichen. Die ge-
zeichnete Charakteristik erfullt diese Bedingung.

A Amplitude

PB Durchlassbereich (passband)

TB Ubergangsbereich (transition band)
SB Sperrbereich (stopband)

- Man entscheidet sich, ob der gefor-
derte Frequenzgang mit einem FIR-
oder einem IIR-Filter erreicht wer-
den soll und schétzt die bendtigte
Ordnung des Filters.

- Man berechnet Filterkoeffizienten,
welche die entsprechende System-
funktion moglichst gut approximie-
ren.

- Man entscheidet sich fiir eine Filter-
struktur, wobei auch die Quantisie-
rungseffekte bei Digitalfiltern be-
riicksichtigt werden miissen.

- Man priift, ob das entstandene Fil-
ter die urspriinglichen Anforderun-
gen erfillt. Ist dies nicht der Fall, so
muss der ganze Vorgang wiederholt
werden, wobei unter Umstdnden
Filtertyp, -ordnung, -struktur oder
auch die Quantisierungsmethode
teilweise gedndert werden miissen.

Gewohnlich miissen im Verlauf des
Filterentwurfs gewisse Schritte mehr-
mals wiederholt werden, der Filterent-
wurf ist also ein iterativer Prozess.

Der zweite der oben aufgefiihrten
Schritte, die Bestimmung der Filter-
koeffizienten, ist der kritischste von al-
len; mit ihm befasst sich der folgende
Abschnitt, wobei nur einige wenige
der vielen Moglichkeiten vorgestellt
werden sollen. Das eben beschriebene
Vorgehen wird nicht immer genau be-
folgt, weil beispielsweise in gewissen
Fillen die Impulsantwort wichtiger ist
als die Systemfunktion. Haufig ist
auch nicht die Frequenzcharakteristik
vorgegeben, sondern ein analoges Fil-
ter, welches moglichst genau durch ein
diskretes ersetzt werden soll.
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3.5 Entwurfvon FIR-Filtern

Inverse Fouriertransformation und
Zeitfenster

Bei dieser Methode wird von einem
vorgegebenen Frequenzgang Hy(e/?)
ausgegangen. Durch Anwendung der
inversen Fouriertransformation?® fin-
det man eine «ideale» Impulsantwort
ha[n]. Diese kann im allgemeinen
nicht unmittelbar verwendet werden,
da sie meistens sehr viele oder gar eine
unendliche Anzahl Stiitzstellen ent-
hélt. Zudem ist sie hdufig nicht kausal,
das heisst sie enthilt Stiitzstellen hy[n]
+ 0 fiir gewisse n < 0. Man muss daher
hq[n] auf eine feste Anzahl N Stiitzstel-
len begrenzen und so weit nach rechts
verschieben, bis die Kausalitit ge-
wihrleistet ist. Die Figur 35 erldutert
das Vorgehen anhand einer idealen
Tiefpasscharakteristik H,(e/?). Die
mittels der inversen Fouriertransfor-

3 Man beachte, dass in dieser Arbeit der Be-
griff «Fouriertransformation» immer als «Fou-
riertransformation fir diskrete Signale» (s. Teil 1)
zu verstehen ist.

_ ]
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Fig.35 FIR-Filterentwurf mit Hilfe der inversen
Fouriertransformation und eines Zeitfensters

I Inverse Fouriertransformation

IT Begrenzung der Anzahl Stiitzstellen durch
Zeitfenster

ITI Verschiebung

Fig.36 Resultate eines FIR-Filterentwurfs

Die Giite eines nach der Methode der Figur 35
entworfenen Filters hdngt stark von der gewihl-
ten Anzahl Stiitzstellen N ab. Die Abbildung zeigt
den resultierenden Amplitudengang A(e /) fiir
drei verschiedene Werte von N.

mation gewonnene Impulsantwort
hy[n] wird auf N Stellen beschrinkt
(hi[n]) und nach rechts verschoben.
Die so erzeugte Impulsantwort h[n]
kann nun unmittelbar mit einem
Transversalfilter realisiert werden.

Die Begrenzung der Anzahl Stiitz-
stellen hat eine verdnderte Amplitu-
dencharakteristik zur Folge. Beispiele
dafiir sind in der Figur 36 fir N = 11,
21 und 31 zu sehen. Die starke Verzer-
rung wird durch den unmittelbaren
Ubergang von Werten in hy [n], welche
unverdndert in hj[n] ibernommen
werden, zu solchen, welche iiberhaupt
nicht in h;[n] Ubernommen werden,
verursacht. Viel besser wire ein sanfter
Ubergang, der mit Hilfe sogenannter
Fensterfunktionen w[n] erreicht wer-
den kann,

hy[n] = hq[n] w(n] (82)

wobei w[n] die benétigte Lange N hat.
Einige der iiblichen Fensterfunktionen
sind in [5;...;7] (erster Teil) zu finden
und in der Figur 37a dargestellt, wih-
rend die durch Anwendung dieser
Funktionen resultierenden Tiefpass-
charakteristiken in Figur 37b zu sehen
sind. Es ist offensichtlich, dass die
richtige Wahl der Fensterfunktion
einen entscheidenden Einfluss auf das
resultierende Frequenzverhalten hat.
Man beachte zudem, dass eine einfa-
che Beschrdankung der Anzahl Koeffi-
zienten der Verwendung eines recht-
eckformigen Filters gleichkommt.
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Fig.37 Fensterfunktionen

a Fensterfunktionen, welche fiir den Ubergang
von hy[n] nach hj[n] verwendet werden kon-
nen (Fig. 35). Aus Griinden der Ubersichtlich-
keit sind die Funktionen w[n] kontinuierlich
dargestellt, obwohl es sich dabei natiirlich um
diskrete Funktionen der Linge N handelt.
I Rechteck-Fenster, 11 Bartlett-Fenster, 111
Hanning-Fenster, IV Kaiser-Fenster mit § = 4,
V Kaiser-Fenster mit § = 10. Die Kaiser-Fenster
bilden eine ganze Familie mit Sals Parameter.

b Jedes dieser Fenster ergibt ein Filter mit unter-
schiedlicher ~Amplitudencharakteristik. Die
Abbildung zeigt das Ergebnis nach Anwen-
dung der Fensterfunktionen I...V auf das Filter
der Figur 35, wobei eine gleichbleibende Fen-
sterlange von N = 31 verwendet wurde. Man
beachte den logarithmischen Massstab der ver-
tikalen Achse.
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Das Konzept der Fensterfunktionen
wird Ubrigens auch verwendet, wenn
zu lange oder unendlich lange Sequen-
zen mittels einer N-Punkt-DFT trans-
formiert werden sollen. Durch Wahl
der richtigen Fensterfunktion kann
beispielsweise das im ersten Teil dieser
Reihe mit Leakage bezeichnete Uber-
sprechen zwischen den Stiitzstellen der
Transformierten entscheidend beein-
flusst werden.

Filter mit gleichmdssiger Welligkeit

Offenbar hat die eben beschriebene
Entwurfsmethode eine Welligkeit im
Amplitudengang zur Folge. Haufig
wiinscht man sich, dass die einzelnen
Wellen in den Durchlassbereichen
bzw. den Sperrbereichen gleiche Hohe
haben. Bei einem Entwurf, der ein Fil-
ter mit gleichméssiger Welligkeit (engl.
equiripple filter) liefert, spricht man
von einer «gleichmissigen Approxi-
mation». Die Kurve 4 in der Figur 34
besitzt offenbar eine gleichméssige
Welligkeit.

Die Bestimmung der Koeffizienten
fir ein derartiges Filter ist sehr auf-
wendig. Sie miissen meistens auf itera-
tive Weise mit Hilfe eines Computers
berechnet werden. Es gibt eine Viel-
zahl von Computerprogrammen fir
derartige Filter, die unter Umstédnden
zusitzlich noch linearphasig sein miis-
sen [16]. Mit ihrer Hilfe kann man
nicht nur Tiefpassfilter, sondern auch
Hochpass-, Bandpass- und Bandsperr-
filter, zum Teil auch mit mehreren
Durchlass- bzw. Sperrbereichen ent-
werfen. Zudem kann die Methode
auch auf Filter mit allgemeineren
Déampfungsverldufen erweitert wer-
den.

Der

Entwurf eines Filters von

gleichmissiger Welligkeit, wie es in

Fig. 39

Filterentwurf nach der
Methode der invarianten
Impulsantwort T

Gezeigt wird der

Zusammenhang
zwischen den

Impulsantworten hg(¢)
und h4[n]und den
dazugehorigen
Ubertragungsfunktio-
nen H,(jw)und
Hy(el9).

der Figur 34 gegeben ist, benotigt ins-
gesamt fiinf Parameter: die Linge N
der Impulsantwort, die maximalen
Abweichungen im Durchlass- und
Sperrbereich 8, und &;, sowie die
Grenzfrequenzen 6, und 6, des Uber-
gangsbereichs. Es zeigt sich, dass
durch die Wahl von vier dieser Para-
meter der fiinfte bestimmt ist. Das ver-
wendete Computerprogramm  ent-
scheidet dann, welche dieser vier Para-
meter frei gewdhlt werden konnen.

In der Literatur sind eine ganze Rei-
he von Faustregeln angegeben, welche
dem Entwerfer eine Idee iiber die be-
noétigten Grossenordnungen der Para-
meter geben sollen. So findet man eine
grobe Schitzung fiir die Linge der
Impulsantwort eines FIR-Filters mit
gleichméssiger Welligkeit, welches den
Anforderungen (Fig. 34) geniigen soll,
zZu

10logq9(0102) + 15
14(9h =5 91)/27I

(83)

Fig. 38

Der Entwurf digitaler Fil-
ter geschieht heute vorwie-
gend mit Hilfe des Digital-
rechners (im Hintergrund)

Zusitzlich zu den Berech-
nungen zum Entwurfund
der grafischen Darstel-
lung der resultierenden
Charakteristik ~ konnen
Simulationen das Verhal-
ten einesentworfenen Fil-
ters in der Praxis aufzei-
gen. Die Fotografie zeigt
einen akustisch von der
Umgebung abgeschirm-
ten Raum, in welchem der
Einfluss der digitalen Si-
gnalverarbeitung aufton-
frequente Signale studiert
wird.

Ein Beispiel fiir den Einsatz des Di-
gitalrechners in der digitalen Signal-
verarbeitung [17] ist in der Figur 38 zu
sehen.

3.6 Entwurfvon II1R-Filtern

Unverdnderte Impulsantwort

Ausgangspunkt dieses Entwurfsver-
fahrens ist ein analoges Filter mit der
Stossantwort h,(t). Zu entwerfen sei
ein [IR-Filter mit einer Impulsantwort
hq[n] derart, dass
haln] = ha(nT) (84)
das heisst, dass hy[n] die abgetastete
Version von h,(t) ist. Man kann nun
zeigen, dass man die Ubertragungs-
funktion Hgy(e?) des diskreten Filters
durch periodische Fortsetzung des
Frequenzganges des urspriinglichen
analogen Filters gewinnen kann, wo-
bei die «Periode» der Fortsetzung 6 =
oT = 2 n betrdgt. Wihlt man das Ab-
tastintervall T geniigend klein, so wird
Hy(e?) im Grundintervall ungeféihr
gleich H, (jw) (Fig. 39).

Die Berechnungen sind bei diesem
Entwurfsverfahren nicht sehr schwie-
rig. Nimmt man der Einfachheit hal-
ber an, die Systemfunktion H,(p) des
urspriinglichen analogen Filters besit-
ze bloss einfache Pole, dann kann die-
se geschrieben werden als

M
Ag
H,(p) = Z ﬁ (85)
k=1

Daraus lisst sich als Funktion der
Ak, g und T die diskrete Impulsant-
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wort (Riicktransformation und Dis-
kretisierung)

M
hq[n] = Z Ak edrnT
k=1

(86a)
und die Systemfunktion*
M
Hiz) = ) A 86b
a(2)= o (86b)
k=1

bestimmen und das Filter auf unter-
schiedlichste Arten realisieren.

Bilineare Transformation

Ersetzt man in der Systemfunktion
H,(p) eines analogen Filters die Varia-
ble p durch

1

p= (87)

2 1=z

T 1+z!
so erhdlt man die Systemfunktion
Hga(z) eines diskreten Filters, dessen
Ubertragungsfunktion Hy(e) in di-
rektem Zusammenhang mit dem Fre-
quenzgang H,(jw) des urspriinglichen
analogen Filters steht. Offenbar wird
ndmlich der Bereich — ;o< @ < o
von H,(jw) in das Grundintervall — &
< 6 < 7 von Hgy(e/f) abgebildet, und
zwar sowohl in der Amplitude als auch
in der Phase. Liegt beispielsweise

a

p-a

l_ia(p) =

(83)

vor, so erhédlt man nach der Figur

aT(l + =Y
-1 (89)

Hy(2) =
.d( ) al’ + 2 + (aT - 2)z

IHG."jwfl

b

-3000% 1500 0 rsbo_:iwsooo:r

|
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500x 1000
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— 8

-1000~ -500% 0
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Fig. 40 Filterentwurf mittels bilinearer Transfor-
mation

Im Beispiel wird die bilineare Transformation mit
T = Viooo auf ein analoges Filter mit H,(jow) =
1000/ (jeo + 1000) angewendet. Der Amplituden-
gang |H (e /9)| des dabei entstandenen diskreten
Filters ist gleich dem entlang der Frequenzachse
komprimierten Amplitudengang |H,(jw)|, wobei
der Wert, welchen H,;(jow) bei @ — co erreicht,
von Hg(e/9) bereits bei @ = n/ T = 1000 1 ange-
nommen wird.

In der Figur 40 sind die beiden Am-
plitudencharakteristiken | H, (jw)| und
| Ha (&%) | fiir a = 1000 und T = 1/1000
zu sehen. Die « Kompression» auf der
Frequenzachse ist offenbar nicht line-
ar, sie gehorcht einer Tangens-Funk-
tion: Die Kompression ist am ausge-
prigtesten bei den hochsten Frequen-
zen. Dies ist am Beispiel des Equiripp-
le-Filters der Figur 41 deutlich zu se-
hen. Trotz der offensichtlichen Kom-
pression des Frequenzganges ist aber

auch zu sehen, dass die gleichméssige
Welligkeit des Filters nach der Trans-
formation erhalten bleibt. Ein grosser
Vorteil dieser Filter ist deshalb, dass
sie durch Vorgabe von Durchlass-
bzw. Sperrbereichen und entsprechen-
den Toleranzbindern entworfen wer-
den konnen. Will man beispielsweise
ein Filter entwerfen, dessen Uber-
gangsbereiche in der Umgebung von
ws und s (Fig. 41) liegen, so entwirft
man zuerst ein analoges Filter, dessen
Ubergangsbereiche zwar bei ganz ver-
schiedenen Frequenzen ; und o, lie-
gen, welches aber viel einfacher zu be-
stimmen ist.

Elementweise Transformation

Auch bei diesem Verfahren geht
man von einem analogen Filter aus.
Dieses liegt haufig als LC-Filter vor.
Bei der elementweisen Transformation
wird jede Komponente dieser Schal-
tung in einen zeitdiskreten Block um-
gewandelt. Die einzelnen Blocke wer-
den dann grundsétzlich wie die analo-
gen Komponenten zu einer Schaltung
zusammengefiigt. Mit dieser Methode
bleiben einige der besonderen Eigen-
schaften der LC-Filter, wie beispiels-
weise die niedrige Sensitivitit auf An-
derungen der Werte der Komponen-
ten, erhalten. Es wurde bereits er-
wihnt, dass diese Methode beim Ent-
wurf von digitalen Wellenfiltern, aber
auch bei gewissen Ladder-Filtern so-
wie den Filtern mit geschalteten Kapa-
zititen Anwendung findet (Fig. 42, [3]).

Fig. 41
Anwendung der |Ha (J('U)I
bilinearen

Transformation auf ein 7

analoges Bandpassfilter

Wie aus den
Schwankungen der
Amplitudenginge
ersichtlich ist, geschieht
die Frequenz- 0

kompression nicht
gleichmissig. Sie wird
vielmehr fiir hohere
Frequenzen

ausgeprégter. Es ist aber lHd(e’B}l
ebenfalls ersichtlich, I e
dass die Eigenschaft T T
gleichméssiger e e e
Welligkeit erhalten
= bleibt.
4 Anm. des Ubersetzers: Dabei wurde die Be- eibt 051 ‘ |
ziehung I |
\ \
ol T ;
}) la"uln]| = arzn= L fir|a|<|z| 0 we JT/ZT ws o, w /T
l-az-!
n=0 0 6, 7f/2 05 T
—_— 6
benutzt.
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Optimierung mit Computer

Als letzte Methode des IIR-Filter-
entwurfs sei die Computeroptimierung
erwihnt. Dabei geht man von den Spe-
zifikationen im Frequenzbereich sowie
einer ersten Schitzung der Filterkoef-
fizienten aus, wie sie beispielsweise
mit einer der bereits beschriebenen
Methoden gewonnen werden kann. In
mehreren iterativen Schritten versucht
das Computerprogramm, die Diffe-
renz zwischen dem Frequenzgang des
Filters und dem vorgegebenen Fre-
quenzgang zu minimalisieren [16]. Die
einen Programme beriicksichtigen nur
die Amplitudencharakteristik, die an-
dern zusitzlich auch den Phasengang
und damit den Verlauf der Gruppen-
laufzeit, welche der Ableitung des Pha-
senganges entspricht.

(Letzte Folge in Heft 1/87)
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