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Digitale Signalverarbeitung:
Theoretische Grundlagen

Teil 1: Diskrete Signale

A.W.M. van den Enden und N.A.M. Verhoeckx

In dieser ersten von vier Folgen
wird die Theorie der diskreten
Signale behandelt. Die Schwer-
punkte bilden dabei die Fourier-
transformation fiir diskrete
Signale, die z-Transformation,
die diskrete Fouriertransforma-
tion und die schnelle Fourier-
transformation.

Die spateren drei Folgen sind
den diskreten Systemen, den
diskreten Filtern und den prakti-
schen Aspekten der digitalen
Systeme gewidmet.

Ce premier chapitre de I’article,
qui en comporte quatre, traite de
la théorie des signaux discrets,
notamment de leur transforma-
tion de Fourier, transforma-

tion z, transformation de Fourier
discrete et transformation de
Fourier rapide.

Les trois autres chapitres sont
consacreés aux systemes dis-
crets, aux filtres discrets et aux
aspects pratiques des systémes
numériques.

Diese Aufsatzserie ist eine Ubersetzung des
gleichnamigen englischen Beitrags in Philips
Techn. Review 42(1986)4. Die Ubersetzung
besorgte H. Ochsner, dipl. Ing. ETH, Institut
fur Kommunikationstechnik, ETH Zurich.

Adresse der Autoren
A.M.W._van den Enden und
N.A.M. Verhoeckx,

Philips Research Laboratories,
NL-5600 JA Eindhoven.

Signale gibt es in den unterschied-
lichsten und vielfaltigsten Formen, an-
gefangen bei den Rhythmen der
Buschtrommeln iiber das Stopzeichen

- des Verkehrspolizisten bis zum kom-

plexen Empfangssignal aus einer Ge-
meinschaftsantennenanlage, welches
gleichzeitig mehrere Radio- und Fern-
sehkanile enthilt. Allen diesen Signa-
len ist eines gemeinsam: Sie tragen
eine Nachricht oder Information. Da-
bei hiangt aber die Nachricht nur un-
wesentlich von der Natur des Signals
ab. So konnte man etwa den Klang der
Buschtrommeln in ein elektrisches Si-
gnal umwandeln und an einen beliebi-
gen Ort der Welt iibertragen. Dort
konnte man dieses z. B. auf einer Com-
pact Disc speichern. Auf dem umge-
kehrten Weg gelangt man iiber opti-
sche und elektrische Signale wieder
auf die urspriingliche akustische
Trommelnachricht, ohne dass dabei
ihr Sinn verdndert worden wiére.
Elektrische Signale bieten immer
noch die vielfaltigsten Moglichkeiten
der Ubertragung, Speicherung und
Verarbeitung von Nachrichten. Mit
dem Auftauchen der Glasfaser aber
haben die optischen Signale wesent-
lich an Bedeutung fiir die Nachrich-

teniibertragung gewonnen. Fiir theore-
tische Untersuchungen ist allerdings
die physikalische Natur der Signale
meist uninteressant. Man betrachtet
das Signal lediglich als eine beliebige
Funktion einer oder mehrerer Variab-
fen, beispielsweise von Zeit oder Ort.
In dieser Aufsatzreithe werden ledig-
lich Signale betrachtet, welche Funk-
tionen einer einzigen Variablen, der
Zeit, sind. Die Funktion selbst wird
als (momentane) Amplitude bezeich-
net.

Signale konnen in verschiedene
Klassen eingeteilt werden. So stellt
man die Zeit entweder als kontinuierli-
che Variable, welche einen beliebigen
Wert t annehmen kann, oder aber
durch eine diskrete ganzzahlige Zahl n
dar. Ausserdem unterscheidet man
zwischen Signalen mit kontinuierli-
cher Amplitude, deren Wert innerhalb
eines beliebigen Bereichs liegt, und
amplitudenquantisierten Signalen, de-
ren momentane Amplitude lediglich
einen aus einer begrenzten Anzahl dis-
kreter Werte annehmen kann. Mit die-
ser Unterteilung erhdlt man vier Klas-
sen von Signalen. In der Figur 1 wer-
den diese mit x(t), xq(f), x[n] und
xq[n] bezeichnet.

iﬁ;;t??zg_ zeitdiskret
x(t) x(n]
. f/\/\ :
wertekonti-|\ I ] l I I [T
nuierlich 0 ¢ |T01 23 ¢£56

werte-
diskret

Fig. 1 Klassierung von Signalfunktionen

Signale kénnen entweder kontinuierlich oder diskret sein, und dies sowohl in der Amplitude als auch in
der Zeit. Somit werden sie in vier Klassen unterteilt: Das Signal x(¢) ist analog, xq[n] digital; sowohlx[n]
als auch xq[n] bezeichnet man haufig als diskrete Signale, wobei x[n] auch abgetastetes Signal heisst.
Fiir das zeitkontinuierliche amplitudenquantisierte Signal xq(f) ist keine weitere Bezeichnung ge-

brauchlich.
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Die bekannteste Klasse ist wahr-
scheinlich immer noch diejenige der
analogen Signale x(t). Seit etwa zwan-
zig Jahren aber gelangen, bedingt
durch den technischen Wandel, immer
mehr die zeitdiskreten Signale - und
zwar sowohl die digitalen xq[n] als
auch die abgetasteten Signale x[n] - in
den Mittelpunkt des Interesses. Digita-
le Signale lassen sich durch eine Reihe
von ganzen Zahlen darstellen. Des-
halb konnen Schaltungen und Kon-
zepte, wie sie bei Digitalrechnern iib-
lich sind, verwendet werden [1]. Fiir
die abgetasteten Signale stehen heute
Bauteile zur Verfiigung, in welchen Si-
gnale durch elektrische Ladungen dar-
gestellt werden. Diese werden auf ver-
schiedene Art und Weise in regelmés-
sigen Zeitabstinden durch die Schal-
tung geschoben und so verarbeitet. Ty-
pische Beispiele dafiir sind etwa die la-
dungsgekoppelten Elemente (charge-
coupled devices CCD) [2], aber auch
die sogenannten SC-Filter (switched-
capacitor filter) [3]. Am seltensten sind
Signale vom Typ xq(t), bei welchen
der Ubergang zwischen den diskreten
Amplitudenwerten zu beliebigen Zeit-
punkten erfolgen kann. Falls sie iiber-
haupt verwendet werden, dann erfol-
gen die Uberginge meistens nur zwi-
schen zwei Werten. Solche Signale
sind gelegentlich in gewissen Anwen-
dungen der Pulsmodulation anzutref-
fen, so etwa im Laser Vision Video Sy-
stem [4].

Im allgemeinen bezeichnet man ein
Signalverarbeitungssystem gleich wie
die beteiligten Signale: Ein analoges
System verarbeitet analoge, ein zeitdis-
kretes System zeitdiskrete Signale. In
dieser Artikelreihe werden die theore-
tischen Grundlagen der digitalen Si-
gnalverarbeitung erldutert. Dabei
muss man sich aber im klaren sein,
dass der Problemkreis der diskreten
Amplituden an und fiir sich fiir eine
Grundlagenbeschreibung wenig geeig-
net ist. Der Grund liegt teilweise darin,
dass sich «Effekte der Wortlingenbe-
grenzung» meistens als nichtlineare
Phinomene dussern und ein uner-
wiinschtes Systemverhalten, wie etwa
Oszillation, verursachen konnen. Zu-
dem macht sich die wertediskrete Na-
tur der Signale und Operationen hiu-
fig als sogenanntes Quantisierungsge-
rausch bemerkbar, dessen Wirkungen
am besten mit statistischen Mitteln be-
schrieben wird. Beim Entwurf oder bei
der Analyse digitaler Signalverarbei-
tungssysteme verursachen deshalb die
diskreten Amplituden meist zusitzli-
che Schwierigkeiten. In der Praxis wer-

den diese Probleme deshalb tiblicher-
weise zuerst einmal vernachldssigt und
nur die zeitdiskreten Aspekte beriick-
sichtigt. Die Folgen der diskreten Am-
plituden werden, wo notwendig, ge-
trennt untersucht. Dies ist der Grund,
weshalb der grosste Teil der Literatur
iiber digitale Signalverarbeitung [5; 6]
eigentlich zur umfassenderen Katego-
rie der allgemeinen zeitdiskreten Si-
gnalverarbeitung [7; 8] gehdren. In die-
sem Artikel wird von nun an der Be-
griff digital soweit wie moglich nur
dann verwendet, wenn die wertedis-
krete Natur der beteiligten Signale be-
riicksichtigt wird. Sonst werden die
Begriffe diskret und kontinuierlich
stillschweigend immer beziiglich der
Zeit und nicht der Amplitude verwen-
det.

Die nun folgenden Abschnitte zei-
gen zuerst einige Beispiele diskreter Si-
gnale mit ihren wichtigsten Eigen-
schaften. Verschiedene Moglichkeiten
ihrer Darstellung mittels der Fourier-
transformation und der damit ver-
kniipften z-Transformation werden
anschliessend vorgestellt. Mit den Me-

- thoden der Analyse und des Entwurfs

diskreter Systeme und Filter befassen
sich die Fortsetzungen dieses Artikels,
wobei wo immer moglich Parallelen
und Unterschiede zu den kontinuierli-
chen Systemen aufgezeigt werden sol-
len. Weiter werden Aspekte des Uber-
gangs von kontinuierlichen zu diskre-
ten Signalen - und umgekehrt - sowie
die Moglichkeit verdanderlicher Abtast-
raten behandelt. Ein Blick auf Signale
mit diskreten Amplituden und die da-
mit  verbundenen  Auswirkungen
schliessen diese Einfithrung in digitale
Signalverarbeitung ab.

1. Diskrete Signale

1.1 Beschreibung im Zeitbereich

Wie bereits erwdhnt, besteht ein dis-
kretes Signal aus einer Reihe soge-
nannter Abtastwerte (engl. samples).
Die Figur 2 zeigt einige typische Bei-
spiele von diskreten Signalen. Das Si-
gnal x,[n] in Figur 2a ist definiert zu

nfallsl£nL3
0 sonst

xi[n] = { 1)

Dieses Signal besitzt nur eine endli-
che Anzahl Abtastwerte, die von Null
verschieden sind, obwohl es fiir alle n
zwischen -co und +oo definiert ist;
man nennt es deshalb ein Signal endli-
cher Dauer.

x,l{n] a
3
1ty ] I
>0 2 4 0 -
&/n) b
P
20 2 i o
8ln-i] C
t ' i I
2 0 2 i1 Qi o
Xz[nl d
s
T 12 2 v 0 ¢ 0o o0 o4
20 2 & 10 —
uln] e
t
EERRRRRERREEE
20 2 4 70 o
xsln]=sin(nxf4) f
!
2 LiTre  ATh =
[Ip 2 NIV o
x,[n]=sin(n) g
t
2 NI Tve AT 4T
‘J\.J{”O 2 \Lﬁl‘,) \{\L}, —n
xsgn] h
5 I H I 1Te 0 TTT
2 0 2 4 L

Fig.2 Beispiele diskreter Signale

a, b, ¢ Signale endlicher Dauer: x| [n]ist ein belie-
big ausgewihltes Signal, 5[n] und §[n-i] sind der
héufig gebrauchte Einheitsimpuls und seine um i
Stellen verschobene Version.

d,e,f, g h Signale unendlicher Dauer: x;[n] ist
ein exponentiell abklingendes Signal, u[n] der
Einheitsschritt. Sowohl x3[n] als auch x4[n] sind
diskrete Sinusfunktionen, wobei nur x3[n] echt
periodisch ist. Fiir das zufillige Signal xs[n] kann
kein mathematischer Ausdruck angegeben wer-
den; es konnte sich beispielsweise um ein diskre-
tes Rausch- oder ein abgetastetes Sprachsignal
handeln.

Ein weiteres Beispiel eines diskreten
Signals endlicher Dauer ist der Ein-
heitsimpuls! §[n] und seine um i Stel-
len verschobene Version §[n-i]; diese
sind in Figur 2b und 2¢ zu sehen. Ihre
Definition ist

1 fallsn=0

olnl = { 0 sonst &)

! Nicht zu verwechseln mit der §-Distribution
(Diracstoss).

614 (A348)

Bull. ASE/UCS 77(1986)11, 7 juin



und

Sin— i = { 1 fallsn=1i 3)

(0 sonst

Die Figur 2d zeigt ein Signal x»[n],
fur welches gilt

0.8" fallsn<0
0 sonst

xz[n] = { 4

Dieses hat unendliche Dauer, eben-
so der diskrete Einheitsschritt u[n]

falls n £
u[n]={1 allsn<L0 )

0 sonst

oder die diskrete Sinusfunktion
x[n] = Asin(n 6 + ¢) 6)

Hier ist A die (maximale) Amplitu-
de des Signals, 6 die (relative) Fre-
quenz und @ die Phase. Die beiden in
den Figuren 2f und 2g dargestellten
diskreten Sinusfunktionen

x3[n] = sin(nm/4) @)
und
X4[n] = sin(n) ¥

zeigen erstmals einen wesentlichen
Unterschied zwischen diskreten und
kontinuierlichen Signalen. Das (dis-
krete) Signal x3[n] ist ndmlich perio-
disch mit der Periode 8, da

xs[n] = sin(mt/4) = »
sin{(n + 8)m/4} = x3[n + 8] )

Dies war zwar zu erwarten, da ja die
kontinuierliche Sinusfunktion x(t) =
sinwt ebenfalls periodisch ist. Nun
kann aber fiir x4[n] keine ganze Zahl
Ny gefunden werden, fiir welche

x4[n] = x4[n + No) (10)

gelten wiirde. Eine diskrete Sinusfunk-
tion braucht also nicht periodisch zu
sein!

Interessanterweise stellt man weiter
fest, dass bei zwei diskreten Sinusfunk-
tionen mit relativen Frequenzen 6,
und @;, wobei

0, =0, +2ni, i ganzzahlig (11)
genau die gleiche Folge von Abtast-
werten resultiert. Diese beiden Funk-
tionen sind offenbar gleich, denn es

gilt

sin{(f, + 2ni)n}
sin(01n + 2nin)
sin(f1n)

I

sin(fzn)

(12)

Das Signal xs[n] ist ein zufilliges
oder stochastisches Signal, es kann
nicht durch einen mathematischen
Ausdruck, sondern lediglich mit stati-
stischen Mitteln beschrieben werden.
Ein derartiges Signal kann beispiels-
weise ein Ausschnitt aus einem diskre-
ten Rauschsignal oder aber eine Reihe
Abtastwerte eines Sprachsignals (ge-
strichelte Kurve) sein.

An allen bisherigen Beispielen wur-
den entsprechend ihrer physikalischen
Erscheinung Signale mit reellwertigen
Abtastwerten betrachtet. Fiir theoreti-
sche Untersuchungen erweisen sich
aber oft auch komplexe Signale als
sehr niitzlich. Ein solches ist beispiels-
weise die komplexe Exponentialfunk-
tion
x[n]=zn (13)
wobei z = A-e/® = Re z + j Im z eine
beliebige komplexe Zahl sein darf.
Eine wichtige Untermenge der kom-
plexen diskreten Signale erhilt man,
wenn man z in der Gleichung (13) auf
die komplexen Zahlen mit dem Betrag
A = 1 beschrinkt, also z = €i®. Mittels
der Beziehung von Euler erhdlt man
dann

x[n] = /" = cos(ng) + j sin(ngp)
(14)

Der bereits in den Gleichungen (2)
und (3) definierte Einheitsimpuls er-
laubt, diskrete Signale explizit als Fol-
ge von Abtastwerten x[i] darzustellen:

o]

x[n] = ). x[i1d[n— il

i=—o0

(15)

Der Sinn dieser Darstellungsweise
mag im Moment vielleicht noch nicht
ganz klar sein; sie wird sich spéiter aber
als sehr niitzlich erweisen.

Abschliessend zu diesem Abschnitt
eine Bemerkung zur Notation: Bis an-
hin wurden die diskreten Signale mit
x[n] bezeichnet, wobei n eine beliebige

ganze Zahl ist. Ein direkter Zusam-
menhang zur absoluten Zeit (etwa in
Sekunden) besteht hier aber nicht.
Dies ist beispielsweise dann ein Nach-
teil, wenn ein diskretes Signal durch
Abtastung eines kontinuierlichen Si-
gnals mit einem Abtastintervall T ge-
wonnen wurde und man eine Beschrei-
bung im Frequenzbereich in absoluten
Zahlen, d.h. in Hz oder rad/s wiinscht.
Auch im Fall, wo Signale mit unter-
schiedlichen Abtastintervallen (oder
Abtastraten) gleichzeitig behandelt
werden miussen, ist diese einfache No-
tation ungiinstig?2. Deshalb wird im
folgenden in all diesen Féillen die
gleichwertige  Bezeichnung x[nT],
x[nT,], x[nT>] usw. fiir x[n] verwen-
det.

1.2 Beschreibung im Frequenzbereich

Die Fouriertransformation fiir
diskrete Signale (FTD)

Analog zur Fouriertheorie der kon-
tinuierlichen kann die Fouriertrans-
formation fir diskrete Signale /p
fir die Bestimmung des Frequenz-
spektrums eines diskreten Signals her-
angezogen werden. Diese Transforma-
tion ist folgendermassen definiert:

<

X"y = Y xaT)e™"

n=-—oc

(16a)

Ein Beispiel einer solchen Transfor-
mation ist in der Figur 3a zu sehen’.
Als wichtigste Eigenschaft des Spek-
trums X(e/T) stellt man offenbar eine
Periodizitdt von 2x/T fest. Es geniigt
also eine einzige Periode von X(e/eT),
um das ganze Spektrum und damit
auch das Signal x[nT] vollstdndig zu
bestimmen. Normalerweise bezeichnet
man das Intervall -n/T<£L o < /T als
Grundintervall und bestimmt daraus
mittels der inversen Fouriertransfor-
mation fiir diskrete Signale .5 7 das
Signal im Zeitbereich zu

2 Manchmal ist auch das Gegenteil der Fall:
Es kann vollkommen unwichtig sein, dass n eine
Zeitvariable darstellt, man wiinscht sich lediglich
eine Unterscheidung zu kontinuierlichen Signa-
len. Dann wird die kompaktere Notation x  ver-
wendet. Siehe dazu auch [9].

3 Man beachte, dass die Fouriertransforma-
tion fiir diskrete Signale (FTD) - im Gegensatz
zur noch zu besprechenden diskreten Fourier-
transformation (DFT) - ein kontinuierliches
Spektrum liefert.
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Fig.3

Spektrum eines
diskreten Signals x{n]

a Berechnung mittels
o 16a: Das Spektrum ist
durch das Grund-
intervall -n/T < @

<n/Tvollstidndig
bestimmt.

b Normalisierte Form
(19): Das Grund-
intervall hat die
Breite 21t
o absolute

Kreisfrequenz
0 relative
Kreisfrequenz

) n/T
T joT jinwT
x[nT] = — X)) e dw
2n
~HAE (16b)
Das Paar x[nT] und X(e/®T) wird als
Fourierpaar bezeichnet, und die ge-

genseitige Verkniipfung in Operato-
renform angegeben:

X(eoT) = Folx{nT]| (17a)

x[nT]

F5' [X(eion)] (17b)

Die Analogie zwischen der Fouriertrans-
formation fir diskrete und derjenigen fiir
kontinuierliche Signale folgt am besten
durch einen Vergleich ihrer Definitionen.
Die Fouriertransformation fiir kontinuier-
liche Signale 5 und ihre Inverse & -
sind definiert zu

«©

X(jw) = / x(f) e7®" dt, (18a)
1 .

x(f) = — / X(jw) " dw (18b)
2n

Der Unterschied besteht im Ersetzen der
Integration durch eine Summe in der Vor-
wartstransformation sowie in den geidnder-
ten Integrationsgrenzen in der Riickwirts-
transformation.

Der Gebrauch der Notation X(e/eT)
anstelle von X(jw) bei der Fourier-
transformation fiir diskrete Signale
veranschaulicht einerseits die Periodi-
zitdt in w, anderseits wird sie sich im
Zusammenhang mit der sehr wichtigen

z-Transformation als niitzlich erwei-
sen.

Ausser den Definitionen den Glei-
chungen (16a und b) hat die Fourier-
transformation eine gebriduchlichere
normalisierte Form, indem n wieder
anstelle nT und O anstelle von oT
steht. Somit wird

oo

vX(ejg) = Y x[n]e

n=—oo

(192)
x[n] = x / X(e?) e do  (19b)
2n !

Die Grosse 6 heisst relative Kreis-
frequenz. Das Grundintervall von
X(e/%) hat offenbar die Breite 2. Da
x[n]und X(e/®) ein Fourierpaar bilden,
kann man schreiben:

X(e) (20a)

Fpix[nl
Fp'|X(e?)]

x[n] (20b)

Man beachte, dass X(e/®) eine kom-
plexwertige Funktion ist; um sie gra-
phisch aufzuzeichnen, muss sie entwe-
der in ihre Real- und Imaginérteile R
= Re X(e/) und I = Im X(e/) oder in
Betrag 4 = | X(e/%)|und Argument @ =
arg X(ef) aufgespalten werden. So er-
hilt man

XE?)=R+j=A¢"? @1)

wobei natiirlich R, I, 4 und @frequenz-
abhdngige Funktionen sind, so dass

“man eigentlich R(e), I(eif), A(e)

und @(e/) schreiben miisste. In der Fi-
gur 3 wurde der Einfachheit halber ein
reelles Spektrum angenommen. Ein
realistischeres Beispiel hingegen zeigt

die Figur 4, wo das Signal x[n] =

0,87u[n] auf die eben erlduterte Art
und Weise dargestellt wird.

Die Fouriertransformation fiir diskrete
Signale hat eine Reihe Eigenschaften, die
denjenigen der Transformation fir konti-
nuierliche Signale entsprechen. Die wich-
tigsten davon seien hier erwihnt, da sie im
folgenden gebraucht werden.

1. Linearitdt: Fiir zwei Fourierpaare

xln) = F5' [X(ei) fund yinl= T3 [Y(e))
(22a)

gilt
ax[n] + by[n] = F ' (aX(e/) + bY(el%))
(22b)

2. Verschiebung: Fiir eine beliebige ganze
Zahl i gilt

x[n-il = e_jig S [X(eif) ] (229
a x[n]
T 1
[ l ] ] I I I 111 e
-2 0 2 4 6 8 N 10
b

Fig.4 Komplexes Spektrum

Das durch die Fouriertransformation erhaltene
Spektrum eines diskreten Signals (a) ist nor-
malerweise komplex, so dass zwei Funktionen der
Frequenz dargestellt werden miissen. Dies sind
entweder der Betrag A(e/%) und das Argument
@(e/9) (b) oder der Realteil R(e/%) und der Imagi-
nirteil I(e/9) (c).

Die Abbildung zeigt beide Darstellungsmoglich-
keiten fiir das Beispiel: x[n] = 0,8" u[n].
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3. Faltung: Bis auf weiteres wird zwar die
Faltungsoperation (bezeichnet mit dem
Symbol *) weder gebraucht noch definiert,
mit ihr ist aber die wichtigste Eigenschaft
der Fouriertransformation verkniipft: Die
Faltung zweier Signale im Zeitbereich ent-
spricht der Multiplikation ihrer Spektren.
Also

xin*yln = SV (X(eib) - Y(e®)]  (22d)

4. Fiir reelle Signale x[n] ist der Realteil
des Spektrums eine gerade und der Imagi-
nérteil eine ungerade Funktion, also

R(e¥) = R(e) und (") = —I(e™)
(22¢)

bzw. fiir Betrag und Argument
A@E) = AE™) und @) = —p(e)
(22f)

Reelle Signale lassen sich deshalb ausrei-
chend durch das halbe Grundintervall ihrer
Spektren beschreiben.

Die z-Transformation (ZT)

Neben der eben beschriebenen Fou-
riertransformation existieren weitere
Transformationen fiir diskrete Signa-
le, so beispielsweise die wichtige
(zweiseitige) z-Transformation. Die
z-Transformation X(z) eines diskreten
Signals z[n] wird mittels der komple-
xen Exponentialfunktion (13) defi-
niert zu

o0

X(z) = ), x[n]z™"

n==00

(23)

wobei z jede beliebige komplexe Zahl
sein darf. Dies bedeutet natiirlich, dass
auch hier keine einfache graphische
Darstellung von X(z) moglich ist. Viel-
mehr sind zwei dreidimensionale Dar-
stellungen nétig, die je ReX(z) und
Im X(z) als Funktion von Rez und Imz
darstellen (Fig.5). Eine alternative

Fig.5 z-Transformierte

Die z-Transformierte eines diskreten Signals x[n]
ist im allgemeinen eine komplexe Funktion X(z)
= ReX(z) + jImX(z) einer komplexen Variablen
z = Rez+jImz. Ihre Darstellung benétigt deshalb
zwei dreimensionale Darstellungen. In der Abbil-
dung ist dies durch die Darstellung eines einzigen
Punktes X(a+jb) = c+jd angedeutet.

graphische Darstellung, das sogenann-
te  Pol-Nulistellen-Diagramm, wird
spéter vorgestellt.

Die z-Transformation hat fiir diskrete
Signale die gleiche Bedeutung wie die La-
place-Transformation fiir kontinuierliche.
Die (zweiseitige) Laplace-Transformation
ist definiert als

©

X(p) = / x(f)yeP dt

-

(24a)

Der offensichtlich wichtigste Unter-
schied besteht in der Summation in der
z-Transformation anstelle des Integrals.
Hingsgen fehlt die Exponentialfunktion in
der z-Transformation nur scheinbar, da na-
tiirlich jede beliebige komplexe Zahl z ge-

‘schrieben werden kann als

z=a+ jb=Aej¢ = eln(A)+i¢ _ oq

(24b)

Wie bei der Laplace- stellt sich auch
bei der z-Transformation die Frage
der Konvergenz. Es zeigt sich namlich,
dass die unendliche Summe der Glei-
chung (23) - bei einem gegebenen Si-
gnal x[n] - nicht fiir beliebige z gegen
einen endlichen Wert konvergiert. Ge-
naugenommen sollte also zu jedem
X(z) auch noch die Konvergenzregion
angegeben werden, da ndmlich unter-
schiedliche Konvergenzgebiete fiir ein
und dasselbe X(z) zu unterschiedli-
chen Zeitfunktionen x[n] gehoren. In
praktischen Systemen gibt es aber nie
einen Zweifel dariber, um welches Si-
gnal es sich handelt, weshalb in diesem
Artikel keine Konvergenzfragen be-
sprochen werden.

Es sei nun die z-Transformation des
Signals

x1[n] = A d{n —i] (25a)

betrachtet. Bekanntlich stellt diese
Gleichung einen Impuls der Amplitu-
de A zum Zeitpunkt n = i dar. Es fin-
det sich mittels (23)

X1(z) = i Adn—ilz"=Az"
o (25b)
Analog findet sich fiir
xz[n] = 26[n — 1] + 36[n - 2]
(26a)

die Transformierte

Xa(z) =2z7' + 3272 (26b)

Aus diesen beiden Beispielen ergibt
sich eine sehr niitzliche Interpretation
der z-Transformierten: Hat X(z) die
Form eines Polynoms in z'!, dann ent-
spricht der zur Potenz z' gehdrende
Koeffizient genau dem Wert von x[n]
zum Zeitpunkt n = i.

Die inverse z-Transformation ist ge-
geben durch das geschlossene Linien-
integral

1
x[n] = — 514)((2):"'1 dz (27)

2mj

In der Praxis wird dieser Ausdruck
allerdings nur selten angewendet. Viel-
mehr versucht man x[n] mittels allge-
meiner Eigenschaften der z-Transfor-
mation oder durch Aufteilen von X(z)
in Funktionen mit bekannten Riick-
transformierten zu bestimmen. Einige
wichtige z-Transformationspaare sind
in der Tabelle [ angegeben.

Die Tatsache, dass x[n] und X(z) ein
z-Transformationspaar bilden, sei for-
mal angegeben durch

X(z) = 4 |x[n]} (28a)
xinl= 77'{X(2)] (28b)
Die wichtigsten Eigenschaften der

z-Transformation betreffen die Linearitit,
die Zeitverschiebung und die Faltung. Fir
die beiden Paare

xinl= 2[X(2)|undylnl = P{Y(2)| (292)

gelten folgende Eigenschaften:

1. Linearitdt: Fir beliebigen Wert der
Konstanten a und b gilt

ax[n] +by[n] = g? laX(z) +bY(z)|  (29b)

2. Verschiebung: Fiir eine beliebige ganze
Zahl i gilt

x[n-il =z P(X(z)} (29¢)

3. Faltung: Bis auf weiteres wird zwar die
Faltungsoperation (bezeichnet mit dem
Symbol *) weder gebraucht noch definiert,
mit ihr ist aber eine wichtige Eigenschaft
der z-Transformation verkniipft:

x[n]*yinl = P [X(2) - Y(2)) (29d)

Um die Riicktransformation einer
Funktion Xy(z), welche als Verhiltnis
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zweier Polynome von z gegeben ist, zu
bestimmen, wird im allgemeinen das
Verfahren der Partialbruchzerlegung
angewendet. Dieses Verfahren sei an
einem Beispiel erldutert. Die Transfor-
mierte Xo(z) ist gegeben durch

z

Xoz) = — =
N

(30)

wobei o und B Konstanten sind. Of-
fenbar ist in der Tabelle I kein unmit-
telbar anwendbares Transformations-
paar zu finden. Deshalb wird Xo(z)
umgeschrieben, wobei allerdings die
Konstanten 4 und B erst noch zu be-
stimmen sind:

Az
zZ—0

1 Bz
2~

Xo(2) = (31

Dieser Ausdruck wird nun auf einen
gemeinsamen Nenner umgeformt, und
man erhélt schliesslich

Az(z—f) + Bz(z — @)
z-—a)z-p)
(A + B)z? — (BA + aB)z
z-a)z-p)

Xo(2) =

(32

Man sieht, dass die beiden Glei-
chungen genau dann identisch sind,
falls gilt
A+B=0 und BA+aB= —1

(33)

oder

-1
a—ﬁ und B=a—_z (34)

Somit kann (31) neu geschrieben
werden zu

1 z z
Xole) = a—ﬁ(z—a _z—,B>
(35)

In der Tabelle I findet sich nun tat-
sichlich eine z-Transformierte der
Form z/(z-a), so dass man unter Aus-
niitzung der Linearitét der z-Transfor-
mation findet:

Einige einfache Transformationspaare der zweiseitigen z- Transformation Tabelle |
x[n] X(2)
d[n] 1
dln—1i] =
z
ufn]
2 =1
a” ufn] z
z—-a
n-1 1
a" " ufn - 1)
z—a
z
nuln] _
z-1?
+1
n? uln) ere <4
z-1°
z% — z cos&

cos(né) ufn)

sin(n&) u[n)

a"sin(né + ) uln]

22 — 2zcosé + 1
zsiné
22 = 2zcosé + 1

2% sin(y) + azsin(¢ — y)

z% - 2az cos¢ + a*

Xo[n] =
a

y (@" — B")ulnl (36)

. a
Zusammenhang zwischen 9 pund J)

Zwischen der Fouriertransforma-
tion fiir diskrete Signale und der
z-Transformation besteht ein unmit-
telbarer Zusammenhang. Setzt man
ndmlich z = &% in Gleichung (23) ein,
so ergibt sich die Fouriertransforma-
tion entsprechend (19a). Weil die
Punkte z = e fiir -n £ 6 < 7 den Ein-
heitskreis |z| = 1 in der z-Ebene be-
schreiben, kommt man zum Schluss,
dass die Fouriertransformation fiir
diskrete Signale der z-Transformation
entlang des Einheitskreises entspricht.
Dies ist in der Figur 6 dargestellt, wo-
bei der Einfachheit halber angenom-
men wurde, dass die z-Transformierte
auf dem Einheitskreis reell sei.

Der besprochene Zusammenhang gilt al-
lerdings nur dann, wenn die z-Transfor-
mierte auf dem Einheitskreis existiert oder,
anders gesagt, wenn X(z) auf dem Einheits-
kreis konvergiert. In der Praxis ist dies auch
meistens der Fall. Eine wichtige Ausnahme
bildet, wie wir spédter sehen werden, die
Stossantwort eines instabilen diskreten Sy-
stems.

Die bis jetzt diskutierten Zusam-
menhidnge zwischen dem Signal x[n]
und seiner Transformierten X(e/)
bzw. X(z) zeigt die Figur 7.

Die diskrete Fouriertransformation
(DFT)

Die Fouriertransformation fiir dis-
krete Signale, wie sie eben beschrieben
wurde, ist ein leistungsfahiges Hilfs-
mittel, um das Frequenzspektrum
eines diskreten Signhals zu bestimmen.

a

ro.
unit, circle
z=e/®

Fig.6 Zusammenhang zwischen z-Transforma-

tion und Fouriertransformation

Annahme: X(e/) sei reell.

a z-Transformation X(z) entlang des Einheits-
kreises, d.h. z= /0

b Fouriertransformation X(e/%) fiir diskrete Si-

gnale
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:/I
X(z)

1zT/ /2T
z=e/? elf-z
IFTD
FTD
Fig.7 Zusammenhang zwischen einem diskreten

Signal x[n], seiner Fouriertransformierten X(e/9)
und der z-Transformierten X(z)

FTD Fouriertransformation fiir diskrete Signale

IFTDinverse Fouriertransformation fiir diskrete
Signale

ZT z-Transformation

IZT inverse z-Transformation

Es wird angenommen, dass alle Transformatio-
nen existierten

Sie hat allerdings auch ihre Grenzen,
wie nun anhand der normalisierten
Form, wie sie durch die Gleichung (19)
gegeben ist, gezeigt werden soll. Zu-
néchst zeigt sich, dass die Gleichung
(19) nicht unmittelbar auf periodische
Signale x[n] anwendbar ist, da die
Summation iiber unendlich viele Ter-
me Schwierigkeiten bietet. Zudem ist
die Darstellung durch eine unendliche
Summe auch nicht sinnvoll, wenn ein
Signal x[n] endlicher Dauer, d.h. ein
Signal, das nur fiir eine endliche An-
zahl n einen von Null verschiedenen
Wert hat, beschrieben werden soll.
Schliesslich ist die numerische Bestim-
mung der Riicktransformation nur
mittels Approximation des Integrals
moglich. Deshalb hat sich die Defini-
tion der sogenannten N-Punkt-diskre-
ten Fouriertransformation (N-Punkt-
DFT) als sehr niitzlich erwiesen. Sie
lautet:

N-1

Xnlk] = ) xnln] e /N )kn

n=0

(37a)

und
= ;
xlnl = = X Xlk] !/ (370)
k=0

Mittels der DFT werden also N
Werte der diskreten Frequenzfunktion
Xn[k] aus dem Signal xy[n] bestimmt.

Durch Anwendung der Riicktransfor-
mation lassen sich daraus die N ur-
spriinglichen Werte von xy[n] exakt
wiederfinden. Die Sequenzen xy[n]
und Xy[k] bilden also ein Transforma-
tionspaar, das durch die Operatoren-
gleichungen

XN[k] = _@N{XN[}’I]} (383)

xyln] = 2§ (Xylk]] (38b)
dargestellt wird.

Die Anwendung der DFT sei zuerst
an einer einfachen periodischen Funk-
tion x[n] = cos(2nn/6) fir die Fille N
= 6, 12 und 16 illustriert (Fig. 8). Dar-

- aus ist ersichtlich, dass es bei Anwen-

dung der DFT auf Signale mit der Pe-
riode Ny offenbar wichtig ist, dass die
Lénge N der DFT-Bildfunktion gleich
Ny oder einem ganzzahligen Vielfa-
chen von Ny gewahlt wird (Fig. 8a und
8b). Andernfalls enthidlt das diskrete
Spektrum Xn[k] nicht die «richtigen»
Frequenzstiitzstellen, um das ur-
spriingliche periodische Signal x[n]
exakt darzustellen. Es tritt ein Effekt
auf, welcher mit dem englischen Be-
griff Leakage bezeichnet wird.

Ein Vergleich der Figuren 8a und 8b
zeigt aber auch, dass ein grosseres N
eine grossere spektrale Auflosung be-
wirkt. Zudem zeigt das Spektrum

Xn[k] einen nahen Symmetriegrad, be-
dingt dadurch, dass x[n] eine reelle
Funktion ist. Eine dhnliche Symmetrie
wurde bereits bei der FTD besprochen.

Die N-Punkt-DFT kann auch zur
Berechnung des Spektrums von Signa-
len endlicher Dauer (£ N) verwendet
werden. In diesem Fall zeigt sich ein
Zusammenhang mit der Fouriertrans-
formation fiir diskrete Signale (19a),
ndmlich

Xnlk] = X(e/2M/N)ky (39)

Fiir ein Signal endlicher N, ist die
DFT gleich der abgetasteten Fourier-
transformation, falls N; £ N. Dies ist
in der Figur 9 anhand der
8-Punkt-DFT eines Signals mit N = 4
gezeigt.

Bis anhin wurde stillschweigend an-
genommen, dass sowohl bei xy[n] als
auch bei Xy[k] nur Werte von n und k
zwischen 0 und N-1 vorhanden seien.
Nun sind aber die komplexen Expo-
nentialfunktionen  e7@VNkn bz,
e/@n/Mkn periodisch sowohl in n als
auch in k mit der Periode N. Wird also
Xn[k] in (37a) fiir k < 0 oder fiir k >
N-1 bestimmt, so findet man diesel-
ben Werte wie fiir 0 £ k < N-1. Ana-
loges gilt fiir xy[n] in Gleichung (37b).
Man kann deshalb sagen, xy[n] und

x[n]=cos(2mn/6)

S T
[

Xnlk]
L t
N:6 3
L [
012 3 %5
— ek
Xnlk]
il !
N=12 6 I I
Z 0'0 2 4 6 8 11
— ek
| Xnlk])|
sy !
N=16 &
15 0
I 0246810 15
—s N —

Fig.8 Beispiel fiir die N-Punkte-DFT

Anwendung der N-Punkt-DFT fiir verschiedene Werte von N auf das periodische Signal x[n] = cos
(2nn/6). N ist gleich einem ganzzahligen Vielfachen der Periode des Signals x[n] zu wihlen, also etwa
N = 6 (a) oder N = 12 (b). Andernfalls tritt eine «Leakage» zwischen den spektralen Komponenten auf
(¢). Bei N = 6 und N = 12 ist das Spektrum reell, bei N = 16 komplex. Fiir den letzten Fall ist lediglich

der Betrag aufgezeichnet.
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Fig.9

R(e’®) Vergleich zwischen der

10 Fouriertransformation
T T fiir diskrete Signale und

0 > der 8-Punkt-diskreten

— 9 T Fouriertransformation

x[n] -10 eines Signals x[n]
T FTD endlicher Dauer NV;
Es ist offensichtlich,
12' IFTD I(e’?) dass das

10 DFT-Spektrum Xn{k]

202 T = Rnl[k] + jIn[K] gleich
. n 0 dem abgetasteten
T g 2n Fourierspektrum X(e/%)
-10 = R(&/) + jI(e/f) ist.
Rulk]
T 10¢.,
0': 7\1\ }/ ’\; 3 g\ \5_ 1717
xyln] -10 kK
T DFT
5 g9Er | 1 g
] N=8 10
0 2 A 6 T 0 1 ,f\3 P ] /r\“\
— N \‘\L 7 L 5\_& 7
~104" — k

Xn[k] seien periodische Funktionen
der Periode N, wobei aber bloss die
Grundintervalle zwischen 0 und N-1
fir die Transformation von Bedeutung
sind.

Die schnelle diskrete Fourier-
transformation - Fast Fourier
Transform (FFT)

Zusitzlich zu den bereits beschrie-
benen Transformationen findet man
haufig den Begriff FFT (Fast Fourier
Transform) in der Literatur iiber dis-
krete Signalverarbeitung. Dies ist nun
aber keine neue Transformation, son-
dern eine sehr effiziente Methode zur
Bestimmung der DFT. Dabei bezeich-
net man mit FFT eine ganze Reihe von
miteinander verkniipften Methoden
und Strategien.

Ein Blick auf die Gleichung (37a
und b) zeigt, dass man zur Bestim-
mung eines einzigen Punktes der
Transformierten N komplexe Multi-
plikationen und N-1 weniger rechen-
aufwendige komplexe Additionen

durchfiihren muss, fiir die ganze
N-Punkt-Transformation ergeben sich
also N? komplexe Multiplikationen.
Bei einer einfachen 4-Punkt-Transfor-
mation sind das zwar nur deren 16, fiir
N 2048 aber immerhin N,
4194 304, und eine solche Grosse von
N ist in der Praxis durchaus iiblich. Da
diese Rechenzeit und bendétigte Re-
chenanlagen bestimmt, wird seit be-
reits 200 Jahren und speziell seit den
letzten dreissig Jahren [9] nach Metho-
den gesucht, welche die Berechnung
einer N-Punkt-Transformation mit
weniger Operationen erlauben. Das
Vorgehen ist bei allen Methoden dhn-
lich: Es wird versucht, eine gewisse
Anzahl von DFT mit kiirzerer Lange
zu bestimmen und diese dann geeignet
zu kombinieren. Ist beispielsweise N
eine gerade Zahl, dann kann man je
eine N/2-Punkt-DFT der geradzahli-
gen und der ungeradzahligen Abtast-
werte von xy[n] bestimmen. Die N-
Punkt-DFT erhilt man dann aus die-

sen beiden Resultaten. Insgesamt er- .

gibt das weniger Operationen als das

direkte Vorgehen. Ist N/2 seinerseits
eine gerade Zahl, so kann die Prozedur
wiederholt werden. Am bekanntesten
ist deshalb die FFT fiir N = 2M. Der-
selbe Algorithmus wird dann M mal
angewendet, und man bekommt daher
eine Anzahl Operationen in der Gros-
senordnung von N X M, was einer Re-
duktion um den Faktor N/M ent-
spricht, verglichen mit der direkten
Berechnung der DFT. Der mittels der
FFT vor allem fiir grosse N zu erzie-
lende Gewinn zeigt die Figur 10.

Nop/705
8 I
6 =
N2
4 -
(DFT)
2 L
" (FFT)  Nx“logN=NxM |
0 128 256 512 1024

Fig. 10  Anzahl benétigter Operationen N,y bei di-
rekter Bestimmung der N-Punkt-DFT und bei FFT

Ist N = 2M eine Zweierpotenz, dann reduziert sich
die Anzahl Operationen um den Faktor N/M.

(Fortsetzung in Heft 15/86)
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