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Digitale Signalverarbeitung :
Theoretische Grundlagen
Teil 1 : Diskrete Signale

A.W. M. van den Enden und N.A.M. Verhoeckx

In dieser ersten von vier Folgen
wird die Theorie der diskreten
Signale behandelt. Die Schwerpunkte

bilden dabei die
Fouriertransformation für diskrete
Signale, die z-Transformation,
die diskrete Fouriertransformation

und die schnelle
Fouriertransformation.

Die späteren drei Folgen sind
den diskreten Systemen, den
diskreten Filtern und den praktischen

Aspekten der digitalen
Systeme gewidmet.

Ce premier chapitre de l'article,
qui en comporte quatre, traite de
la théorie des signaux discrets,
notamment de leur transformation

de Fourier, transformation

z, transformation de Fourier
discrète et transformation de
Fourier rapide.
Les trois autres chapitres sont
consacrés aux systèmes
discrets, aux filtres discrets et aux
aspects pratiques des systèmes
numériques.

Diese Aufsatzserie ist eine Übersetzung des

gleichnamigen englischen Beitrags in Philips
Techn. Review 42(1985)4. Die Übersetzung

besorgte H. Ochsner, dipl. Ing. ETH, Institut
für Kommunikationstechnik, ETH Zürich.

Adresse der Autoren
A.M. W. van den Enden und
N.A.M. Verhoeckx,
Philips Research Laboratories,
NL-5600 JA Eindhoven.

Signale gibt es in den unterschiedlichsten

und vielfältigsten Formen,
angefangen bei den Rhythmen der
Buschtrommeln über das Stopzeichen
des Verkehrspolizisten bis zum
komplexen Empfangssignal aus einer
Gemeinschaftsantennenanlage, welches
gleichzeitig mehrere Radio- und
Fernsehkanäle enthält. Allen diesen Signalen

ist eines gemeinsam: Sie tragen
eine Nachricht oder Information. Dabei

hängt aber die Nachricht nur
unwesentlich von der Natur des Signals
ab. So könnte man etwa den Klang der
Buschtrommeln in ein elektrisches
Signal umwandeln und an einen beliebigen

Ort der Welt übertragen. Dort
könnte man dieses z. B. auf einer Compact

Disc speichern. Auf dem
umgekehrten Weg gelangt man über optische

und elektrische Signale wieder
auf die ursprüngliche akustische
Trommelnachricht, ohne dass dabei
ihr Sinn verändert worden wäre.

Elektrische Signale bieten immer
noch die vielfältigsten Möglichkeiten
der Übertragung, Speicherung und
Verarbeitung von Nachrichten. Mit
dem Auftauchen der Glasfaser aber
haben die optischen Signale wesentlich

an Bedeutung für die Nachrich¬

tenübertragung gewonnen. Für theoretische

Untersuchungen ist allerdings
die physikalische Natur der Signale
meist uninteressant. Man betrachtet
das Signal lediglich als eine beliebige
Funktion einer oder mehrerer Variablen,

beispielsweise von Zeit oder Ort.
In dieser Aufsatzreihe werden lediglich

Signale betrachtet, welche
Funktionen einer einzigen Variablen, der
Zeit, sind. Die Funktion selbst wird
als (momentane) Amplitude bezeichnet.

Signale können in verschiedene
Klassen eingeteilt werden. So stellt
man die Zeit entweder als kontinuierliche

Variable, welche einen beliebigen
Wert t annehmen kann, oder aber
durch eine diskrete ganzzahlige Zahl n
dar. Ausserdem unterscheidet man
zwischen Signalen mit kontinuierlicher

Amplitude, deren Wert innerhalb
eines beliebigen Bereichs liegt, und
amplitudenquantisierten Signalen,
deren momentane Amplitude lediglich
einen aus einer begrenzten Anzahl
diskreter Werte annehmen kann. Mit dieser

Unterteilung erhält man vier Klassen

von Signalen. In der Figur 1 werden

diese mit x{t), xç(t), x[n] und
xq[«] bezeichnet.

zeitkonti-
nuierlich zeitdiskret

wertekonti-
nuierlich

xtti
t

xlnl
t

Î l t
0 —- t -1 0 2 3 L S 6

wertediskret

xa(t) xj.nl

T :7rx—i,::: ry r "
0 —« -1 0 2 3 15 6

Fig. 1 Klassierung von Signalfunktionen
Signale können entweder kontinuierlich oder diskret sein, und dies sowohl in der Amplitude als auch in
der Zeit. Somit werden sie in vier Klassen unterteilt: Das Signal x(t) ist analog, jcq[/i] digital; sowohlxfn]
als auch XQ[n] bezeichnet man häufig als diskrete Signale, wobei x[n] auch abgetastetes Signal heisst.
Für das zeitkontinuierliche amplitudenquantisierte Signal xq(t) ist keine weitere Bezeichnung
gebräuchlich.
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Die bekannteste Klasse ist
wahrscheinlich immer noch diejenige der
analogen Signale x(t). Seit etwa zwanzig

Jahren aber gelangen, bedingt
durch den technischen Wandel, immer
mehr die zeitdiskreten Signale - und
zwar sowohl die digitalen xq[h] als
auch die abgetasteten Signale x[n\- in
den Mittelpunkt des Interesses. Digitale

Signale lassen sich durch eine Reihe
von ganzen Zahlen darstellen. Deshalb

können Schaltungen und
Konzepte, wie sie bei Digitalrechnern
üblich sind, verwendet werden [1], Für
die abgetasteten Signale stehen heute
Bauteile zur Verfügung, in welchen
Signale durch elektrische Ladungen
dargestellt werden. Diese werden auf
verschiedene Art und Weise in regelmässigen

Zeitabständen durch die Schaltung

geschoben und so verarbeitet.
Typische Beispiele dafür sind etwa die
ladungsgekoppelten Elemente (charge-
coupled devices CCD) [2], aber auch
die sogenannten SC-Filter (switched-
capacitor filter) [3]. Am seltensten sind
Signale vom Typ xq(?), bei welchen
der Übergang zwischen den diskreten
Amplitudenwerten zu beliebigen
Zeitpunkten erfolgen kann. Falls sie
überhaupt verwendet werden, dann erfolgen

die Übergänge meistens nur
zwischen zwei Werten. Solche Signale
sind gelegentlich in gewissen Anwendungen

der Pulsmodulation anzutreffen,

so etwa im Laser Vision Video
System [4].

Im allgemeinen bezeichnet man ein
Signalverarbeitungssystem gleich wie
die beteiligten Signale: Ein analoges
System verarbeitet analoge, ein zeitdiskretes

System zeitdiskrete Signale. In
dieser Artikelreihe werden die
theoretischen Grundlagen der digitalen
Signalverarbeitung erläutert. Dabei
muss man sich aber im klaren sein,
dass der Problemkreis der diskreten
Amplituden an und für sich für eine
Grundlagenbeschreibung wenig geeignet

ist. Der Grund liegt teilweise darin,
dass sich «Effekte der Wortlängenbegrenzung»

meistens als nichtlineare
Phänomene äussern und ein
unerwünschtes Systemverhalten, wie etwa
Oszillation, verursachen können.
Zudem macht sich die wertediskrete Natur

der Signale und Operationen häufig

als sogenanntes Quantisierungsgeräusch

bemerkbar, dessen Wirkungen
am besten mit statistischen Mitteln
beschrieben wird. Beim Entwurf oder bei
der Analyse digitaler Signalverarbeitungssysteme

verursachen deshalb die
diskreten Amplituden meist zusätzliche

Schwierigkeiten. In der Praxis wer¬

den diese Probleme deshalb üblicherweise

zuerst einmal vernachlässigt und
nur die zeitdiskreten Aspekte
berücksichtigt. Die Folgen der diskreten
Amplituden werden, wo notwendig,
getrennt untersucht. Dies ist der Grund,
weshalb der grösste Teil der Literatur
über digitale Signalverarbeitung [5; 6]
eigentlich zur umfassenderen Kategorie

der allgemeinen zeitdiskreten
Signalverarbeitung [7; 8] gehören. In
diesem Artikel wird von nun an der
Begriff digital soweit wie möglich nur
dann verwendet, wenn die werte
diskrete Natur der beteiligten Signale
berücksichtigt wird. Sonst werden die
Begriffe diskret und kontinuierlich
stillschweigend immer bezüglich der
Zeit und nicht der Amplitude verwendet.

Die nun folgenden Abschnitte zeigen

zuerst einige Beispiele diskreter
Signale mit ihren wichtigsten
Eigenschaften. Verschiedene Möglichkeiten
ihrer Darstellung mittels der
Fouriertransformation und der damit
verknüpften z-Transformation werden
anschliessend vorgestellt. Mit den
Methoden der Analyse und des Entwurfs
diskreter Systeme und Filter befassen
sich die Fortsetzungen dieses Artikels,
wobei wo immer möglich Parallelen
und Unterschiede zu den kontinuierlichen

Systemen aufgezeigt werden sollen.

Weiter werden Aspekte des
Übergangs von kontinuierlichen zu diskreten

Signalen - und umgekehrt - sowie
die Möglichkeit veränderlicher Abtastraten

behandelt. Ein Blick auf Signale
mit diskreten Amplituden und die
damit verbundenen Auswirkungen
schliessen diese Einführung in digitale
Signalverarbeitung ab.

1. Diskrete Signale
1.1 Beschreibung im Zeitbereich

Wie bereits erwähnt, besteht ein
diskretes Signal aus einer Reihe
sogenannter Abtastwerte (engl, samples).
Die Figur 2 zeigt einige typische
Beispiele von diskreten Signalen. Das
Signal x i [n] in Figur 2a ist definiert zu

xi[n] («falls 1^3
0 sonst

Dieses Signal besitzt nur eine endliche

Anzahl Abtastwerte, die von Null
verschieden sind, obwohl es für alle n
zwischen -oo und +oo definiert ist;
man nennt es deshalb ein Signal endlicher

Dauer.
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Fig. 2 Beispiele diskreter Signale

a, b, c Signale endlicher Dauer: x\[n] ist ein beliebig

ausgewähltes Signal, ö[n] und S[n-i] sind der
häufig gebrauchte Einheitsimpuls und seine um i
Stellen verschobene Version,
d, e, f, g, h Signale unendlicher Dauer: X2In] ist
ein exponentiell abklingendes Signal, u[n] der
Einheitsschritt. Sowohl X3 [n] als auch x4[n] sind
diskrete Sinusfunktionen, wobei nur X3 [n] echt
periodisch ist. Für das zufällige Signal *5(11] kann
kein mathematischer Ausdruck angegeben werden;

es könnte sich beispielsweise um ein diskretes

Rausch- oder ein abgetastetes Sprachsignal
handeln.

Ein weiteres Beispiel eines diskreten
Signals endlicher Dauer ist der Ein-
heitsimpuls1 5[n] und seine um i Stellen

verschobene Version 8[n-i]; diese
sind in Figur 2b und 2c zu sehen. Ihre
Definition ist

yr [ 1 falls n 0
ÖW * 0 sonst

<2>

1 Nicht zu verwechseln mit der 5-Distribution
(Diracstoss).
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und

s-r if1 fal!s n i
ö[n - i] \ (3)

[ 0 sonst

Die Figur 2d zeigt ein Signal *2[«],
für welches gilt

I 0.8" falls 0
Xi [n] \

n (4)
[ 0 sonst

Dieses hat unendliche Dauer, ebenso

der diskrete Einheitsschritt u[n]

f 1 falls 0
u[n] =| (5)

l U sonst

oder die diskrete Sinusfunktion

x[ri\ A sin(« 0 + <p) (6)

Hier ist A die (maximale) Amplitude
des Signals, 0 die (relative)

Frequenz und 0 die Phase. Die beiden in
den Figuren 2f und 2g dargestellten
diskreten Sinusfunktionen

X3 [n\ sin(«7t/4) (7)

und

x4[«] sin(zt) (8)

zeigen erstmals einen wesentlichen
Unterschied zwischen diskreten und
kontinuierlichen Signalen. Das
(diskrete) Signal xi[n] ist nämlich periodisch

mit der Periode 8, da

X3 [ri\ sin(«7i/4)

sin{(« + 8)7t/4) x3[« + 8] (9)

Dies war zwar zu erwarten, da ja die
kontinuierliche Sinusfunktion x(t)
sincuf ebenfalls periodisch ist. Nun
kann aber für x4[n] keine ganze Zahl
No gefunden werden, für welche

X4 [«] x\[n + A70] (10)

gelten würde. Eine diskrete Sinusfunktion

braucht also nicht periodisch zu
sein!

Interessanterweise stellt man weiter
fest, dass bei zwei diskreten Sinusfunktionen

mit relativen Frequenzen 6\
und 02, wobei

02 öi + 2ni, i ganzzahlig (11)

genau die gleiche Folge von Abtastwerten

resultiert. Diese beiden
Funktionen sind offenbar gleich, denn es

gilt

sin(02«) sin {(0i + 27t/)«)
sin (0i/7 + 27t in)
sin(0i«) (12)

Das Signal Xs[n] ist ein zufälliges
oder stochastisches Signal, es kann
nicht durch einen mathematischen
Ausdruck, sondern lediglich mit
statistischen Mitteln beschrieben werden.
Ein derartiges Signal kann beispielsweise

ein Ausschnitt aus einem diskreten

Rauschsignal oder aber eine Reihe
Abtästwerte eines Sprachsignals
(gestrichelte Kurve) sein.

An allen bisherigen Beispielen wurden

entsprechend ihrer physikalischen
Erscheinung Signale mit reellwertigen
Abtastwerten betrachtet. Für theoretische

Untersuchungen erweisen sich
aber oft auch komplexe Signale als
sehr nützlich. Ein solches ist beispielsweise

die komplexe Exponentialfunktion

x[n] z" (13)

wobei z A • ei0 Re z + j Im z eine
beliebige komplexe Zahl sein darf.
Eine wichtige Untermenge der
komplexen diskreten Signale erhält man,
wenn man z in der Gleichung (13) auf
die komplexen Zahlen mit dem Betrag
A 1 beschränkt, also z ei®. Mittels
der Beziehung von Euler erhält man
dann

x[ri\ ej0" cos(«0) + j sin(/70)

(14)

Der bereits in den Gleichungen (2)
und (3) definierte Einheitsimpuls
erlaubt, diskrete Signale explizit als Folge

von Abtastwerten x[i] darzustellen:

CO

x[n] X x[i]ô[n - i] (15)
I - oo

Der Sinn dieser Darstellungsweise
mag im Moment vielleicht noch nicht
ganz klar sein; sie wird sich später aber
als sehr nützlich erweisen.

Abschliessend zu diesem Abschnitt
eine Bemerkung zur Notation: Bis an-
hin wurden die diskreten Signale mit
x[/7] bezeichnet, wobei n eine beliebige

ganze Zahl ist. Ein direkter
Zusammenhang zur absoluten Zeit (etwa in
Sekunden) besteht hier aber nicht.
Dies ist beispielsweise dann ein Nachteil,

wenn ein diskretes Signal durch
Abtastung eines kontinuierlichen
Signals mit einem Abtastintervall T
gewonnen wurde und man eine Beschreibung

im Frequenzbereich in absoluten
Zahlen, d.h. in Hz oder rad/s wünscht.
Auch im Fall, wo Signale mit
unterschiedlichen Abtastintervallen (oder
Abtastraten) gleichzeitig behandelt
werden müssen, ist diese einfache
Notation ungünstig2. Deshalb wird im
folgenden in all diesen Fällen die
gleichwertige Bezeichnung x[wT],
x[nT\], x[nT2] usw. für x[n] verwendet.

7.2 Beschreibung im Frequenzbereich

Die Fouriertransformation für
diskrete Signale (FTP)

Analog zur Fouriertheorie der
kontinuierlichen kann die Fouriertransformation

für diskrete Signale d
für die Bestimmung des
Frequenzspektrums eines diskreten Signals
herangezogen werden. Diese Transformation

ist folgendermassen definiert:

.Y(ejwr) X .v[«n (16a)
n-~ oc

Ein Beispiel einer solchen Transformation

ist in der Figur 3a zu sehen3.

Als wichtigste Eigenschaft des
Spektrums X{ei°>T) stellt man offenbar eine
Periodizität von 27r/T fest. Es genügt
also eine einzige Periode von X{eimT),

um das ganze Spektrum und damit
auch das Signal x[nT\ vollständig zu
bestimmen. Normalerweise bezeichnet
man das Intervall -n/T^ co < n/T als

Grundintervall und bestimmt daraus
mittels der inversen Fouriertransformation

für diskrete Signale // ~Dl das

Signal im Zeitbereich zu

2 Manchmal ist auch das Gegenteil der Fall:
Es kann vollkommen unwichtig sein, dass n eine
Zeitvariable darstellt, man wünscht sich lediglich
eine Unterscheidung zu kontinuierlichen Signalen.

Dann wird die kompaktere Notation xn
verwendet. Siehe dazu auch [9].

3 Man beachte, dass die Fouriertransformation
für diskrete Signale (FTD) - im Gegensatz

zur noch zu besprechenden diskreten
Fouriertransformation (DFT) - ein kontinuierliches
Spektrum liefert.
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Spektrum eines
diskreten Signals 4«I
a Berechnung mittels

16a: Das Spektrum ist
durch das
Grundintervall -n/T < co

<jx/rvollständig
bestimmt,

b Normalisierte Form
(19): Das
Grundintervall hat die
Breite 2n
co absolute

Kreisfrequenz
6 relative

Kreisfrequenz

man eigentlich R(e>0), I{e>0), A (ei0)
und 0(ei0) schreiben müsste. In der
Figur 3 wurde der Einfachheit halber ein
reelles Spektrum angenommen. Ein
realistischeres Beispiel hingegen zeigt
die Figur 4, wo das Signal x[n]
0,8nu[ri] auf die eben erläuterte Art
und Weise dargestellt wird.

Die Fouriertransformation für diskrete
Signale hat eine Reihe Eigenschaften, die
denjenigen der Transformation für
kontinuierliche Signale entsprechen. Die
wichtigsten davon seien hier erwähnt, da sie im
folgenden gebraucht werden.

1. Linearität: Für zwei Fourierpaare

*["] ^d \x(eJe) Iund yM= ^~D I Y(eje) I

(22a)

gilt

ax[n] + by[ri\ 3^^ \aX(ei0) + bY(eie) \

(22b)

n/T

x[nT]
T

2k
iwT\ pi"<oT-Y(eJ e

-n/T

dco

(16b)

Das Paar x[nT] und X(ei<aT) wird als
Fourierpaar bezeichnet, und die
gegenseitige Verknüpfung in Operatorenform

angegeben:

X(eJ<»T) ^[xlnT]} (17a)

x[/iF] 3rôx\X(ei<oT)\ (17b)

Die Analogie zwischen der Fouriertransformation

für diskrete und derjenigen für
kontinuierliche Signale folgt am besten
durch einen Vergleich ihrer Definitionen.
Die Fouriertransformation für kontinuierliche

Signale SF und ihre Inverse 5r_1
sind definiert zu

(ja>) JX(jco) / x(t) e-ju" d/,

J 2f(jax(l) — / X(ja>) ej°" da>
271

(18a)

(18b)

Der Unterschied besteht im Ersetzen der
Integration durch eine Summe in der
Vorwärtstransformation sowie in den geänderten

Integrationsgrenzen in der
Rückwärtstransformation.

Der Gebrauch der Notation X(ei°>T)
anstelle von X(jco) bei der
Fouriertransformation für diskrete Signale
veranschaulicht einerseits die Periodizität

in a>, anderseits wird sie sich im
Zusammenhang mit der sehr wichtigen

z-Transformation als nützlich erweisen.

Ausser den Definitionen den
Gleichungen (16a und b) hat die
Fouriertransformation eine gebräuchlichere
normalisierte Form, indem n wieder
anstelle nT und 6 anstelle von coT
steht. Somit wird

X(q>0) X x[n] e" jne (19a)

x[n] —
2n

X(eie) éne dd (19b)

Die Grösse 9 heisst relative
Kreisfrequenz. Das Grundintervall von
X(e>9) hat offenbar die Breite 2k. Da
x[n] und X(eJ0) ein Fourierpaar bilden,
kann man schreiben:

X(&9) ^D\x[n)\

x[n] ^bx\X(e>0)\

(20a)

(20b)

Man beachte, dass X(ei0) eine kom-
plexwertige Funktion ist; um sie
graphisch aufzuzeichnen, muss sie entweder

in ihre Real- und Imaginärteile R
Re X{&e) und I Im X(ei0) oder in

Betrag A \ X(eie) | und Argument 0
arg X(eJ°) aufgespalten werden. So
erhält man

X(e]e) R + }I Ae- A J* (21)

wobei natürlich R, /, A und 0
frequenzabhängige Funktionen sind, so dass

2. Verschiebung: Für eine beliebige ganze
Zahl i gilt

x[n-i] e.jw 5*5' (A'{ei0) | (22c)

Fig. 4 Komplexes Spektrum
Das durch die Fouriertransformation erhaltene
Spektrum eines diskreten Signals (n) ist
normalerweise komplex, so dass zwei Funktionen der
Frequenz dargestellt werden müssen. Dies sind
entweder der Betrag A(d&) und das Argument
(p{çj®) (b) oder der Realteil R(e&) und der
Imaginärteil I(eJ&) (c).
Die Abbildung zeigt beide Darstellungsmöglichkeiten

für das Beispiel: x[n] 0,8" u[n].
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3. Faltung: Bis auf weiteres wird zwar die
Faltungsoperation (bezeichnet mit dem
Symbol *) weder gebraucht noch definiert,
mit ihr ist aber die wichtigste Eigenschaft
der Fouriertransformation verknüpft: Die
Faltung zweier Signale im Zeitbereich
entspricht der Multiplikation ihrer Spektren.
Also

x[n] *y[n] ^ \X(eJ8) Y{ei») | (22d)

4. Für reelle Signale x[n] ist der Realteil
des Spektrums eine gerade und der Imaginärteil

eine ungerade Funktion, also

R(e'e) R(e~'e) und I(e'e) -7(e~j9)

(22e)

bzw. für Betrag und Argument

A(,e'e) A(e~J") und 0(eJ") -0(e~j")

(220

Reelle Signale lassen sich deshalb ausreichend

durch das halbe Grundintervall ihrer
Spektren beschreiben.

Die z-Transformation (ZT)
Neben der eben beschriebenen

Fouriertransformation existieren weitere
Transformationen für diskrete Signale,

so beispielsweise die wichtige
(zweiseitige) z-Transformation. Die
z-Transformation X(z) eines diskreten
Signals z[n] wird mittels der komplexen

Exponentialfunktion (13)
definiert zu

X(z) X z"

Re Xtzi

graphische Darstellung, das sogenannte
Pol-Nullstellen-Diagramm, wird

später vorgestellt.
Die z-Transformation hat für diskrete

Signale die gleiche Bedeutung wie die La-
place-Transformation für kontinuierliche.
Die (zweiseitige) Laplace-Transformation
ist definiert als

X(P). x{t) e~"' dt (24a)

(23)

wobei z jede beliebige komplexe Zahl
sein darf. Dies bedeutet natürlich, dass

auch hier keine einfache graphische
Darstellung von X(z) möglich ist.
Vielmehr sind zwei dreidimensionale
Darstellungen nötig, die je ReX(z) und
ImX(z) als Funktion von Rez und Imz
darstellen (Fig. 5). Eine alternative

Xi [n] A ô[n -7] (25a)

Fig. 5 z-Transformierte

Die z-Transformierte eines diskreten Signals x[n]
ist im allgemeinen eine komplexe Funktion X(z)

ReA"(z) + jlmX(z) einer komplexen Variablen
z Rez+7Imz. Ihre Darstellung benötigt deshalb
zwei dreimensionale Darstellungen. In der Abbildung

ist dies durch die Darstellung eines einzigen
Punktes X(a+jb) c+jd angedeutet.

betrachtet. Bekanntlich stellt diese

Gleichung einen Impuls der Amplitude
A zum Zeitpunkt n i dar. Es findet

sich mittels (23)

oo

X\(z) X A ô[n - /] z~" A z~l
n--oo

(25b)

Analog findet sich für

*2[n] 2ô[n - 1] + 3 ô[n - 2]

(26a)

die Transformierte

Aus diesen beiden Beispielen ergibt
sich eine sehr nützliche Interpretation
der z-Transformierten: Hat X(z) die
Form eines Polynoms in z~', dann
entspricht der zur Potenz z~' gehörende
Koeffizient genau dem Wert von x[n]
zum Zeitpunkt n i.

Die inverse z-Transformation ist
gegeben durch das geschlossene
Linienintegral

Der offensichtlich wichtigste Unterschied

besteht in der Summation in der
z-Transformation anstelle des Integrals.
Hingegen fehlt die Exponentialfunktion in
der z-Transformation nur scheinbar, da
natürlich jede beliebige komplexe Zahl z
geschrieben werden kann als

z a + jö Aej,f eln('4)+j'? e« (24b)

Wie bei der Laplace- stellt sich auch
bei der z-Transformation die Frage
der Konvergenz. Es zeigt sich nämlich,
dass die unendliche Summe der
Gleichung (23) - bei einem gegebenen
Signal x[n] - nicht für beliebige z gegen
einen endlichen Wert konvergiert.
Genaugenommen sollte also zu jedem
X(z) auch noch die Konvergenzregion
angegeben werden, da nämlich
unterschiedliche Konvergenzgebiete für ein
und dasselbe X(z) zu unterschiedlichen

Zeitfunktionen x[n] gehören. In
praktischen Systemen gibt es aber nie
einen Zweifel darüber, um welches
Signal es sich handelt, weshalb in diesem
Artikel keine Konvergenzfragen
besprochen werden.

Es sei nun die z-Transformation des
Signals

x[n]
1

27tj
X(z). dz (27)

In der Praxis wird dieser Ausdruck
allerdings nur selten angewendet.
Vielmehr versucht man x[n] mittels
allgemeiner Eigenschaften der z-Transformation

oder durch Aufteilen von X(z)
in Funktionen mit bekannten
Rücktransformierten zu bestimmen. Einige
wichtige z-Transformationspaare sind
in der Tabelle I angegeben.

Die Tatsache, dass x[n] und X(z) ein
z-Transformationspaar bilden, sei
formal angegeben durch

X(z)=$\x[n] |

*[«]= ^-'(*(z)l

(28a)

(28b)

Die wichtigsten Eigenschaften der
z-Transformation betreffen die Linearität,
die Zeitverschiebung und die Faltung. Für
die beiden Paare

x[n]= ^\X(z)\ undy[n]= £\Y(z) | (29a)

gelten folgende Eigenschaften:

1. Linearität: Für beliebigen Wert der
Konstanten a und b gilt

ax[n] +by[n] \aX(z)+bY(z)\ (29b)

2. Verschiebung: Für eine beliebige ganze
Zahl i gilt

x[n-i]=z~i \X(z) (29c)

3. Faltung: Bis auf weiteres wird zwar die
Faltungsoperation (bezeichnet mit dem
Symbol *) weder gebraucht noch definiert,
mit ihr ist aber eine wichtige Eigenschaft
der z-Transformation verknüpft:

x[n]*y[n}= $\X(z).Y(z) | (29d)

X2(z) 2 z
1

+ 3 z
2

(26b)
Um die Rücktransformation einer

Funktion Xo(z), welche als Verhältnis
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zweier Polynome von z gegeben ist, zu
bestimmen, wird im allgemeinen das
Verfahren der Partialbruchzerlegung
angewendet. Dieses Verfahren sei an
einem Beispiel erläutert. Die Transformierte

Xo (z) ist gegeben durch

Einige einfache Transformationspaare der zweiseitigen z-Transformation Tabelle I

Xo (z)
(z -a)(z - ß)

(30)

wobei a und ß Konstanten sind.
Offenbar ist in der Tabelle I kein unmittelbar

anwendbares Transformationspaar

zu finden. Deshalb wird Xo (z)
umgeschrieben, wobei allerdings die
Konstanten A und B erst noch zu
bestimmen sind:

Az Bz
Xo(z) -I —

z - a z — ß
(31)

Dieser Ausdruck wird nun auf einen
gemeinsamen Nenner umgeformt, und
man erhält schliesslich

*["]

<5 In]

S[n - /]

u[n]

a" u[n]

a"'1 u[n - 1]

n u[n]

n2 u[n]

cos(nÇ) tt[n]

sin(rtf) u[n]

a" sin(/i<|; + ip) u[n]

X(z)

z - 1

z

z - a

1

z - a

z

(z - l)2

z(z + 1)

(Z - l)3

z2 - z cost,

z2 - 2z cos{ + 1

z sin£

z2 - 2z cos{ + 1

z2 sin(vr) + az sin({ - tp)

z2 - 2az cos£ + a2

Xo (z)
Az(z - ß) + Bz(z - a)

(z - a)(z - ß)

(A + B)z2 - (ßA + aB)z
(z - a)(z -ß)

Man sieht, dass die beiden
Gleichungen genau dann identisch sind,
falls gilt

A + B 0 und ßA + aB -1
(33)

oder

1 -1
A — und B 7- (34)

a - ß a - ß

Somit kann (31) neu geschrieben
werden zu

X0(z)
a — ß \ z — a z - ß

(35)

In der Tabelle I findet sich nun
tatsächlich eine z-Transformierte der
Form z/(z-a), so dass man unter
Ausnützung der Linearität der z-Transformation

findet:

Xo[n]
a - ß

{an - ßn) u[n] (36)

Zusammenhang zwischen p und jp

Zwischen der Fouriertransformation
für diskrete Signale und der

z-Transformation besteht ein
unmittelbarer Zusammenhang. Setzt man
nämlich z e>e in Gleichung (23) ein,
so ergibt sich die Fouriertransformation

entsprechend (19a). Weil die
Punkte z e>e für -n^ 9 < jt den
Einheitskreis |z| 1 in der z-Ebene
beschreiben, kommt man zum Schluss,
dass die Fouriertransformation für
diskrete Signale der z-Transformation
entlang des Einheitskreises entspricht.
Dies ist in der Figur 6 dargestellt, wobei

der Einfachheit halber angenommen

wurde, dass die z-Transformierte
auf dem Einheitskreis reell sei.

Der besprochene Zusammenhang gilt
allerdings nur dann, wenn die z-Transfor-
mierte auf dem Einheitskreis existiert oder,
anders gesagt, wenn X(z) auf dem Einheitskreis

konvergiert. In der Praxis ist dies auch
meistens der Fall. Eine wichtige Ausnahme
bildet, wie wir später sehen werden, die
Stossantwort eines instabilen diskreten
Systems.

Die bis jetzt diskutierten
Zusammenhänge zwischen dem Signal x[n]
und seiner Transformierten X(eie)
bzw. X(z) zeigt die Figur 7.

Die diskrete Fouriertransformation
(DFT)

Die Fouriertransformation für
diskrete Signale, wie sie eben beschrieben
wurde, ist ein leistungsfähiges
Hilfsmittel, um das Frequenzspektrum
eines diskreten Signals zu bestimmen.

Fig. 6 Zusammenhang zwischen z-Transformation
und Fouriertransformation

Annahme: sei reell,
a z-Transformation X(z) entlang des Einheitskreises,

d.h. z= ei®

b Fouriertransformation X(tie) für diskrete
Signale
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Fig. 7 Zusammenhang zwischen einem diskreten
Signal jr[n], seiner Fouriertransformierten AJeJ®)

und der ^-Transformierten X(z)
FTD Fouriertransformation für diskrete Signale
IFTDinverse Fouriertransformation für diskrete

Signale
ZT z-Transformation
IZT inversez-Transformation
Es wird angenommen, dass alle Transformationen

existierten

Sie hat allerdings auch ihre Grenzen,
wie nun anhand der normalisierten
Form, wie sie durch die Gleichung (19)
gegeben ist, gezeigt werden soll.
Zunächst zeigt sich, dass die Gleichung
(19) nicht unmittelbar auf periodische
Signale x[n] anwendbar ist, da die
Summation über unendlich viele Terme

Schwierigkeiten bietet. Zudem ist
die Darstellung durch eine unendliche
Summe auch nicht sinnvoll, wenn ein
Signal x[n] endlicher Dauer, d.h. ein
Signal, das nur für eine endliche
Anzahl n einen von Null verschiedenen
Wert hat, beschrieben werden soll.
Schliesslich ist die numerische Bestimmung

der Rücktransformation nur
mittels Approximation des Integrals
möglich. Deshalb hat sich die Definition

der sogenannten IV-Punkt-diskre-
ten Fouriertransformation (iV-Punkt-
DFT) als sehr nützlich erwiesen. Sie
lautet:

N-1
XN[k] X xN[n} e-j(2lt/JV)*" (37a)

n=0

und

xN[n] \-fxN[k]^2n/N)kn(}lb)
N k=o

Mittels der DFT werden also N
Werte der diskreten Frequenzfunktion
Xn[k] aus dem Signal xjv[n] bestimmt.

Durch Anwendung der Rücktransformation

lassen sich daraus die N
ursprünglichen Werte von Xjv[n] exakt
wiederfinden. Die Sequenzen *jv[n]
und 3fjv[k] bilden also ein Transformationspaar,

das durch die Operatorengleichungen

XN[k] $N\xN[n]} (38a)

xN[n)=^-Nx\XN[k]\ (38b)

dargestellt wird.
Die Anwendung der DFT sei zuerst

an einer einfachen periodischen Funktion

x[n] cos(2;wi/6) für die Fälle N
6, 12 und 16 illustriert (Fig. 8). Daraus

ist ersichtlich, dass es bei Anwendung

der DFT auf Signale mit der
Periode No offenbar wichtig ist, dass die
Länge N der DFT-Bildfunktion gleich
No oder einem ganzzahligen Vielfachen

von No gewählt wird (Fig. 8a und
8b). Andernfalls enthält das diskrete
Spektrum A)v[/c] nicht die «richtigen»
Frequenzstützstellen, um das
ursprüngliche periodische Signal x[n]
exakt darzustellen. Es tritt ein Effekt
auf, welcher mit dem englischen
Begriff Leakage bezeichnet wird.

Ein Vergleich der Figuren 8a und 8b

zeigt aber auch, dass ein grösseres N
eine grössere spektrale Auflösung
bewirkt. Zudem zeigt das Spektrum

2fiv[A:] einen nahen Symmetriegrad,
bedingt dadurch, dass x[n] eine reelle
Funktion ist. Eine ähnliche Symmetrie
wurde bereits bei der FTD besprochen.

Die IV-Punkt-DFT kann auch zur
Berechnung des Spektrums von Signalen

endlicher Dauer XN) verwendet
werden. In diesem Fall zeigt sich ein
Zusammenhang mit der Fouriertransformation

für diskrete Signale (19a),
nämlich

XN[k] X(é{2n/N)k) (39)

Für ein Signal endlicher N \ ist die
DFT gleich der abgetasteten
Fouriertransformation, falls N\ éX N. Dies ist
in der Figur 9 anhand der
8-Punkt-DFT eines Signals mit N\ 4

gezeigt.
Bis anhin wurde stillschweigend

angenommen, dass sowohl bei xiv[n] als
auch bei Xiï[k] nur Werte von n und k
zwischen 0 und N-1 vorhanden seien.
Nun sind aber die komplexen
Exponentialfunktionen e-j(2n/N)kn J^ZW.

ej(2n/N)kn periodisch sowohl in n als
auch in k mit der Periode N. Wird also
XAf[fc] in (37a) für k < 0 oder für k >
N-1 bestimmt, so findet man dieselben

Werte wie für 0 ^ k < N-l.
Analoges gilt für x\v[n] in Gleichung (37b).
Man kann deshalb sagen, xw[n] und

x [n]=cos(2nn!6)

Î

MX
ypc; Tjr M

n b

%

h-,
0

xNln]

xNlnj
I

DFT

N=6 3

0

xN[n]
\

u4'6 M X

XN[k]

0 1 2 3 2 5
—

XJk]

DFT
Miß

X^jlk] j

Î

TlT+»«»».»tlTt
0 2k 6 8 10 15

Fig. 8 Beispiel für die N-Punkte-DFT

Anwendung der N-Punkt-DFT für verschiedene Werte von JV auf das periodische Signal x[n] cos
(2tin/6). N ist gleich einem ganzzahligen Vielfachen der Periode des Signals x[n] zu wählen, also etwa
N 6(a) oder N 12 (b). Andernfalls tritt eine «Leakage» zwischen den spektralen Komponenten auf
(c). Bei N 6 und N 12 ist das Spektrum reell, bei N 16 komplex. Für den letzten Fall ist lediglich
der Betrag aufgezeichnet.
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Fig. 9

Vergleich zwischen der
Fouriertransformation
für diskrete Signale und
der 8-Punkt-diskreten
Fouriertransformation
eines Signals x[n]
endlicher Dauer Ni
Es ist offensichtlich,
dass das

DFT-Spektrum X^[k]
Rjv[k] + jlN[k] gleich

dem abgetasteten
Fourierspektrum X(e)&)

R(eiO) + ist.

Rjk]
10

0

-10

IN[k]
t

10

0•

-10

f./ 3^ 5 'l-*7
— k

1 W y. Ä\
i \/ * ~ 5''* 7
.vJf — Je

Xjv[/c] seien periodische Funktionen
der Periode A, wobei aber bloss die
Grundintervalle zwischen 0 und A-l
für die Transformation von Bedeutung
sind.

Die schnelle diskrete
Fouriertransformation - Fast Fourier
Transform (FFT)

Zusätzlich zu den bereits beschriebenen

Transformationen findet man
häufig den Begriff FFT (Fast Fourier
Transform) in der Literatur über
diskrete Signalverarbeitung. Dies ist nun
aber keine neue Transformation,
sondern eine sehr effiziente Methode zur
Bestimmung der DFT. Dabei bezeichnet

man mit FFT eine ganze Reihe von
miteinander verknüpften Methoden
und Strategien.

Ein Blick auf die Gleichung (37a
und b) zeigt, dass man zur Bestimmung

eines einzigen Punktes der
Transformierten A komplexe
Multiplikationen und A-1 weniger
rechenaufwendige komplexe Additionen

durchführen muss, für die ganze
A-Punkt-Transformation ergeben sich
also A2 komplexe Multiplikationen.
Bei einer einfachen 4-Punkt-Transfor-
mation sind das zwar nur deren 16, für
A 2048 aber immerhin Ni
4 194 304, und eine solche Grösse von
A ist in der Praxis durchaus üblich. Da
diese Rechenzeit und benötigte
Rechenanlagen bestimmt, wird seit
bereits 200 Jahren und speziell seit den
letzten dreissig Jahren [9] nach Methoden

gesucht, welche die Berechnung
einer A-Punkt-Transformation mit
weniger Operationen erlauben. Das
Vorgehen ist bei allen Methoden ähnlich:

Es wird versucht, eine gewisse
Anzahl von DFT mit kürzerer Länge
zu bestimmen und diese dann geeignet
zu kombinieren. Ist beispielsweise A
eine gerade Zahl, dann kann man je
eine A/2-Punkt-DFT der geradzahligen

und der ungeradzahligen Abtastwerte

von xn[n] bestimmen. Die A-
Punkt-DFT erhält man dann aus diesen

beiden Resultaten. Insgesamt er-.
gibt das weniger Operationen als das

direkte Vorgehen. Ist N/2 seinerseits
eine gerade Zahl, so kann die Prozedur
wiederholt werden. Am bekanntesten
ist deshalb die FFT für A 2M.
Derselbe Algorithmus wird dann M mal
angewendet, und man bekommt daher
eine Anzahl Operationen in der Grös-
senordnung von AxM, was einer
Reduktion um den Faktor A/M
entspricht, verglichen mit der direkten
Berechnung der DFT. Der mittels der
FFT vor allem für grosse A zu
erzielende Gewinn zeigt die Figur 10.

Nop/l0s /
8 /
6 /n/
4

(DFT) /2

0
'FFT) Nx2logN=N*M

L 128 256 512 1024
— A

Fig. 10 Anzahl benötigter Operationen /\,p bei
direkter Bestimmung der N-Punkt-DFT und bei FFT
Ist N 2 M eine Zweierpotenz, dann reduziert sich
die Anzahl Operationen um den Faktor N/M.

(Fortsetzung in Heft 15/86)
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