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Digitale Signalverarbeitung :
Theoretische Grundlagen
Teil 2: Diskrete Systeme

A. M.W. van den Enden und N.A.M. Verhoeckx

Wurden im ersten dieser vier
Teile1 die theoretischen Aspekte
der diskreten Signale behandelt,
so stehen nun die diskreten
Systeme im Vordergrund. Es

werden die grundlegenden
Definitionen sowie die mathematischen

Hilfsmittel für die
Systembeschreibung erläutert.

Alors que, dans la première de
ces quatre parties, les aspects
théoriques des signaux discrets
ont été traités, il s'agit maintenant

des systèmes discrets,
dont on indique les définitions
fondamentales, ainsi que les
moyens mathématiques pour
leur description.

Diese Aufsatzserie ist eine Übersetzung des

gleichnamigen englischen Beitrags in Philips
Techn. Review 42(1985)4. Die Übersetzung

besorgte H. Ochsner. dipl. Ing. ETH, Institut
für Kommunikationstechnik, ETH Zürich.
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2.1 Definitionen

Ganz allgemein definiert man ein
diskretes System als eine Einrichtung,
welche ein oder mehrere diskrete
Eingangssignale x[n] nach gewissen
Regeln in ein oder mehrere Ausgangssignale

y[n] umwandelt. Im folgenden
werden hauptsächlich Systeme mit
einem reellen Eingangs- und einem
reellen Ausgangssignal untersucht.
Eine sehr wichtige Sonderstellung
bilden die linearen zeitinvarianten Systeme

(LTD-Systeme)2, zu denen
beispielsweise die meisten in der Praxis
verwendeten diskreten (bzw. digitalen)
Filter gehören.

Ein diskretes System ist linear, falls das

Eingangssignal ax\[n] + bx2[n] für beliebige

Konstanten a und b das Ausgangssignal
ay\[n] + by2[n] bewirkt, wobei *i[u] und
X2[n] beliebige Eingangssignale, yi[/i] und
y2[n] die dazugehörigen Ausgangssignale
sind.

Ein diskretes System ist zeitinvariant.
falls das Signal x[n — i] für jede beliebige
ganze Zahl i das Signal y[n - i] bewirkt,
wobei y[n] das zum beliebigen Eingangssignal

x[n] gehörige Ausgangssignal ist.
Für praktische Anwendungen sollen

diskrete Systeme sowohl stabil als auch kausal
sein.

Ein System ist stabil, falls jedes beliebige
Eingangssignal mit begrenzter Amplitude
(d.h. |x[n]jmax ^ A) ein Ausgangssignal mit
begrenzter Amplitude (d.h. |v [u]|max ^ B)
bewirkt.

Ein diskretes System ist kausal, falls das
Ausgangssignal zu keinem Zeitpunkt n

no von einem Wert des Eingangssignals,
welcher später als no eintrifft, abhängig ist.
Oder vereinfacht ausgedrückt: Es kann nie
ein Ausgangssignal entstehen, bevor ein
Eingangssignal angelegt wurde.

Lineare zeitinvariante diskrete
Systeme3 haben eine Reihe interessanter

2 Linear time-invariant discrete systems
3 Falls nichts Gegenteiliges erwähnt ist, soll im

folgenden der Begriff «System» als «lineares
zeitinvariantes diskretes System» (LTD-System)
verstanden werden.

Q x,ln]
yln]-

x2ln]

b xln]

—' x1ln]*x2ln]

£>- y[n]-Axln]

C xln] yln]-x ln-1 ]

Fig. 11 Die drei Grundelemente linearer zeitinvarianter

Systeme

a Addierer
b Multiplizierer mit einer Konstanten
c Verzögerungselemente (T Einheitsverzögerung,

Abtastintervall)

Eigenschaften. So können sie
beispielsweise durch lediglich drei
Grundelemente dargestellt werden
(Fig. 11), durch

- einen Addierer, welcher zwei
Eingangssignale zu einem Ausgangssignal

addiert,
- einen Multiplizierer, welcher ein

Eingangssignal mit einer konstanten

Zahl, einem Koeffizienten,
multipliziert, und

- ein Verzögerungselement, welches
das Signal um eine diskrete Zeiteinheit

(ein Abtastintervall) verzögert.

Durch Kombination dieser Elemente

können andere Strukturen geformt
werden, etwa ein Subtrahierer
(Fig. 12a). Ein weiteres Beispiel eines
linearen Systems zeigt die Figur 12b;
die Filtereigenschaften dieser Schaltung

werden in einem späteren
Abschnitt bestimmt.

Es besteht ein direkter Zusammenhang

zwischen der bereits behandelten
Theorie der diskreten Signale und
derjenigen der diskreten Systeme, weil die
meisten Eigenschaften des Systems aus
einem einzigen Signal abgeleitet wer-
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Fig. 12 Lineare zeitinvariante Systeme

a Die Kombination aus einem Addierer und
einer Multiplikation mit -1 ergibt eine
Subtraktion: y[n] xi [m] — X2[n]

b Beispiel eines linearen zeitinvarianten Systems,
welches alle drei Grundbausteine enthält.
Zusätzlich zum Eingangssignal sind noch einige
interne Signale («Zwischenresultate»)
gekennzeichnet

den können - dem Ausgangssignal,
welches durch einen Einheitsimpuls
<5[n] am Eingang des Systems bewirkt
wird. Dieses Signal h[n] heisst
Impulsantwort des Systems (Fig. 13).

Demnach kann man die bereits
bekannten Signaltransformationen, wie
die Fouriertransformation für diskrete
Signale4 oder die z-Transformation
auf die Impulsantwort anwenden und
erhält so weitere gleichwertige
Beschreibungen des Systems. Die
Fouriertransformation von h[n] liefert die
sogenannte Übertragungsfunktion
Hie*11), währenddem die z-Transformation

die Systemfunktion H(z)
ergibt. Wie bereits bekannt, gilt für diese
Funktionen

H(eJ»)= H(z)\z_eJB (40)

Übertragungsfunktion und
Systemfunktionen sind Systembeschreibungen

im Frequenzbereich, während die
Impulsantwort und die sogenannten
Differenzengleichungen
Zeitbereichsbeschreibungen sind. Diese vier
Beschreibungsmöglichkeiten werden im
nächsten Abschnitt etwas eingehender
vorgestellt.

4 Falls nichts Gegenteiliges erwähnt ist, soll im
folgenden der Begriff «Fouriertransformation»
als «Fouriertransformation für diskrete Signale»
(FTD) verstanden werden.

Fig. 13

Übertragungsverhalten
eines LTD-Systems
a Ein lineares

zeitinvariantes
diskretes System
(LTD) wandelt ein
Eingangssignal x[n]
in ein Ausgangssignal
y[n] um.

b Das beim besonderen
Eingangssignal x[n]

<5[n] erscheinende
Signal y[n] h[n]
heisst Impulsantwort
und charakterisiert
das Ein-/Aus-
gangsverhalten des

Systems vollständig.

2.2 Systembeschreibungen

Differenzengleichungen

Es sei nochmals das in der Figur 12b
gezeigte System betrachtet. Offenbar
kann es durch folgende zwei Gleichungen

beschrieben werden:

v[n] ax[n\ + bx[n - 1] + y[n - 1]

y[n] cv[n\ (41)

Eliminiert man u[/?],sowird

y[n] acx[n] + bcx[n - 1] +

cy[n - 1] (42)

Diese Gleichung ergibt uns den
aktuellen Wert des Ausgangssignals aus
dem aktuellen Wert des Eingangs-
sowie den früheren Werten von
Eingangs- und Ausgangssignal. Allgemein
kann ein lineares System beschrieben
werden durch

N M

y[n] Z biX[n ~ '] + Z - ']
1=0 1=1

(43)

wobei a, und b, reelle Konstanten sind.
Die Gleichung (43) ist eine lineare Dif-

Fig. 14

Systemsynthese

Realisierung der
Gleichung (45)

ferenzengleichung (der Ordnung M)
mit konstanten Koeffizienten.

Die Gleichung (43) ist das diskrete
Gegenstück zu den linearen Differentialgleichungen

mit konstanten Koeffizienten,
welche für die Beschreibung linearer
kontinuierlicher Systeme verwendet wird:

N M

Zdkx(t) d* v(/)
>• Ï7.

k=0 *=1

Die Systembeschreibung mittels
Differenzengleichungen ist aus zwei
Gründen wichtig. Erstens erweist sie
sich als guter Ausgangspunkt, um
andere Systembeschreibungen abzuleiten,

so beispielsweise die Systemfunktion.

In diesem Fall wird die
Differenzengleichung durch eine gewöhnliche
algebraische Gleichung ersetzt. Zweitens

liefert die Differenzengleichung
bereits eine mögliche Systemstruktur.
So findet man auf einfache Weise, dass
ein System mit der Gleichung

3 3

y[n\ Z bjX[n — /] 4- Z - Ü
1=0 1=1

(45)

durch die Schaltung der Figur 14 realisiert

werden kann. Später wird sich
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6 In]

1;

— n

a

5 In]
Î 1

—- n

b

5 In]
Î 1

x In]
hAn]

V
-0- yIn]

x[n]

x[n]

<Z>

yln] hB[n]
— t 1

T ti i '
-r —- n

LU-j
2/ \A,

yln]
hr[n]

zeigen, dass es viele Systemstrukturen
mit derselben Differenzengleichung
gibt.

Impulsantwort

Manchmal kann die Impulsantwort
eines diskreten Systems unmittelbar
aus dem Blockschaltbild bestimmt
werden, in anderen Fällen ist dies
schwierig. So sieht man beispielsweise
sofort, dass für die Figuren 15a und b
die Impulsantworten

hA{n] 2ö[ri] -\ô[n - \] (46)

und

äb[«] (-\T+1u[n] (47)

resultieren. Aber obwohl die Schaltung

der Abbildung 15c lediglich
durch Kaskadierung von a und b

gewonnen wird, ist es nicht unmittelbar
ersichtlich, dass deren Impulsantwort

hc[n] \ô[n] - 2( -\f u[n] (48)

lautet.
Grundsätzlich ist die Berechnung

des Ausgangssignals aus einem
beliebigen Eingangssignal und der
Impulsantwort nicht schwierig. Zu diesem
Zweck sei nochmals die Gleichung
(15) aus dem Teil 1 betrachtet, die hier
nochmals angeschrieben wird:

Fig. 15

Einfache Systeme und
ihre Impulsantworten
Das System c erhält
man durch
Kaskadierung der
Systeme a und b

oo

x[n] X *['] sln~ '] (49)
/ - oo

Das Signal x[n] wird als Reihe
gewichteter Einheitsimpulse dargestellt,
wobei der Impuls i das Gewicht x[i]
hat. Da hier lineare zeitinvariante
Systeme betrachtet werden, verursacht
dieser Impuls das Ausgangssignal x[i]
h[n— /']. Demnach wird

x[i]ô[n - i] x[i]h[n - /'] (50)

und

OO OO

X x[i]ô[n - /] £ x[i]h[n - i]
i— — co i=— oo

(51)

Somit wurde das Ausgangssignal
y[n] aus dem Eingangssignal x[n]
gefunden zu

OO

yln] Z xli]h[n - i] (52)
/=- CO

beziehungsweise zu

oo

y[n] X x^n ~ 'W] (53)
i=- oo

Die Gleichung (53) erhält man aus
(52), indem die Substitution j n — i

ausgeführt und anschliessend j wieder
durch i ersetzt wird. Die Gleichungen
(52) und (53) definieren die Faltung
von x[n] und h[n], Sie werden auch
geschrieben als

y[n] x[n] * h[n] h[n] * _v[zz] (54)

Den Ausgang eines linearen
Systems bestimmt man also durch
Faltung seines Eingangssignals mit der
Impulsantwort.

Aus der Impulsantwort eines linearen
Systems lässt sich ersehen, ob dieses stabil
oder kausal (oder beides) ist. Ein System ist
stabil, falls

oo

Z I ''I"! I c < 00 (55)
n - oc

und kausal, falls

h[n] 0, für n <0 (56)

Übertragungsfunktion

Anstelle der Impulsantwort wird
häufig ihre Fouriertransformierte, die
Übertragungsfunktion H (ei0),
verwendet. Der Hauptgrund liegt im
Faltungstheorem, nach welchem der
Faltung zweier diskreter Signale x[n] und
h[n] die Multiplikation ihrer Transformierten

entspricht. Dies ergibt eine
zweite Möglichkeit, das Ausgangssignal

y[n] zu bestimmen:

- Man bestimmt X(eJe) und

- Man multipliziert X(eie) und

dies ergibt die Fouriertransformierte
von v[n]:

E(ej9) X(eie) H(eie) (57)

- Durch Rücktransformation von
Y{eiB) findet man y[n].
Beide Möglichkeiten der Berechnung

von y[n] sind in der Figur 16

schematisch dargestellt. Vielfach ist
der Rechenaufwand bei der Methode
mit der Fouriertransformation kleiner
als die direkte Berechnung der
Faltung.

Eine zweite wichtige Eigenschaft
der Übertragungsfunktion ist, dass ihr
Betrag dem Amplitudengang und das
Argument dem Phasengang des
Systems entspricht. Da die Vorstellung
von Amplituden- und Phasengang im
allgemeinen sehr geläufig ist, erleichtert

die Übertragungsfunktion die
Analyse, insbesondere von diskreten
Filtern. Ein einfaches lineares System
zeigt die Figur 17. Die Impulsantwort
sei gegeben durch

Bull. SEV/VSE 77(1986)15,9. August (A 585) 959



Fig. 16 Bestimmung des Ausgangssignals

a durch Anwendung des Faltungssatzes
b durch Multiplikation der Fouriertransformierten

(FTD) von Eingangssignal und
Systemimpulsantwort sowie anschliessende Rücktrans-
formation (IFTD)

Die Figur 17 zeigt diese beiden
Funktionen für verschiedene Werte
0 < a< 1.

Systemfunktion

Die vielseitigste, aber auch die
abstrakteste Beschreibung eines linearen
Systems ist die Systemfunktion H(z),
welche man durch z-Transformation
aus der Impulsantwort h[n] gewinnt.
Zuerst wird der Faltungssatz der
z-Transformation angewendet. Aus
dem ersten Teil dieses Aufsatzes ist
bekannt, dass der Faltung (52) zweier
Signale im Zeitbereich die Multiplikation

ihrer z-Transformierten
entspricht. Ist x[n] das Eingangs- und v[n]
das Ausgangssignal eines Systems mit
der Stossantwort h[n], dann wird

Y(z) H(z)X(z) (63)

was man umformen kann zu

X(z) rs,
k Y(z)

—(f) M

—<°K F4—az'Ylzt^z'Ylz) 1—J

Fig. 18 Bestimmung der Systemfunktion H(z)
Y(z)/X(z) aus dem Blockdiagramm eines Systems

a Ursprüngliches Blockdiagramm im Zeitbereich
b Entsprechendes Blockdiagramm im z-Bereich

Auf dieselbe Art erhält man die
Systemfunktion aus der allgemeinen
Differenzengleichung (43)zu

h[n] an u[n] (58)

Somit wird die Übertragungsfunktion

H(ée) X h[ri\e~ jnQ

(59)

X a"e~'"e I (ae-iey
n=0 n=0

Ist |a| < 1, dann kann man die Summe

berechnen und erhält

H(e3jt>\ -
1 — ae

1

-je

(60)

1 - acos<? + aj sin#

H(z) Y(z)/X(z) (64)

Damit erhält man eine zweite sehr
effiziente Möglichkeit, die
Systemfunktion zu bestimmen, da die rechte
Seite von (64) sehr einfach aus der
Differenzengleichung eines linearen
Systems bestimmt werden kann. Nimmt
man beispielsweise die Differenzengleichung

(42), so erlaubt die Lineari-
tät der z-Transformation ihre Anwendung

auf jeden einzelnen Summanden,

und man erhält

Y(z) acX(z) + bcz 1 X(z) +

cz"1 Y(z)
(65)

Dies ergibt

X(z) 1 - cz"1

N

«M ^ A («1
X(z)

i - x a'z '

Y(z) ac + bcz'1
H{z) TT- (66)

In der Praxis wird ein lineares
System häufig anhand seines Blockschemas

analysiert. Dabei bestimmt man
die Systemfunktion meistens direkt
aus den z-Transformationen der
einzelnen Teilblöcke und lässt den Schritt
über die Differenzengleichung aus.
Dabei wird häufig die Eigenschaft
ausgenutzt, dass der Verzögerung um ein
Abtastintervall im Zeitbereich die
Multiplikation mit z-> im z-Bereich
entspricht. Das Vorgehen ist in der
Figur 18 angedeutet, wo die Systemfunktion

der Schaltung der Figur 17

bestimmt wird. So sieht man sofort in der
Figur 18b, dass

Durch Anwendung der Gleichung
(21) findet man auch Amplituden- und
Phasengang

A(eie)

und

1

|/l + a2 — 2a cos#
(61)

Fig. 17

Übertragungsfunktion

a System mit der
Impulsantwort h[n]

a"u[n]
b Amplitudengang

A(eJ0) in
logarithmischer
Darstellung

c Phasengang
für verschiedene
Werte von 6

0(eJ arctan I' - a sin# \
1 — a cos6

(62)

x[n] y In]q„0 „

t—AHZh

25 dB
b

20

1 a-0.9
20logA(e,B) 1

Î 101H a 07

I
a 0.5

V—" 6

-7r 2$ 71

-10
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Y(z) X(z) - az~l Y(z)

ist, und somit

VU) 1

H(z)
A '(z) az

Ersetzt man z et", so findet man
die Übertragungsfunktion, welche wir
bereits als (60) auf eine viel aufwendigere

Art und Weise bestimmt haben.

Pole und Nullstellen

Aus der Gleichung (67) ist ersichtlich,

dass die Systemfunktion eines
allgemeinen linearen Systems als
Verhältnis zweier Polynome in z-1

geschrieben werden kann, also

(68) Fig. 20

Pol-Nullstellendia-
gramme einiger
realisierbarer Systeme sowie
deren Amplituden-
Phasendiagramme

(69) a Minimalphasen-
Netzwerk

b
Nicht-Minimalphasen-Netzwerk

c Allpass oder
Phasenschieber

d «Allpole»-System
e Linearphasensystem

H(z)
b o + £>jvz

1 — — OmZ.
(70)

Die beiden Polynome können in
Faktoren zerlegt werden, so dass

H{z) b0
(Z Zl)' ' '(Z ZN\ zm-n
(z - /Dl). (z - Pm)

(71)

Die komplexen Werte z/, Z2,..., zn
und p\, p2,..., Pm in (71) bestimmt man
aus den Koeffizienten bo, b\, 62,-.., hjv,

ai, üm der Gleichung (70). Für z

zi, Z2,..., zn ist H(z) gleich Null, für
z pi, pi,—, Pm unendlich gross. Man
spricht deshalb von den Nullstellen z,-

(i 1,..., N) und den Polen pt(i 1,...,
M) der Systemfunktion H(z). Falls
einige der z, (oder pi) gleich sind, dann

Im z
t

/ X / V *

/ ° AV'
11 —-Rez

\ °

\ X / ° x

Ale'6]

ri15,\ AN
i

v\
I

0/e'V
t

TV

-TT 0

-TT

-71

\ *

-TT

TT

Ale'6]
iÎ

2
\ A A f
VA

i

AJ
î

î T

9^,0^ TT

Fig. 19 Pol-Nullstellendiagramm
Pole sowie Nullstellen sind entweder reell oder
erscheinen als konjugiert komplexe Paare. Demnach

ist das Diagramm symmetrisch bezüglich
der horizontalen Achse. Die Pole eines stabilen
Systems liegen alle innerhalb des Einheitskreises

bezeichnet man dies als mehrfache
Nullstellen (oder mehrfache Pole).
Insbesondere entspricht der Faktor
zm-n in (71) einer (M - Anfachen Null-
stelle (falls M > N), beziehungsweise
einem (N- M)fachen Pol (falls N > M)
bei z 0. Anderseits ist ja bekannt,
dass dieser Faktor lediglich eine
Verschiebung von h[n] nach rechts oder
nach links darstellt, so dass er häufig
vernachlässigt werden kann. Man
sieht nun, dass die Nullstellen und

Pole die Systemfunktion und damit
das zugehörige lineare System mit
Ausnahme eines konstanten Faktors
bo vollständig beschreiben.

Die Fagen der Pole und Nullstellen
können einfach in der komplexen
z-Ebene dargestellt werden. Dies
ergibt ein wertvolles grafisches Hilfsmittel,

nämlich das sogenannte
Pol-Nullstellen-Diagramm von H(z). Die Figur
19 zeigt ein derartiges Diagramm für
ein allgemeines System. Davon ausge-
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hend seien nun ohne Beweis einige
generelle Eigenschaften des Pol-Nullstel-
len-Diagramms aufgezeigt.

- Die reellen Koeffizienten b0, b\,
bi,..., bu, ai, üm haben zur
Folge, dass Pole und Nullstellen nur
als reelle Werte oder als konjugiert
komplexe Paare auftreten können;
das Pol-Nullstellen-Diagramm ist
deshalb immer symmetrisch bezüglich

der horizontalen Achse.

- Weil die Übertragungsfunktion der
Systemfunktion entlang des
Einheitskreises entspricht, haben
diejenigen Pole und Nullstellen, welche
am nächsten zum Einheitskreis
liegen, den grössten Einfluss auf das

Frequenzverhalten des Systems.
Liegt eine Nullstelle genau auf dem
Einheitskreis, das heisst z ei01,

dann ist die Amplitude der
Übertragungsfunktion bei 9= 8\ gleich null,
und die Phase springt um it. Umge¬

kehrt ergibt ein Pol bei z e>0i eine
unendlich grosse Amplitude bei 9

9i und ebenfalls einen Phasensprung

um n.

- Die Pole eines stabilen Systems lie¬

gen alle innerhalb des Einheitskreises,

während die Nullstellen eines
stabilen Systems innerhalb, ausserhalb

oder auf dem Einheitskreis
liegen können.

- Falls alle Nullstellen innerhalb des

Einheitskreises liegen, so spricht
man von einem Minimalphasen-
Netzwerk (Fig. 20a), sonst ist es ein
Nicht-Minimalenphasen-Netzwerk
(Fig. 20b). Die beiden Systeme in
Figur 20a und b haben beide denselben

Amplitudengang, weil die
Nullstellen im einen Fall genau die
Spiegelungen der Nullstellen des anderen

sind, d.h., die Nullstelle z,
neJ0i wird ersetzt durch z, l/r,)eJ"i.

- Befinden sich sämtliche Pole eines
Systems innerhalb des Einheitskreises,

währenddem alle Nullstellen
ausserhalb liegen, und sind alle
Nullstellen und Pole Spiegelungen
voneinander bezüglich des Einheitskreises,

so liegt ein Phasenschieber-
Netzwerk oder ein Allpasssystem
vor (Fig. 20c).

- Ein System, welches ausser der
Nullstelle z 0 nur Pole besitzt,
wird als «Allpole»-System bezeichnet

(Fig. 20d).
- Besitzt ein System ausser dem Pol

z 0 nur Nullstellen und stellen alle
diese Nullstellen Spiegelungen am
Einheitskreis dar, wobei auch
Nullstellen aufdem Einheitskreis erlaubt
sind, dann ist der Phasengang dieses
Systems strikt linear, und man
spricht von einem Linearphasensy-
stem (Fig. 20e).

(Fortsetzung in Heft 17/86)
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