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Digitale Signalverarbeitung:
Theoretische Grundlagen

Teil 2: Diskrete Systeme

A.M.W. van den Enden und N.A.M. Verhoeckx

Wurden im ersten dieser vier
Teile die theoretischen Aspekte
der diskreten Signale behandelt,
so stehen nun die diskreten
Systeme im Vordergrund. Es
werden die grundlegenden Defi-
nitionen sowie die mathemati-
schen Hilfsmittel fiir die
Systembeschreibung erlautert.

Alors que, dans la premiére de
ces quatre parties, les aspects
théoriques des signaux discrets
ont été traités, il s’agit mainte-
nant des systemes discrets,
dont on indique les définitions
fondamentales, ainsi que les
moyens mathématiques pour
leur description.

Diese Aufsatzserie ist eine Obersetzung des
gleichnamigen englischen Beitrags in Philips
Techn. Review 42(1986)4. Die Ubersetzung
besorgte H. Ochsner, dipl. Ing. ETH, Institut
fur Kommunikationstechnik, ETH Zurich.
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Adresse der Autoren
A.M.W.van den Enden und
N.A.M. Verhoeckx,

Philips Research Laboratories,
NL-5600J A Eindhoven.

2.1 Definitionen

Ganz allgemein definiert man ein
diskretes System als eine Einrichtung,
welche ein oder mehrere diskrete Ein-
gangssignale x[n] nach gewissen Re-
geln in ein oder mehrere Ausgangssi-
gnale y[n] umwandelt. Im folgenden
werden hauptsdchlich Systeme mit
einem reellen Eingangs- und einem
reellen Ausgangssignal untersucht.
Eine sehr wichtige Sonderstellung bil-
den die linearen zeitinvarianten Syste-
me (LTD-Systeme)?, zu denen bei-
spielsweise die meisten in der Praxis
verwendeten diskreten (bzw. digitalen)
Filter gehoren.

Ein diskretes System ist linear, falls das
Eingangssignal axi[n] + bxz[n] fir beliebi-
ge Konstanten a und b das Ausgangssignal
ayi[n] + by:2[n] bewirkt, wobei xi[n] und
x2[n] beliebige Eingangssignale, yi[n] und
y2[n] die dazugehorigen Ausgangssignale
sind.

Ein diskretes System ist zeitinvariant,
falls das Signal x[n —i] fiir jede beliebige
ganze Zahl i das Signal y[n —i] bewirkt,
wobei y[n] das zum beliebigen Eingangssi-
gnal x[n] gehorige Ausgangssignal ist.

Fiir praktische Anwendungen sollen dis-
krete Systeme sowohl stabil als auch kausal
sein.

Ein System ist stabil, falls jedes beliebige
Eingangssignal mit begrenzter Amplitude
(d.h. |x[n]]max £ A) ein Ausgangssignal mit
begrenzter Amplitude (d.h. |y [#]|max < B)
bewirkt.

Ein diskretes System ist kausal, falls das
Ausgangssignal zu keinem Zeitpunkt n =
no von einem Wert des Eingangssignals,
welcher spater als ng eintrifft, abhdngig ist.
Oder vereinfacht ausgedriickt: Es kann nie
ein Ausgangssignal entstehen, bevor ein
Eingangssignal angelegt wurde.

Lineare zeitinvariante diskrete Sy-
steme® haben eine Reihe interessanter

? Linear time-invariant discrete systems

3 Falls nichts Gegenteiliges erwihnt ist, soll im
folgenden der Begriff «System» als «lineares zeit-
invariantes diskretes System» (LTD-System) ver-
standen werden.

Qa x:(n/
yin)=
x;[n]+ x>[n)
x;/n] 7 2!
b xin) E yIn]=Ax[n]
C )iln] e );/n]:x/n-ﬂ
L
Fig. 11 Die drei Grundelemente linearer zeitinva-
rianter Systeme
a Addierer

b Multiplizierer mit einer Konstanten
¢ Verzdgerungselemente (T Einheitsverzoge-
rung, Abtastintervall)

Eigenschaften. So konnen sie bei-
spielsweise durch lediglich drei
Grundelemente dargestellt werden
(Fig. 11), durch

- einen Addierer, welcher zwei Ein-
gangssignale zu einem Ausgangssi-
gnal addiert,

- einen Multiplizierer, welcher ein
Eingangssignal mit einer konstan-
ten Zahl, einem Koeffizienten, mul-
tipliziert, und

- ein Verzogerungselement, welches
das Signal um eine diskrete Zeitein-
heit (ein Abtastintervall) verzdgert.

Durch Kombination dieser Elemen-
te kénnen andere Strukturen geformt
werden, etwa ein  Subtrahierer
(Fig. 12a). Ein weiteres Beispiel eines
linearen Systems zeigt die Figur 12b;
die Filtereigenschaften dieser Schal-
tung werden in einem spéteren Ab-
schnitt bestimmt.

Es besteht ein direkter Zusammen-
hang zwischen der bereits behandelten
Theorie der diskreten Signale und der-
jenigen der diskreten Systeme, weil die
meisten Eigenschaften des Systems aus
einem einzigen Signal abgeleitet wer-
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yln]

vin]

Fig. 12 Lineare zeitinvariante Systeme

a Die Kombination aus einem Addierer und
einer Multiplikation mit —1 ergibt eine Sub-
traktion: y[n] = x| [n] - x2[n]

b Beispiel eines linearen zeitinvarianten Systems,
welches alle drei Grundbausteine enthilt. Zu-
sitzlich zum Eingangssignal sind noch einige
interne Signale («Zwischenresultate») gekenn-
zeichnet

den konnen - dem Ausgangssignal,
welches durch einen Einheitsimpuls
6[n] am Eingang des Systems bewirkt
wird. Dieses Signal h[n] heisst Impuls-
antwort des Systems (Fig. 13).

Demnach kann man die bereits be-
kannten Signaltransformationen, wie
die Fouriertransformation fiir diskrete
Signale* oder die z-Transformation
auf die Impulsantwort anwenden und
erhilt so weitere gleichwertige Be-
schreibungen des Systems. Die Fou-
riertransformation von h[n] liefert die
sogenannte Ubertragungsfunktion
H(eb), wihrenddem die z-Transfor-
mation die Systemfunktion H(z) er-
gibt. Wie bereits bekannt, gilt fiir diese
Funktionen

H(ei®) = H(z)| (40)

z=¢j0

Ubertragungsfunktion und System-
funktionen sind Systembeschreibun-
gen im Frequenzbereich, wihrend die
Impulsantwort und die sogenannten
Differenzengleichungen Zeitbereichs-
beschreibungen sind. Diese vier Be-
schreibungsmoglichkeiten werden im
nichsten Abschnitt etwas eingehender
vorgestellt.

4 Falls nichts Gegenteiliges erwihnt ist, soll im
folgenden der Begriff «Fouriertransformation»
als «Fouriertransformation fiir diskrete Signale»
(FTD) verstanden werden.

Fig. 13
Ubertragungsverhalten
eines LTD-Systems

a Ein lineares T
zeltinvariantes
diskretes System
(LTD) wandelt ein q
Eingangssignal x[n]
in ein Ausgangssignal
y[n]um.

b Das beim besonderen
Eingangssignal x[n] x[n]=8[n]
= §[n] erscheinende
Signal y[n] = h[n] T
heisst Impulsantwort
und charakterisiert
das Ein-/Aus-
gangsverhalten des
Systems vollstindig.

yin]
A
xIn][ . 1 yin]
" system [ °
| _LT_
- N
ylnl=hln]
A
x/n}[LTDjhzfn/
| System | = I[I
— =N

2.2 Systembeschreibungen

Differenzengleichungen

Es sei nochmals das in der Figur 12b
gezeigte System betrachtet. Offenbar
kann es durch folgende zwei Gleichun-
gen beschrieben werden:

v[n] = ax[n] + bx[n — 1] + y[n — 1]

ylnl = cvln] (41)
Eliminiert man v[n], so wird

y[nl = acx[n] + bex[n — 1] +

cyln — 1] (42)

Diese Gleichung ergibt uns den ak-
tuellen Wert des Ausgangssignals aus
dem aktuellen Wert des Eingangs- so-
wie den fritheren Werten von Ein-
gangs- und Ausgangssignal. Allgemein
kann ein lineares System beschrieben
werden durch

N M
S bixln — il + ) ayln — ]
i= i=1

’ (43)

wobei a; und b, reelle Konstanten sind.
Die Gleichung (43) ist eine lineare Dif-

ferenzengleichung (der Ordnung M)
mit konstanten Koeffizienten.

Die Gleichung (43) ist das diskrete Ge-
genstiick zu den linearen Differentialglei-
chungen mit konstanten Koeffizienten,
welche fiir die Beschreibung linearer konti-
nuierlicher Systeme verwendet wird:

N M "
d¥x(n) Z d*vir)
— / ! . — (44)
Ll Z Tk Uk
k=0 k=1
Die Systembeschreibung mittels

Differenzengleichungen ist aus zwei
Griinden wichtig. Erstens erweist sie
sich als guter Ausgangspunkt, um an-
dere Systembeschreibungen abzulei-
ten, so beispielsweise die Systemfunk-
tion. In diesem Fall wird die Differen-
zengleichung durch eine gewdhnliche
algebraische Gleichung ersetzt. Zwei-
tens liefert die Differenzengleichung
bereits eine mdgliche Systemstruktur.
So findet man auf einfache Weise, dass
ein System mit der Gleichung

3 3
yinl =Y bixln — i1 + ) aiyln — i

i=0 i=1

(45)

durch die Schaltung der Figur 14 reali-
siert werden kann. Spéter wird sich

Fig. 14
Systemsynthese

x[n]

Realisierung der l

Gleichung (45)

Q

[—1 x[n 1] [—L[n -2] = x[n-3]
1
I

1

>

I

/o

A

y[nt?/D yin- .2/LJ vin- 7]D
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ylnl]

zeigen, dass es viele Systemstrukturen
mit derselben Differenzengleichung
gibt.

Impulsantwort

Manchmal kann die Impulsantwort
eines diskreten Systems unmittelbar
aus dem Blockschaltbild bestimmt
werden, in anderen Fillen ist dies
schwierig. So sieht man beispielsweise
sofort, dass fiir die Figuren 15a und b
die Impulsantworten

haln] = 28[n] —3J[n — 11 (46)
und
hgln) = (— )" uln] (47)

resultieren. Aber obwohl die Schal-
tung der Abbildung 15c¢ lediglich
durch Kaskadierung von a und b ge-
wonnen wird, ist es nicht unmittelbar
ersichtlich, dass deren Impulsantwort

heln) = 30[n] — 2(= 9" uln]  (48)
lautet.

Grundsitzlich ist die Berechnung
des Ausgangssignals aus einem belie-
bigen Eingangssignal und der Impuls-
antwort nicht schwierig. Zu diesem
Zweck sei nochmals die Gleichung
(15) aus dem Teil 1 betrachtet, die hier
nochmals angeschrieben wird:

Fig. 15
Einfache Systeme und
ha [n] ihre Impulsantworten
T 2 Das System c erhélt
man durch
Kaskadierung der
Systeme aund b
— N
-1
hgln]
bl
-1t — N
hcln]
Pl
1+
oy
- 7 L —_s N
_2 L
oo
x[n) = Y x[i1d[n — i] (49)
i=—o00

Das Signal x[n] wird als Reihe ge-
wichteter Einheitsimpulse dargestellt,
wobei der Impuls i das Gewicht x[i]
hat. Da hier lineare zeitinvariante Sy-
steme betrachtet werden, verursacht
dieser Impuls das Ausgangssignal x[i]
h[n—i]. Demnach wird

x[i]do[n — i] — x[ilh[n — i] (50)

und

2 x[i16[n —i1— Y x[ilhln —i]
(51)

Somit wurde das Ausgangssignal
y[n] aus dem Eingangssignal x[n] ge-
funden zu

==}

ylnl = 3, xlilhln =] (52)
beziehungsweise zu
yinl = 3 xln —ilhli] (53)

Die Gleichung (53) erhélt man aus
(52), indem die Substitution j = n — i

ausgefiihrt und anschliessend j wieder
durch i ersetzt wird. Die Gleichungen
(52) und (53) definieren die Faltung
von x[n] und h[n]. Sie werden auch ge-
schrieben als

y[nl = x[n] % h{n] = h[n] * x[n] (54)

Den Ausgang eines linearen Sy-
stems bestimmt man also durch Fal-
tung seines Eingangssignals mit der
Impulsantwort.

Aus der Impulsantwort eines linearen
Systems ldsst sich ersehen, ob dieses stabil
oder kausal (oder beides) ist. Ein System ist
stabil, falls

i |hln]] = C <o

n=-oc

(55

und kausal, falls

h[n]=0,fliirn<0 (56)

Ubertragungsfunktion

Anstelle der Impulsantwort wird
hdufig ihre Fouriertransformierte, die
Ubertragungsfunktion  H (e?), ver-
wendet. Der Hauptgrund liegt im Fal-
tungstheorem, nach welchem der Fal-
tung zweier diskreter Signale x[n] und
h[n] die Multiplikation ihrer Transfor-
mierten entspricht. Dies ergibt eine
zweite Moglichkeit, das Ausgangssi-
gnal y[n] zu bestimmen:

- Man bestimmt X(e/%) und H(e/®).

- Man multipliziert X(e/¥) und H(e/?),
dies ergibt die Fouriertransformierte
von y[n]:

Y(e¥) = X(e¥) H(e”) (57)

- Durch Riicktransformation
Y(e/®) findet man y[n].

Beide Moglichkeiten der Berech-
nung von y[n] sind in der Figur 16
schematisch dargestellt. Vielfach ist
der Rechenaufwand bei der Methode
mit der Fouriertransformation kleiner
als die direkte Berechnung der Fal-
tung.

Eine zweite wichtige Eigenschaft
der Ubertragungsfunktion ist, dass ihr
Betrag dem Amplitudengang und das
Argument dem Phasengang des Sy-
stems entspricht. Da die Vorstellung
von Amplituden- und Phasengang im
allgemeinen sehr geldufig ist, erleich-
tert die Ubertragungsfunktion die
Analyse, insbesondere von diskreten
Filtern. Ein einfaches lineares System
zeigt die Figur 17. Die Impulsantwort
sei gegeben durch

von
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x{n] hln] x(n] hln]
F10] [F10
X (e’8) Hle’®)
N/
" :
'
Y(ei8)
IIFTD
a | b yinl

Fig. 16 Bestimmung des Ausgangssignals

a durch Anwendung des Faltungssatzes

b durch Multiplikation der Fouriertransformier-
ten (FTD) von Eingangssignal und Systemim-
pulsantwort sowie anschliessende Riicktrans-
formation (IFTD)

h(n) = a" uln] (58)

Somit wird die Ubertragungsfunk-
tion

HE’) = Y hln]e " =

n=—o

(59)

oo =}
e = } (g

Ist|a| <1, dann kann man die Sum-
me berechnen und erhilt

; 1
H(e"’) = ] — ga it
(60)

1
1 — acosf + aj sinf

Durch Anwendung der Gleichung
(21) findet man auch Amplituden- und
Phasengang

A(e?) =

= (61)
V1 + @ — 2acosf

und

—asinf

(e’ = arctan(_i> (62)
1 — acosf

Die Figur 17 zeigt diese beiden
Funktionen fir verschiedene Werte
O<a<l.

Systemfunktion

Die vielseitigste, aber auch die ab-
strakteste Beschreibung eines linearen
Systems ist die Systemfunktion H(z),
welche man durch z-Transformation
aus der Impulsantwort h[n] gewinnt.
Zuerst wird der Faltungssatz der
z-Transformation angewendet. Aus
dem ersten Teil dieses Aufsatzes ist be-
kannt, dass der Faltung (52) zweier Si-
gnale im Zeitbereich die Multiplika-
tion ihrer z-Transformierten ent-
spricht. Ist x[n] das Eingangs- und y[n]
das Ausgangssignal eines Systems mit
der Stossantwort h[n], dann wird

Y(z) = H(z)X(2) (63)
was man umformen kann zu
H(z)= Y(z) / X(2) (64)

Damit erhdlt man eine zweite sehr
effiziente Moglichkeit, die System-
funktion zu bestimmen, da die rechte
Seite von (64) sehr einfach aus der Dif-
ferenzengleichung eines linearen Sy-
stems bestimmt werden kann. Nimmt
man beispielsweise die Differenzen-
gleichung (42), so erlaubt die Lineari-
tit der z-Transformation ihre Anwen-
dung auf jeden einzelnen Summan-
den, und man erhélt

Y(z) = ac X(z) + bez™! X(2) +

x[n] = a y/ng
171
(Jy/n—hl\J y[n-?]l—I
{(Z) o b Y(Zi
az'Y(z) ' z'Y(z) .‘_

Fig. 18 Bestimmung der Systemfunktion H(z) =
Y(z)/X(z) aus dem Blockdiagramm eines Systems

a Urspriingliches Blockdiagramm im Zeitbereich
b Entsprechendes Blockdiagramm im z-Bereich

Auf dieselbe Art erhilt man die Sy-
stemfunktion aus der allgemeinen Dif-
ferenzengleichung (43) zu

Y29 i

H(z) = ) "

In der Praxis wird ein lineares Sy-
stem héufig anhand seines Blocksche-
mas analysiert. Dabei bestimmt man
die Systemfunktion meistens direkt
aus den z-Transformationen der ein-
zelnen Teilblocke und lasst den Schritt
iber die Differenzengleichung aus.
Dabei wird héufig die Eigenschaft aus-
genutzt, dass der Verzdgerung um ein
Abtastintervall im Zeitbereich die
Multiplikation mit z-! im z-Bereich
entspricht. Das Vorgehen ist in der Fi-
gur 18 angedeutet, wo die Systemfunk-
tion der Schaltung der Figur 17 be-
stimmt wird. So sieht man sofort in der
Figur 18b, dass

65
cz™! Y(z) =
Dies ergibt
Y(z) ac+ bcz7!
H(z) = = = (66)
X(2) 1 —cz
Fig. 17

Ubertragungsfunktion

= a"u[n]

b Amplitudengang
A(eif)in C
logarithmischer
Darstellung

¢ Phasengang @(e/?)
fiir verschiedene
Werte von 6

¢ le’®)
T /2
a=089

a=07 >

x[n] yln]
a System mit der a ¢ b
Impulsantwort h[n] t ] 20
T

25dB

20log Ale’®)

-7r/2

- OVTT ‘l/ 0

960 (A 586)
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Y(2) -~ X(©) ¢ w7 Yo (68)
ist, und somit

o) 1
H(z) = el (69)

a X(2) 1 — gzt

Ersetzt man z = eif, so findet man
die Ubertragungsfunktion, welche wir
bereits als (60) auf eine viel aufwendi-
gere Art und Weise bestimmt haben.

Pole und Nullstellen

Aus der Gleichung (67) ist ersicht-
lich, dass die Systemfunktion eines all-
gemeinen linearen Systems als Ver-
héltnis zweier Polynome in z-! ge-
schrieben werden kann, also

bo + ...+bNZ_N
H@) = 1.— — ayz™

(70)

Die beiden Polynome konnen in
Faktoren zerlegt werden, so dass

(z—z1)...(z—2zN) pyn

H =bH
e ——

(71

Die komplexen Werte zi, z,..., zn
und pi, p2,..., pm in (71) bestimmt man
aus den Koeffizienten by, b, b,,..., by,
a, a,..., ay der Gleichung (70). Fiir z
= 71, Z2,..., Zn ist H(z) gleich Null, fiir
z= p1, p2,..., pm unendlich gross. Man
spricht deshalb von den Nullstellen z;
(i=1,.., Nyund den Polen p;(i=1,...,
M) der Systemfunktion H(z). Falls
einige der z; (oder p;) gleich sind, dann

Imz
tI
x x
6, °
K aw
I —= Rez
x o X

Fig. 19 Pol-Nullstellendiagramm

Pole sowie Nullstellen sind entweder reell oder er-
scheinen als konjugiert komplexe Paare. Dem-
nach ist das Diagramm symmetrisch beziiglich
der horizontalen Achse. Die Pole eines stabilen
Systems liegen alle innerhalb des Einheitskreises

Fig. 20
Pol-Nullstellendia- aimz Ale /9} [0} (e’?)
gramme einiger reali- ?
sierbarer Systeme sowie r 7 T7.5 . T
deren Amplituden- 3
Phasendiagramme @ 1+ -
a Minimalphasen- ° Q(ngv
Netzwerk K —~Re z i & 0 -0
b Nicht-Minimal- 5
phasen-Netzwerk -7f|——‘71’ -l
¢ Allpass oder 0
Phasenschieber —-6
d «Allpole»-System
e Linearphasensystem b Imz Ale’?)
T 7 ) T75“
(] 7—
\J—»Re z L
o 1
=T 0 b8
-6
C Imz Ale’’) ple’)
7 1 o T7A5— T Tt
(A —r— :
v\ —-Re z 05+ - 0
x -0
° A S
- 0 T b
— g
d Imz Ale’®) ole’®)
T 7 T 2k t T
x =
@/—»Re z AV v oY
x —- 4
[ R
= 0 T -r
~—=g
e Imz Ale’’) ple’f)
t 1. t ol
- 2
Lo z
\\/—»Re 4 1 - 0
OO _ 3 @ -.6
-7T 0 T Srr
—8

bezeichnet man dies als mehrfache
Nullstellen (oder mehrfache Pole).
Insbesondere entspricht der Faktor
zM-Nin (71) einer (M - N)fachen Null-
stelle (falls M > N), beziehungsweise
einem (N - M)fachen Pol (falls N > M)
bei z = 0. Anderseits ist ja bekannt,
dass dieser Faktor lediglich eine Ver-
schiebung von h[n] nach rechts oder
nach links darstellt, so dass er héufig
vernachldssigt werden kann. Man
siecht nun, dass die Nullstellen und

Pole die Systemfunktion und damit
das zugehorige lineare System mit
Ausnahme eines konstanten Faktors
bo vollstédndig beschreiben.

Die Lagen der Pole und Nullstellen
konnen einfach in der komplexen
z-Ebene dargestellt werden. Dies er-
gibt ein wertvolles grafisches Hilfsmit-
tel, ndmlich das sogenannte Pol-Null-
stellen-Diagramm von H(z). Die Figur
19 zeigt ein derartiges Diagramm fiir
ein allgemeines System. Davon ausge-
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hend seien nun ohne Beweis einige ge-
nerelle Eigenschaften des Pol-Nullstel-
len-Diagramms aufgezeigt.

- Die reellen Koeffizienten by, by,
bz,..., bN, a, az,.., am haben zur
Folge, dass Pole und Nullstellen nur
als reelle Werte oder als konjugiert
komplexe Paare auftreten kdnnen;
das Pol-Nullstellen-Diagramm ist
deshalb immer symmetrisch beziig-
lich der horizontalen Achse.

- Weil die Ubertragungsfunktion der
Systemfunktion entlang des Ein-
heitskreises entspricht, haben dieje-
nigen Pole und Nullstellen, welche
am néchsten zum Einheitskreis lie-
gen, den grossten Einfluss auf das
Frequenzverhalten des Systems.
Liegt eine Nullstelle genau auf dem
Einheitskreis, das heisst z = e/,
dann ist die Amplitude der Ubertra-
gungsfunktion bei 8 = 0, gleich null,
und die Phase springt um m. Umge-

kehrt ergibt ein Pol bei z = e/®2 eine
unendlich grosse Amplitude bei 0 =
6, und ebenfalls einen Phasen-
sprung um 7.

Die Pole eines stabilen Systems lie-
gen alle innerhalb des Einheitskrei-
ses, wiahrend die Nullstellen eines
stabilen Systems innerhalb, ausser-
halb oder auf dem Einheitskreis lie-
gen konnen.

Falls alle Nullstellen innerhalb des
Einheitskreises liegen, so spricht
man von einem Minimalphasen-
Netzwerk (Fig. 20a), sonst ist es ein
Nicht-Minimalenphasen-Netzwerk
(Fig. 20b). Die beiden Systeme in Fi-
gur 20a und b haben beide densel-
ben Amplitudengang, weil die Null-
stellen im einen Fall genau die Spie-
gelungen der Nullstellen des ande-
ren sind. d.h., die Nullstelle z; =
riejf% wird ersetzt durch z; = (1/r;)e/vi.

- Befinden sich sdmtliche Pole eines

Systems innerhalb des Einheitskrei-
ses, wihrenddem alle Nullstellen
ausserhalb liegen, und sind alle
Nullstellen und Pole Spiegelungen
voneinander beziiglich des Einheits-
kreises, so liegt ein Phasenschieber-
Netzwerk oder ein Allpasssystem
vor (Fig. 20c).

Ein System, welches ausser der
Nullstelle z=0 nur Pole besitzt,
wird als «Allpole»-System bezeich-
net (Fig. 20d).

Besitzt ein System ausser dem Pol
z = 0 nur Nullstellen und stellen alle
diese Nullstellen Spiegelungen am
Einheitskreis dar, wobei auch Null-
stellen aufdem Einheitskreis erlaubt
sind, dann ist der Phasengang dieses
Systems strikt linear, und man
spricht von einem Linearphasensy-
stem (Fig. 20e).

(Fortsetzung in Heft 17/86)

962 (A 588)

Bull. ASE/UCS 77(1986)15, 9 aout



	Digitale Signalverarbeitung : theoretische Grundlagen : Teil 2 : diskrete Systeme

