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Standardisierung kryptographischer Dienste?

J.L. Massey

Die Bedeutung von Datensicher-
heit wird kurz diskutiert und eine
Ubersicht iiber die mathemati-
schen Werkzeuge des Kryptolo-
gen gegeben. Es wird darauf hin-
gewiesen, dass die Sicherheit
aller praktisch anwendbaren
Chiffriertechniken gegenwartig
nur auf Vermutungen beruht. Es
wird der Standpunkt vertreten,
dass, solange nicht nachweisbar
sichere Techniken zur Verfi-
gung stehen, kryptographische
Dienste nicht standardisiert und
ihre Anwendung den Beniitzern
uberlassen werden sollten.

L’importance de la sécurité des
données est brievement discu-
tée et un apercu des outils
mathématiques du cryptologue
est donné. Actuellement, la
sécurité de toutes les techni-
ques de chiffrement pratique-
ment applicables n’est basée
que sur des suppositions. L au-
teur estime que, tant que I’'on ne
dispose pas de techniques réel-
lement siires, les services cryp-
tographiques ne devraient pas
étre normalisés et leur applica-
tion devrait étre laissée a leurs
utilisateurs.

Dieser Aufsatz entspricht dem Vortrag.

den der Autor in englischer Sprache an der
Tagung «Sicherheitsaspekte in Datennetzen»
der Schweizerischen Vereinigung fiir Daten-
verarbeitung gehalten hat. Die Ubersetzung
besorgte dipl. El-Ing. H-A. Loeliger,

ETH Zurich.

Adresse des Autors

Prof. J.L. Massey, Institut fiir Signal- und
Informationsverarbeitung, ETH-Zentrum,
8092 Ziirich.

1. Einfiihrung

Datensicherheit im hier verwende-
ten Sinn umfasst Geheimhaltung,
Authentizitdt und Integritdt von Nach-
richten, die in einem digitalen Daten-
netz ausgetauscht werden. Geheimhal-
tung bedeutet, dass nur die beabsich-
tigten Empfianger die Nachricht in ver-
stindlicher Form erhalten k&nnen.
Authentizitidt bedeutet, dass den beab-
sichtigten Empfingern die wahre
Identitédt des Senders bekannt gemacht
wird. Integritit bedeutet, dass der In-
halt der Nachricht wihrend der Uber-
mittlung durch das Netz in keiner Wei-
se verdndert wird. Manchmal wird der
Begriff der Datensicherheit erweitert
um «Geheimhaltung von Diensten»
(d.h. die Tatsache, dass die Einheit A
der Einheit B eine Nachricht sendet,
darf der Einheit C nicht bekannt wer-
den) und um «Authentizitit von Dien-
sten» (d.h. keine andere Einheit darf in
der Lage sein, sich fiir eine Netz-ein-
heit auszugeben, um Nachrichten zu
dndern, zu verzogern, zu verdoppeln
oder zu zerstoren). Diese weiteren
Aspekte der Datensicherheit gehen
aber liber den Rahmen dieses Beitrags
hinaus.

Die Wissenschaft oder auch Kunst
der Kryptographie hat zum Hauptziel,
die Geheimhaltung, Authentizitdt und
Integritdt von Nachrichten sicherzu-
stellen. Man sollte daher meinen, dass
man, um Datensicherheit in einem
Computernetz zu erreichen, nur die
geeigneten Chiffriertechniken wihlen
und sie an den am gilinstigsten schei-
nenden Stellen in der Netzstruktur im-
plementieren muss. Ein grosser Teil
der gegenwairtigen Diskussion (iiber
welche das «IEEE Communications
Magazine» vom Juli 1985, das ganz
der Datensicherheit gewidmet ist,
einen guten Uberblick gibt) konzen-
triert sich auf die zweite Frage, d.h. in
welchen Schichten des ISO-Referenz-
modells die verschiedenen kryptogra-
phischen Dienste angeboten werden
sollten. Viel weniger Aufmerksamkeit
wird der ersten Frage gewidmet, d.h.
der Frage, welches die geeigneten

Chiffriertechniken sind. Diese wird
ganz dhnlich gestellt, wie man etwa
nach geeigneten Techniken zur Fehler-
kontrolle fragen konnte; tatsdchlich
besteht aber ein grundlegender Unter-
schied. Fiir irgendeine gegebene, in
der Praxis verwendbare Technik zur
Fehlerkontrolle kennt man das damit
erreichbare  Zuverldssigkeitsniveau,
wenn auch nicht immer der beste Code
bekannt ist. Hingegen gibt es keine
praktikable Chiffriertechnik, deren

Sicherheitsniveau heute abgeschétzt
werden kann. Im nédchsten Abschnitt
wird diese Behauptung genauer erldu-
tert und im letzten Abschnitt deren Be-
deutung fiir die Netzwerkstandardisie-
rung betrachtet.

2. Das Chaos in der

Kryptographie

Die Techniken der Chiffrierung ba-
sieren auf drei Typen von mathemati-
schen Funktionen, ndmlich

1. Einwegfunktionen,

2. Trapdoor-Einwegfunktionen

3. Schliissel-Einwegfunktionen.

Die beiden ersten Funktionstypen
wurden von Diffie und Hellman [1] in
ihrer bahnbrechenden Arbeit einge-
fiihrt, die das neue Gebiet der Public-
Key-Kryptographie begriindete. Der
dritte Funktionstyp wird schon lange
implizit in der klassischen oder Secret-
Key-Kryptographie gebraucht, wurde
aber erst kiirzlich explizit von uns ein-
gefiihrt [2].
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Galois-Korper und Kryptographie

Rolle.

und zwei Operationen, einer «Addition»

phe weisen darauf hin, dass den Begriffen

Menge F muss ein Nullelement (0) und ein
Einselement (1) enthalten, und fiir die bei-
den Operationen miissen die fiir die nor-
male Addition und Multiplikation giilti-
gen Gesetze, d.h. Kommutativgesetz, As-
soziativgesetz und Distributivgesetz gel-
ten. Zudem miissen fiir jedes a € F, a + 0,

dassa + (-a) =0und a-(1/a) = 1. So bil-

der normalen Addition und Multiplika-
tion einen Korper. Weitere bekannte Kor-

komplexen Zahlen. Die ganzen Zahlen
stellen hingegen keinen Korper dar, weil

1 und -1 keine ganze Zahl ist.

per genannt, ist ein Korper, dessen Ele-
mentmenge F («Zahlenmenge») endlich

Die mathematische Theorie der endli-
chen Korper ist die Grundlage der Theorie
der fehlerkorrigierenden Codes und spielt
auch in der Kryptographie eine wichtige

Ein Kdérper (engl. field) besteht aus ei-
ner Menge F von Elementen («Zahlen»)

und einer «Multiplikation». Die Apostro-

eine umfassendere, nicht auf Zahlenkor-
per beschrinkte Bedeutung zukommt. Die

sowohl (-a) als auch (1/a) existieren, so

den z.B. die reellen Zahlen zusammen mit

per sind die rationalen Zahlen und die

der Kehrwert aller ganzen Zahlen ausser

Ein endlicher Kérper, auch Galois-Kor-

ist. Alle bisher erwdhnten Korper sind
nichtendliche Korper, weil es unendlich
viele rationale, reelle und komplexe Zah-
len gibt. Hingegen bilden z.B. die ganzen
Zahlen 0,1,2,3,4 einen Korper, wenn alle
Additionen und Multiplikationen modulo
5 ausgefiihrt werden. In diesem Korper
gelten z.B. folgende Gleichungen und
Ableitungen, wie aus Figur F1 leicht er-
sichtlich ist:

441=0—-4=1-3-4=3+1=4
2.3 =1—1% =3— % =3.3 =4

Aus diesen und dhnlichen Ableitungen
kann man zeigen, dass -1 = 4, -2 = 3,
-3=2und2=3,"3=2,"a=4ist.

Allgemein gilt, dass die ganzen Zahlen
0...p-1 zusammen mit Addition und Mul-
tiplikation modulo p einen endlichen
Korper bilden, wenn p eine Primzahl ist.
Einen solchen Korper bezeichnet man mit
GF(p) (Galois field). Der kleinste mo-
gliche Korper besteht aus den Zahlen 0
und 1, wobei die «Addition» einer
ODER-Verkniipfung und die «Multipli-
kation» einer UND-Verkniipfung ent-
spricht.

Eine Zahl @, 0 < a < p, wird primitives
Element im Korper GF (p) genannt, wenn
die Potenzen o', o, o, ..., ar-! alle von
Null verschiedenen Zahlen in diesem Kor-
per darstellen.

Beispiel: in GF (5) ist 3 ein primitives

Element, denn

Eine Einwegfunktion ist eine Funk-
tion fmit der Eigenschaft, dass f(x) fiir
alle x im Definitionsbereich von f
leicht berechnet werden kann, wih-
rend die Berechnung der Umkehr-
funktion f-! (y) fiir praktisch alle y im
Wertebereich von f aufwandbedingt
undurchfithrbar ist. Die Figur | zeigt
das mechanische Analogon einer Ein-
wegfunktion. Diffie und Hellman ver-
muteten, dass f(x) = &, 0 < x < p-2,
wobei « ein primitives Element in
GF(p) und p eine grosse Primzahl ist,
eine Einwegfunktion ist. Spater wurde
diese Vermutung dahingehend abge-
schwicht, dass einer der Primfaktoren
von p-1 gross sein muss (s. Fenster
«Galois-Korper und Kryptographie»)
[3]. Diffie und Hellman zeigten auch,
wie mit dieser (mutmasslichen) Ein-
wegfunktion der oOffentliche Aus-
tausch von geheimen Schliisseln zwi-
schen Paaren von Beniitzern eines
Netzes bewerkstelligt werden konnte.
Die Figur 2 zeigt, wie eine Einweg-
funktion verwendet werden kann, um
ein Authentizitdtssystem aufzubauen,
welches einem Empféinger, der einen
geheimen Schliissel z mit dem Sender
teilt, sowohl die Authentizitit des Sen-
ders als auch die Integritdt der Nach-
richt garantiert. Hingegen sorgt dieses

3! =3
32=3.3 =4
0 33=3.32=3.4 =2
34=3.3'=3.2 =1
4 1 . . . .
Die Funktion ¥ ist auch in sehr grossen
neg. . Korpern effizient berechenbar. Die Be-
' rechnung der Umkehrfunktion (Logarith-
mus) hingegen ist fiir grosse p (wenn einer
3 > der Primfaktoren von p-1 gross ist) mit
den bekannten Algorithmen nicht zu be-
wiltigen. Man vermutet daher, dass f(x)
Fig. F1 Darstellung von GF(s) = a*eine Einwegfunktion ist.
Fig. 2
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Fig.3 Das mechanische Analogon einer Trap-
door-Einwegfunktion

System nicht fiir Geheimhaltung, da
die Nachricht ja unchiffriert libertra-
gen wird. Die Parity-Check-Funktion
g, muss nur die Eigenschaft haben,
dass es zu jeder Nachricht m viele
mogliche Werte x = g, (m) gibt; eine li-
neare Funktion erfiillt sehr schon diese
Bedingung. Das System von Figur 2
erzeugt eine «Unterschrift» y fiir die
Nachricht m. Diese Unterschrift kann
vom Empfinger mit dem geheimen
Schliissel z tberpriift werden, aber
ohne z zu kennen, hitte niemand nur
mit der Kenntnis von m y erzeugen
konnen. Der «Feind» kann viele (m,
y)-Paare beobachten, aber die Einweg-
funktion hindert ihn daran, x zu be-
rechnen, und somit kann er nicht be-
stimmen, welche Parity-Check-Funk-
tion verwendet wird.

Eine Trapdoor-Einwegfunktion ist
eigentlich eine Familie von invertier-
baren Funktionen f,, indiziert mit
einem Parameter z, so dass erstens,
wenn z bekannt ist, leicht effiziente Al-
gorithmen E, und D, zur Berechnung
von f, bzw. f;! gefunden werden kon-
nen, aber zweitens bei Kenntnis von
E, allein die Berechnung von f;! (y) fiir
praktisch alle yim Wertebereich von f,
aufwandbedingt undurchfiihrbar ist.
Die Figur 3 zeigt das mechanische
Analogon. Diffie und Hellman gaben
zwar die Definition einer Trapdoor-
Einwegfunktion an und zeigten, wie
damit ein Public-Key-Chiffriersystem
(Fig. 4) aufgebaut werden konnte, aber
sie wagten nicht einmal, einen Vor-
schlag fiir eine solche Funktion zu ma-
chen. Es blieb Rivest, Shamir und Ad-
leman (RSA) vorbehalten, die erste
mutmassliche Trapdoor-Einwegfunk-
tion vorzuschlagen [4]. Bei dieser mut-
masslichen Trapdoor-Einwegfunktion
besteht z aus drei positiven ganzen
Zahlen z = (p, g, e). Dabei sind pund g
zwei verschiedene, grosse Primzahlen
(mindestens 100 Dezimalstellen), so
dass sowohl einer der Primfaktoren
von p-1 als auch einer der Primfakto-

ren von g-1 gross ist. Die Zahl e muss
kleiner als das Produkt (p-1) (g-1)
sein und darf mit diesem keinen ge-
meinsamen Primfaktor haben. Der
Chiffrierexponent e und das Produkt
m = pq werden publiziert. Dies ent-
spricht der Veroffentlichung eines Al-
gorithmus zur Berechnung der RSA-
Trapdoor-Einwegfunktion f, (x) = xe
mit 0 < x < m, wobei die Exponentia-
tion modulo m ausgefiihrt wird. Wer z
kennt, kann leicht den Kehrwert d von
emodulo (p-1) (¢9-1) finden und somit
leicht f;! (y) = yd berechnen, wobei die
Exponentiation wiederum modulo m
ausgefiithrt wird. Fir e = 3 ist die Be-
stimmung von d der Faktorisierung
von m &quivalent. Es hat den An-
schein, dass jede Methode zur Berech-
nung f;' (y) fiir die meisten y der Fak-
torisierung von m Aquivalent ist, aber
weder ist dies bewiesen, noch ist be-
wiesen, dass die anscheinend schwieri-
ge Faktorisierung von m tatsdchlich
inhdrent schwierig ist (s. Fenster «Bei-
spiel zum RSA-Public-Key-Chiffrier-
system»).

Eine Schliissel-Einwegfunktion ist
eine Familie von invertierbaren Funk-
tionen f,, die so mit einem Schliissel z
indiziert ist, dass es erstens, wenn z be-
kannt ist, einfach ist, effiziente Algo-
rithmen E, und D, zur Berechnung
von f, bzw. f;! zu finden, aber dass es
zweitens - selbst dann, wenn eine
Black Box zur Verfiigung steht, die zu
jeder Eingabe x augenblicklich f, (x)

berechnet - ohne Kenntnis von z fiir
praktisch alle y im Wertebereich von f,
aufwandbedingt undurchfiihrbar ist,
fz' (y) zu bestimmen. Die Figur 5 zeigt
das mechanische Analogon einer
Schlissel-Einwegfunktion. Es diirfte
offensichtlich sein, dass man eine
Schliissel-Einwegfunktion zum Auf-
bau eines Secret-Key-Chiffriersystems
wie in Figur 6 verwenden kann, das ge-
gen eine Attacke mit wihlbarem Klar-
text (chosen plaintext attack) sicher ist,
d.h. eine Attacke, bei welcher der
feindliche Analytiker das Chiffrat fiir
jeden frei gewdhlten Klartext erhalten
kann. Es ist eine unter Kryptologen
verbreitete (aber nicht von allen geteil-
te) Vermutung, dass das Data Encryp-
tion Standard (DES) System [5] eine
Schliissel-Einwegfunktion  darstellt.
Die DES-Funktion hat eine Schlissel z
von 56 bit; sowohl der Klartext x als
auch das Chiffrat sind 64 bit lang.
Man glaubt allgemein, dass Mehrfach-
chiffrierung des Klartexts mit minde-
stens drei DES-Systemen mit verschie-
denen Schliisseln die Sicherheit noch
erhoht, aber das ist nicht bewiesen.

Die einfach Wahrheit ist, dass heute
kein praktisch anwendbares und be-
weisbar sicheres Chiffriersystem ir-
gendeines Typs existiert. Bis heute ist
weder eine Einwegfunktion noch eine
Trapdoor-Einwegfunktion, noch eine
Schliissel-Einwegfunktion nachweis-
bar demonstriert worden. Tatsdchlich
gibt es bis heute keinen Beweis dafiir,

Fig. 4

Auf einer
Trapdoor-Einwegfunk-

Nachrichtengquelle

tion basierendes
Public-Key-Chiffrier- X
system cenli | z
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\
y
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y
\ y
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v
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Beispiel zum
RSA-Public-Key-Chiffriersystem

A mochte B die Nachricht [1,1,0,0,1,0]
senden. Dazu wird die Nachricht als bi-
ndre Zahl 110010 interpretiert. Die ent-
sprechende Dezimalziffer ist

x=32+16+2=150

In einem offentlichen Verzeichnis fin-
det A, dass B die Werte e = 17 und m =
77 bekanntgegeben hat (bei einem
brauchbaren Chiffriersystem miisste m
viel grésser sein). A4 berechnet nun x¢ =
50" modulo 77:

502 =36
50¢ = (502) = 36 = 64
508 = (5042 =642 = 15
5016 = (508)2 = 152 = 71

5017 =71.50=8

Also sendet A an B die Nachricht y =
8, z.B.in der Form [0,0,1,0,0,0].

Der Empfinger B kennt als einziger
die Primfaktorzerlegung von m = p-gq
und konnte deshalb den Kehrwert d von
e modulo (p-1) (g-1) berechnen. Damit
kann er nun iiber

(x¢)4 = x(mod m)

die urspriingliche Nachricht entschliis-
seln. Die Methode beruht auf dem be-
kannten Satz aus der Zahlentheorie

x!+k(p-1) (g-1) = x(mod pq)

wobei k eine beliebige ganze Zahl ist. Mit
p=7,q=11und (p-1) (g-1) = 60 lisst
sich mittels eines bekannten, effizienten
Algorithmus d = 53 berechnen.

B empféangt y = 8 und berechnet x aus
x = yd modulo 77 mit

x =85
8 = 64
8 = (8 ) =647 =15
88 = (84 )2 =15 =71
816 = (8% )2 =712 = 36
832 = (816)2 = 362 = 64

x = 8% =832.816.84.8 = 64-.36-15-8 = 50

Damit hat B die richtige Nachricht
x = 50 erhalten.

dass eine Funktion von irgendeinem
dieser drei Typen iiberhaupt existiert!
Vielleicht suchen wir nach nichtexi-
stenten Wesen. Im besten Licht be-
trachtet, haben wir heute einige Chiff-
riertechniken, deren Sicherheit gegen
diejenigen Attacken nachgewiesen
werden kann, die in der Vergangenheit
gegen andere Chiffriersysteme Erfolg
hatten. Es gehort eine betrichtliche
Portion Glauben dazu, anzunehmen,
dass wir tatsdchlich «alle Locher ver-
stopft» haben und dass unsere Syste-
me den unorthodoxen Attacken nicht
erliegen werden, die wir von dem
wachsenden Heer der «Hacker» und
von denjenigen boswilligeren Perso-
nen erwarten konnen, die von der
Moglichkeit grosser finanzieller Ge-
winne angezogen werden, die sich aus
der widerrechtlichen Aneignung, An-
derung oder Zuriickhaltung von Infor-
mation in ausgedehnten Computernet-
zen ergeben kdnnen.

3. Einige Ansichten

Heute dariiber zu diskutieren, wie
wir Chiffriertechniken in 6ffentlichen
Computernetzen einsetzen sollten, ist
fiir den Autor etwa das gleiche, wie
dariiber zu diskutieren, wie ein Impf-
stoff gegen Krebs zu verteilen wire.
Das Beste, was man heute tun kann,
ist, vor gewissen Dingen zu warnen,
die das Krebsrisiko erhéhen. Ganz
dhnlich scheint es heute um die Daten-
sicherheit zu stehen; das Beste, was
man tun kann, ist, jedermann davor zu

Schliessen
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Algorithmus zur Berechnung von f

Fig.5 Das mechanische Analogon einer Schliis-
sel-Einwegfunktion

warnen, auf die Datensicherheit of-
fentlicher Netze zu vertrauen. Es
scheint dem Autor grundsitzlich
falsch, Garantien fiir Datensicherheit
zu geben, die nur auf Vermutungen be-
ruhen; solche Garantien kdonnen Be-
niitzer nur zu Unvorsichtigkeiten ver-
leiten, die sie sonst vielleicht vermei-
den wiirden.

Um die Sache in Begriffen des ISO-
Referenzmodells zu fassen: Der Autor
empfiehlt, vorldufig alle kryptographi-
schen Dienste der Applikations-
schicht, also dem Beniitzer selbst, zu
iiberlassen. Applikationseinheiten, die
geheime Nachrichten austauschen
wollen, werden die Schliisselverteilung
selbst organisieren und selbst ihre
Lieblingschiffrier-Algorithmen bereit-
stellen miissen. Dieser Mangel an
Standardisierung hat zwei Vorteile.
Erstens erschwert er die Aufgabe des
angehenden Eindringlings, und zwei-
tens vermindert er den Schaden, wenn
sich ein bestimmtes Chiffrierschema

Fig. 6
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als unsicher erweist.

Ein Impfstoff gegen Krebs scheint in
weiter Ferne zu liegen. Im Vergleich
dazu sind beweisbar sichere Chiffrier-
techniken nach Meinung des Autors
schon fast in Reichweite. Auf signifi-
kantem Niveau betriebene, wirklich
wissenschaftliche  kryptographische
Forschung im oOffentlichen Sektor ist
weniger als ein Jahrzehnt alt - die Ar-
beit von Diffie und Hellman [1] mar-
kiert die Geburtsstunde der Kryptogra-
phie als Wissenschaft, und seither wur-
den viele Fortschritte gemacht. Zusam-
men mit I. Ingemarsson von der Linko-

ping-Universitdt, Schweden, hat der
Autor kiirzlich ein Secret-Key-Chiff-
riersystem mit nachweisbarer Sicher-
heit gegen eine Attacke mit wiahlbarem
Klartext vorgestellt, das aber wegen der
astronomischen  Dechiffrierverzoge-
rung vOllig unpraktikabel ist [6]. Trotz-
dem wagt der Autor jetzt die unbeson-
nene Vorhersage, dass praktikable und
nachweisbar sichere Chiffriertechni-
ken innerhalb der ndchsten zehn Jahre
erhiltlich werden, und er nimmt mit
Nachdruck Stellung gegen irgendeine
Standardisierung, bevor solche Techni-
kenzur Verfiigung stehen.
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