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Standardisierung kryptographischer Dienste?
J.L. Massey

Die Bedeutung von Datensicherheit

wird kurz diskutiert und eine
Übersicht über die mathematischen

Werkzeuge des Kryptolo-
gen gegeben. Es wird darauf
hingewiesen, dass die Sicherheit
aller praktisch anwendbaren
Chiffriertechniken gegenwärtig
nur auf Vermutungen beruht. Es
wird der Standpunkt vertreten,
dass, solange nicht nachweisbar
sichere Techniken zur Verfügung

stehen, kryptographische
Dienste nicht standardisiert und
ihre Anwendung den Benützern
überlassen werden sollten.

L'importance de la sécurité des
données est brièvement discutée

et un aperçu des outils
mathématiques du cryptologue
est donné. Actuellement, la
sécurité de toutes les techniques

de chiffrement pratiquement

applicables n'est basée
que sur des suppositions. L'auteur

estime que, tant que l'on ne
dispose pas de techniques
réellement sûres, les services
cryptographiques ne devraient pas
être normalisés et leur application

devrait être laissée à leurs
utilisateurs.

Dieser Aufsatz entspricht dem Vortrag,
den der Autor in englischer Sprache an der

Tagung «Sicherheitsaspekte in Datennetzen»

der Schweizerischen Vereinigung für
Datenverarbeitung gehalten hat. Die Übersetzung

besorgte dipl. El.-Ing. H.-A. Loeliger,
ETH Zürich.

Adresse des Autors
Prof. J.L. Massey. Institut für Signal- und
Informationsverarbeitung, ETH-Zentrum,
8092 Zürich.

1. Einführung
Datensicherheit im hier verwendeten

Sinn umfasst Geheimhaltung,
Authentizität und Integrität von
Nachrichten, die in einem digitalen Datennetz

ausgetauscht werden. Geheimhaltung

bedeutet, dass nur die beabsichtigten

Empfänger die Nachricht in
verständlicher Form erhalten können.
Authentizität bedeutet, dass den
beabsichtigten Empfängern die wahre
Identität des Senders bekannt gemacht
wird. Integrität bedeutet, dass der
Inhalt der Nachricht während der
Übermittlung durch das Netz in keiner Weise

verändert wird. Manchmal wird der
Begriff der Datensicherheit erweitert
um «Geheimhaltung von Diensten»
(d.h. die Tatsache, dass die Einheit A
der Einheit B eine Nachricht sendet,
darf der Einheit C nicht bekannt
werden) und um «Authentizität von Diensten»

(d.h. keine andere Einheit darf in
der Lage sein, sich für eine Netz-ein-
heit auszugeben, um Nachrichten zu
ändern, zu verzögern, zu verdoppeln
oder zu zerstören). Diese weiteren
Aspekte der Datensicherheit gehen
aber über den Rahmen dieses Beitrags
hinaus.

Die Wissenschaft oder auch Kunst
der Kryptographie hat zum Hauptziel,
die Geheimhaltung, Authentizität und
Integrität von Nachrichten sicherzustellen.

Man sollte daher meinen, dass

man, um Datensicherheit in einem
Computernetz zu erreichen, nur die
geeigneten Chiffriertechniken wählen
und sie an den am günstigsten
scheinenden Stellen in der Netzstruktur
implementieren muss. Ein grosser Teil
der gegenwärtigen Diskussion (über
welche das «IEEE Communications
Magazine» vom Juli 1985, das ganz
der Datensicherheit gewidmet ist,
einen guten Überblick gibt) konzentriert

sich auf die zweite Frage, d.h. in
welchen Schichten des ISO-Referenz-
modells die verschiedenen kryptogra-
phischen Dienste angeboten werden
sollten. Viel weniger Aufmerksamkeit
wird der ersten Frage gewidmet, d.h.
der Frage, welches die geeigneten

Chiffriertechniken sind. Diese wird
ganz ähnlich gestellt, wie man etwa
nach geeigneten Techniken zur
Fehlerkontrolle fragen könnte; tatsächlich
besteht aber ein grundlegender
Unterschied. Für irgendeine gegebene, in
der Praxis verwendbare Technik zur
Fehlerkontrolle kennt man das damit
erreichbare Zuverlässigkeitsniveau,
wenn auch nicht immer der beste Code
bekannt ist. Hingegen gibt es keine

praktikable Chiffriertechnik, deren
Sicherheitsniveau heute abgeschätzt
werden kann. Im nächsten Abschnitt
wird diese Behauptung genauer erläutert

und im letzten Abschnitt deren
Bedeutung für die Netzwerkstandardisierung

betrachtet.

2. Das Chaos in der
Kryptographie
Die Techniken der Chiffrierung

basieren auf drei Typen von mathematischen

Funktionen, nämlich
1. Einwegfunktionen,
2. Trapdoor-Einwegfunktionen
3. Schlüssel-Einwegfunktionen.
Die beiden ersten Funktionstypen

wurden von Diffie und Hellman [1] in
ihrer bahnbrechenden Arbeit eingeführt,

die das neue Gebiet der Public-
Key-Kryptographie begründete. Der
dritte Funktionstyp wird schon lange
implizit in der klassischen oder Secret-
Key-Kryptographie gebraucht, wurde
aber erst kürzlich explizit von uns
eingeführt [2].

Sehliessen

a
Oeffnen

Fig. 1 Das mechanische Analogon einer
Einwegfunktion

Mit dem Schlüssel kann nur geschlossen, nicht
aber geöffnet werden.
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Galois-Körper und Kryptographie
Die mathematische Theorie der endlichen

Körper ist die Grundlage der Theorie
der fehlerkorrigierenden Codes und spielt
auch in der Kryptographie eine wichtige
Rolle.

Ein Körper (engl, field) besteht aus
einer Menge F von Elementen («Zahlen»)
und zwei Operationen, einer «Addition»
und einer «Multiplikation». Die Apostrophe

weisen daraufhin, dass den Begriffen
eine umfassendere, nicht auf Zahlenkörper

beschränkte Bedeutung zukommt. Die
Menge F muss ein Nullelement (0) und ein
Einselement 1 enthalten, und für die beiden

Operationen müssen die für die
normale Addition und Multiplikation gültigen

Gesetze, d.h. Kommutativgesetz,
Assoziativgesetz und Distributivgesetz
gelten. Zudem müssen für jedes a e F, a + 0,
sowohl (-a) als auch (1 /a) existieren, so
dass a + (-a) 0 und a-(l/a) 1. So
bilden z.B. die reellen Zahlen zusammen mit
der normalen Addition und Multiplikation

einen Körper. Weitere bekannte Körper

sind die rationalen Zahlen und die
komplexen Zahlen. Die ganzen Zahlen
stellen hingegen keinen Körper dar, weil
der Kehrwert aller ganzen Zahlen ausser
1 und -1 keine ganze Zahl ist.

Ein endlicher Körper, auch Galois-Körper

genannt, ist ein Körper, dessen

Elementmenge F («Zahlenmenge») endlich

ist. Alle bisher erwähnten Körper sind
nichtendliche Körper, weil es unendlich
viele rationale, reelle und komplexe Zahlen

gibt. Hingegen bilden z.B. die ganzen
Zahlen 0,1,2,3,4 einen Körper, wenn alle
Additionen und Multiplikationen modulo
5 ausgeführt werden. In diesem Körper
gelten z.B. folgende Gleichungen und
Ableitungen, wie aus Figur Fl leicht
ersichtlich ist:

4 + 1=0 — - 4= 1—3-4 3+ 1 =4;
2 • 3 - 1 — '/2 3 - Vi =3-3 =4.

Aus diesen und ähnlichen Ableitungen
kann man zeigen, dass -1 4, -2 3,
-3 2 und Vi 3, Vi 2, Vi 4 ist.

Allgemein gilt, dass die ganzen Zahlen
0...p-l zusammen mit Addition und
Multiplikation modulo p einen endlichen
Körper bilden, wenn p eine Primzahl ist.
Einen solchen Körper bezeichnet man mit
GF(p) (Galois /leid). Der kleinste
mögliche Körper besteht aus den Zahlen 0

und 1, wobei die «Addition» einer
ODER-Verknüpfung und die «Multiplikation»

einer UND-Verknüpfung
entspricht.

Eine Zahl a, 0 < a < p, wird primitives
Element im Körper GF(p) genannt, wenn
die Potenzen a', a\ a\ a.P~x alle von
Null verschiedenen Zahlen in diesem Körper

darstellen.
Beispiel: in GF (5) ist 3 ein primitives

Element, denn

3' =3
32 3-3 =4
33 3.32 3.4 2

34 3-33 3-2 =1

Die Funktion axist auch in sehr grossen
Körpern effizient berechenbar. Die
Berechnung der Umkehrfunktion (Logarithmus)

hingegen ist für grosse p (wenn einer
der Primfaktoren von p-1 gross ist) mit
den bekannten Algorithmen nicht zu
bewältigen. Man vermutet daher, dass f(x)

eAeine Einwegfunktion ist.

Eine Einwegfunktion ist eine Funk- F'g-2

tion /mit der Eigenschaft, dass fix) für Auf einer

_ ®
• Einwegfunktionalle x im Definitionsbereich von / basierendes

leicht berechnet werden kann, während

die Berechnung der Umkehrfunktion

/-' (y für praktisch alle y im
Wertebereich von / aufwandbedingt
undurchführbar ist. Die Figur 1 zeigt
das mechanische Analogon einer
Einwegfunktion. Diffie und Flellman
vermuteten, dass f(x) ax, 0 < x < p-2,
wobei a ein primitives Element in
GF(p) und p eine grosse Primzahl ist,
eine Einwegfunktion ist. Später wurde
diese Vermutung dahingehend
abgeschwächt, dass einer der Primfaktoren
von p-1 gross sein muss (s. Fenster
«Galois-Körper und Kryptographie»)
[3]. Diffie und Flellman zeigten auch,
wie mit dieser (mutmasslichen)
Einwegfunktion der öffentliche
Austausch von geheimen Schlüsseln
zwischen Paaren von Benützern eines
Netzes bewerkstelligt werden könnte.
Die Figur 2 zeigt, wie eine
Einwegfunktion verwendet werden kann, um
ein Authentizitätssystem aufzubauen,
welches einem Empfänger, der einen
geheimen Schlüssel z mit dem Sender
teilt, sowohl die Authentizität des Senders

als auch die Integrität der Nachricht

garantiert. Hingegen sorgt dieses

Authentizitätssystem
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Fig. 3 Das mechanische Analogon einer Trap-
door-Einwegfunktion

System nicht für Geheimhaltung, da
die Nachricht ja unchiffriert übertragen

wird. Die Parity-Check-Funktion
gz muss nur die Eigenschaft haben,
dass es zu jeder Nachricht m viele
mögliche Werte x gz (m) gibt; eine
lineare Funktion erfüllt sehr schön diese

Bedingung. Das System von Figur 2

erzeugt eine «Unterschrift» y für die
Nachricht m. Diese Unterschrift kann
vom Empfänger mit dem geheimen
Schlüssel z überprüft werden, aber
ohne z zu kennen, hätte niemand nur
mit der Kenntnis von m y erzeugen
können. Der «Feind» kann viele (m,
y)-Paare beobachten, aber die
Einwegfunktion hindert ihn daran, x zu
berechnen, und somit kann er nicht
bestimmen, welche Parity-Check-Funk-
tion verwendet wird.

Eine Trapdoor-Einwegfunktion ist
eigentlich eine Familie von invertierbaren

Funktionen fz, indiziert mit
einem Parameter z, so dass erstens,
wenn z bekannt ist, leicht effiziente
Algorithmen Ez und Dz zur Berechnung
von fz bzw. ff gefunden werden können,

aber zweitens bei Kenntnis von
Ez allein die Berechnung von/^1 (y) für
praktisch alle y im Wertebereich von fz
aufwandbedingt undurchführbar ist.
Die Figur 3 zeigt das mechanische
Analogon. Diffie und Hellman gaben
zwar die Definition einer Trapdoor-
Einwegfunktion an und zeigten, wie
damit ein Public-Key-Chiffriersystem
(Fig. 4) aufgebaut werden könnte, aber
sie wagten nicht einmal, einen
Vorschlag für eine solche Funktion zu
machen. Es blieb Rivest, Shamir und Ad-
leman (RSA) vorbehalten, die erste
mutmassliche Trapdoor-Einwegfunk-
tion vorzuschlagen [4]. Bei dieser
mutmasslichen Trapdoor-Einwegfunktion
besteht z aus drei positiven ganzen
Zahlen z (p,q, e). Dabei sind p und q
zwei verschiedene, grosse Primzahlen
(mindestens 100 Dezimalstellen), so
dass sowohl einer der Primfaktoren
von p-1 als auch einer der Primfakto¬

ren von q-1 gross ist. Die Zahl e muss
kleiner als das Produkt (p— 1 (g-1)
sein und darf mit diesem keinen
gemeinsamen Primfaktor haben. Der
Chiffrierexponent e und das Produkt
m — pq werden publiziert. Dies
entspricht der Veröffentlichung eines
Algorithmus zur Berechnung der RSA-
Trapdoor-Einwegfunktion fz (x) xe
mit 0 < x < m, wobei die Exponentiation

modulo m ausgeführt wird. Wer z
kennt, kann leicht den Kehrwert d von
e modulo (p— 1 (g-l) finden und somit
leichtff (y) yd berechnen, wobei die
Exponentiation wiederum modulo m
ausgeführt wird. Für e 3 ist die
Bestimmung von d der Faktorisierung
von m äquivalent. Es hat den
Anschein, dass jede Methode zur Berechnung

ff (y) für die meisten y der
Faktorisierung von m äquivalent ist, aber
weder ist dies bewiesen, noch ist
bewiesen, dass die anscheinend schwierige

Faktorisierung von m tatsächlich
inhärent schwierig ist (s. Fenster «Beispiel

zum RSA-Public-Key-Chiffrier-
system»).

Eine Schlüssel-Einwegfunktion ist
eine Familie von invertierbaren
Funktionen fz, die so mit einem Schlüssel z
indiziert ist, dass es erstens, wenn z
bekannt ist, einfach ist, effiziente
Algorithmen Ez und Dz zur Berechnung
von/z bzw. ff zu finden, aber dass es

zweitens - selbst dann, wenn eine
Black Box zur Verfügung steht, die zu
jeder Eingabe x augenblicklich fz (x)

berechnet - ohne Kenntnis von z für
praktisch alle y im Wertebereich von fz
aufwandbedingt undurchführbar ist,

ff (y) zu bestimmen. Die Figur 5 zeigt
das mechanische Analogon einer
Schlüssel-Einwegfunktion. Es dürfte
offensichtlich sein, dass man eine
Schlüssel-Einwegfunktion zum Aufbau

eines Secret-Key-Chiffriersystems
wie in Figur 6 verwenden kann, das
gegen eine Attacke mit wählbarem Klartext

(chosen plaintext attack) sicher ist,
d.h. eine Attacke, bei welcher der
feindliche Analytiker das Chiffrât für
jeden frei gewählten Klartext erhalten
kann. Es ist eine unter Kryptologen
verbreitete (aber nicht von allen geteilte)

Vermutung, dass das Data Encryption

Standard (DES) System [5] eine
Schlüssel-Einwegfunktion darstellt.
Die DES-Funktion hat eine Schlüssel z

von 56 bit; sowohl der Klartext x als
auch das Chiffrât sind 64 bit lang.
Man glaubt allgemein, dass Mehrfach-
chiffrierung des Klartexts mit mindestens

drei DES-Systemen mit verschiedenen

Schlüsseln die Sicherheit noch
erhöht, aber das ist nicht bewiesen.

Die einfach Wahrheit ist, dass heute
kein praktisch anwendbares und
beweisbar sicheres Chiffriersystem
irgendeines Typs existiert. Bis heute ist
weder eine Einwegfunktion noch eine
Trapdoor-Einwegfunktion, noch eine
Schlüssel-Einwegfunktion nachweisbar

demonstriert worden. Tatsächlich
gibt es bis heute keinen Beweis dafür,

Fig. 4

Auf einer
Trapdoor-Einwegfunk-
tion basierendes

Public-Key-Chiffrier-
system
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Beispiel zum
RSA-Public-Key-Chiffriersystem

A möchte B die Nachricht [1,1,0,0,1,0]
senden. Dazu wird die Nachricht als
binäre Zahl 110010 interpretiert. Die
entsprechende Dezimalziffer ist

x 32 + 16 + 2 50

In einem öffentlichen Verzeichnis findet

A, dass B die Werte e 17 und m
77 bekanntgegeben hat (bei einem
brauchbaren Chiffriersystem müsste m
viel grösser sein). A berechnet nun xe
50" modulo 77:

502 36
504 (502)2 362 64
50s (504)2 642 15

50'6 (508)2 1 52 71

50" 71-50 8

Also sendet A an B die Nachricht y
8, z.B. in der Form [0,0,1,0,0,0].

Der Empfänger B kennt als einziger
die Primfaktorzerlegung von m p-q
und konnte deshalb den Kehrwert d von
e modulo (p-1) (<?-l) berechnen. Damit
kann er nun über

(xe)d x(mod m)

die ursprüngliche Nachricht entschlüsseln.

Die Methode beruht auf dem
bekannten Satz aus der Zahlentheorie

x1 +k(P~l) (4-0 x(modpq)

wobei k eine beliebige ganze Zahl ist. Mit
p 7, q 11 und (p-l) (q-1) 60 lässt
sich mittels eines bekannten, effizienten
Algorithmus d 53 berechnen.

B empfängt y 8 und berechnet x aus
x yd modulo 77 mit

x 8»

82 64
84 (82 )2 642 15

88 (84 )2 1 52 71

8" (88 )2 712 =36
832 (g'6)2 362 64

x 8" 832 • 816 • 84 - 8 64-36-15-8 50

Damit hat B die richtige Nachricht
x 50 erhalten.

dass eine Funktion von irgendeinem
dieser drei Typen überhaupt existiert!
Vielleicht suchen wir nach nichtexistenten

Wesen. Im besten Licht
betrachtet, haben wir heute einige
Chiffriertechniken, deren Sicherheit gegen
diejenigen Attacken nachgewiesen
werden kann, die in der Vergangenheit
gegen andere Chiffriersysteme Erfolg
hatten. Es gehört eine beträchtliche
Portion Glauben dazu, anzunehmen,
dass wir tatsächlich «alle Löcher
verstopft» haben und dass unsere Systeme

den unorthodoxen Attacken nicht
erliegen werden, die wir von dem
wachsenden Heer der «Hacker» und
von denjenigen böswilligeren Personen

erwarten können, die von der
Möglichkeit grosser finanzieller
Gewinne angezogen werden, die sich aus
der widerrechtlichen Aneignung,
Änderung oder Zurückhaltung von
Information in ausgedehnten Computernetzen

ergeben können.

3. Einige Ansichten
Heute darüber zu diskutieren, wie

wir Chiffriertechniken in öffentlichen
Computernetzen einsetzen sollten, ist
für den Autor etwa das gleiche, wie
darüber zu diskutieren, wie ein Impfstoff

gegen Krebs zu verteilen wäre.
Das Beste, was man heute tun kann,
ist, vor gewissen Dingen zu warnen,
die das Krebsrisiko erhöhen. Ganz
ähnlich scheint es heute um die
Datensicherheit zu stehen; das Beste, was
man tun kann, ist, jedermann davor zu

Fig. 5 Das mechanische Analogon einer Schliis-
sel-Einwegfunktion

warnen, auf die Datensicherheit
öffentlicher Netze zu vertrauen. Es
scheint dem Autor grundsätzlich
falsch, Garantien für Datensicherheit
zu geben, die nur auf Vermutungen
beruhen; solche Garantien können Be-
nützer nur zu Unvorsichtigkeiten
verleiten, die sie sonst vielleicht vermeiden

würden.
Um die Sache in Begriffen des ISO-

Referenzmodells zu fassen: Der Autor
empfiehlt, vorläufig alle kryptographi-
schen Dienste der Applikationsschicht,

also dem Benützer selbst, zu
überlassen. Applikationseinheiten, die
geheime Nachrichten austauschen
wollen, werden die Schlüsselverteilung
selbst organisieren und selbst ihre
Lieblingschiffrier-Algorithmen bereitstellen

müssen. Dieser Mangel an
Standardisierung hat zwei Vorteile.
Erstens erschwert er die Aufgabe des

angehenden Eindringlings, und zweitens

vermindert er den Schaden, wenn
sich ein bestimmtes Chiffrierschema

Fig. 6

Auf einer
Schlüssel-Einwegfunktion

basierendes
Secret-Key-Chiff
riersystem
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als unsicher erweist.
Ein Impfstoff gegen Krebs scheint in

weiter Ferne zu liegen. Im Vergleich
dazu sind beweisbar sichere
Chiffriertechniken nach Meinung des Autors
schon fast in Reichweite. Auf
signifikantem Niveau betriebene, wirklich
wissenschaftliche kryptographische
Forschung im öffentlichen Sektor ist
weniger als ein Jahrzehnt alt - die
Arbeit von Diffie und Hellman [1] markiert

die Geburtsstunde der Kryptographie
als Wissenschaft, und seither wurden

viele Fortschritte gemacht. Zusammen

mit 1. Ingemarsson von der Linkö-

ping-Universität, Schweden, hat der
Autor kürzlich ein Secret-Key-Chiff-
riersystem mit nachweisbarer Sicherheit

gegen eine Attacke mit wählbarem
Klartext vorgestellt, das aber wegen der
astronomischen Dechiffrierverzögerung

völlig unpraktikabel ist [6]. Trotzdem

wagt der Autor jetzt die unbesonnene

Vorhersage, dass praktikable und
nachweisbar sichere Chiffriertechniken

innerhalb der nächsten zehn Jahre
erhältlich werden, und er nimmt mit
Nachdruck Stellung gegen irgendeine
Standardisierung, bevor solche Techniken

zur Verfügung stehen.
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