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Mechanische Eigenschaften und
Dauerverhalten von Glasfasern fiir die

optische Ubertragungstechnik

Th. Staub und P. Laeng

Ausgehend von bruchmechani-
schen Betrachtungen wird
gezeigt, wie auf experimentel-
lem Weg Aussagen iber die
Zuverlassigkeit von Glasfasern
fiir die optische Ubertragung in
Fernmeldenetzen gemacht wer-
den konnen. Die beziiglich
Bruchfestigkeit und Dauerver-
halten relevanten Faserparame-
ter werden erklart. Zudem wird
ein Verfahren fir die Durchfiih-
rung der Produktionskontrolle
vorgestellt.

En partant de considérations de
la mécanique de rupture, il est
démontré qu’il est possible de
déterminer la fiabilité des fibres
optiques pour réseaux de télé-
communication a I’aide de
moyens expérimentaux. Les
parametres importants liés au
comportement de rupture et de
la durée de vie des fibres sont
exposés. En plus une méthode
de contréle de production est
discutée.

Adresse der Autoren

Th. Staub, Dr. phil. nat., Hauptabteilung
Forschung und Entwicklung Generaldirektion
PTT, 3029 Bern, und P. Laeng, Dr. &s sc.,
Cabloptic SA, 2016 Cortaillod.

1. Einleitung

Die Wirtschaftlichkeit von Tele-
kommunikationssystemen hidngt we-
sentlich von der Lebensdauer und der
Zuverlassigkeit der einzelnen Kompo-
nenten ab. Im Falle optischer Ubertra-
gungssysteme gehdren dazu neben den
optoelektronischen  Sender-, Zwi-
schenverstiarker- und Empfiangerbau-
teilen auch die als Ubertragungsmedi-
um dienenden Lichtwellenleiterkabel.
Die Lichtwellenleiter bestehen im all-
gemeinen aus Quarzglas (amorphes
Si0:), das nach speziellen Verfahren
mit verschiedenen anderen Oxiden wie
P20s und GeO:2 dotiert und im Faser-
ziehprozess zu Glasfasern von mehre-
ren Kilometern Linge ausgezogen
wird. Die Herstellungstechnologie be-
herrscht man heute so weit, dass die
Ubertragungseigenschaften in den
Wellenldngenbereichen des 1. und 2.
optischen Fensters (850nm und
1300 nm) optimiert sind.

Die mechanischen Eigenschaften
und damit die Zuverlassigkeit und das
Dauerverhalten der Glasfasern sind je-
doch von ebenso grosser Wichtigkeit.
Auch diesbeziiglich konnten in den
letzten Jahren grosse Fortschritte er-
zielt werden. Dieser Aufsatz soll einen
Einblick in die Grundlagen des bruch-
mechanischen Verhaltens von Glasfa-
sern vermitteln und diese am prakti-
schen Beispiel der heute in der Pro-
duktionskontrolle {iblichen Testme-
thode, des Durchlaufpriifverfahrens,
erldutern.

2. Die mechanischen
Eigenschaften von
Glasfasern

2.1 Grundlegende Betrachtungen zur
sproden Natur von Glas

Obwohl die inhdrente mechanische
Festigkeit von Glas theoretisch sehr

hoch ist, wird sie in der Praxis durch
die sprode Natur des Materials stark
eingeschriankt. Bei spréden Materia-
lien tritt der Bruch bekanntlich prak-
tisch ohne plastische Deformation ein
und erfolgt bei Beanspruchungen, die
in der Regel weit unterhalb der theore-
tischen Belastbarkeit liegen. Fiir die
Zugfestigkeit von Quarzglas lésst sich
aus den Si-O-Kovalentbindungen
theoretisch ein Wert von 20 GPa
(20000 N/mm?) berechnen. Fir eine
Glasfaser mit einem Durchmesser von
0,125 mm ergibe dies eine Bruchlast
von etwa 245 N. Die bisher an Glasfa-
sern experimentell bestimmten Werte
liegen jedoch etwa um den Faktor 4
tiefer. Diese Diskrepanz wird allge-
mein mit der Existenz von Haarrissen
erklart. Sie treten in beliebiger Vertei-
lung oberflachlich oder im Glasinnern
auf und bewirken eine starke ortliche
Konzentration der Stressbeanspru-
chung (Fig. 1).

Die bruchmechanischen Modelle
zur Berechnung der Zugfestigkeit

—Q

=

g

Fig.1 Verlauf der Kraftlinien im Bereich einer
Rissspitze
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Fig.2 Idealisierte Rissform nach Inglis

sproder Materialien gehen auf Arbei-
ten von Inglis [1] und Griffith [2] zu-
riick. Inglis betrachtet den Fall eines
ellipsenférmigen Risses, der sich im
Innern eines Korpers befindet. Die an
diesem Korper angreifende Kraft
wirkt rechtwinklig zu der Ebene, in
welcher der Riss liegt, d.h. senkrecht
zur grossen Achse der Ellipse (Fig. 2).
Die an der Rissspitze wirkende Kraft
op kann dann berechnet werden mit:

ap=o(1+2 \/E) . (1)
p

Dabei ist o die dusserlich angelegte
Zugspannung, 2a die Linge der gros-
sen Ellipsenachse und p der Kurvenra-
dius an der Rissspitze. Fiir sehr schma-
le, nadelformige Risse gilt dann:

op=20 \/% )

Wenn die mechanische Beanspru-
chung an der Rissspitze gleich gross
oder grosser ist als die intrinsische
Zugfestigkeit oy, kann der Riss sich
ausbreiten und - falls sich die Rissspit-
zen dabei nicht abrunden (d.h. falls
das Verhiltnis a/p sich nicht verklei-
nert) - zum Bruch fiithren. Unter die-
sen Bedingungen gilt fiir die Bruchfe-
stigkeit oy

1
o-f=50l'\/% 3)

Die Bruchfestigkeit hdangt also nicht
nur von der Risstiefe, sondern auch
vom Rissspitzenradius p ab. Da es
aber praktisch unmoglich ist, Risse
und deren Entwicklung direkt zu be-
trachten, kann die Beziehung von In-
glis nicht iiberpriift werden. Aus die-
sem Grunde haben andere Autoren
nach Bruchkriterien gesucht, die den
Einfluss des Rissspitzenradius nicht
beriicksichtigen. Ausgehend von der
Gleichung von Inglis und unter An-
wendung thermodynamischer Argu-
mente berechnete Griffith die Bruchfe-
stigkeit fiir amorphe Stoffe wie Glas,
indem er das energetische Gleichge-
wicht eines elliptischen Risses in einer
flachen Platte betrachtete. Diese Platte
soll dann brechen, wenn die Energie-
zufuhr durch Dehnungsspannung jene
Grosse annimmt, die zur Bildung
neuer Oberfliche benétigt wird. Er
fand fiir das Bruchkriterium die Bezie-
hung:

2Ey
na

Of

“)

Darin bedeuten E das Elastizitits-
modul des betrachteten Materials, y
die Oberfldchenspannung und a die
Risstiefe. Die Bruchspannung ist so-
mit umgekehrt proportional zur Qua-
dratwurzel der Rissgrosse. Die Zugfe-
stigkeit eines Glask6rpers nimmt dem-
nach mit zunehmender Haarrissgrosse
ab.

Griffith definierte zudem einen
Stressintensitdtsfaktor Ki:

Ki=oYVa Q)

wobei o die am Priifkdrper angreifen-
de Zugspannung, Y eine die Rissform
charakterisierende Konstante (Y =1
fir elliptische Risse) und a die Risstie-
fe ist. Der Bruch tritt ein, wenn der
Stressintensititsfaktor einen kritischen
Wert K. annimmt:

Kic=V2Ey (6)

Man stellt fest, dass Kjin der Analy-
se von Griffith ein Mass fiir die Inten-
sitdt der Beanspruchung an der Riss-
spitze o, und K| ein Mass der intrinsi-
schen Zugfestigkeit o, darstellt. Aus (5)
und (6) kann fiir jede aussen angelegte

Zugspannung o eine kritische Risstie-
fe a. abgeleitet werden:

2Ey

“T Y02 ™

Unter Verwendung der Material-
konstanten fiir Quarzglas (E = 2 GPa,
y = 5,2 J/m?) ldsst sich nun fiir eine
Glasfaser von 0,125 mm Durchmesser
voraussagen, dass bei einer Zuglast
von etwa 10N ein Riss von 0,36 um
Tiefe bereits ausreicht, um einen
Bruch herbeizufiihren.

2.2 Die Zugfestigkeit von Glasfasern

Kehren wir nun nach dieser theore-
tischen Betrachtung zuriick zur Glas-
faser, wie sie in Telekommunikations-
systemen Verwendung findet. Bei der
Herstellung, bei der Verlegung und
wiahrend des Betriebs von Lichtwellen-
leiterkabeln spielt die Zugbeanspru-
chung der Glasfasern neben anderen
denkbaren Beanspruchungsweisen
(Biegung, Torsion, Stauchung, Quet-
schung) eine libergeordnete Rolle. Die
Zugfestigkeit ist daher in Diskussio-
nen liber mechanische Eigenschaften
von optischen Fasern ein iiblicher Be-
griff. In der Praxis ist die maximale
Dehnung, welcher eine Faser kurz-
und langfristig standhilt, eine kriti-
sche Grosse.

Wie eingangs erwdhnt, muss man
annehmen, dass bei Glasfasern das
Auftreten oberflichlicher Haarrisse
sehr wahrscheinlich ist. Als Begriin-
dung dafiir wird die dusserst rasche
Abkiihlung des Glases von etwa
2000 °C auf Raumtemperatur wihrend
des Faserziehprozesses herangezogen.
Man weiss, dass dabei im molekularen
Bereich in der Fasermantelzone grosse
Spannungen eingefroren werden, wel-
che sich bereits bei geringer mechani-
scher Beanspruchung durch Rissbil-
dung abzubauen suchen.

2.3 Risswachstum unter
Stresskorrosion

An kurzen Lingen juveniler, quasi
rissfreier Glasfasern wurden kurzzeitig
bereits Zugfestigkeiten bestimmt, die
nahe an den theoretischen Wert fir
Quarzglas (20 GPa) herankommen.
Solch hohe Zugfestigkeiten sind je-
doch nur unter Ausschluss von Luft-
feuchtigkeit — in hohem Vakuum oder
in fliissigem Stickstoff - messbar. Bei
Normalbedingungen erhdlt man we-
sentlich tiefere Werte. Es ist deshalb
anzunehmen, dass in Gegenwart von
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Feuchtigkeit und mechanischer Bela-
stung ein Mechanismus spielt, der
Glasfasern in Abhéngigkeit von der
Zeit mechanisch schwicht. Man be-
zeichnet diese Erscheinung als Stress-
korrosion. Die befriedigendste Theo-
rie zur Erkldrung dieses Ermiidungs-
phédnomens wurde durch Charles und
Hillig [3; 4] formuliert. Sie nehmen an,
dass das Quarzglas durch Wasser che-
misch angegriffen wird. Die Reak-
tionsgeschwindigkeit (Risswachstum)
nimmt mit der mechanischen Bean-
spruchung zu. Charles [5] verwendet
ein Exponentialgesetz, um die Abhin-
gigkeit der Reaktionsgeschwindigkeit
als Funktion der Zugspannung auszu-
driicken:

v=kop + kior (8)

wobei n, k und ki, materialabhingige
Konstanten sind. Der Ausdruck kiorr
(Risswachstum ohne Zugspannung, o,
= 0) ist viel kleiner als das Risswachs-
tum durch Stresskorrosion und kann
somit vernachldssigt werden. Die Be-
ziehung lautet dann vereinfacht:

v=koy ©)

Unter der Annahme, der durch Grif-
fith eingefiihrte Faktor K| sei ein Mass
fiir die Stressintensitdt an der Rissspit-
ze, kann man schreiben:

v=AK! (10)

Wobei A eine neue Materialkonstante
ist. Der Exponent n wird Stresskorro-
sions-Suszeptibilitit genannt, er ist
umgebungsabhéngig. Bei inerten Be-
dingungen (Ausschluss von Wasser-
dampf, sehr tiefe Temperaturen) gibt
es kein Risswachstum. Damit sind die
mathematischen Zusammenhinge fir
die Beschreibung des mechanischen
Verhaltens von Glasfasern unter Zug-
beanspruchung bekannt. Anhand der
Gleichungen (6) und (8) kann nun die
Beziehung zwischen der Lebensdauer
einer Glasfaser und der statischen Be-
anspruchung gefunden werden.

Im Prinzip ldsst sich die Lebens-
dauer einer Faser bestimmen, indem
man die Faser mit einer definierten
Zugspannung belastet und die Zeit bis
zum Bruch misst. Die Lebenserwar-
tung der gleichen Faser in gleicher
Umgebung  (Versuchsbedingungen)
kann dann in Funktion der Zugbean-
spruchung extrapoliert werden.

Eine andere Methode fir die Be-
stimmung der Lebensdauer von Glas-
fasern basiert auf dynamischen Bela-
stungsversuchen. Ein wesentlicher
Vorteil dieser Methode stellt der Zeit-
gewinn gegeniiber den unter Umstén-
den sehr lange dauernden statischen
Zugpriifversuchen dar. In einem wei-
teren Schritt sollen nun die Verhéltnis-
se bei statischer und dynamischer Zug-
beanspruchung betrachtet werden.

2.4 Statische Zugbeanspruchung von
Glasfasern

Bei einer Faser, die statisch mit der
Zugspannung o, beansprucht wird,
kann die Zeit bis zum Bruch berechnet
werden mit:

d
v= H% — AYroran? )
Integration der Differentialglei-
chung ergibt
a(t) L
fa‘"/zda=/AY"Gs"dt’ (12)
ai 0

wobei a; die urspriingliche Risstiefe
ist; es gilt weiter:

a(t)‘"/2+[—ar"/2+l= (_%+1) AY" ot (13)

Eine statisch mit o, belastete Faser
bricht nach der Zeit t;, wenn die Riss-
grosse a(t) einen kritischen Wert ac
angenommen hat. Fir a. gilt (Gl. 7):

Kic )2 (14)

ac=(To_;

mit Kj. als kritischem Stressintensi-
tatsfaktor (Gl. 6).

Die urspriingliche Risstiefe a; kann
mit der Zugfestigkeit o; der Faser in in-
erter Umgebung (unter Ausschluss von
Wasserdampf) in Beziehung gesetzt
werden:

o ch 2
ai Yo

Substitution von (14) und (15) in
(13) ergibt dann die Zeitdauer bis zum
Brucheintritt:

(15)

o;(n-2) —g(n-2)

s = 16
; = (16)
worin
2
(16a)

B=
(n-2) AY ’K;n-2

Im Falle von Quarzglas ist n einiges
grosser als 10, so dass bei Belastung
einer Faser mit weniger als 90% ihrer
inerten Zugfestigkeit gilt:

n-2
t= ac;sn a7
und

logt; = -n logo, + logk, (17a)
wobei

ks= Bon-2 (17b)

Gleichung (17) stellt nun die Grund-
gleichung dar, mit der die Lebens-
dauer fs einer Glasfaser unter stati-
scher Zugbeanspruchung oy beschrie-
ben wird (vgl. Fig. 3). Allerdings miis-
sen die Werte fiir n und B sowie fiir die
inerte Zugfestigkeit o; der betreffen-
den Faser bekannt sein. Diese Parame-
ter lassen sich, wie wir spiter sehen
werden, anhand von dynamischen
Zugpriifversuchen bestimmen. Nach
bisher bekannten experimentellen Be-
funden variiert die Stresskorrosions-
Suszeptibilitdt n, je nach Umgebungs-
bedingungen und Fasertyp, im Bereich
von 14 bis 40, B von 1 bis 10-2 GPa2s.

log ts
A
Wiog ks

Steigung:-n

109 g

Fig.3 Lebensdauer s einer Glasfaser unter stati-
scher Zugbeanspruchung

Gleichung (17)
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2.5 Dynamische Zugbeanspruchung

Bei dynamischer Zugpriifung wird
eine Glasfaser mit einer linear zuneh-
menden Zugspannung o(f) belastet:

o= ft (18)

wobei f die Abzugsgeschwindigkeit
und ¢ die Zeit ist. Die Differentialglei-
chung fiir die Rissgrosse a lautet dann:

da
=— = AYnfBntnq?
V=3 prira (19)
Integration ergibt
a(t) t
da
‘/\m =AY"ﬂ"'/t"'dt (20)
aj 0
Somit gilt
B e 2-n 1 (Bryn+l
1-n/2_41-n/2= _Z_ " —
8 a 2040 AT B @n

Eine dynamisch mit o = fit belastete
Faser bricht nach der Zeit 14, wenn die
Rissgrdsse a(t) einen kritischen Wert
a. angenommen hat. Dabei ist t4 die
Zeit, die zwischen dem Belastungsbe-
ginn und dem Brucheintritt. ver-
streicht. Man kann grundsitzlich zwei
verschiedene Brucharten unterschei-
den: Bei der einen nimmt die Risstiefe
bis zum Brucheintritt praktisch nicht
zu, a(tg) = ai, bei der anderen nimmt
sie zu, a(tq) > ai. Die Bruchfestigkeit
der ersten Sorte ist die sogenannte in-
erte Bruchfestigkeit o;:

ch
YVa

oi=fta= (22)

Wenn ein Riss sich dagegen vor
Brucheintritt ausdehnt und damit a(t4)
im Vergleich zu a; gross ist und n gros-
ser als 14 ist, kann a(t4) in (21) ver-
nachléssigt werden. Fiir die Zugfestig-
keit gilt in diesem Falle die Beziehung:

n-2
2(n+1)

od = fitd = [(ﬂai 1"’/2)/( AY")] n—1+1 (23)

und mit Hilfe von (16a)

1

04 = Bta = { BBoin-2 (n+1)} "+ (23a)

1 : 1
— Tog kd Steigung: Fve

=109 B

Fig.4 Zugfestigkeit o4 als Funktion der Abzugs-
geschwindigkeit

Gleichung (25)

Die Zuggeschwindigkeit 4, bei wel-
cher der Bruch ohne Risswachstum er-
folgt, kann mit Hilfe der Gleichung

(23a) anndherungsweise berechnet
werden, indem o; = g4 gesetzt wird:
o3

Soll nun experimentell die inerte
Zugfestigkeit o; ermittelt werden, so
muss die Abzugsgeschwindigkeit f >
fBa sein. Gleichung (23a) kann auch ge-
schrieben werden als:

1 1
logog = -1 logp+ —1 logks (25)
wobei
kd=(n+1)-B-0'i"-2 (253)
und aus Gleichung (17b)
logk, =logks - log (n+1) (26)

Da man nun die Zugfestigkeit oq als
Funktion der Abzugsgeschwindigkeit
p gemessen hat, kann man mit Hilfe
der Gleichung (25) die Werte fiir n und
mit Hilfe von Gleichung (25a) jene fiir
Boin-2 bestimmen (Fig.4). Somit ste-
hen nun alle zur Bestimmung der Le-
bensdauer einer Faser (Gl. 17) notwen-
digen Parameter zur Verfiigung.

3. Zugfestigkeits-
verteilungen von Glasfasern

In den vorangehenden Abschnitten
sind die mathematischen Zusammen-
hinge zwischen den fiir das mechani-
sche Verhalten von Glasfasern mass-
geblichen Parametern aufgezeigt wor-
den.

Fihrt man nun an Glasfasern me-
chanische Experimente durch, so stellt
man sehr rasch fest, dass diese im Ge-
gensatz etwa zu Stahldraht oder
Kunststoffilamenten keine leicht defi-
nierbare, in einem engen Bereich va-
riierende Zugfestigkeit aufweisen. Fir
die starke Streuung der Zugfestigkeit
von Glasfasern ist, wie man ohne wei-
teres einsehen kann, das Phidnomen
der Stresskorrosion, das unter gewis-
sen Voraussetzungen zum Anwachsen
anfinglich vorhandener, kleinster Ris-
se flihrt, mitverantwortlich. Es gibt je-
doch noch andere Griinde dafiir, auf
die wir jetzt eingehen wollen.

Alle bisherigen Beobachtungen be-
ziehen sich nur auf einen einzelnen, in
einer gewissen Glasfaserlinge auftre-
tenden Riss. In Wirklichkeit enthilt
ein bestimmter Faserabschnitt eine un-
definierte Anzahl Defekte von unter-
schiedlicher Ausprdgung, Grosse und
Form, die in beliebiger Verteilung iiber
die betrachtete Faserldnge verteilt auf-
treten. Die Zugfestigkeit eines Faser-
abschnitts wird durch den Einfluss des
grossten, darin enthaltenen Defekts
bestimmt. Sie wird damit von der ge-
priiften Faserlinge abhingig, da die
Wahrscheinlichkeit des Auftretens
eines solchen mit zunehmender Faser-
lange steigt. Zu der durch Stresskorro-
sion verursachten Zeit- und Umge-
bungsabhingigkeit tritt somit die Ldn-
genabhingigkeit der Zugfestigkeit von
Glasfasern, ein Faktor, der die mecha-
nische Priifung von Glasfasern we-
sentlich kompliziert. Die Zugfestigkeit
einer Glasfaser wird dadurch zu einer
statistischen Grosse, die nur unter Zu-
hilfenahme statistischer Methoden er-
fasst werden kann.

In Fillen, bei denen Bruch zum Ver-
sagen von Komponenten fiihrt, stellt
die Weibull-Statistik ein geeignetes
analytisches Instrument zur Verarbei-
tung und Interpretation experimentel-
ler Werte dar. Die meisten Autoren
verwenden sie denn auch zur Abschit-
zung der bei verschiedenen mechani-
schen Beanspruchungen, Expositions-
zeiten und Faserlingen zu erwarten-
den Fehlerraten.

Weibull [6] geht von der Annahme
aus, dass die Uberlebenswahrschein-
lichkeit eines Priiflings bestimmter
Lénge durch Multiplikation der Uber-
lebenswahrscheinlichkeit aller seiner
(infinitesimalen) Elemente bestimmt
werden kann. Die durch Weibull her-
geleitete Beziehung zwischen der
Bruchwahrscheinlichkeit F und der
Bruchbeanspruchung o lautet:
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F=l-exp { (aio)m(Lio)]

Darin ist m der Weibull-Vertei-
lungsformfaktor, er entspricht der
Steigung der Weibull-Kurve. L ist die
Priiflingslédnge, oy die Beanspruchung,
welche bei einer Einheitspriiflingslan-
ge L einer Bruchwahrscheinlichkeit
von F = 0,63 entspricht (F =
1-exp(-1) = 0,63). Ein dhnlicher Aus-
druck gibt die Beziehung zwischen
Bruchwahrscheinlichkeit F und Expo-
sitionsdauer ¢t wieder:

o]

wobei b ein mit der Stresskorrosions-
suszeptibilitit zusammenhdngender
Parameter ist. Die Kombination von
(27)und (27a) ergibt dann:

oo (2 1) (2)

(27b)

(27a)

Fir eine bestimmte Fehlerwahr-
scheinlichkeit ldsst sich nun aus der
Bruchbeanspruchung o, der Priiflings-
linge L; und der Expositionsdauer ¢,
die Beanspruchung o3 einer Priiflings-
lange L, und einer Expositionsdauer f;
berechnen:

oML, =o'ty L, (28)

Nach empirischer Ermittlung der
Werte von m und b fiir einen bestimm-
ten Fasertyp in experimentell prakti-
kablen Belastungs-, Zeit- und Lingen-
bereichen kann dann auf lange Faser-
langen und Expositionszeiten extrapo-
liert werden. Fiir die Extrapolation
iiber einige Grossenordnungen darf
angenommen werden, dass m und b
echte Konstanten sind. Die experi-
mentellen Daten lassen sich in soge-

nannten  Weibull-Verteilungskurven
darstellen, indem die kumulierte
Bruchwahrscheinlichkeit gegen die

Bruchlast beziehungsweise die Bruch-
dehnung aufgezeichnet wird. In Fi-
gur 5 ist der allgemeine Fall einer Wei-
bull-Kurve wiedergegeben. Der Kur-
venverlauf gibt indirekt die Vertei-
lungscharakteristik der Rissgrossen
wieder. Die Mehrheit der Proben

F %]
A
991 ;
—kleine Defekte
104
~—grosse Defekte
= o[kN/mnZ]
1 2 345

Fig.5 Versuchsergebnisse in einer Weibull-Ver-
teilungskurve

bricht bei hoher Beanspruchung infol-
ge zahlreicher vorhandener kleiner
und kleinster Risse. Eine kleine An-
zahl der Priiflinge beinhaltet grosse
Risse, die schon bei geringer Bean-
spruchung zum Bruch fiihren.

Fiir die Praxis ist naturgemaiss das
untere Ende einer Weibull-Kurve von
Bedeutung, da die Wahrscheinlichkeit
des Auftretens grosser Risse mit zu-
nehmender Faserldnge ansteigt. Streng
genommen miisste die Weibull-Vertei-
lungskurve immer einer geraden Linie
mit der Steigung m entsprechen (mo-
nomodale Verteilung). In Wirklichkeit
ist dies meist nicht der Fall, da in der
Regel mehrere Defektpopulationen
unterschiedlicher Pridgung auftreten,
was zu bi- oder mehrmodalen Vertei-
lungen fiihrt.

4. Durchlaufpriifverfahren

Durchlaufpriifverfahren erlauben
es, eine Garantie der mechanischen
Festigkeit einer optischen Faser zu ge-
ben, wie sie handelsiiblich verlangt
wird. In diesen Verfahren wird die ge-
samte Faserlinge einer mechanischen
Beanspruchung unterzogen, die gros-
ser ist als jene, die wihrend der Kabel-
herstellung, der Kabelverlegung und
dem Anlagenbetrieb zu erwarten ist.
Dadurch eliminiert man alle Faserab-
schnitte, deren mechanische Festigkeit
dem im Priifverfahren gewdhlten Be-
anspruchungsniveau nicht gentigt.

Die Priifbeanspruchung kann als
Zugspannung, als Biegespannung
oder als Biegezugspannung erfolgen.
Die Figur6 zeigt das Prinzip einer
Durchlaufpriifanlage. Die Faser wird
von der Spule a abgewickelt und auf
die Spule b aufgewickelt. Die Zug-
spannung wird zwischen den Zylin-
dern E und F der beiden Kapstanele-
mente e und f angelegt. Die Ab- und
Aufwickelspannung der Faser wird
durch zwei bewegliche Rollenspiele ¢

und d geregelt und durch Verwendung
von Doppelkapstansystemen von der
Priifzugspannung unabhingig ge-
macht. Diese wird dadurch realisiert,
dass die beiden Zylinder E und F mit
leicht verschiedenen Winkelgeschwin-
digkeiten angetrieben werden. Die mo-
mentane Zugspannung wird mit Hilfe
einer auf der Achse der freien Rolle m
montierten Kraftmesszelle kontrol-
liert. Dieses Signal dient gleichzeitig
der Regelung der Drehgeschwindig-
keit der beiden Zylinder E und F, so
dass die gewiinschte Zugspannung
konstant gehalten werden kann. Die
Zylinder E und F sind mit einer kau-
tschukartigen Beschichtung versehen,
welche den Haftreibungskoeffizienten
zwischen Faser und Zylinderlauffli-
chen erhoht, um das Gleiten der Faser
zu verhindern. Der Durchmesser der
Messrolle m wird so gross gewihlt,
dass die Biegespannung gegeniiber der
angewendeten Zugspannung vernach-
lassigbar ist. Die Abwickelspannung
betrdgt maximal 10% der Prifzugspan-
nung, und die Aufwickelspannung
entspricht dem minimalen, fiir die
nachfolgende Verwendung der Faser
(Lagerung, Versand, Biindelversei-
lung) geeigneten Wert. Die Versuchs-
dauer ist durch die Durchlaufge-

schwindigkeit bestimmt.

Die Durchlaufpriifung wird ge-
wohnlich bei Normalbedingungen (21
+2°C, 55%10% relative Feuchte)
durchgefiihrt. Bei optischen Fasern fiir
normale Anwendungen wird die Zug-
spannung mit 5 N (0,406 GPa) festge-
legt, was etwa einer Faserdehnung von
0,56% entspricht. Ausgedriickt in Riss-
tiefen garantiert dieses Beanspru-
chungsniveau laut (7), dass eine Faser,
welche diese Priifung bestanden hat,
keine Risse enthilt, deren Tiefe 0,2 pm
iibersteigt.

Falls die Werte von B und n be-
kannt sind, konnen die Beziehungen
(16) und (17) verwendet werden, um
die minimale Lebensdauer ohne Bruch
einer derart gepriiften Faser abzu-
schétzen, die im Betrieb stdndig einer

Fig.6 Prinzipschema eines Durchlauftests
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bestimmten Zugbeanspruchung ausge-
setzt ist. Fiir eine Faser, die der Durch-
laufpriifung unterzogen wurde, gilt
dann: o; > 0., wobei o; die anfingliche
mechanische Festigkeit der Faser nach
der Priifung und o. die Priifzugbean-
spruchung ist. Unter diesen Bedingun-
gen kann die Gleichung (16) formu-
liert werden als:

O-en-Z

s> B
o"

(29)

Diese Beziehung ist nicht nur von
der Linge der Faser, sondern auch von
deren Bruchfestigkeit in inerter Umge-
bung sowie von der Dauer der Durch-
laufpriifung und der Umgebung, in
welcher diese durchgefiihrt wurde, un-
abhdngig. Die Figur7 zeigt Kurven
der minimalen Lebensdauer ohne
Faserbruch in Abhéngigkeit der wah-
rend des Betriebs wirkenden Zugkraft,
die fiir drei verschiedene Priifzugspan-
nungen berechnet wurden. Der Wert
der Stresskorrosions-Suszeptibilitdt n
= 25, der fiir die Berechnungen ver-
wendet wurde, konnte anhand von dy-
namischen Zugversuchen an einer Fa-
ser der Standardproduktion experi-
mentell ermittelt werden. Die Mate-

rialkonstante B wurde unter Verwen-
dung einer empirischen Beziehung be-
rechnet, die aus Ergebnissen der Mes-
sung von B und n durch Kalish et al.
[7] abgeleitet werden kann und B in
Funktion von n wiedergibt:

294 . 19
B(n) = 94 - 10 Pa’s

 (n-2)-1,28" 6o

Man stellt fest, dass die minimale
Lebensdauer einer Faser (ohne Bruch),
welche die Durchlaufpriifung bei 5 N
bestanden hat, tiber 1000 Jahre be-
tragt, falls die permanent auf die Faser
wirkende Zugkraft 1,5 N nicht iiber-
steigt, dass sie sich jedoch bei Verdop-
pelung der Zugbeanspruchung auf
etwa | Stunde reduziert. Solche Infor-
mationen sind sehr niitzlich fiir die Be-
rechnung der Kabelstruktur und die
Bestimmung der Fabrikations-, Verle-
gungs- und Betriebsspezifikationen
eines Glasfaserkabels.

5. Schlussfolgerungen

In diesem Artikel sind alle theoreti-
schen Grundlagen, die zur Beschrei-
bung des mechanischen Verhaltens

von Glasfasern fiir Fernmeldeanwen-
dungen nétig sind, vorgestellt worden.
Daraus geht hervor, dass wegen der
statistischen und zeitabhéngigen Na-
tur des Bruchmechanismus von Quarz-
glas eine grosse Anzahl von Messun-
gen erforderlich sind, um die mechani-
schen Eigenschaften eines bestimmten
Fasertyps bei definierten Umgebungs-
bedingungen vollstdndig zu charakte-
risieren. Priifmethoden in der Art der
vorgestellten Durchlaufpriifung er-
moéglichen es indessen, eine gewisse
Lebenserwartung garantieren zu kon-
nen.

Optische Fasern der heutigen Pro-
duktion weisen, gemessen an kurzen
Priiflingen, Zugfestigkeiten von 60 bis
70 N auf und werden systematisch mit
5 N im Durchlauftest gepriift. Da die
Kabelstrukturen und die Kabelherstel-
lungsverfahren so ausgelegt sind, dass
wiahrend der Produktion, der Kabel-
verlegung und des Anlagenbetriebs die
maximalen Zugkrifte etwa 15% der
Priifzugbeanspruchung nicht iiber-
schreiten, ist die Zuverlissigkeit der
Glasfaserkabel als Ubertragungsmedi-
um gewabhrleistet.
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