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Transiente Kabelerwédrmung
bei zyklischer Belastung

U. Beyer

In einem zur Bestimmung tran-
sienter Kabelerwdarmungen ent-
wickelten Finite-Elemente-Ver-
fahren wurde bisher von sponta-
ner und irreversibler Bodenaus-
trocknung oberhalb einer vorzu-
gebenden Grenziibertemperatur
ausgegangen. Der zur Wasser-
verdampfung notige Zeitbedarf
wurde dabei vernachlassigt. Der
Autor berichtet iiber eine
Weiterentwicklung des Verfah-
rens, die eine Berticksichtigung
verzogerter Bodenaustrocknung
ermoglicht. Anschliessend wer-
den resultierende Uberlastbar-
keiten von Hochleistungskabeln
bei zyklischer Belastung vorge-
stellt.

Pour déterminer I’échauffement
transitoire des cables, on utili-
sait, jusqu’a présent, une
méthode a éléments finis par-
tant d’une dessiccation sponta-
née et irréversible du sol au-dela
d’une température limite don-
née, et cela en négligeant le
temps nécessaire a l’'évapora-
tion de I’eau. L’auteur décrit un
développement de ce procédeé,
qui tient compte d’un ralentisse-
ment de la dessiccation du sol,
puis les possibilités de sur-
charge de céables pour grandes
puissances, dans le cas d’une
charge cyclique.

Adresse des Autors
Dr. Ing. Uwe Beyer, Institut fiir Elektrische

1. Einleitung

In den letzten Jahren hat internatio-
nal die Diskussion eingesetzt, inwie-
weit Kabel iiberlastet werden diirfen.
Wihrend fir Dauerlast die hochstzu-
lassigen Temperaturen national und
international festgelegt sind, wurden
hinsichtlich von Uberlastungen noch
keine verbindlichen Festlegungen be-
ziiglich der zulédssigen Temperatur-
iiberhdhungen und der dazugehoren-
den Zeitspannen getroffen. Da aber
aufgrund des Prinzips der (n-1)-Re-
dundanz Hochleistungskabel in vielen
Féllen im normalen Betrieb nicht voll-
standig ausgelastet werden, ergibt sich
zwangsldufig die Moglichkeit zeitwei-
liger Uberlastungen, ohne die dauernd
zuldssigen  Leitertemperaturen  zu
iberschreiten.

Es erhebt sich also die Frage, welche
Uberlastungen iiber welche Zeitspan-
nen moglich sind, falls die betrachte-
ten Kabel vor der Uberlastung unter-
halb der zuldssigen Dauertemperatu-
ren betrieben worden sind.

Diese Frage bedingt, dass die ther-
mischen Widerstinde und Wirmeka-
pazititen des Kabels einschliesslich
seiner Umgebung erfasst werden. Da-
bei ist zu beriicksichtigen, dass es ober-
halb einer Grenztemperatur zur Bo-
denaustrocknung und damit zu einer
Verdnderung der thermischen Eigen-
schaften des Erdbodens kommt. Da
eine Temperaturmessung der auf
Hochspannungspotential befindlichen
Kabelleiter schwierig, wenn nicht so-
gar ausgeschlossen ist, verbleibt nur
die Moglichkeit einer rechnerischen
Abschitzung der in thermisch ungiin-
stigen Trassenabschnitten zu erwar-
tenden Kabelerwarmungen.

Im Rahmen eines von der Deut-
schen Forschungsgemeinschaft gefor-
derten Projektes wurde ein zweidimen-
sionales  Finite-Elemente-Verfahren
entwickelt, mit dem nicht nur stationa-
re, sondern auch transiente Kabeler-

moglicher Bodenaustrocknung be-
rechnet werden konnen [1; 2; 3; 4]. Bei
diesem Berechnungsverfahren wurde
bisher vereinfachend spontane irrever-
sible Bodenaustrocknung angenom-
men. Der zur Austrocknung nétige
Zeitbedarf wurde dabei vernachléssigt.
Inzwischen ist es gelungen, das Be-
rechnungsverfahren so zu verbessern,
dass es eine Beriicksichtigung verzo-
gerter Bodenaustrocknung erméglicht.
Im folgenden wird dariiber berichtet.

2. Beschreibung der zur
Bodenaustrocknung
fiihrenden thermisch-
hydrologischen Vorgiinge

Erdboden bestehen aus festen Parti-
keln unterschiedlicher Korngrossen
und Zwischenrdumen, die mit Wasser,
Wasserdampf und Luft gefiillt sind
(Fig. 1). Das Wasser umhiillt die Parti-

Erdpartikel

Wasser-Kapillar- Brucke

kuhlere
Wasserhulle

wdrmere
Wasserhulle

Dampf-

transport

Wasserrickstrom

Fig. 1 Schematische Darstellung einiger feuchter

Energieiibertragung, Universitit Duisburg, > Ve han Erdpartikel bei Vorhandensein eines Temperatur-
Postfach 101629, D-4100 Duisburg 1. wirmungen unter Berilicksichtigung  gradienten
Bull. SEV/VSE 77(1986)5, 8. Miirz (A 155) 251



kel, und die Wasserhiillen beriihren
sich gegenseitig, wobei sich sogenann-
te Wasserkapillarbriicken ausbilden.
Wenn man von Schwerkrafteffekten
absieht, kommt es in isothermen Erd-
bdden aufgrund der Oberfldchenspan-
nung des Wassers zu einer gleichmis-
sigen Feuchteverteilung.

Ein Temperaturgradient im Erdbo-
den fiithrt dazu, dass sich Wasserober-
flichen unterschiedlicher Temperatur
gegeniiberstehen. Aufgrund des damit
verbundenen Dampfdruckgefilles
kommt es daher zu einem Wasser-
dampftransport in Richtung des Tem-
peraturgefilles. Durch Kapillartrans-
port kann das Wasser zuriickfliessen.
Allerdings stellen sich u.a. aufgrund
von Fliesswiderstinden Gradienten
des Feuchtegehaltes ein. Bei Vernach-
lassigung von Schwerkrafteffekten
kann davon ausgegangen werden, dass
eine sich ausbildende stationire
Feuchteverteilung der sie hervorrufen-
den Temperaturverteilung dhnlich ist,
d.h. Isothermen sind auch Linien glei-
cher Feuchte.

Wird bei ansteigenden Kabelerwir-
mungen in einer Erdschicht eine kriti-
sche Grenziibertemperatur erreicht, so
kommt es durch den abnehmenden
Feuchtegehalt zu einem Abriss der
Wasser-Kapillar-Briicken.  Dadurch
wird der Wasserriickstrom unterbro-
chen, und die entsprechende Erd-
schicht trocknet durch den zunéchst
noch anhaltenden Wasserdampftrans-
port aus. Wie Versuche [5] gezeigt ha-
ben, ist eine Riickfeuchtung einmal
ausgetrockneter Erdschichten erst
moglich, wenn kein Temperaturgefille
mehr besteht, das einer Riickfeuch-
tung entgegenwirkt.

3. Beriicksichtigung des zur
Bodenaustrocknung notigen
Zeitbedarfes

Die beschriebenen Austrocknungs-
vorgidnge wurden im bisherigen Finite-
Elemente-Verfahren vereinfacht da-
durch beriicksichtigt, dass oberhalb
einer Grenzerwarmung spontane, irre-
versible Bodenaustrocknung ange-
nommen wurde. Die im folgenden
vorgestellte Uberlegung geht davon
aus, dass zur Austrocknung der die
Erdpartikel benetzenden Wasserhiil-
len Verdampfungswarme notig ist. Der
zur Austrocknung noétige Zeitbedarf
wird daher von der Bereitstellung der
Verdampfungswirme, d.h. von der
vorhandenen Warmestromdichte be-
stimmt.

Mit dem Massenstrom des Wasser-
dampfes ist iiber die in den Wassermo-
lekiilen gespeicherte Warmemenge ein
Wirmetransport verbunden. Daher
kann die maximal aus einem Volumen-
element abtransportierte Wassermen-
ge aus dem vorliegenden Wirmestrom
und dem spezifischen Energieinhalt
des Wasserdampfes abgeschitzt und,
wie im folgenden gezeigt, in einem
Feldberechnungsverfahren  beriick-
sichtigt werden.

Bei dem Finite-Elemente-Verfahren
nach [4] wird ein Trassenquerschnitt
durch dreieckige Elemente nachgebil-
det (Fig. 2), wobei innerhalb jedes Ele-
mentes von homogenen, isotropen
thermischen Eigenschaften und linear
ortsabhingiger Temperaturverteilung
ausgegangen wird. Die Temperatur-
verteilung innerhalb eines Elementes
bestimmt sich durch Interpolation aus
den zu berechnenden Temperaturver-
laufen der bei der Finite-Elemente-
Nachbildung entstehenden Netzkno-
ten:

9 (x,y,t)=N"(x,y) - Ix(1) (1)

9 (x,y,t) orts- und zeitabhidngige Tempe-
ratur im Dreieck,
transformierter Formfunktions-
vektor zur Beriicksichtigung der
Ortsabhingigkeit der Tempera-
turverteilung und

Vektor der Knotentemperaturen
des Elementes.

NT(x, y)

§K(t)

Der Formfunktionsvektor fiir ein fi-
nites Dreieck lautet bei einem linearen
Ansatz fiir die Temperaturverteilung

- | N
N = N]
Ns
1 [ Q2=p3) (x-x2) + (xa-x2) (y-y2)
= (3=y1) (x=x3) + (x1=x3) (»-y3) | (2)
(vi=y2) (x=x1) + (x2-x1) (»-y1)

wobei x;, y; die Koordinaten der Ele-
mentknoten sind und die Jakobi-
Determinante J den doppelten Fla-
cheninhalt des Dreiecks bildet:

J = (x2=x1) (53-y1) = (s=x) (12-31) )

Durch Anwendung der Finite-Ele-
mente-Theorie ergibt sich ein Glei-
chungssystem zur Bestimmung von
stationdren Temperaturverteilungen
(Ausgangsverteilung)

[K19 +f =0 )
und ein weiteres zur schrittweisen Er-

mittlung von thermischen Transient-
vorgingen:

([C]% .\I[K])E,,Hz

1

|
([Cl— -

- A1 [l\'])\‘),,— At (I”+_l);+|) (3)

[K] Konduktivititsmatrix
f Erregungsvektor

[C] Kapazitiatsmatrix

At diskrete Zeitschrittweite

Ausgehend von einer bereits be-
kannten Temperaturverteilung 9,
eines Zeitpunktes f, wird durch Lo-
sung von GI. (5) eine Temperaturver-
teilung 9,41 zum Zeitpunkt t,1 = 1, +

dtgewonnen.
Bei dem neuen Verfahren wird zur
Bestimmung von stationdren

Ausgangstemperaturverteilungen das
bisherige Modell angewendet, das zur
Festlegung der thermischen Leitfihig-
keit und Wiarmekapazitit des Erdbo-
dens von einem Zweischichtenmodell
(feucht/trocken) ausgeht:

_ Ar fur 9< 9
A l At fiir 9> 9o ©)

(co)¥ fiir 9< 9

(co)r fir 9> 9g )

(co) =

A thermische Leitfahigkeit
(cp) flachenbezogene Wirmekapazitit

Bei der Nachbildung von transien-
ten Austrocknungsvorgédngen wird die
Wirmekapazitit eines Elementes, des-
sen Temperatur iiber die kritische
Grenztemperatur 9g wéchst, schritt-
weise um den Betrag vermindert, der
sich aus dem abgeschétzten Dampf-
umsatz wihrend des zuriickliegenden
diskreten Zeitschrittes ergibt. Die ther-
mische Leitfahigkeit wird analog zu
der gednderten Warmekapazitit nach-
gefiihrt.

Der in einem gerade austrocknen-
den Element vorhandene Temperatur-
gradient besitzt die Komponenten

%zi = (2-13) 9 + -y R+ (1-y2) % (8)

9

By = (x3-x2) 1 + (x1-x3) D + (x2-x1) B3 (9)
Der aufgrund der thermischen Leit-

fahigkeit und des Temperaturgradien-

ten durch das Element transportierte

Wairmestrom ergibt sich zu
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3
09
gl T (YJ‘Yl)'a—y (x5 - xi)

- A
0= 3

j=1+mod(i,3) (10)

Die Abschitzung des maximalen
Wasserverlustes erfolgt durch die An-
nahme, dass dieser Warmestrom wih-
rend eines Zeitabschnittes At vollstdan-
dig in Form von Wasserdampf weiter-
transportiert wird, wobei sicherheits-
halber nur die Verdampfungswirme
beriicksichtigt wird. Die wihrend
eines Zeitschrittes maximal mogliche
Verringerung der flichenbezogenen
Wirmekapazitit eines Elementes be-
rechnet sich dann zu

2 cwQAL
ryJ

cw Wirmekapazitat von Wasser
rw Verdampfungswirme von Wasser

A(ep) | < (11)

Bei der Verminderung der Wirme-
kapazitdt und der thermischen Leitfa-
higkeit des Erdbodens ist zu beriick-
sichtigen, dass diese sich nur innerhalb
gewisser Grenzen dndern k6nnen, und
zwar innerhalb der Grenzen, die durch
feuchten bzw. ausgetrockneten Erdbo-
den bestimmt werden. Ausserdem ist
darauf zu achten, dass sich die Grenz-
isotherme fiir Bodenaustrocknung
nicht weiter als bei spontaner Boden-
austrocknung ausdehnen kann. Der
Feuchtegehalt der Erdelemente kann
somit implizit iiber die jedem Element
zugeordnete, flichenbezogene Wir-
mekapazitit nachgebildet werden, wo-
bei es sich eriibrigt, zusitzlichen
Speicherplatz fiir die Beriicksichtigung
des aktuellen Feuchtegehaltes bereit-
zustellen. Im Programmablauf werden
die Wiarmekapazititen und thermi-
schen Leitfahigkeiten der Erdelemente
nach jedem Zeitschritt aktualisiert.
Riickfeuchtung wird auch nach einer
langeren Abkiihlung nicht zugelassen.

Wie ein Vergleich mit Messergebnis-
sen zeigte, simuliert eine derartige Be-
riicksichtigung verzogerter Bodenaus-
trocknung nur knapp die Hélfte der in
Wirklichkeit auftretenden Zeitverzo-
gerung. Dies ist darauf zuriickzufiih-
ren, dass der durch Wasserkapillar-
transport mogliche Wasserriickstrom

a F—6m—

4m

Fig.2 Finite-Elemente-Anordnung zur Nachbil-
dung eines Trassenquerschnittes

a Erdboden mit zusitzlichen Randelementen
(schraffiert) zur Steuerung der Temperaturen
auf den strichpunktierten Randern
-—- kein Wirmedurchgang

b Kabelader (vergrossert herausgezeichnet)

bedingt auf der sicheren Seite liegen.
Mit diesem verbesserten Verfahren be-
rechnen sich die gleichen stationiren
Anfangs- und End-Temperaturvertei-
lungen wie bei Annahme spontaner
Bodenaustrocknung.

4. Transiente
Kabelerwiirmungen bei
Belastungsverdopplung

4.1 Einfacher Lastsprung

_In [4] wurden Hochleistungskabel
(Olpapier- und VPE-Kabel) unter-

schiedlicher Spannungsebenen (110,
220, 380 kV) hinsichtlich ihrer Uber-
lastbarkeiten bei Verdopplung anson-
sten konstanter Dauerlasten analy-
siert. Dabei wurde zum einen der Fall
eines in normalem Erdboden verlegten
Kabels beriicksichtigt und zum ande-
ren der Fall eines in einem bereichs-
weise thermisch stabilisierten Trassen-
querschnitt (Magerbeton) verlegten
Kabels betrachtet. Unter Annahme
spontaner irreversibler Bodenaus-
trocknung berechneten sich bei einer
Lastverdopplung nach einer vorausge-
gangenen Belastung mit 60% der
Dauerbelastbarkeit Uberlastbarkeits-
Zeitspannen zwischen 7 und 11 Tagen.
Die geringste Uberlastbarkeit ergab
sich bei einem in thermisch unstabili-
siertem Erdboden verlegten 110-kV-
Olpapierkabel. Dabei wurden als
oberste Temperaturgrenzen die giilti-
gen, hochstzuldssigen Dauertempera-
turen vorausgesetzt. '

Die technischen Daten der berech-
neten Kabelanlage gibt Tabelle I an.
Figur 2 zeigt die zu einer Nachbildung
des Trassenquerschnittes verwendeten
finiten Elemente. Im folgenden wird
fiir diese Kabelanlage ein Vergleich
von Kabelerwirmungen vorgenom-
men, die mit und ohne Beriicksichti-
gung der Zeitverzogerung bei Boden-
austrocknung berechnet wurden. Aus-
gehend von einem anfianglichen Aus-
lastungsgrad werden die Kabelerwir-
mungen untersucht, die sich nach
einer Belastungsverdopplung einstel-
len.

In Figur 3 sind die unter Beriicksich-
tigung zeitverzégerter Bodenaustrock-
nung berechneten Leitertemperatur-
verldufe durchgezogen und die unter
Beriicksichtigungspontaner Bodenaus-

Fig. 3
Leitertemperaturver-
lidufe eines in thermisch

/ //
// /
301180,/ | 701140

§0/120
' V., ; /

unstabilisiertes 140 -
Riickfiillmaterial (
gebetteten °C
110-kV-Olpapierkabels

bei Lastverdoppelung 100 }- /
Parameter ist das /(1 0072

Verhiltnis der
prozentualen

7/,
/
071602 /
ey 7 P 50/100

Auslastung (bezogen 60
auf die Dauer-

vernachléssigt wird und dass ein VOr-  pejagtbarkeit) vor und 3 /
handener Temperaturgradient nicht nach der Lastinderung ]
nur Dampftransport, sondern auch  ---berechnetunter i . 4 ‘ ]
Wairmeleitung zur Folge hat. Der Vor- Annahme spontan 7.5min. 1d w im  &m 2a
. . (oberhalb 35 °C) 0 1 2 k| 4
teil des vorliegenden Berechnungsver- Suftretendsr Bo. 0 10 10 10 10 10° h
fahrens besteht jedoch darin, dass es denaustrocknung -t -
ohne Kenntnis von erdbodenabhingi- _bl‘i‘nB‘;L‘:tcvk:r‘;(‘)“Lr 0
gen Diffusionskoeffizienten auskommt tger Bgoden- &
und Uberlastbarkeiten liefert, die un- austrocknung
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Technische Daten der Kabelanlage:
110-kV-Einleiterkabel mit Ol-Papier-Isolierung Tabelle 1 1,4(? T T m:zo085
: 100% g0,
120 ’ 7°0%
Kupfersegmentleiter | max. Leitertemperatur 85°C S
Leiterquerschnitt 1000 mm? 100 | ¢ lon Bhigh /
lfiillfaktor 0,85 80 A
Olkanaldurchmesser 16 mm /
Leiterwandstirke 13 mm 60 /
elektrische Leitfahigkeit 57 m/Qmm ‘9L.m0xw ,/
Temperaturkoeffizient el. Widerstand 0,0039 /K L+
thermische Leitfédhigkeit 395 W/Km 20 =
spezifische Warmekapazitit 3,47 Ws/cm’K 0 020406 0810 12
Olpapierisolierung Dicke 10 mm
Dielektrizititszahl 16 Smax -
Verlustfaktor 0,0025 Smox,BS“C
thermische Leitfahigkeit 0,2W/Km
spezifische Warmekapazitit . 2,27 Ws/cm*K Fig.4 Tageshichst-Leitertemperatur eines 110-
thermische Leitfahigkeit von Ol 0,14 W/Km kV-Olpapierkabels (Tab. I) bei zyklischem Tages-
spezifische Wirmekapazitit von Ol 1,50 Ws/cm?*K lastverlauf in Abhiingigkeit des Auslastungsgrades
Bleimantel Wanddicke 2,7 mm m = 0,85 Belastungsgrad, mittlere Ubertragungs-
thermische Leitfahigkeit 34 W/K m leistung bezogen auf die tégliche Spitzenleistung
spezifische Warmekapazitit 1,48 Ws/cm?*K
Mantelverlustfaktor 0,1
Korrosionsschutz Dicke 5Smm
thermische Leitfihigkeit 0,167 W/K m Bei ciner Dauerlastverdopplung
spezifische Wiarmekapazitit 1,64 Ws/cm*K von 60% auf 120% der Dauerbelastbar-
Verlegung Verlegetiefe 1,2m keit berechnet sich unter Beriicksichti-
AChsa.bStand o s 0,4m gung verzogerter Bodenaustrocknung
Erdboden therm!sche Le;tf?h%gkqt, feucht 1,LOW/Km eine Uberlastbarkeitszeitspanne, die
thermische Leitfahigkeit, trocken 0,4W/Km it 87 Taven 94 'k Teer als bl
Wirmekapazitit, feucht 2,00 Ws/ecm’K mit 3, gen um ger a's bel
Wiarmekapazitit, trocken 1.40 Ws/cm’K spontaner Bodenaustrocknung ist. Bei
Grenztemperatur Bodenaustrocknung 35°C einer Lastverdopplung von 70% auf
Umgebungstemperatur 20°C 140% vergrossert sich diese Zeitspanne
von 1,4 auf 1,9 Tage.
trocknung berechneten Leitertempera- 120
turverldufe gestrichelt (iiber log- '
arithmisch geteilter Zeitachse) aufge- °C o
tragen. Bei Beriicksichtigung verzoger- d /f, it j i
ter Bodenaustrocknung werden Aus- 100 - e
breitungsvorgdnge von  Austrock- 0 O , ]‘ LHHL \
nungszonen im Trassenquerschnitt A L
langsamer als bei spontaner Bodenau- 7
80 . {

strocknung stattfinden. Daher werden
zeitweilig hohere thermische Leitfihig-
keiten und Wérmekapazititen auftre-
ten, woraus geringere Leitertempera-
turen resultieren.

Die bei diesen Annahmen zuldssige
Uberlastbarkeitsdauer ergibt sich mit
Erreichen der zuldssigen Dauerlast-
temperatur von 85 °C. Es zeigt sich,
dass bei einer Beriicksichtigung zeit-
verzogerter Bodenaustrocknung in
einigen Fillen Uberlastbarkeitssteige-
rungen auftreten, dies immer dann,
wenn wihrend der Uberlastung eine
Ausweitung der Austrocknungszone
erfolgt. Bei hoheren Ausgangsbela-
stungen (von 80% der Belastbarkeit
und mehr) sind die Uberlastbarkeits-
zeitspannen so kurz, dass der von den
Kabeln ausgehende Erwdrmungsvor-
gang den Rand der Austrocknungszo-
ne nicht erreicht, so dass unverédnderte
Uberlastbarkeiten festgestellt werden.

o1

60 v 400
N k« b |a MVA
I ] I

(c'd’e'f)l.o i ?5 S v J'#%LJLJLLLJII}LUUML rrrrrry 200
a b S
20 0 (ab)

-7 0 7 1% d 2
f"to s

Fig.5 Ubertragungsleistung und resultierender Leitertemperaturverlauf eines 110-kV-Olpapierkabels
(Tab. I) bei einer Lastverdopplung von 60% auf 120% der Belastbarkeit

a
b
c

d
e

Ubertragungsleistung bei Dauerlastsprung

Ubertragungsleistung bei dynamischer Lastverdopplung

Leitertemperaturverlauf bei Dauerlastsprung u
nung

nter Beriicksichtigung verzégerter Bodenaustrock-

Leitertemperaturverlauf bei Dauerlastsprung unter Beriicksichtigung spontaner Bodenaustrocknung
Leitertemperaturverlauf bei dynamischer Lastverdopplung unter Beriicksichtigung verzogerter

Bodenaustrocknung

Leitertemperaturspitzen bei dynamischer Lastverdopplung unter Beriicksichtigung spontaner Boden-

austrocknung
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4.2 Lastverdopplung bei
zyklischer Last

Im weiteren werden die Uberlast-
barkeiten der gleichen Kabelanlage
(Tab.I) bei zyklischem Tageslastver-
lauf untersucht. Die Uberlastbarkeits-
dauer ist wiederum eine Funktion des
anfanglichen Auslastungsgrades der
Kabelanlage. In Figur 4 ist die jeweils
hochste Tagestemperatur in Abhén-
gigkeit des Auslastungsgrades darge-
stellt.

Nachdem das Kabel iiber einen lan-
gen Zeitraum mit gleichen Tageslast-
zyklen beansprucht wurde, kommt es
durch eine Abschaltung eines paralle-
len Betriebsmittels fiir das betrachtete
Kabel zu einer Lastverdopplung. Der
fiir zyklische Lastverdopplung unter
Berticksichtigung verzdgerter Boden-
austrocknung berechnete Leitertempe-
raturverlauf ist in Figur5 als dick
durchgezogene Kennlinie (e) iiber li-
nearem Zeitmassstab dargestellt. Von
dem fiir spontane Bodenaustrocknung
und zyklische Lastverdopplung be-

rechneten Temperaturverlauf wurden
nur die Temperaturspitzen (f) einge-
tragen. Bei einer zyklischen Lastver-
dopplung von 60% auf 120% ergibt
sich aufgrund verzogerter Bodenau-
strocknung mit 7,4 Tagen eine um
einen Tag lingere Uberlastbarkeits-
dauer. Bei einem Sprung von 70% auf
140% ergibt sich dagegen keine spiir-
bare Erhdhung der zyklischen Uber-
lastbarkeitsdauer (1,4 Tage).

Die Figur 5 erlaubt eine Gegeniiber-
stellung der Uberlastbarkeit bei zykli-
schem Lastverlauf und bei Dauerlast-
verlauf mit und ohne Austrocknungs-
verzdgerung. Die strichpunktierte Li-
nie (c) steht fiir einen Temperaturver-
lauf bei Dauerlastverdopplung mit Be-
riicksichtigung der Austrocknungsver-
zdgerung, wohingegen die gestrichelte
Linie (d) die Austrocknungsverzoge-
rung bei einer Dauerlastverdopplung
nicht beriicksichtigt. Es wird ersicht-
lich, dass die fiir spontane Bodenaus-
trocknung und Dauerlastverdopplung
berechneten Kabelerwdrmungen die

fiir Uberlastung bei zyklischen Last-
verlaufen unter Beriicksichtigung ver-
zogerter Bodenaustrocknung ermittel-
ten Leitertemperaturspitzen recht gut
anndhern. Damit erdffnet sich die
Moglichkeit, die in [4] fiir unterschied-
liche Spannungsebenen, Kabeltypen
und Grabenriickfiillmaterialien be-
rechneten Uberlastbarkeiten unverin-
dert auch als Uberlastbarkeiten bei zy-
klischen Lastverldufen anzunehmen.
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Diese Lampe bestimmt
den Leuchten-Stil von morgen.




t den neuen Lynx Kompakt-Leuchtstoff-

pen von Sylvania bietet sich die seltene
blegenheit, vollig neuartige Leuchten zu
twickeln, anzubieten oder zu gebrau-
en. Leuchten, die asthetisch und funktio-
Il Uberzeugen und die im Stromver-
auch den Anforderungen der Zukunft
brecht werden.

Kompakt, flach und dusserst sparsam

Stromverbrauch, verbessern sie die
htausbeute gegentber herkommlichen
uhbirnen um das Vierfache — und ihre
bensdauer ist flinfmal langer.

Lynx

Energiesparende Kompakt-Leuchtstofflampen mit breitem Einsatzspektrum.

Fur die vielen Einsatzbereiche dieses
Lampentyps finden Sie in der Lynx-Familie
3 unterschiedliche Sorten:

Lynx-S (5W, 7W, 9W, 11W): fir Tisch-
und Buroleuchten, flir Wand- und Decken-
leuchten, innen und aussen, flr Sicherheits-
leuchten und Ahnliches.

Lynx-D (10W, 13W): fiir versenkte oder
tiefhangende Deckenleuchten, fiir Tisch-
und Stehlampen, im Wohnbereich Uberall
dort, wo normale Gluhbirnen ersetzt wer-
den konnen.

Lynx-L (18W, 24W, 36W): fiir den
Arbeits- und den kommerziellen Bereich in

Buros, Werkstatten und Laden. Dort wo
standig das Licht brennt und wo mit relativ
kleinen Leuchten optimale Lichtverhalt-
nisse geschaffen werden mussen.

Wer heute an die Leuchten von morgen
denkt, weiss wie wichtig Stromeinsparung,
Funktionalitdat und Asthetik sind. Mit der
Lynx von Sylvania hat er die richtigen Vor-
aussetzungen.

SYLVANIA G

Gutes Licht. Besseres Licht.
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