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Monolithisches ZF-Filter in SC-Technik

G. Fischer

Will man ein ZF-Filter (fy = 465 kHz) in
monolithischer Form realisieren, sind zwei
Forderungen unumganglich: Erstens muss
eine moglichst unempfindliche Filterstruktur
verwendet werden (ein ZF-Filter ist extrem
selektiv und damit empfindlich), und zweitens
mussen sehr breitbandige Verstarker einge-
setzt werden.

Der vorliegende Bericht beschreibt die Syn-
these eines SC-(Switched Capacitor-)Filters
mit minimaler Empfindlichkeit gegeniber sei-
nen Komponenten. Da die Forderung nach
schnellen Verstarkern nicht umgangen wer-
den kann, wird eine Methode vorgestellt, die
erlaubt, Verstarker mit sehr kleinem Gain zu
verwenden (z.B. 100), was den Einsatz von
sehr breitbandigen einstufigen Verstarkern,
die Abtastfrequenzen von einigen Megahertz
“verkraften kénnen, méglich macht.

Lors de la réalisation d'un filtre Fl (fy =

465 kHz) avec un procédé monolithique,
deux aspects doivent étre considérés: pre-
miérement, il faut utiliser une structure d'une
sensibilité minimale (le filtre FI étant extréme-
ment sélectif, donc sensible); deuxiémement,
l'emploi d'amplificateurs a large bande pas-
sante est nécessaire.

La publication présente décrit d'abord la syn-
thése d'un filtre CC (capacités commutées) a
sensibilité minimale. Comme il n’est pas pos-
sible d'éviter I'usage d’amplificateurs rapides,
une méthode est décrite qui permet, par
contre, l'emploi d’amplificateurs d'un gain
modéré (p.ex. 100) a un étage, a large bande
passante et travaillant (sans probleme) jus-
qu'a quelques mégahertz.

Diese Arbeit ist eine iberarbeitete Fassung des Aufsatzes
«Monolithische ZF-Filier in SC-Technik» aus den AGEN-
Mitteilungen Nr. 40, Mai 1985. Ein einfihrender Aufsatz
zum Thema SC-Filter findet sich im Aprilheft des Bulletin
SEV/VSE 76(1985)7.

Adresse des Autors

G. Fischer, dipl. El.-Ing. ETH, Institut fiir Signal- und
Informationsverarbeitung, ETH-Zentrum, 8092 Ziirich.

1. Einleitung

Im Gegensatz zu RC-Netzwerken,
bei denen die frequenzselektiven
Eigenschaften durch ein Produkt aus
Widerstand und Kapazitit gebildet
werden, wird die Selektivitit von SC-
Netzwerken allein durch Kapazitdts-
verhdltnisse und eine quarzstabile
Taktfrequenz (Clock) bestimmt. Ob-
wohl die Absolutwerte von integrier-
ten Kapazititen in MOS-Technologie
um 10...20% streuen, konnen C-Ver-
haltnisse ohne weiteres mit 0,1% (!)
Genauigkeit [1] hergestellt werden.
Deshalb eignen sich SC-Netzwerke
vorziiglich fiir monolithische Schal-
tungen, wo ungenaue Frequenzginge
nicht mehr durch nachtrigliches
«Trimmen» gewisser Komponenten
korrigiert werden konnen.

Solange SC-Schaltungen im Audio-
bereich oder bei noch tieferen Fre-
quenzen betrieben werden, treten
kaum wesentliche Probleme auf. Die
einzigen namhaften Fehler kénnen in
diesem Frequenzbereich nur von
Streukapazitaten' herrithren. Diese
Fehler konnen aber leicht vermieden
werden, indem nur sogenannte streu-
intensive Schaltungen? verwendet wer-
den.

Wird eine SC-Schaltung aber in
einem Frequenzbereich von iiber 100
kHz betrieben, was bei einem ZF-Fil-
ter fiir ein AM-System der Fall ist (f =
465 kHz), so muss mit weiteren Nicht-
idealitidten gerechnet werden. Neben
den MOS-Schaltern mit ihren endli-
chen On-Widerstianden (typisch R,, =
10 k) bilden vor allem die Verstirker

' Darunter versteht man alle parasitiren Kapa-
zitdten, die zwischen beliebigen Netzwerkknoten
inkl. Masse liegen.

2In solchen Netzwerken liegen sidmtliche
Streukapazititen an Masse, virtueller Masse oder
an einem Knoten mit sehr niedriger Impedanz
(z.B. Verstarkerausgang).

mit ihrer endlichen Bandbreite und
der begrenzten Slew Rate (Anstiegsge-
schwindigkeit) die frequenzlimitieren-
den Faktoren. Im Moment stellt die
endliche Verstarkerbandbreite (typi-
scherweise einige MHz) die stirkste
Einschrinkung des Frequenzbereichs
dar[2].

Der vorliegende Bericht soll zeigen,
dass ein integriertes, hoch selektives
ZF-Filter mit heutigen Mitteln durch-
aus im Bereich des Moglichen liegt.
Bei der Verwirklichung eines solchen
Vorhabens muss allerdings zwei
Aspekten besondere Beachtung ge-
schenkt werden. Erstens der naturge-
maiss hohen Empfindlichkeit (Sensiti-
vitdt) eines ZF-Filters und zweitens
dem fiir eine MOS-integrierte Schal-
tung extremen Frequenzbereich. Die
verwendete Filterstruktur muss folg-
lich eine minimale Empfindlichkeit
beziiglich der Elementwerte (C-Ver-
héltnisse) und der Verstirker-Nicht-
idealitdt aufweisen. Die Nachbildung
eines symmetrisch abgeschlossenen
LC-R-Kettenfilters stellt diesbeziiglich
eine optimale Losung dar [3]. Das Vor-
gehen zur Synthese einer solchen
Struktur wird im 2. Abschnitt gezeigt.
Die Unempfindlichkeit der resultie-
renden SC-Schaltung wird anhand des
erwihnten ZF-Filters demonstriert.

Wie bereits erwéhnt, stellt der extre-
me Frequenzbereich vor allem an die
Verstédrker sehr hohe Anforderungen.
In Abschnitt 3 wird eingehend auf die-
se Problematik eingegangen. Zuerst
wird gezeigt, wie sich die beiden wich-
tigsten Parameter eines Verstirkers,
Gain und Bandbreite, auf den wesent-
lichsten Baustein eines SC-Kettenfil-
ters, den diskreten Integrator, auswir-
ken. Unter Verwendung der Analogie
zwischen den reaktiven Elementen des
passiven LC-R-Filters und dem SC-In-
tegrator kann aus den Integratorfeh-
lern direkt auf die Verdnderungen im
Frequenzgang des SC-Filters geschlos-
sen werden.
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mit gleichzeitig hoher Verstirkung Signalflussdiagramme
sehr teuer und schwierig herzustellen 2 ggg’;‘;‘fhcms
sind, wird eine Methode vorgeschla- 1 Netzwerk nach
gen, die nur an die Schnelligkeit der Elimination der
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Verstirker (Slew Rate, Bandbreite) C-Kreise " * >
hohe Anforderungen stellt. Die unge- ¢ xg‘z'vrv“c‘;? SRz G1
niigende Verstirkung wird dabei schal- Vi

tungstechnisch kompensiert. Die Effi-
zienz dieser Fehlerkompensation wird
ebenfalls am Beispiel des ZF-Filters
demonstriert.

2. Simulation eines
LC-R-Kettenfilters

Diese Synthesemethode geht immer
von einem passiven Prototypfilter aus.
Es ist deshalb sinnvoll, den Entwurf
des aktiven Netzwerkes so weit wie
moglich auf die passive Synthese abzu-
stiitzen. Prinzipiell wird dabei jedem
reaktiven Element (L oder C) ein akti-
ver Integrator zugeordnet. Im folgen-
den wird ein einfaches schrittweises
Vorgehen fiir diese Art des Filterent-
wurfs vorgestellt. Anschliessend wird
am Beispiel des ZF-Filters gezeigt, wie
unempfindlich die erhaltene Struktur
tatsdchlich gegeniiber leichten Varia-
tionen der Kapazitdtsverhaltnisse ist.

1264 (A714) Bull. ASE/UCS 76(1985)21, 9 novembre



2.1 Synthese eines SC-Kettenfilters

Der gesamte Synthesevorgang lisst
sich in vier Schritte unterteilen:

1. Synthese eines entsprechenden pas-
siven LC-R-Kettenfilters,

2. Reduktion des passiven Netzwer-
kes auf eine Minimum-Reaktanz-
Struktur,

3. Ersetzen der reaktiven Elemente
durch SC-Integratoren/Summato-
ren,

4. Berechnen der C-Verhiltnisse der
SC-Realisierung aufgrund der ent-
sprechenden Elementwerte des pas-
siven Prototypfilters.

Der erste Punkt wird hier nicht be-
handelt, da die Synthese eines LC-R-
Filters hinldnglich bekannt und gut
dokumentiert ist.

Liegt das passive Filter bereits in ka-
nonischer’ Form vor, kann jedem reak-
tiven Element ein aktives Gegenstiick,
d.h. ein Integrator, zugeordnet wer-
den. Das ist aber im allgemeinen nicht
der Fall. Deshalb muss das urspriingli-
che Netzwerk soweit reduziert werden,
bis die Anzahl der reaktiven Elemente
gleich der Ordnung der Schaltung ist.
Dabei diirfen sich natiirlich die inter-
essierenden Netzwerkvariablen nicht
verdndern. Die Figur | zeigt eine sol-
che Aquivalenztransformation am
Beispiel eines Netzwerkes 6. Ordnung.
Das Netzwerk wird in zwei Schritten
reduziert. Zuerst werden die im Netz-
werk vorhandenen C-Kreise aufge-
trennt. Das wird durch Elimination al-
ler seriellen C (im vorliegenden Fall
C2und C4) erreicht. Der Einfluss die-
ser Elemente auf die interessierenden
Variablen, d.h. die Spannungen VI,
V3 und V5, wird durch gesteuerte
Spannungsquellen Vi’ und eine Modi-
fikation der C-Werte in den parallelen
Zweigen nachgebildet (Fig. 1b und
Fig. 2). Die Stromgréssen 117, 127, 137
diirfen sich dabei dndern.

Ein analoges Vorgehen zur Elimina-
tion der L-Kreise fiihrt schliesslich auf
das kanonische Netzwerk in Figur Ic.
Dieses besteht aus drei LC-Resonato-
ren, die nur noch iiber die gesteuerten
Quellen gekoppelt sind. Die ohmschen
Abschliisse des LC-Netzwerkes wirken
sich als Verlustfaktoren in den beiden
Abschlusskreisen aus. Da bei diesen
Netzwerkumformungen die Spannun-
gen VI, V3 und V5 nicht verdndert

Die z-Transformation

Bezeichnet man mit x(nT) die Werte
einer zeitdiskreten Impulsfolge xp (f)
wie sie z.B. durch ideale Abtastung mit
der Periode T aus einem zeitkontinuierli-
chen Signal x(7) entstanden ist,

+oo + o0
xp(t)=x(t)- E S8(t-nT) = Z x(nT)S6(t-nT)
(F1)

so gilt fiir die Laplacetransformierte der
abgetasteten Funktion

o

X(s) = 2 x(nT)e=snT

—oo

(F2)

wie man unmittelbar aus dem Verschie-
bungssatz

f(t=nT) o—e e-snT (F3)
und der Beziehung
8() o—e 1 (F4)

erkennen kann.

Ersetzt man in (F2) den exponentiellen
Term esT durch eine neue Variable z, so

erhilt man die z-Transformierte des zeit-
diskreten Signals xp(f). Die z-Transfor-
mation kann somit definiert’ werden
durch:

<]

X(z)= Z x(nT)z=n

—

(F5)

Laut (F3) entspricht die Multiplika-
tion eines Funktionswertes mit z~! einer
zeitlichen Verzégerung um eine Abtast-
periode T.

Beispiel:

Die Figur f1 zeigt eine diskrete Zeit-
funktion. Mit Hilfe von (5) kann man
diese sehr einfach in den z-Bereich trans-
formieren:

Xz)=1+z'+%z 3+ Vaz? (F6)

Interpretiert man nun die Funktion in
Figur f1 als Impulsantwort eines Sy-
stems, so ist (F6) dessen z-Systemfunk-
tion, und man kann ohne Probleme eine
Schaltung angeben (Fig. f2), die dieser
Systemfunktion entspricht bzw. deren
Impulsantwort wie Fig. f1 verlduft. Dass

Fig. f1 xp(t)
Beispiel einer
zeitdiskreten -
Funktion 1 i ~ (3T
p ‘\ x(t)
A (S (EPRN LT
/ \ 2 l0,5) . (0,25)
P LI 7 oo >
Jo T 2T 3T a7
Fig. {2 _ - »
Schaltungmit  6(t) z? Z? Z Z! o

Impulsantwort

xp (1)

die z-Transformation heute eine derarti-
ge Wichtigkeit besitzt, ist nicht zuletzt
darauf zuriickzufiihren, dass sich in der
Digitaltechnik Verzogerungsglieder sehr
einfach realisieren lassen (Schieberegi-
ster). Bei der z-Transformation spielt es
im {brigen keine Rolle, wie die Funk-
tionswerte abgespeichert werden; im
einen Fall werden sie wertekontinuier-
lich (z.B. SC-Filter oder CCD), im ande-
ren Fall diskret (z.B. Digitalfilter) ge-
speichert.

Will man eine Funktion aus dem La-

xp(t)

mieren, so muss die Laplacevariable s
gemass (F2) und (F5) durch

5= LT In(z) (F7)

ersetzt werden. Zur Vereinfachung die-
ser Transformation wird die nichtlineare
Funktion In(z) sehr oft durch eine linea-
re Ndherung ersetzt, z.B. bei der bilinea-
ren z-Transformation:

z-1

3 Netzwerkstruktur n-ter Ordnung mit genau n 1 In(z)~2 , z>0 (F8)
reaktiven Elementen (Minimumreaktanznetz- placebereich in den z-Bereich transfor- z+1
werk)
Bull. SEV/VSE 76(1985)21, 9. November (A715) 1265
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Fig.4 Realisierung der induktiven und kapazitiven Analogzweige in streuintensiver SC-Technik

a Analogschaltung L-Zweig

IL=(V+V'") -
& sL Linz
b LDI-Schaltung
1 7
ViL= — (V+V
L XL( ) —

werden, bleibt die Spannungsiibertra-
gungsfunktion V;/ V5 erhalten. Zur Er-
leichterung der Umsetzung dieser
Schaltung in ein aktives Netzwerk und
zur Verdeutlichung der Zuordnung der
passiven Elementwerte auf die ent-
sprechenden aktiven Bldcke, d.h. Inte-
gratoren, zeigt die Figur 3 die gleichen
Netzwerkumformungen mittels Signal-
flussdiagrammen (SFD). Der nichste
Schritt, die Substitution eines reakti-
ven Elementes durch eine diskrete In-
tegratorschaltung, ist das Kernstiick
der Synthese. Er bestimmt nicht nur
die numerischen Zusammenhidnge
zwischen passivem Elementwert und
den C-Verhiltnissen in der aktiven
Realisierung, sondern auch die Art des
Uberganges vom zeitkontinuierlichen
in den zeitdiskreten Bereich (s <
z-Transformation). Dieser Ubergang
wird mit dem «Lossless Discrete Inte-
grator» (LDI) [4] realisiert. Dieser ldsst
sich nicht nur effizient in SC-Technik
bauen, sondern ermoglicht zudem
komplett streuinsensitive SC-Schal-
tungen. Letzteres ist eine unabdingba-
re Forderung fir die Realisierung
exakter C-Verhiltnisse (s. Einleitung).
Der LDI-Integrator ndhert die ideale
Integrationsfunktion

Fj=—— )
durch die Funktion

1 /2
- 2
ZtV_ g% sinwT,/2 2

Fipr=
z

¢ Analogschaltung C-Zweig

1
V=-V'+Ilc — ==V'+ ¢ ——
CSC CClnz

d LDI-Schaltung

V=4 -y F
=V + —
Xc Ic 1=z=1

an, wobei vorausgesetzt ist, dass die
Integrationszeitkonstante T gleich der
Abtastperiode T. = 1/f.ist.

Fiir kleines Argument o T./2 gilt:

sin oT./2~ oT./2 3)

d.h. je hoher die Clockfrequenz f; ist,
desto besser ist die Ubereinstimmung
mit dem idealen Integrator. Aus (1)
und (2) entnehmen wir direkt die
Transformationsformel

s=jw H% (2t—z7%) (4)

&

Die Figur 4 zeigt die Umsetzung
eines induktiven und eines kapazitiven
Zweiges des reduzierten analogen Pro-
totypnetzwerks in eine SC-aktive
Schaltung. Man beachte, dass die se-
rielle Spannungsquelle — V” sehr ein-
fach mittels eines zweiten Integrator-
Eingangspfades realisiert —werden
konnte. Das Minuszeichen von V”
rithrt davon her, dass die in Figur 3b
und 3c gezeigten Signalflussdiagram-
me so skaliert wurden, dass simtliche
Koeffizienten der gesteuerten Span-
nungsquellen ein negatives Vorzeichen
erhielten.

Wie man die Ubertragungsfunktion
eines LDI-Integrators ermittelt, geht
aus Figur 5 hervor. Die im Schalterzu-
stand S1-zu/S2-offen im Kondensator
CI gespeicherte Ladung wird im un-
mittelbar darauffolgenden Zustand
S1-offen/S2-zu vollstindig auf den
Kondensator C2 iibertragen, dessen
Spannung dabei um einen entspre-

chenden Betrag verdndert wird. Be-
zeichnet man die Spannung iber
C2 vor ihrer Verdnderung mit
V2[(n—1)T:] und die neue Spannung
mit V2[nT.], so ldsst sich schreiben:

V2[nTe]=V2[(n-1)Tc] + % Vi[(n-")Te] ~ (5)

Wird diese zeitdiskrete Gleichung
z-transformiert, so erhédlt man

V2(z)= V2(z)z7' + % Viz™" (6)

und daraus

1 1

V2(z) = VI(z) X i (7

mit X = C2/CIl. Man beachte, dass
durch die Schalter im Eingangskreis
die Spannung V1 invertiert und um
eine halbe Periode (z7"?) verzogert
wird. Gesamthaft ist der Integrator in
Figur 5 nichtinvertierend.

Am Beispiel der Induktivitdt wird im
folgenden gezeigt, wie aus einer gegebe-
nen analogen Induktivitit das Kapazi-
tatsverhdltnis X; des entsprechenden
LDI-Integrators berechnet wird. Mit
Hilfe eines (an und fiir sich beliebigen)
Normierungswiderstandes wird

1

I;=—— U, 8
vk (£}
spannungsnormiert
Ry
Ur=— U
nw=—7 U 9

Transformiert man diese Gleichung
mit Hilfe von (4) in den z-Bereich, so
erhilt man

T.Ry

U - ﬁ
1L (z7" =z %)L

UL (10)

Ein Vergleich mit der Gleichung des
realisierten Netzwerkes (7) ergibt fiir
das C-Verhiltnis

C2
C1

K s
g % i i
N

0

Fig.5 Nichtinvertierender LDI-Integrator
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Transformationsgleichungen Tabelle |

LC-R-Netzwerk SC-Netzwerk

IN=fe
T =T,

Je =In
T.=T

. 1 1
S=Jw=—Tlnz ~ ?C(z“/2 - z=172)

L’= Lfn/RN XL=C2/Cl=L"
C’= CfNRN Xc=C2/Cl=C"’

X=X.= Lf./Ry (11)
Normiert man die analoge Indukti-
vitdt zu

L' = Lfn/ Ry (12)

so gilt unter der Voraussetzung® fy = f.

Xi=L = Lf./Ry (13)
In gleicher Weise kann man zeigen,
dass
X.= C’"= CfnRn= Cf.Rn (14)
ist. In Tabelle I sind die Transforma-
tionsgleichungen zusammengestellt.
Die frequenzgangverzerrenden
Eigenschaften der LDI-z-Transforma-
tion sind in Figur 6 dargestellt’. Zum

4 Spezialfall

> Der Ausdruck frequenzverzerrend ist etwas
unprézis. Es ist damit die nichtlineare Zuordnung
von Punkten des Filterfrequenzganges (z.B.
Grenzfrequenzen) der analogen zur zeitdiskreten
Schaltung gemeint.

ey

(o]

Fig.6 Frequenzgangverzerrende Eigenschaften
der LDI- und der bilinearen z-Transformation

£ Frequenzachse des analogen Integrators
o Frequenzachse des diskreten Integrators

1
LDI: 2= T sinowT

¢

1
BLI: Q= — tgwT
T

c

Vergleich ist auch die Frequenzverzer-
rung der bekannteren bilinearen (BLI)
z-Transformation abgebildet. Im bili-
nearen Fall wird die Frequenzachse
mit tan(wT/2) verzerrt, wahrend bei
der LDI-Abbildung die Verzerrung
mit sin(w T/2) erfolgt. Wird keine Vor-
verzerrung vorgenommen, sind die
Fehler bei Verwendung der LDI-
Transformation kleiner. In diesem Zu-
sammenhang ist zu beachten, dass bei
jeder Zeitdiskretisierung eines analo-
gen Netzwerkes gewisse Verzerrungen
in Kauf genommen werden miissen,
da das dquivalente getaktete System
generell ein verdndertes Spektrum auf-
weist.

Ein spezielles Problem bilden die
ohmschen Abschliisse eines LDI-4qui-
valenten Kettenfilters. Geméss Figur 3
treten sie als Riickkopplungspfade in
der Ein- und Ausgangsstufe des Netz-
werkes auf. Diese Ein-Integrator-
Schleifen konnen aber nicht als LDI-
dquivalente Pfade realisiert werden, da
im Zahler dieser Loop-Funktion der
Faktor z™" auftritt. Das entspricht
einer Verzdgerung um eine halbe Takt-
periode. Mit einem T-periodischen
Netzwerk kann aber nur ein ganzzahli-
ges Vielfaches der Grundverzogerung
T realisiert werden®. Die Abschliisse
konnen folglich nicht exakt simuliert
werden. Die Fehler werden allerdings
minim, wenn diese Abschlussloops in
bilinearer Form realisiert werden
(Fig. 7¢). Die Figur 7a zeigt die exakte
analoge Realisierung des Eingangs-
netzwerkes, die Figuren 7b und 7c die
SC-Niherungen. Die Ubertragungs-
funktionen der drei Schaltungen lau-
ten:

(GI1/CI)1/s

VinVl= —MM——— 15a
w 1+ (GI/CI1/s (1oay
Z—‘/z
(G1'/C1") =
VIN/VI = 1-2 - (16a)
1+(Gl'/Cl1)z¥" 2
1-z7!
VIN/VI =
¥
(G1'/ClY) -
LoE (17a)

1+3(GI/cry @ ez

¢Bei Zwei-Integrator-Schleifen, z.B. mit je
einem Integrator im Vor- und Riickwértspfad, er-
gibt sich gesamthaft eine Verzdgerung von z~ 1.

Gl
a — 7
g1
C1
VI V1E
b G
2. 1
ot cr s
T
N s V1
C G1'
craivz &
ar
1‘2T_”_1'/2
Yy F f ¥
Vi
Y

Fig.7 Realisierung der ohmschen Abschliisse

a Exakte Realisierung des Eingangswiderstandes
und des ohmschen Eingangspfades mit einem
zeitkontinuierlichen Netzwerk

b Zeitdiskrete Realisierung mit einem LDI-iqui-
valenten Integrator im Vorwirtspfad und
einem Rickwirts-Differenz-Integrator in der
Riickkopplung

¢ Realisierung mit einem LDI-dquivalenten Inte-
grator im Vorwirtspfad und einem bilinearen
Integrator in der Riickkopplung

Die Integratorfunktionen im Nen-
ner von (l6a) und (17a) entsprechen
nicht genau der LDI-Funktion. Die
Abweichung kann als Fehler im Wert
des Abschlusswiderstandes im Riick-
kopplungspfad interpretiert werden.
Die tatsdchlich realisierbaren Werte
von G1 betragen:

Gl (15b)
Gl'z" = Gl'(cos @T/2 + jsinwTc/2) (16b)
(G17/2) (2" +27 ") = Gl’coswT./2 (17b)

Wihrend im Fall der Figur 7b der
Abschluss komplex wird, tritt im bili-
nearen Fall (Fig.7c) nur ein kleiner
Amplitudenfehler (1—coswT./2) auf,
der bei geniigend hoher Abtastrate ver-
nachléssigbar ist (coswT./2 — 1). Zu-
dem reagieren symmetrisch abge-
schlossene Kettenfilter sehr unemp-
findlich auf Fehler in den ohmschen
Abschliissen.
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Fig.8 SC-Bandpass 6. Ordnung zur Realisierung eines AM-ZF-Filters
----- Grenzen der einzelnen Integratorschaltungen

Cl =9245 Cc2 =10,13 C3 = 14,68
Cll = 1,991 C21 = 6,297 C31 = 8,887
Cl2 = 57,32 C22 =1 C32 =1
Cl3 =1 C33 = 1,847
Cl4 =129

2.2 Sensitivitdtsverhalten eines
S C-Kettenfilters

Der Hauptgrund fiir die Simulation
eines LC-R-Kettenfilters ist, wie ein-
leitend erwdhnt wurde, die sehr gerin-
ge Empfindlichkeit dieser Struktur ge-
geniiber kleinen Variationen der Ele-
mentwerte. Die aktive Realisierung
dieser Topologie ist allerdings nicht
eine exakte Kopie der passiven Schal-
tung. Deshalb ist die tatsdchlich er-
reichte Unempfindlichkeit der aktiven
Realisierung von besonderem Interes-
se. Dies ldsst sich sehr gut am Beispiel
des vorliegenden, extrem selektiven
und damit hochempfindlichen ZF-Fil-
ters nachpriifen.

Das geforderte ZF-Filter wird durch
ein Netzwerk 6. Ordnung realisiert,
das eine maximale Polgiite von 105
aufweist. Die Taktfrequenz der SC-
Schaltung wird auf das Zehnfache der
Filtermittenfrequenz festgelegt, d.h.
auf 4,65 MHz. Das resultierende SC-
Netzwerk mit den entsprechenden
(normierten) Kapazitidtswerten ist in
Figur 8 dargestellt. Die gegebenen
C-Werte gelten bereits fiir eine dyna-
mikoptimierte Schaltung, d.h. das
Netzwerk wurde auf eine maximale
Aussteuerung der Verstarker hin ska-
liert. Um einen Vergleich mit einer an-
deren Topologie zu ermoglichen, wur-
de der gleiche Bandpass auch mit einer
Kaskade von Baublocken 2. Ordnung
(Biquads) realisiert. Als Baustein wur-
de der in [5] vorgeschlagene SC-Bi-

C4 =1933 C5 =758 C6 = 1242
C41 = 12,19 C51 = 50,82 Cc61 = 17,074
C42 =1 52 =1 Cc62 =1
C43 = 1,362 C53 = 12,58

quad verwendet. Beide Losungen wur-
den eingehend mit SCANAL [6] analy-
siert. Die Ergebnisse sind in Figur9
dargestellt.

Wihrend die Figur9a den Fre-
quenzgang unter idealen Vorausset-
zungen zeigt, gibt der zweite Plot einen

a a
[dB]
=15

-35)

350 fLkHz]

-3 / ‘x\‘
455 465 flkHz]

Fig.9 Amplitudengang des ZF-Filters 6. Ord-
nung

a Frequenzgang unter idealen Voraussetzungen

b Resultat einer Monte-Carlo-Analyse unter der
Annahme normalverteilter Kapazititsverhalt-
nisse (oc = 0,1%)

A Amplitude

f Frequenz

+ o-Grenzen fiir Kettenschaltung
+ o-Grenzen fiir Kaskade

Einblick in das Sensitivitatsverhalten
der beiden Losungsvarianten. Daraus
geht deutlich hervor, dass die Ketten-
filterstruktur bedeutend unempfindli-
cher reagiert als die alternative Kaska-
de. Mit einer maximalen Varianz der
Ausgangsspannung im Durchlassbe-
reich von etwa 0,15 dB (Kaskade: omax
= 0,8 dB) ist das Resultat fiir das simu-
lierte Kettenfilter sicher zufriedenstel-
lend ausgefallen. Die Unempfindlich-
keit des LC-R-Prototypfilters hat sich
somit (grosstenteils) auf seine aktive
Nachbildung iibertragen. Als weiteren
Vorteil gegeniiber der Kaskade weist
die gekoppelte Struktur den kleineren
C-Spread (Kapazitdtsverhiltnisse) auf
und bendtigt somit auch weniger Chip-
flache.

3. SC-Filter fiir hohe
Frequenzen

Das kritischste Element bei der An-
wendung von SC-Netzwerken in Fre-
quenzbereichen iiber 100 kHz ist der
Verstiarker. Bevor aber Massnahmen
zur Verbesserung der Hochfrequenz-
eigenschaften von SC-Schaltungen ge-
troffen werden kénnen, miissen natiir-
lich die Auswirkungen nichtidealer
Verstiarker bekannt sein. Hierzu exi-
stiert bereits geniigend Literatur [2; §;
9]. Der folgende Abschnitt fasst die
wichtigsten Resultate kurz zusammen.

3.1 Auswirkungen nichtidealer
Verstdrker in SC-Netzwerken

Einer der wichtigsten Bausteine
eines SC-Filters ist der diskrete Inte-
grator. Der Einfluss der Verstiarker-
nichtidealititen wird deshalb zuerst
anhand dieses Grundelementes ge-
zeigt. Unter Verwendung der Analogie
zwischen den passiven reaktiven Ele-
menten (L, C) und dem Integrator las-
sen sich die erhaltenen Resultate leicht
auf eine Kettenfilterstruktur uminter-
pretieren.

Im folgenden wird angenommen,
dass sich der Verstiarkerfrequenzgang
mit einem Ein-Pol-Modell beschrei-
ben lisst, das durch die beiden Para-
meter Open-Loop-Gain A4y und Unity-
Gain-Bandbreite B (in Hz) festgelegt
wird. Unter diesen Voraussetzungen
werden die SC-Integratoren in Figur
10a und 10c betrachtet.

Fir die reale Integrator-Ubertra-
gungsfunktion H, macht man den fol-
genden Ansatz:

Hp(®) = Hia(o) E(0) (18a)

E(w) =1+m(w)+if(w) (18b)
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Die Funktionen m(w) und 6(w) be-
zeichnen die Amplituden- und Phasen-
fehler des Integrators. Beide werden
als sehr klein vorausgesetzt.

Obwohl die gegebene Integrator-
schaltung einfach aussieht, ist ihre
exakte Analyse unter Einbezug des
Verstdrkerfrequenzganges relativ
komplex. Wir wollen hier deshalb nur
die Resultate wiedergeben. Eine ge-
naue Herleitung der Ergebnisse ist z. B.
in [2] gegeben. Unter Vernachlédssi-
gung aller Fehlerterme hoherer Ord-
nung erhdlt man:

1 k cosawT/2
m(w)z-AO(H 2)—5( 1- Itk ) (19a)

1 k sinwT/2
9(‘”)=ar“a“(Ao 2taan/2) € ek 19D
- B/fe
g=exp |-m T (19¢)

Der Faktor k bezeichnet das C-Ver-
haltnis CI1/C2 des Integrators und ist
in der Regel kleiner als 1. Gemass (19)
lassen sich die Fehler von Gain 4, und
Bandbreite B voneinander separieren.
Der endliche Gain verursacht Fehler,
die mit 1/ Ap abnehmen und unabhén-
gig von der Abtastfrequenz fo = 1/T.
sind. Die Fehler beziiglich der endli-
chen Bandbreite hingegen wachsen ex-
ponentiell mit der Abtastrate an
(Term ¢).

Es interessiert nun, wie sich diese
Fehler in einer Kettenfilterstruktur
auswirken. Dazu vergleichen wir den
nichtidealen diskreten Integrator mit
einem verlustbehafteten reaktiven Ele-
ment. Dieser Vergleich ist am Beispiel
einer Spule illustriert.

1

I 1
@) = UL T AL rizjon) ~ V@) s Eu@)
(20a)
AL,
EL@)=1- T 4o (20b)

Der Phasenfehler 6 des Integrators
entspricht dem Verlustfaktor 1/Q; der
Spule, und der Amplitudenfehler m ist
dquivalent einem Fehler im Wert der
Induktivitat L.

Ein passives Kettenfilter besteht aus
gekoppelten LC-Schwingkreisen.
Wendet man nun die aus (20) gewon-
nenen Erkenntnisse auf einen solchen
(verlustbehafteten) Kreis bestehend
aus zwel nichtidealen Integratoren an,

so konnen die Fehler in der Schwing-
frequenz wo und der Giite Qy auch
durch m und 6 ausgedriickt werden.
Bezeichnet man die Fehler, die von
den beiden gekoppelten Integratoren
herrithren, mit den Indizes 1 und 2, so
lasst sich schreiben:

Awozwo% [m (@) + myw)] (21)
- 6, + 6,
AQO:_QO 0+ 6, + 1 /Qo (22)

Der relative Frequenzfehler ent-
spricht somit dem arithmetischen Mit-
tel der beiden Amplitudenfehler der
Integratoren. Der relative Giitefehler
hingegen ist nicht nur eine Funktion
der beiden Phasenfehler 6, und 6,, son-
dern auch der Giite Qp. Fiir hohe
Q-Werte strebt der relative Fehler so-
gar gegen — 1. Filternetzwerke mit ho-
hen Polgiiten reagieren deshalb sehr
empfindlich auf die Phasenfehler der

Integratoren (beziehungsweise der
Verlustfaktoren der Spulen und Kon-
densatoren).

Werden fiir die Frequenz- und Gii-
tefehler obere Grenzwerte festgelegt,
lassen sich mittels der Gleichungssy-
steme (19) und (21) die entsprechen-
den Mindestanforderungen an die
Verstarker ableiten. Dies soll am Bei-
spiel des untersuchten ZF-Filters ge-
zeigt werden. Dazu sind fiir die Fre-
quenz- und Giitefehler die Grenzwerte

Aw AQ

~—~<0,1%und 3 < 1,0% (23)

festgelegt worden.

Unter Beriicksichtigung der maxi-
malen Polgiite des Filters von 105 so-
wie der gewidhlten Abtastfrequenz von
4,65 MHz ergeben sich an den Verstér-
ker-Gain und die Bandbreite die An-
forderungen
Ao>10%und B> 20 MHz (24)

Diese Werte lassen sich aus heutiger
Sicht allerdings kaum realisieren.
Technologisch lasst sich aber die
Bandbreite auf Kosten des Gains erho-
hen, z.B. durch Verwendung von ein-
stufigen und entsprechend schnellen
Verstarkern. Die vom ungeniigenden
Gain herrithrenden Fehler miissen
aber unbedingt kompensiert werden.
Wie das schaltungstechnisch realisiert
werden kann, zeigt der nachste Ab-
schnitt.

3.2 Kompensation des Einflusses
von Ao

Es wird vorausgesetzt, dass die ver-
wendeten Verstdarker so breitbandig
sind, dass der Term € in (19) vernach-
lassigbar wird, d. h. dass das Verhiltnis
B/f. mindestens gleich vier sein muss.

Zur Erlauterung des Prinzips der
Kompensationstechnik betrachtet
man die nichtinvertierende Integrator-
schaltung in Figur 10a. Die Funktions-

a C2

Fig. 10 Elimination des Phasenfehlers am diskreten Integrator

a nichtinvertierender Integrator

b kompensierter nichtinvertierender Integrator mit Restamplitudenfehler mao ~ - 1 /A4 und Phasen-

fehler Bao0~ 0
¢ invertierender Integrator

d kompensierter invertierender Integrator mit Restamplitudenfehler mag~ - (1 +k) /A und Phasen-

fehler Ba0~0
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Fig. 11 Grundzelle eines Kettenfilters (a) und
entsprechende Realisierung in SC-Technik (b)

Das gestrichelt eingezeichnete Netzwerk dient
der vollstandigen Kompensation des Einflusses
der endlichen Verstiarkung Ag.

Ce= C(1+2C; /Ck), £Ci: Summe aller Ein-
gangskapazititen von I (z)

weise dieser Schaltung ist sehr einfach.
Wihrend Phase 1 wird die Eingangs-
kapazitit CI durch die Eingangsspan-
nung V1 aufgeladen. In Phase 2 wird
diese Ladung auf die Speicherkapazi-
tdt C2ibertragen. Solange der Verstar-
ker als ideal angenommen wird, findet
ein vollstdndiger Ladungstransfer
statt. Bei einer endlichen Verstarkung
bleibt aber eine kleine Restladung in
C2, da die Spannung am negativen
Verstdrkereingang nicht mehr iden-
tisch Null ist. Durch eine (erzwunge-
ne) vollstindige Entladung von CI
kann dieser Fehler folglich verhindert
werden. Figur 10b zeigt die schaltungs-
technische Realisierung dieser Fehler-
elimination. Man beachte, dass dieses
Prinzip fir beliebige Werte von A
funktioniert. Sehr &hnlich sieht die
entsprechende Kompensation am in-
vertierenden Integrator (Fig. 10d) aus,
bei der wihrend Phase 2 der 1-Verstér-
ker CI mit der differentiellen Ein-
gangsspannung des Verstarkers vor-
ladt.

Man kann zeigen, dass durch einen
vollstindigen Ladungstransfer nur die
Phasenfehler des Integrators eliminiert
werden. Die endliche Verstirkerein-
gangsspannung verursacht immer
noch einen kleinen Amplitudenfehler.
In einem typischen Zwei-Integrator-
Loop eines Kettenfilters kann dieser

i
) - ]
T ' T '
2; ' 2 '
9 = : f = :
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R S o) W st}
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Kompensation

aber durch zusitzliche Ladungsinjek-
tionen ebenfalls eliminiert werden.
Ein solcher vollstindig kompensierter
Zwei-Integrator-Kreis ist in Fig. 11
dargestellt. Eine ausfiihrlichere Be-
schreibung des hier angewandten Prin-
zips findet man in [7].

Die abgebildete Zelle (Fig. 11) funk-
tioniert natiirlich nicht mehr fehlerfrei,
wenn A beliebig kleine Werte an-
nimmt. Mit abnehmendem Gain ma-
chen sich einerseits die am negativen
Verstirkereingang liegenden Streuka-
pazititen zunehmend stérend bemerk-
bar, anderseits wurde fiir die Herlei-
tung der Integratorfehler nur eine
Analyse erster Ordnung verwendet,
was bei extrem grossen Fehlertermen
natiirlich nicht mehr zulassig ist.

4. Resultate

Um die Wirkung der vorgeschlage-
nen Gain-Kompensation zu zeigen,
stellt das sehr selektive ZF-Filter ein
ideales Beispiel dar. Das durch die be-
schriebene  Methode modifizierte
Bandpassnetzwerk 6. Ordnung ist in
Figur 12 abgebildet. Mit Leichtigkeit
erkennt man dreimal die Basiszelle
von Figur 11. Der zusitzliche Auf-
wand fiir die Gain-Kompensation be-
steht somit nur in drei Einheitsverstir-
kern, drei Kapazititen und 12 Schal-
tern.

Das kompensierte Netzwerk wurde
wiederum mit SCANAL analysiert.
Die damit erreichten Resultate sind in
Figur 13 dargestellt. Zur Verdeutli-
chung der erzielten Verbesserungen
sind darin auch die entsprechenden
Ergebnisse des urspriinglichen, nicht-
kompensierten Filters abgebildet.

Fig. 12 Bandpassnetzwerk 6. Ordnung mit zusitzlichem Netzwerk fiir die Gain-Kompensation

In Figur 13a erkennt man deutlich
den Einfluss der ungeniigenden Ver-
stirkung A4o. Die Amplitudenfehler m
verkleinern die Filtermittenfrequenz,
und die Phasenfehler 6 bewirken eine
klar ersichtliche Reduktion der Polgii-
ten. Diese Fehler stehen in guter Uber-
einstimmung mit den Formeln (19)
und (21).

Der Frequenzgang des kompensier-
ten Filters (fiir Ao > 100) hingegen l4sst
sich nicht von der idealen Filterkurve
unterscheiden. Sogar in Figur 13b, wo
der Durchlassbereich vergrossert ab-
gebildet ist, sind die Abweichungen

a A
(dB]
-15

— A _=10000
Ao=1000 0

AO=100
-35

235

350 465 flkHz]

AO=1DO

kompen- 4

siert 4 J
A,=1000 Ao=500

—<8,=10000

AO:1OO

7 N\
453 465 flkHz]

Fig. 13 Frequenzgang des ZF-Filters fiir endli-
che Werte von Ag

a ber den gesamten Frequenzbereich
b im Durchlassbereich

A Amplitude

f Frequenz

Frequenzgang ohne Kompensation
Frequenzgang fiir kompensiertes
Netzwerk
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des kompensierten Netzwerkes vom
idealen Frequenzgang kaum sichtbar,
wihrend das urspriingliche Filter be-
reits fiir 4o = 1000 deutliche Differen-
zen im Amplitudengang aufweist.

5. Schlussfolgerungen

Der vorliegende Bericht hat gezeigt,
dass ein vollstindig integriertes ZF-
Filter fir ein AM-System heute durch-
aus im Bereich des Moglichen liegt.
Dazu wurde zuerst ein Synthesever-
fahren gezeigt, das, basierend auf der
Simulation von LC-Kettenfiltern, SC-
Netzwerke mit minimalen Sensitivita-
ten liefert.

Die aus der hohen Filtermittenfre-
quenz von 465 kHz und der maxima-

len Polgiite von 105 sich ergebenden
Werte fiir den Verstirker-Gain und die
Bandbreite wurden durch eine Tech-
nik umgangen, die zwar immer noch
sehr schnelle Verstdrker verlangt, da-
fiir aber die Anforderungen an den
Gain stark reduziert. Die Mindestan-
forderung an die Verstirkung konnte
damit bis auf etwa 100 gesenkt werden.
Dies wurde am Beispiel des ZF-Filters
deutlich demonstriert. Somit kénnen
sehr schnelle einstufige Verstirker ein-
gesetzt werden, die Abtastraten von
einigen Megahertz verkraften sollten.
Der Preis fiir die erzielte Verbesserung
fallt mit einem zusétzlichen Einheits-
verstarker, einer Kapazitit sowie 4
Schaltern pro Glied zweiter Ordnung
relativ gering aus.
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Diese Lampe bestimmt
den Leuchten-Stil von morgen




Energiesparende Kompakt-Leuchtstofflampen mit breitem Einsatzspektrum.

den neuen Lynx Kompakt-Leuchtstoff-
pen von Sylvania bietet sich die seltene
blegenheit, vollig neuartige Leuchten zu
wickeln, anzubieten oder zu gebrau-
en. Leuchten, die asthetisch und funktio-
Il Uberzeugen und die im Stromver-
buch den Anforderungen der Zukunft
recht werden.

Kompakt, flach und ausserst sparsam
Stromverbrauch, verbessern sie die
htausbeute gegeniber herkdmmlichen
ihbirnen um das Vierfache — und ihre
pensdauer ist funfmal langer.

Fur die vielen Einsatzbereiche dieses
Lampentyps finden Sie in der Lynx-Familie
3 unterschiedliche Sorten:

Lynx-S (BW, 7W, 9W, 11W): fur Tisch-
und Buroleuchten, fur Wand- und Decken-
leuchten, innen und aussen, flr Sicherheits-
leuchten und Ahnliches.

Lynx-D (10W, 13W): fiir versenkte oder
tiefhangende Deckenleuchten, flr Tisch-
und Stehlampen, im Wohnbereich Uberall
dort, wo normale Gliihbirnen ersetzt wer-
den konnen.

Lynx-L (18W, 24W, 36W): flr den
Arbeits- und den kommerziellen Bereich in

Buros, Werkstatten und Laden. Dort wo
standig das Licht brennt und wo mit relativ
kleinen Leuchten optimale Lichtverhalt-
nisse geschaffen werden mussen.

Wer heute an die Leuchten von morgen
denkt, weiss wie wichtig Stromeinsparung,
Funktionalitdt und Asthetik sind. Mit der
Lynx von Sylvania hat er die richtigen Vor-
aussetzungen.

SYLVANIA @G

Gutes Licht. Besseres Licht.
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