
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 76 (1985)

Heft: 17

Artikel: Das Arbeitsfeld der Softwaremacher

Autor: Bernhard, D.

DOI: https://doi.org/10.5169/seals-904670

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904670
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Das Arbeitsfeld der Softwaremacher
D. Bernhard

Der Aufsatz beschreibt den Ablauf eines

Softwareprojektes sowie die Aufgaben und

Tätigkeiten des Softwareingenieurs. Er will
dem Leser ein realistisches Bild der heutigen
Situation, insbesondere im Bereich der
technischen Software, vermitteln. Der abschliessende

Ausblick zeigt, in welcher Richtung der

zukünftige Entwicklungsgang zu erwarten ist.

L'article décrit le déroulement d'un projet de

logiciel et les diverses activités d'un ingénieur
chargé du développement. Le lecteur peut
ainsi se faire une idée concrète de la situation

telle qu'elle se présente actuellement, en

particulier dans le domaine du logiciel
technique. Les changements de tendances que le

futur nous réserve sont indiqués dans la

dernière partie de cet article.

Adresse des Autors
D. Bernhard, RETIS Realtime Software AG, Bahnhofstrasse

96, 5001 Aarau.

1. Einleitung
Die Nachfrage nach produktivitäts-

steigernder Computertechnologie
wächst sehr rasch. Den Engpass stellt
dabei mehr und mehr die Software
dar. Während sich bei der Hardware
das Preis-/Leistungs-Verhältnis innert
5 Jahren in der Grössenordnung um
einen Faktor 10 verbessert, geht dieser
Prozess bei der Softwareerstellung
wesentlich langsamer vor sich. Dies führt
dazu, dass der Anteil der Softwarekosten

verglichen mit den Hardwarekosten

laufend zunimmt. Bei industriellen

Anwendungen ist mittlerweile das
Verhältnis so, dass die Investition in
die Software im allgemeinen grösser
als in die Computerhardware ist.
Dadurch rückt eine Berufsgruppe
vermehrt ins Zentrum des Interesses: die
Softwaremacher.

Ein Ingenieur, welcher ein Produkt
entwickelt, macht im Grunde genommen

nichts anderes, als Informationen
zu verarbeiten, in Form von Zeichnungen,

Zahlenmaterial, Text und
Bildern. Das gleiche macht auch der
Softwareingenieur. Und das Hilfsmittel
dazu ist mehr und mehr der Computer.
Der Arbeitsplatz der beiden wird sich
deshalb in Zukunft mehr und mehr
gleichen: eine Workstation mit
Bildschirm und Tastatur, welche ihnen den
Zugriff zur benötigten Computerleistung

gibt und über die sie auch mit
anderen Benützern verkehren können.
Später wird die Möglichkeit der
Spracheingabe dazukommen. Auch
die Anforderungen an den
Produktentwickler und an den Softwareingenieur

werden sich teilweise überdek-
ken. Beide müssen in der Lage sein, ein
Problem zu verstehen, es zu strukturieren

und dafür kreativ Lösungen zu
entwickeln. Die Unterschiede liegen
jedoch im fachspezifischen Wissen,
welches zur Erfüllung der speziellen
Aufgaben nach wie vor erforderlich
ist.

Die Zukunft wird im Bürobereich
grosse Veränderungen bringen. Und
hier liegt der grosse Vorteil des
Softwareingenieurs; nämlich dass er an
Veränderungen in seinem Arbeitsumfeld

gewöhnt ist.

2. Der Ablauf eines
Projekts
Noch immer glauben viele Aussen-

stehende, dass es genügt, eine
Programmiersprache zu erlernen, um sich
dann hinzusetzen und dem Computer
die nötigen Anweisungen zu geben.
Richtig ist jedoch, dass Software auf
transparente Art und Weise anhand
eines methodischen Vorgehenskonzeptes

realisiert werden muss.
Softwareprojekte werden geplant, zielgerichtet

realisiert und anhand klar definierter
Meilensteine überwacht.

Ein bewährtes Modell hierzu ist das
Phasenkonzept, wie es in Figur 1 in
grober Form dargestellt ist. Nach einer
allgemeinen Aufgabenbeschreibung
im Rahmen der Vorabklärungen
erfolgt als erstes die Erstellung des
Pflichtenhefts. Hierbei werden in
enger Zusammenarbeit mit dem zukünftigen

Benützer die Anforderungen an
das System definiert (Fig. 2). Das Was
steht dabei im Vordergrund.

Auf der Basis dieses Pflichtenhefts
kann nun die Software entworfen werden,

zuerst das System als Ganzes,
dann die einzelnen Bausteine. Das Wie
wird hier festgelegt. Erst nach Entwurf
der Softwarestruktur wird der
Programmcode geschrieben und ausgetestet

(Fig. 3).
Bei der Inbetriebnahme muss die

Software des gesamten Systems
zusammengefügt werden (Fig. 4).
Danach muss die von Anfang an geführte
Dokumentation noch komplettiert
werden. Dies im Hinblick auf eine spätere

Wartung (Fig. 5) in Form von Feh-

Bull. SEV/VSE 76(1985)17, 7. September (A 573) 1029



[Vorabklarung I Problemanalyse

Inttwvf GestaltunS Requirements Specification

AnforderungX
Spezifikation

SÂÏÏ Ejüiüää
Implementations^

Einführung

Operation and EinsatzMaintenance I

C-insa^z^
j

I Ablösung

Fig. 1

Das Phasenkonzept,
ein methodisches
Vorgehensmodell zur
Projektabwicklung

lerkorrektur, Ergänzung oder Erweiterung

des Systems.

in der Praxis
Der saubere Projektablauf, bei dem

Schritt auf Schritt aufbaut, ist in der
Praxis kaum anzutreffen. Vielmehr ist
es so, dass die einzelnen Schritte
gegenseitig überlappen oder dass von
einer späteren Phase wieder in eine
frühere zurückgesprungen werden
muss. Die Gründe dafür sind vielfältig:

Die Anforderungen an das System
können sich im Verlaufe des Projekts
ändern, der Zeitdruck kann ein
überlapptes Arbeiten erforderlich machen,
einzelne Beteiligte sind mit ihren
Arbeiten im Rückstand (Fig. 6), oder es

können Probleme bei der technischen
Realisierung auftreten, welche eine
Änderung des Konzeptes erzwingen.
Gerade der auf der Seite des Benützers
zu leistende Aufwand wird häufig
unterschätzt. Auch ist es so, dass wegen
der neuen Möglichkeiten stets komplexere

Aufgaben in Angriff genommen
werden. Der praktische Ablauf ist
deshalb vielschichtig und dynamisch.

Als Vorgehensmodell und
Orientierungshilfe hat sich das Phasenkonzept
jedoch gut bewährt. Es ist sicher besser,

eine Planung zu haben, welche
rollend der sich ändernden Situation an-
gepasst wird, als wegen der auftretenden

Änderungen auf eine Planung zu
verzichten und sich treiben zu lassen.

3. Aufgaben und
Tätigkeiten des

Softwareingenieurs
Die obige Beschreibung des Projektablaufs

zeigt, dass der Softwareinge¬

nieur nur einen kleinen Teil seiner Zeit
mit dem Eintippen von Programmcodes

verbringt. Er muss ja zuerst die
Aufgabenstellung verstehen und
beschreiben, dann das System entwerfen,
genügend dokumentieren und es am
Schluss auch austesten.

In Projekten mit mehreren
Mitarbeitern wird die Arbeit aufgeteilt. Dabei

bewährt sich eine maximale Team-
grösse von 6 bis 8 Mitarbeitern, grössere

Projekte werden mit Vorteil in mehrere

Teilprojekte aufgeteilt. Die Team-
grösse variiert im Verlauf des Projekts.
Ein erfahrener Mitarbeiter, meist
zugleich Projektleiter, erarbeitet
Pflichtenheft und Spezifikation. Für diese
Aufgabe muss er gut mit dem Kunden,
der meist auch zukünftiger Benützer
des Systems ist, kommunizieren können,

um dessen Bedürfnisse und
Anforderungen richtig zu verstehen.

Anschliessend hat er diese Anforderungen

schriftlich niederzulegen. Die
Hilfsmittel dazu sind dabei nach wie
vor der Texteditor, welcher ein einfaches

Ändern und Ergänzen des einmal
erstellten Textes erlaubt, sowie Papier,
Bleistift und Radiergummi. Wichtig ist
die Erkenntnis, dass die Denkarbeit
wohl sehr wichtig ist, aber erst als
Resultat gelten kann, wenn sie ihren
Niederschlag auf Papier (oder einem
elektronischen Informationsträger)
gefunden hat.

Zum Entwurf der Software wird im
allgemeinen das Team erweitert. Die
Aufgabe wird in Teilgebiete unterteilt,
deren Schnittstellen (ein schöneres
Wort heisst: Nahtstellen) zuerst festgelegt

werden müssen, bevor die einzelnen

Teilgebiete unabhängig voneinander

bearbeitet werden können. In dieser

schöpferischen Phase stehen dem
Softwareingenieur zur Darstellung der

gewählten Lösungen verschiedene
Techniken zur Verfügung, die bekanntesten

sind Jackson, State-Event, Mascot

und Struktogramm. Es gibt
Hilfsmittel, welche diese Techniken
unterstützen, sie sind aber noch wenig
verbreitet. Das Resultat der Entwurfsphase

ist die Beschreibung der zu erstellenden

Software, aufgeteilt in einzelne
Module.

Der Entwurf, die Codierung und
das Austesten der einzelnen Programmodule

kann gut auf weitere Mitarbeiter

verteilt werden. Hierbei können
auch jüngere Mitarbeiter Erfahrungen
sammeln. Es handelt sich um Arbeiten,

welche weitgehend am Computer
erfolgen. Der Entwurf kann im Editor
dokumentiert werden. Das Erstellen
des Programmcodes sowie das Compi-
lieren und Austesten geschehen heute
fast ausschliesslich durch den
Programmierer direkt am Computer.
Wichtig bei diesen Arbeiten ist eine
klare, strukturierte Denkweise sowie
ein diszipliniertes Vorgehen. Der
erstellte Code soll so strukturiert und
dokumentiert sein, dass er sowohl von
seinem Ersteller als auch von einem
Aussenstehenden später gut verstanden

werden kann.
Bei der Einführung des Systems

wird das Softwareteam im allgemeinen
wieder verkleinert. Es geht nun darum,
Mängel der Software im Zusammenspiel

mit dem gesamten System zu
lokalisieren und zu beheben. Diese
Arbeiten erfolgen häufig unter Zeitdruck;
dies verlangt von den Beteiligten, dass
sie auch unter erschwerenden
Bedingungen Ruhe und Übersicht bewahren.

Da die auftretenden Fehler nicht
vorhersehbar sind, kann diese Arbeit
kaum formalisiert werden. Die
Korrekturen müssen trotzdem diszipliniert
und mittels wiederholbarer Testverfahren

erfolgen; nur so lassen sich
neue Fehler vermeiden.

1030 (A 574) Bull. ASE/UCS 76(1985)17, 7 septembre



4. Bedeutung des

Projektmanagements
Die Erfahrung zeigt, dass Probleme

wie massive Kosten- und
Terminüberschreitungen oder unbefriedigende
Lösungen häufig auf Mängel im
Projektmanagement zurückzuführen sind.
Ein gutes Projektmanagement ist
deshalb Voraussetzung für die erfolgreiche

Abwicklung eines Softwareprojekts.

Das Projektmanagement beginnt
bei der Projektorganisation. Dabei sollen

die zukünftigen Benützer,
Fachpersonal und Management, eingehend
ins Projekt miteinbezogen werden. Die
wesentlichen Aufgaben des

Projektmanagers sind die Schätzung des
Aufwands, die Planung der Arbeiten, die
Führung der Mitarbeiter sowie die
Kontrolle des Projektfortschritts und
des Aufwands, wobei die Schätzung
des Aufwands besondere Schwierigkeiten

bietet. Einerseits handelt es sich
bei der Softwareerstellung um schwer
formalisierbare Arbeiten, anderseits
ist auch die Problemstellung jedesmal
neu, da kaum jemand das gleiche
Programm zweimal schreibt.

Gute Software-Projektmanager sind
rar und die Anforderungen an sie recht
hoch. Der Projektmanager soll sich auf
den Gebieten Menschenführung,
Planung und Software auskennen, und
zwar ziemlich gut, denn die technischen

Problemstellungen sind recht
schwierig und die Mitarbeiter im
allgemeinen eher anspruchsvoll. Aus
diesem Grunde wird bei grösseren Projekten

manchmal ein zusätzlicher
administrativer Projektleiter eingesetzt,
welcher den Softwareleuten die Planungsund

Projektadministrationsaufgaben
mindestens teilweise abnimmt.

5. Methoden und
Hilfsmittel
Der Softwareingenieur steht allen

elektronischen Hilfsmitteln, welche
seine Arbeit erleichtern, naturgemäss
positiv gegenüber. Das am häufigsten
benützte Software-Hilfsmittel ist der
Editor, der zur Erstellung der
Dokumentation und zur Eingabe der
Programme eingesetzt wird. Mit seiner
Hilfe lassen sich Dokumente sehr
einfach ändern oder ergänzen. In dieser
Möglichkeit liegen allerdings auch
Gefahren, denn wo leicht geändert werden

kann, wird gerne auch leichtsinnig
geändert. Hier helfen Systeme zur
Verwaltung der verschiedenen Versionen,
vergleichbar mit dem technischen
Änderungswesen in einer Produktionsfirma.

Die Bedürfnisse des Softwareingenieurs

gehen jedoch weiter. Er möchte
auch Zeichnungen editieren, er
braucht eine Projektplanung, er möchte

aus gezeichneten Strukturen
möglichst automatisch zum Programm
kommen. Bereits seit einiger Zeit sind
verschiedene integrierte
Entwicklungssysteme erhältlich, welche den
Softwareingenieur von der Pflichten-
hefterstellung über den Entwurf bis
zur Codierung, Projektleitung und
Dokumentation unterstützen. Ihr
wirtschaftlicher Einsatz insbesondere im
technischen Gebiet ist jedoch heute
noch sehr begrenzt. Kaum jemand
zweifelt daran, dass hier noch eine

grosse Entwicklung stattfinden wird.

6. Standardisierung -
Traum und Wirklichkeit
Die Entwicklungsumgebung des

Softwareingenieurs, die Werkzeuge
und Zielsysteme, sind einem ständigen
Wandel unterworfen. Dies erhält ihn
zwar geistig frisch, vermindert aber
auch seine Produktivität. Insbesondere

ist es mit der Portabilität, d.h. der
Übertragbarkeit der Software vom
System eines Herstellers auf das eines
anderen, nach wie vor schlecht bestellt.

Unix (TM) ist einer der Versuche,
einen einheitlichen Standard zu schaffen,

aber inzwischen hat sich auch hier
eine Vielzahl von Versionen gebildet,
wobei noch jeder Hersteller seine
Eigenheiten einbaut. Der Grund für
die Vielfalt dürfte letztlich in der
rasanten Entwicklung bei der Hardware
liegen. Eine Standardisierung lässt
sich nur auf dem kleinsten gemeinsamen

Nenner erreichen. Dies wiederum

würde es verunmöglichen, aus dem
technischen Fortschritt den
entsprechenden Nutzen zu ziehen. Die Vielfalt

hat jedoch ihren Preis, und diesen
zahlt schliesslich der Endkunde. Bei
ihm, und nicht beim Hersteller, liegt
deshalb das primäre Interesse an einer
Standardisierung.

Um durch diesen Dschungel
hindurchzukommen, muss sich ein
Softwareunternehmen auf einige strategische

Betriebssysteme festlegen. Wichtige

Auswahlkriterien sind dabei die
Marktverbreitung sowie die Leistungsfähigkeit

des Herstellers. Retis erstellt
die meisten Anwendungen unter VMS
oder RSX, Unix wird selten eingesetzt,
da es kaum echtzeitfähig ist. Festzulegen

sind aber auch die strategischen
Programmiersprachen, bei Retis
insbesondere Pascal, wie auch strategische

Datenbanksysteme und
Transaktionsmanager.

Wo vorhandene Erfahrungen
weiterverwendet werden können, lässt
sich die Produktivität erheblich
steigern. Die Einführung eines neuen
Betriebssystems belastet ein Projekt er-
fahrungsgemäss mit etwa 500 bis 1000
zusätzlichen Arbeitsstunden, je nach
Komplexitätsgrad. Für eine neue
Programmiersprache kann man mit etwa
100 Stunden je Teammitglied rechnen,
und zum Kennenlernen eines neuen
Programmentwicklungssystems mit
etwa 50 Stunden. Am schwierigsten ist
eine Vorhersage, wenn es darum geht,
in einem neuen Anwendungsbereich
zu arbeiten, da das Verständnis dafür
eine wesentliche Know-how-Komponente

bildet.

7. Bestehende Software
oder Neuentwicklung?
Eine Software fertigzustellen und

zum Funktionieren zu bringen bedeutet

ein beträchtliches Mass an Arbeit.
Wenn es aber einmal soweit ist, kann
die Software einfach und beliebig oft

Fig. 4 Linking

Bull. SEV/VSE 76(1985)17,7. September (A 575) 1031



vervielfältigt werden. Das Einfachste
und Billigste wäre deshalb, eine
bestehende Software unverändert zu
übernehmen. Im industriellen
Anwendungsbereich sind jedoch die Anforderungen

oft so unterschiedlich, dass
dies nicht möglich ist. Am ehesten lässt
sich hier ein Baukastenkonzept
realisieren, wo einzelne Programmbausteine

übernommen, mit neu entwickelten
ergänzt und zum gewünschten Ganzen
zusammengefügt werden.

Doch auch dem stehen in der Praxis
grosse Widerstände gegenüber. Zuerst
einmal müsste der Softwareingenieur
diese Bausteine überhaupt kennen und
auf ihre Eignung prüfen, zum andern
muss er bei der Integration die einzelnen

Funktionen sehr genau verstehen.
Dies bedingt eine wesentlich bessere

Strukturierung und Dokumentation
der Programme als bei der Einmalverwendung,

eine Vorinvestition, welche
selten getätigt wird. Schliesslich haben
die Softwareleute noch einen
ausgesprochenen Berufsstolz, welcher es
ihnen offensichtlich verbietet, die
Arbeit eines anderen zu übernehmen,
denn irgendein Mangel lässt sich an
jedem Programm finden.

Häufig wird zuerst die Hardware
ausgewählt und erst dann die zugehörige

Software entwickelt. Untersucht
man dabei zuerst die Frage, welche
Software bereits vorhanden ist, so
kann man möglicherweise erhebliche
Einsparungen an Geld und Zeit erzielen.

8. Der Sonderfall
Softwareunternehmen
Retis ist eine Softwarefirma, welche

sich auf technische Software spezialisiert

hat. Das Anwendungsgebiet lässt
sich am ehesten mit «Industrielle
Automation» umschreiben und um-
fasst die Steuerung, Überwachung und
Verwaltung von unterschiedlichsten
Anlagen in der Industrie. Das
Charakteristische ist hierbei, dass der
Computer nicht für sich allein steht,
sondern dass er mit einem physikalischen

System, z.B. mit einer Maschine
oder Transportanlage, in Verbindung
steht.

Die Arbeitgeber eines
Softwareunternehmens sind in sehr direkter
Art und Weise seine Kunden. Dies
erzwingt geradezu ein Eingehen auf
deren Bedürfnisse. Ausserdem begünstigt

dies ein kostenbewusstes Denken
und ein zielstrebiges Vorgehen. Anderseits

kann ein Softwareunternehmen

im Gegensatz zu einer internen
Softwareabteilung nicht eine enge
Produktestrategie festlegen, was dazu führt,
dass ein breites Spektrum an
Betriebssystemen und Programmiersprachen
eingesetzt werden muss. Dem steht
jedoch wiederum der Vorteil eines
grösseren Überblicks gegenüber.

Vom Softwareingenieur verlangt ein
Softwareunternehmer mehr Initiative,
Beweglichkeit und unternehmerisches
Denken. Dafür geniesst dieser aber
eine grosse Freiheit im Handeln sowie
Abwechslung in seinen Aufgaben. Die
meisten Mitarbeiter z.B. von Retis
haben ein klassisches Ingenieurstudium
hinter sich. Die Softwarekenntnisse
haben sie sich im Verlaufe der beruflichen

Weiterbildung auf verschiedenste
Weise angeeignet. Das Spektrum
reicht dabei vom On-the-job-Training
über Lieferantenkurse bis zu Tagesund

Abendnachdiplomstudien. Seit
einigen Jahren werden Softwareingenieure

auch an den HTL und der ETH
ausgebildet. Diese jüngeren Mitarbeitern

bewältigen die Praxis ohne
Probleme.

Ein guter Softwareingenieur kennt
nicht nur Programmiersprachen und
Betriebssysteme, sondern er besitzt
auch ein gewisses Verständnis für das

Anwendungsgebiet, in welchem seine
Software schliesslich läuft. Es ist
deshalb wichtig, dass der Anwender in der
Pflichtenheftphase seine Anforderungen

klar definiert und der Softwareingenieur

diese auch versteht. Eine gute
Lösung wird nur durch eine enge
Zusammenarbeit zwischen Fachspezialist
und Softwarespezialist gefunden.

Die ständige Weiterbildung der
Mitarbeiter ist eine wichtige Aufgabe.
Dies bedingt erhebliche Investitionen
in Form von Kurskosten und
«unproduktiver» Arbeitszeit. Dabei genügt es

nicht, Kenntnisse über E(etriebssyste-
me und Programmiersprachen zu ver¬

mitteln, sondern es sind auch Methoden

für Design, Dokumentation und
Projektmanagement zu schulen.
Schliesslich ist auch der Nutzen des

Erfahrungsaustausches unter den
Mitarbeitern, welche an verschiedenen
Projekten arbeiten, nicht zu
unterschätzen.

9. Zukunft
Der Beruf des Softwareingenieurs

ist heute tatsächlich ein Handwerk mit
goldenem Boden. Kaum eine Berufsgruppe

sieht sich heute einer so grossen

Nachfrage gegenüber. Doch was
wird in 5 oder 10 Jahren sein? Werden
die verschiedenen Schulen bis dann
einen Überfluss an solchen Spezialisten

erzeugt haben? Oder werden gar
die Entwicklungen im Bereich der
künstlichen Intelligenz den Programmierer

ersetzen und damit überflüssig
machen?

Im Moment kann man davon ausgehen,

dass die Entwicklung im Bereich
der Hardware auch in den nächsten
Jahren mit unverminderter Geschwindigkeit

weitergehen wird. Dies führt
dazu, dass bei der Softwareentwicklung

immer weniger Rücksicht auf den
Verbrauch der Hardwareressourcen
genommen werden muss. Dadurch
wiederum wird es möglich, dem
Entwickler komfortablere Werkzeuge zur
Verfügung zu stellen, welche einen
Teil seiner heutigen Routineaufgaben
übernehmen.

Bereits heute gibt es
Programmentwicklungssysteme, die erlauben, in
sehr kurzer Zeit einen funktionsfähigen

Prototyp für eine bestimmte
Anwendung zu erstellen, vor allem was
den Dialog und die Datenbank anbetrifft.

Dieser kann dann vom Benützer
ausgetestet werden, bevor die Anwendung

in ihrer endgültigen Form erstellt
wird. Wesentliche Hilfen werden auch
integrierte Programmentwicklungssysteme

bringen, welche den Softwareingenieur

von der Problemstellung über
die Realisierung bis zur Wartung
unterstützen. Hauptsächliche Hilfsfunktionen

sind dabei ein Editor, welcher
Text, Schemas und Bilder gleicher-
massen verarbeiten kann, ein Ablagesystem,

welches die erstellten Versionen

selbständig verwaltet, ein Projekt-
planungs- und Kontrollsystem sowie
die Umwandlung der beschriebenen
Aufgabe in den Maschinencode auf
einer sehr hohen Ebene.

Eine weitere wichtige Entwicklung
ist im Bereich der Endbenützerspra-
chen zu erwarten. Mit problemorien-

1032 (A 576) Bull. ASE/UCS 76(1985)17, 7 septembre



tierten Programmiersprachen wird es

möglich sein, dass der Fachspezialist
seine Aufgabenstellung ohne Umweg
über den Programmierer direkt dem

Computer eingibt. Bereits heute sind
verschiedene solche Systeme erhältlich,

welche besonders zum Erstellen
einfacher Dateien und Graphiken
benützt werden. Die Entwicklung geht
jedoch weiter, und auch die künstliche
Intelligenz wird dem Benutzer die
Bedienung solcher Systeme weiter
erleichtern. Ohne eine gewisse EDV-spezifische

Ausbildung geht es jedoch
auch hier vorläufig nicht. Dem kommt
aber der heutige Trend entgegen, diese
in die Berufsausbildung generell zu
integrieren.

Einfachere Anwendungen, welche

auf wenige Personen beschränkt sind,
werden vermehrt durch diese selbst
entwickelt werden. Komplexere
Anwendungen, bei denen die Daten
unternehmensweit zusammenhängen,

oder auch umfangreichere technische
Anwendungen werden nach wie vor
den Einsatz von Spezialisten erfordern.

Im produktionstechnischen
Bereich bleibt das Problem der Verbindung

des Computers mit der
Anlagensteuerung. Hier können Standardisierungen,

wie sie beispielsweise das bei
General Motors in Entwicklung
befindliche MAP (Manufacturing
Automation Protocol) darstellt, Fortschritte
bringen. Ganz allgemein wird die
Bedeutung der Kommunikation
zwischen verschiedenen Systemen wesentlich

an Bedeutung gewinnen, denn der
Nutzen der Datenverarbeitung wird
noch wesentlich erhöht, wenn die für
eine Aufgabe nötigen und vorhanden
Informationen direkt zugänglich sind.

Bull. SEV/VSE 76(1985)17, 7. September (A 577) 1033


	Das Arbeitsfeld der Softwaremacher

