Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 76 (1985)

Heft: 17

Artikel: Das Arbeitsfeld der Softwaremacher

Autor: Bernhard, D.

DOl: https://doi.org/10.5169/seals-904670

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904670
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Das Arbeitsfeld der Softwaremacher

D. Bernhard

Der Aufsatz beschreibt den Ablauf eines
Softwareprojektes sowie die Aufgaben und
Tatigkeiten des Softwareingenieurs. Er will
dem Leser ein realistisches Bild der heutigen
Situation, insbesondere im Bereich der tech-
nischen Software, vermitteln. Der abschlies-
sende Ausblick zeigt, in welcher Richtung der
zukunftige Entwicklungsgang zu erwarten Ist.

L article décrit le déroulement d'un projet de
logiciel et les diverses activités d'un ingénieur
chargé du développement. Le lecteur peut
ainsi se faire une idée concrete de la situa-
tion telle qu'elle se présente actuellement, en
particulier dans le domaine du logiciel tech-
nique. Les changements de tendances que le
futur nous réserve sont indiqués dans la der-
niére partie de cet article.

Adresse des Autors

D. Bernhard, RETIS Realtime Software AG, Bahnhof-
strasse 96, 5001 Aarau.

1. Einleitung

Die Nachfrage nach produktivitits-
steigernder Computertechnologie
wéchst sehr rasch. Den Engpass stellt
dabei mehr und mehr die Software
dar. Wihrend sich bei der Hardware
das Preis-/Leistungs-Verhiltnis innert
5 Jahren in der Gréssenordnung um
einen Faktor 10 verbessert, geht dieser
Prozess bei der Softwareerstellung we-
sentlich langsamer vor sich. Dies fiihrt
dazu, dass der Anteil der Softwareko-

sten verglichen mit den Hardwareko-

sten laufend zunimmt. Bei industriel-
len Anwendungen ist mittlerweile das
Verhiltnis so, dass die Investition in
die Software im allgemeinen grosser
als in die Computerhardware ist. Da-
durch riickt eine Berufsgruppe ver-
mehrt ins Zentrum des Interesses: die
Softwaremacher.

Ein Ingenieur, welcher ein Produkt
entwickelt, macht im Grunde genom-
men nichts anderes, als Informationen
zu verarbeiten, in Form von Zeichnun-
gen, Zahlenmaterial, Text und Bil-
dern. Das gleiche macht auch der Soft-
wareingenieur. Und das Hilfsmittel
dazu ist mehr und mehr der Computer.
Der Arbeitsplatz der beiden wird sich
deshalb in Zukunft mehr und mehr
gleichen: eine Workstation mit Bild-
schirm und Tastatur, welche ihnen den
Zugriff zur benotigten Computerlei-
stung gibt und iber die sie auch mit
anderen Beniitzern verkehren konnen.
Spater wird die Moglichkeit der
Spracheingabe dazukommen. Auch
die Anforderungen an den Produkt-
entwickler und an den Softwareinge-
nieur werden sich teilweise iiberdek-
ken. Beide miissen in der Lage sein, ein
Problem zu verstehen, es zu strukturie-
ren und dafiir kreativ Losungen zu
entwickeln. Die Unterschiede liegen
jedoch im fachspezifischen Wissen,
welches zur Erfiillung der speziellen
Aufgaben nach wie vor erforderlich
ist.

Die Zukunft wird im Biirobereich
grosse Veranderungen bringen. Und
hier liegt der grosse Vorteil des Soft-
wareingenieurs, namlich dass er an
Verdnderungen in seinem Arbeitsum-
feld gewohnt ist.

2. Der Ablauf eines
Projekts

Noch immer glauben viele Aussen-
stehende, dass es geniigt, eine Pro-
grammiersprache zu erlernen, um sich
dann hinzusetzen und dem Computer
die nétigen Anweisungen zu geben.
Richtig ist jedoch, dass Software auf
transparente Art und Weise anhand
eines methodischen Vorgehenskon-
zeptes realisiert werden muss. Softwa-
reprojekte werden geplant, zielgerich-
tet realisiert und anhand klar definier-
ter Meilensteine iiberwacht.

Ein bewéhrtes Modell hierzu ist das
Phasenkonzept, wie es in Figur 1 in
grober Form dargestellt ist. Nach einer
allgemeinen Aufgabenbeschreibung
im Rahmen der Vorabklirungen er-
folgt als erstes die Erstellung des
Pflichtenhefts. Hierbei werden in en-
ger Zusammenarbeit mit dem zukiinf-
tigen Beniitzer die Anforderungen an
das System definiert (Fig. 2). Das Was
steht dabei im Vordergrund.

Auf der Basis dieses Pflichtenhefts
kann nun die Software entworfen wer-
den, zuerst das System als Ganzes,
dann die einzelnen Bausteine. Das Wie
wird hier festgelegt. Erst nach Entwurf
der Softwarestruktur wird der Pro-
grammcode geschrieben und ausgete-
stet (Fig. 3).

Bei der Inbetriecbnahme muss die
Software des gesamten Systems zu-
sammengefiigt werden (Fig. 4). Da-
nach muss die von Anfang an gefiihrte
Dokumentation noch komplettiert
werden. Dies im Hinblick auf eine spi-
tere Wartung (Fig. 5) in Form von Feh-

Bull. SEV/VSE 76(1985)17, 7. September

(A573) 1029

Problemanalyse

Vorabklarung
gper, [Gestattung |
S fhare Gestaltun

Anforderung
Preliminary Design
Detailed Design Entwurf

Spezifikation

Lo
Gode » DRk Realnsyerun
Implementation

Test and
Pre -Operation

Operation and
aintenance

Requirements Specification

Fig. 1

Das Phasenkonzept,
ein methodisches
Vorgehensmodell zur
Projektabwicklung

lerkorrektur, Ergédnzung oder Erweite-
rung des Systems.

...in der Praxis

Der saubere Projektablauf, bei dem
Schritt auf Schritt aufbaut, ist in der
Praxis kaum anzutreffen. Vielmehr ist
es so, dass die einzelnen Schritte ge-
genseitig iliberlappen oder dass von
einer spédteren Phase wieder in eine
frihere zuriickgesprungen werden
muss. Die Griinde dafiir sind vielfal-
tig: Die Anforderungen an das System
konnen sich im Verlaufe des Projekts
dndern, der Zeitdruck kann ein iiber-
lapptes Arbeiten erforderlich machen,
einzelne Beteiligte sind mit ihren Ar-
beiten im Riickstand (Fig. 6), oder es
konnen Probleme bei der technischen
Realisierung auftreten, welche eine
Anderung des Konzeptes erzwingen.
Gerade der auf der Seite des Beniitzers
zu leistende Aufwand wird hiufig un-
terschitzt. Auch ist es so, dass wegen
der neuen Moglichkeiten stets komple-
xere Aufgaben in Angriff genommen
werden. Der praktische Ablauf ist des-
halb vielschichtig und dynamisch.

Als Vorgehensmodell und Orientie-
rungshilfe hat sich das Phasenkonzept
jedoch gut bewihrt. Es ist sicher bes-
ser, eine Planung zu haben, welche rol-
lend der sich dndernden Situation an-
gepasst wird, als wegen der auftreten-
den Anderungen auf eine Planung zu
verzichten und sich treiben zu lassen.

3. Aufgaben und
Titigkeiten des
Softwareingenieurs

Die obige Beschreibung des Projekt-
ablaufs zeigt, dass der Softwareinge-

nieur nur einen kleinen Teil seiner Zeit
mit dem Eintippen von Programmco-
des verbringt. Er muss ja zuerst die
Aufgabenstellung verstehen und be-
schreiben, dann das System entwerfen,
geniigend dokumentieren und es am
Schluss auch austesten.

In Projekten mit mehreren Mitar-
beitern wird die Arbeit aufgeteilt. Da-
bei bewihrt sich eine maximale Team-
grosse von 6 bis 8 Mitarbeitern, grosse-
re Projekte werden mit Vorteil in meh-
rere Teilprojekte aufgeteilt. Die Team-
grosse variiert im Verlauf des Projekts.
Ein erfahrener Mitarbeiter, meist zu-
gleich Projektleiter, erarbeitet Pflich-
tenheft und Spezifikation. Fiir diese
Aufgabe muss er gut mit dem Kunden,
der meist auch zukiinftiger Beniitzer
des Systems ist, kommunizieren kon-
nen, um dessen Bediirfnisse und An-
forderungen richtig zu verstehen.

Anschliessend hat er diese Anforde-
rungen schriftlich niederzulegen. Die
Hilfsmittel dazu sind dabei nach wie
vor der Texteditor, welcher ein einfa-
ches Andern und Erginzen des einmal
erstellten Textes erlaubt, sowie Papier,
Bleistift und Radiergummi. Wichtig ist
die Erkenntnis, dass die Denkarbeit
wohl sehr wichtig ist, aber erst als Re-
sultat gelten kann, wenn sie ihren
Niederschlag auf Papier (oder einem
elektronischen Informationstréger)
gefunden hat.

Zum Entwurf der Software wird im
allgemeinen das Team erweitert. Die
Aufgabe wird in Teilgebiete unterteilt,
deren Schnittstellen (ein schoneres
Wort heisst: Nahtstellen) zuerst festge-
legt werden miissen, bevor die einzel-
nen Teilgebiete unabhédngig voneinan-
der bearbeitet werden kénnen. In die-
ser schopferischen Phase stehen dem
Softwareingenieur zur Darstellung der

gewdhlten Losungen verschiedene
Techniken zur Verfiigung, die bekann-
testen sind Jackson, State-Event, Mas-
cot und Struktogramm. Es gibt Hilfs-
mittel, welche diese Techniken unter-
stiitzen, sie sind aber noch wenig ver-
breitet. Das Resultat der Entwurfspha-
se ist die Beschreibung der zu erstellen-
den Software, aufgeteilt in einzelne
Module.

Der Entwurf, die Codierung und
das Austesten der einzelnen Program-
module kann gut auf weitere Mitarbei-
ter verteilt werden. Hierbei konnen
auch jiingere Mitarbeiter Erfahrungen
sammeln. Es handelt sich um Arbei-
ten, welche weitgehend am Computer
erfolgen. Der Entwurf kann im Editor
dokumentiert werden. Das Erstellen
des Programmcodes sowie das Compi-
lieren und Austesten geschehen heute
fast ausschliesslich durch den Pro-
grammierer direkt am Computer.
Wichtig bei diesen Arbeiten ist eine
klare, strukturierte Denkweise sowie
ein diszipliniertes Vorgehen. Der er-
stellte Code soll so strukturiert und do-
kumentiert sein, dass er sowohl von
seinem Ersteller als auch von einem
Aussenstehenden spiter gut verstan-
den werden kann.

Bei der Einfiihrung des Systems
wird das Softwareteam im allgemeinen
wieder verkleinert. Es geht nun darum,
Mingel der Software im Zusammen-
spiel mit dem gesamten System zu lo-
kalisieren und zu beheben. Diese Ar-
beiten erfolgen hdufig unter Zeitdruck;
dies verlangt von den Beteiligten, dass
sie auch unter erschwerenden Bedin-
gungen Ruhe und Ubersicht bewah-
ren. Da die auftretenden Fehler nicht
vorhersehbar sind, kann diese Arbeit
kaum formalisiert werden. Die Kor-
rekturen miissen trotzdem diszipliniert
und mittels wiederholbarer Testver-
fahren erfolgen; nur so lassen sich
neue Fehler vermeiden.

Fig.2 Pflichtenheft

1030 (A 574)

Bull. ASE/UCS 76(1985)17, 7 septembre

4. Bedeutung des
Projektmanagements

Die Erfahrung zeigt, dass Probleme
wie massive Kosten- und Terminiiber-
schreitungen oder unbefriedigende
Losungen haufig auf Mingel im Pro-
jektmanagement zuriickzufiihren sind.
Ein gutes Projektmanagement ist des-
halb Voraussetzung fiir die erfolgrei-
che Abwicklung eines Softwarepro-
jekts. Das Projektmanagement beginnt
bei der Projektorganisation. Dabei sol-
len die zukiinftigen Beniitzer, Fach-
personal und Management, eingehend
ins Projekt miteinbezogen werden. Die
wesentlichen Aufgaben des Projekt-
managers sind die Schitzung des Auf-
wands, die Planung der Arbeiten, die
Fiihrung der Mitarbeiter sowie die
Kontrolle des Projektfortschritts und
des Aufwands, wobei die Schitzung
des Aufwands besondere Schwierig-
keiten bietet. Einerseits handelt es sich
bei der Softwareerstellung um schwer
formalisierbare Arbeiten, anderseits
ist auch die Problemstellung jedesmal
neu, da kaum jemand das gleiche Pro-
grainm zweimal schreibt.

A

Fig.3 Softwarestruktur

Gute Software-Projektmanager sind
rar und die Anforderungen an sie recht
hoch. Der Projektmanager soll sich auf
den Gebieten Menschenfiihrung, Pla-
nung und Software auskennen, und
zwar ziemlich gut, denn die techni-
schen Problemstellungen sind recht
schwierig und die Mitarbeiter im allge-
meinen eher anspruchsvoll. Aus die-
sem Grunde wird bei grosseren Projek-
ten manchmal ein zusitzlicher admini-
strativer Projektleiter eingesetzt, wel-
cher den Softwareleuten die Planungs-
und Projektadministrationsaufgaben
mindestens teilweise abnimmt.

5. Methoden und
Hilfsmittel

Der Softwareingenieur steht allen
elektronischen Hilfsmitteln, welche
seine Arbeit erleichtern, naturgemaiss
positiv gegeniiber. Das am héufigsten
beniitzte Software-Hilfsmittel ist der
Editor, der zur Erstellung der Doku-
mentation und zur Eingabe der Pro-
gramme eingesetzt wird. Mit seiner
Hilfe lassen sich Dokumente sehr ein-
fach dndern oder ergdnzen. In dieser
Moglichkeit liegen allerdings auch Ge-
fahren, denn wo leicht gedndert wer-
den kann, wird gerne auch leichtsinnig
gedndert. Hier helfen Systeme zur Ver-
waltung der verschiedenen Versionen,
vergleichbar mit dem technischen An-
derungswesen in einer Produktionsfir-
ma.

Die Bediirfnisse des Softwareinge-
nieurs gehen jedoch weiter. Er mochte
auch Zeichnungen editieren, er
braucht eine Projektplanung, er m6ch-
te aus gezeichneten Strukturen mog-
lichst automatisch zum Programm
kommen. Bereits seit einiger Zeit sind
verschiedene integrierte Entwick-
lungssysteme erhdltlich, welche den
Softwareingenieur von der Pflichten-
hefterstellung iiber den Entwurf bis
zur Codierung, Projektleitung und
Dokumentation unterstiitzen. IThr wirt-
schaftlicher Einsatz insbesondere im
technischen Gebiet ist jedoch heute
noch sehr begrenzt. Kaum jemand
zweifelt daran, dass hier noch eine
grosse Entwicklung stattfinden wird.

6. Standardisierung -
Traum und Wirklichkeit

Die Entwicklungsumgebung des
Softwareingenieurs, die Werkzeuge
und Zielsysteme, sind einem stindigen
Wandel unterworfen. Dies erhilt ihn
zwar geistig frisch, vermindert aber
auch seine Produktivitit. Insbesonde-
re ist es mit der Portabilitit, d.h. der
Ubertragbarkeit der Software vom Sy-
stem eines Herstellers auf das eines an-
deren, nach wie vor schlecht bestellt.

Unix (TM) ist einer der Versuche,
einen einheitlichen Standard zu schaf-
fen, aber inzwischen hat sich auch hier
eine Vielzahl von Versionen gebildet,
wobei noch jeder Hersteller seine
Eigenheiten einbaut. Der Grund fiir
die Vielfalt diirfte letztlich in der ra-
santen Entwicklung bei der Hardware
liegen. Eine Standardisierung ldsst
sich nur auf dem kleinsten gemeinsa-
men Nenner erreichen. Dies wiederum

wiirde es verunmdglichen, aus dem
technischen Fortschritt den entspre-
chenden Nutzen zu ziehen. Die Viel-
falt hat jedoch ihren Preis, und diesen
zahlt schliesslich der Endkunde. Bei
ihm, und nicht beim Hersteller, liegt
deshalb das primare Interesse an einer
Standardisierung.

Um durch diesen Dschungel hin-
durchzukommen, muss sich ein Soft-
wareunternehmen auf einige strategi-
sche Betriebssysteme festlegen. Wich-
tige Auswahlkriterien sind dabei die
Marktverbreitung sowie die Leistungs-
fahigkeit des Herstellers. Retis erstellt
die meisten Anwendungen unter VMS
oder RSX, Unix wird selten eingesetzt,
da es kaum echtzeitfahig ist. Festzule-
gen sind aber auch die strategischen
Programmiersprachen, bei Retis ins-
besondere Pascal, wie auch strategi-
sche Datenbanksysteme und Transak-
tionsmanager.

Wo vorhandene Erfahrungen
weiterverwendet werden kdnnen, lisst
sich die Produktivitit erheblich stei-
gern. Die Einfiihrung eines neuen Be-
triebssystems belastet ein Projekt er-
fahrungsgeméiss mit etwa 500 bis 1000
zusitzlichen Arbeitsstunden, je nach
Komplexitétsgrad. Fiir eine neue Pro-
grammiersprache kann man mit etwa
100 Stunden je Teammitglied rechnen,
und zum Kennenlernen eines neuen
Programmentwicklungssystems mit
etwa 50 Stunden. Am schwierigsten ist
eine Vorhersage, wenn es darum geht,
in einem neuen Anwendungsbereich
zu arbeiten, da das Verstidndnis dafiir
eine wesentliche Know-how-Kompo-
nente bildet.

7. Bestehende Software
oder Neuentwicklung?

Eine Software fertigzustellen und
zum Funktionieren zu bringen bedeu-
tet ein betrdchtliches Mass an Arbeit.
Wenn es aber einmal soweit ist, kann
die Software einfach und beliebig oft

~ifls,
0

ONid)
"N

Fig.4 Linking

Bull. SEV/VSE 76(1985)17, 7. September

(A575) 1031

vervielfaltigt werden. Das Einfachste
und Billigste wire deshalb, eine beste-
hende Software unveridndert zu iiber-
nehmen. Im industriellen Anwen-
dungsbereich sind jedoch die Anforde-
rungen oft so unterschiedlich, dass
dies nicht moglich ist. Am ehesten ldsst
sich hier ein Baukastenkonzept reali-
sieren, wo einzelne Programmbaustei-
ne iibernommen, mit neu entwickelten
erginzt und zum gewiinschten Ganzen
zusammengefiigt werden.

Doch auch dem stehen in der Praxis
grosse Widerstande gegeniiber. Zuerst
einmal miisste der Softwareingenieur
diese Bausteine iiberhaupt kennen und
auf ihre Eignung priifen, zum andern
muss er bei der Integration die einzel-
nen Funktionen sehr genau verstehen.
Dies bedingt eine wesentlich bessere
Strukturierung und Dokumentation
der Programme als bei der Einmalver-
wendung, eine Vorinvestition, welche
selten getatigt wird. Schliesslich haben
die Softwareleute noch einen ausge-
sprochenen Berufsstolz, welcher es
ihnen offensichtlich verbietet, die Ar-
beit eines anderen zu iibernehmen,
denn irgendein Mangel ldsst sich an je-
dem Programm finden.

Haufig wird zuerst die Hardware
ausgewdhlt und erst dann die zugeho-
rige Software entwickelt. Untersucht
man dabei zuerst die Frage, welche
Software bereits vorhanden ist, so
kann man moglicherweise erhebliche
Einsparungen an Geld und Zeit erzie-
len.

8. Der Sonderfall
Softwareunternehmen

Retis ist eine Softwarefirma, welche
sich auf technische Software speziali-
siert hat. Das Anwendungsgebiet 1dsst
sich am ehesten mit «Industrielle
Automation» umschreiben und um-
fasst die Steuerung, Uberwachung und
Verwaltung von unterschiedlichsten
Anlagen in der Industrie. Das Cha-
rakteristische ist hierbei, dass der
Computer nicht fiir sich allein steht,
sondern dass er mit einem physikali-
schen System, z.B. mit einer Maschine
oder Transportanlage, in Verbindung
steht.

Die Arbeitgeber eines Softwa-
reunternehmens sind in sehr direkter
Art und Weise seine Kunden. Dies er-
zwingt geradezu ein Eingehen auf de-
ren Bediirfnisse. Ausserdem begiin-
stigt dies ein kostenbewusstes Denken
und ein zielstrebiges Vorgehen. Ander-
seits kann ein Softwareunternehmen

Fig.5 Service

im Gegensatz zu einer internen Soft-
wareabteilung nicht eine enge Produk-
testrategie festlegen, was dazu fiihrt,
dass ein breites Spektrum an Betriebs-
systemen und Programmiersprachen
eingesetzt werden muss. Dem steht je-
doch wiederum der Vorteil eines gros-
seren Uberblicks gegeniiber.

Vom Softwareingenieur verlangt ein
Softwareunternehmer mehr Initiative,
Beweglichkeit und unternehmerisches
Denken. Dafiir geniesst dieser aber
eine grosse Freiheit im Handeln sowie
Abwechslung in seinen Aufgaben. Die
meisten Mitarbeiter z.B. von Retis ha-
ben ein klassisches Ingenieurstudium
hinter sich. Die Softwarekenntnisse
haben sie sich im Verlaufe der berufli-
chen Weiterbildung auf verschiedenste
Weise angeeignet. Das Spektrum
reicht dabei vom On-the-job-Training
iber Lieferantenkurse bis zu Tages-
und Abendnachdiplomstudien. Seit
einigen Jahren werden Softwareinge-
nieure auch an den HTL und der ETH
ausgebildet. Diese jiingeren Mitarbei-
tern bewiltigen die Praxis ohne Pro-
bleme.

Ein guter Softwareingenieur kennt
nicht nur Programmiersprachen und
Betriebssysteme, sondern er besitzt
auch ein gewisses Verstdndnis fiir das
Anwendungsgebiet, in welchem seine
Software schliesslich lduft. Es ist des-
halb wichtig, dass der Anwender in der
Pflichtenheftphase seine Anforderun-
gen klar definiert und der Softwarein-
genieur diese auch versteht. Eine gute
Loésung wird nur durch eine enge Zu-
sammenarbeit zwischen Fachspezialist
und Softwarespezialist gefunden.

Die stindige Weiterbildung der Mit-
arbeiter ist eine wichtige Aufgabe.
Dies bedingt erhebliche Investitionen
in Form von Kurskosten und «unpro-
duktiver» Arbeitszeit. Dabei geniigt es
nicht, Kenntnisse iiber Betriebssyste-
me und Programmiersprachen zu ver-

mitteln, sondern es sind auch Metho-
den fiir Design, Dokumentation und
Projektmanagement zu schulen.
Schliesslich ist auch der Nutzen des
Erfahrungsaustausches unter den Mit-
arbeitern, welche an verschiedenen
Projekten arbeiten, nicht zu unter-
schitzen.

9. Zukunft

Der Beruf des Softwareingenieurs
ist heute tatsdchlich ein Handwerk mit
goldenem Boden. Kaum eine Berufs-
gruppe sieht sich heute einer so gros-
sen Nachfrage gegeniiber. Doch was
wird in 5 oder 10 Jahren sein? Werden
die verschiedenen Schulen bis dann
einen Uberfluss an solchen Speziali-
sten erzeugt haben? Oder werden gar
die Entwicklungen im Bereich der
kiinstlichen Intelligenz den Program-
mierer ersetzen und damit iiberfliissig
machen?

Im Moment kann man davon ausge-
hen, dass die Entwicklung im Bereich
der Hardware auch in den niachsten
Jahren mit unverminderter Geschwin-
digkeit weitergehen wird. Dies fiihrt
dazu, dass bei der Softwareentwick-
lung immer weniger Riicksicht auf den
Verbrauch der Hardwareressourcen
genommen werden muss. Dadurch
wiederum wird es mdglich, dem Ent-
wickler komfortablere Werkzeuge zur
Verfiigung zu stellen, welche einen
Teil seiner heutigen Routineaufgaben
iibernehmen.

Bereits heute gibt es Programment-
wicklungssysteme, die erlauben, in
sehr kurzer Zeit einen funktionsféhi-
gen Prototyp fiir eine bestimmte An-
wendung zu erstellen, vor allem was
den Dialog und die Datenbank anbe-
trifft. Dieser kann dann vom Beniitzer
ausgetestet werden, bevor die Anwen-
dung in ihrer endgiiltigen Form erstellt
wird. Wesentliche Hilfen werden auch
integrierte Programmentwicklungssy-
steme bringen, welche den Softwarein-
genieur von der Problemstellung iiber
die Realisierung bis zur Wartung un-
terstiitzen. Hauptsachliche Hilfsfunk-
tionen sind dabei ein Editor, welcher
Text, Schemas und Bilder gleicher-
massen verarbeiten kann, ein Ablage-
system, welches die erstellten Versio-
nen selbstindig verwaltet, ein Projekt-
planungs- und Kontrollsystem sowie
die Umwandlung der beschriebenen
Aufgabe in den Maschinencode auf
einer sehr hohen Ebene.

Eine weitere wichtige Entwicklung
ist im Bereich der Endbeniitzerspra-
chen zu erwarten. Mit problemorien-

1032 (A 576)

Bull. ASE/UCS 76(1985)17, 7 septembre

tierten Programmiersprachen wird es
moglich sein, dass der Fachspezialist
seine Aufgabenstellung ohne Umweg
iiber den Programmierer direkt dem
Computer eingibt. Bereits heute sind
verschiedene solche Systeme erhilt-
lich, welche besonders zum Erstellen
einfacher Dateien und Graphiken be-
niitzt werden. Die Entwicklung geht
jedoch weiter, und auch die kiinstliche
Intelligenz wird dem Benutzer die Be-
dienung solcher Systeme weiter er-
leichtern. Ohne eine gewisse EDV-spe-
zifische Ausbildung geht es jedoch
auch hier vorldufig nicht. Dem kommt
aber der heutige Trend entgegen, diese
in die Berufsausbildung generell zu in-
tegrieren.

Einfachere Anwendungen, welche

Fig.6 Terminplan

auf wenige Personen beschridnkt sind,
werden vermehrt durch diese selbst
entwickelt werden. Komplexere An-
wendungen, bei denen die Daten un-
ternechmensweit ~ zusammenhéngen,

oder auch umfangreichere technische
Anwendungen werden nach wie vor
den Einsatz von Spezialisten erfor-
dern. Im produktionstechnischen Be-
reich bleibt das Problem der Verbin-
dung des Computers mit der Anlagen-
steuerung. Hier konnen Standardisie-
rungen, wie sie beispielsweise das bei
General Motors in Entwicklung be-
findliche MAP (Manufacturing Auto-
mation Protocol) darstellt, Fortschritte
bringen. Ganz allgemein wird die Be-
deutung der Kommunikation zwi-
schen verschiedenen Systemen wesent-
lich an Bedeutung gewinnen, denn der
Nutzen der Datenverarbeitung wird
noch wesentlich erhéht, wenn die fiir
eine Aufgabe nétigen und vorhanden
Informationen direkt zugénglich sind.

Bull. SEV/VSE 76(1985)17, 7. September

(A577) 1033

	Das Arbeitsfeld der Softwaremacher

