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Hinweise zurAnwendung des diskreten
Zustandsreglers
J. Ulrich

Es wird nach den Ursachen gefragt, weswegen

der diskrete Abtast-Zustandsregier in

der Praxis noch relativ selten eingesetzt wird,

obwohl die Theorie bekannt und gefestigt
und das Entwurfswerkzeug vorhanden ist Es

werden Probleme genannt, die bei der
Realisierung eines geregelten Systems auftreten
können, und Hinweise gegeben, wie man
ihnen begegnen kann. Zu diesen Problemen

gehören Entwurfsmethodik, Strukturfragen,
Festlegen und Einhalten der Abtastzeit,
resultierende Stellgrössen bei Vorgabe der Pole,

Betrieb bei beschränkter Stellgrösse und
Störungsbekämpfung.

L auteur analyse les raisons pour lesquelles
le régulateur discret d'état, dont la théorie est

pourtant connue et établie et dont les

moyens d'élaboration sont disponibles, est

encore peu utilisé. Certains problèmes pouvant

se présenter lors de la réalisation d'un

système réglé ainsi que la façon de les résoudre

sont indiqués. Il s'agit de la méthodique
de conception, de questions de structure, de

la détermination et du maintien de la période
d'échantillonnage, des grandeurs de réglage
résultant de la position des pôles, du service

avec des grandeurs de réglage limitées et de

la lutte contre les perturbations.

dresse des Autors
irg Ulrich, dipl. El.-Ing. ETH, Contraves AG,
>52 Zürich.

1. Einleitung

Runde 25 Jahre sind vergangen, seit
die Beschreibung kausaler dynamischer

Systeme mittels Zustandsgrössen
und deren Regelung durch lineare Zu-
standsrückführung Eingang in die
Literatur fand [1], und zahllos sind
mittlerweile die Veröffentlichungen
rund um den Zustandsregler. Auch
über Laborversuche wird recht häufig
berichtet. Noch immer aber sind
Anwendungen in der Praxis eher Ausnahme

denn Regel. Vor nur 10 Jahren war
dies noch durchaus verständlich, muss-
te doch der Praktiker aus den verstreuten

theoretischen Erkenntnissen
zusammentragen, was für die Anwendung

brauchbar und den Entwurf
eines Zustandsreglers nötig war.
Ausserdem stellt ein Zustandsregler hohe
Anforderungen an die Signalverarbeitungskapazität

und -genauigkeit.
Aufwand und Entwicklungsrisiko waren
daher gross und nur in besonderen
Fällen gerechtfertigt. Mit den heutigen
Mitteln der Mikroelektronik jedoch ist
der Entwurf mit Hilfe des Rechners
und die Realisierung mittels hochintegrierter

Schaltungen ziemlich
problemlos, und die grundlegenden Theorien

werden zusammengefasst an den
Hochschulen vermittelt. Anscheinend
sind andere Ursachen für die langsame
Entwicklung in der Praxis massgebend.

Vermutlich ist es die Summe der
gegenüber den klassischen Entwurfsverfahren

neu oder in anderer Form zu

Fig. 1

Zustandsregelung

w(t) Führungsgrösse
r(t) Sollwert
u(t) Steuerwert

x(f) Zustandsvektor

y(t) Ausgangsgrösse
V Vorfilter
RS Regelstrecke

x Fx(t) + gu(t)
R Regler
C Ausgangsvektor

lösenden Aufgaben, welche dem Praktiker

als zu hohes Hindernis erscheint.
Der vorliegende Aufsatz kommentiert

einige der spezifisch mit der
Realisierung eines diskreten Zustandsreglers
zusammenhängenden Aufgaben und
skizziert Lösungswege. Er soll dazu
beitragen, den Überblick über die zu
behandelnden Probleme zu verbessern,
und damit den Praktiker zur Anwendung

der Zustandsregelung mit ihren
unbestreitbaren Vorteilen ermuntern.
Die ausgewählten Kapitel basieren auf
den Erfahrungen des Autors und seines
verstorbenen Kollegen Albert Müller
beim Entwurf von elektromechani-
schen Antrieben. Deshalb beziehen
sich die Kommentare und Beispiele
meist auf Eingrössensysteme kleiner
Ordnung; sie lassen sich sinngemäss
auf Mehrgrössensysteme erweitern.

Es sei die Aufgabe gestellt, die
Ausgangsgrösse y einer kontinuierlichen,
linearen bzw. linearisierten Regelstrek-
ke (Fig. 1) mit dem Eingang u, deren
dynamisches Verhalten unzulänglich
ist und auf die Störungen einwirken
können, der Führungsgrösse u
nachfolgen zu lassen. Die nachstehend kurz
skizzierte, theoretische Lösung wird
als bekannt vorausgesetzt [2]; die
Herleitung mag gleichzeitig als Referenz
für die Terminologie dienen, wobei die
halbfetten grossen Buchstaben (A, F,

Matrizen und die kleinen (c, x,
Vektoren bezeichnen.

Die lineare Regelstrecke, beschrieben

durch die Vektordifferentialglei-
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Fig. 2 Schema des diskreten zustandsgeregelten Eingrössensystems

x [fc] Zustandsvektor
x [k ] Schätzwert des Zustandsvektors
8 Störimpulsvektor
g[k] Störungsvektor

cF Ausgangsvektor
d Durchgangsmatrix (hier skalar)
ky Rückführvektor
F Rückführvektor für Störung

chung 1. Ordnung (la) und die
Ausgangsgleichung ohne Berücksichtigung

der Durchgangsmatrix rf(lb)

x(t) Fx(t) + gu(t) (la)

y(t) c'x(t) (lb)1)

wird im Intervall kT< t < kT +T, k
0, 1, 2, mit einem stückweise
konstanten Steuerwert u(t) u(kT) u[k]
angesteuert, wobei Ausdruck u[k] die
abgekürzte Schreibweise definiert. Die
Ausgangsgrösse y wird nur in den
Zeitpunkten t kTerfasst. Das derart zeitlich

diskretisierte System gehorcht der
Differenzengleichung

x[k+\]=* Ax[k] + bu[k] (2)

Man kann zeigen [2], dass sich die
Koeffizienten von (2) aus den
Koeffizienten des kontinuierlichen Systems
folgendermassen berechnen lassen:

A exp (FT) (3a)

T

b=J2xp(f • r)dr-g (3b)

o

Da der Zustandsvektor x die
vollständige Information über den inneren

Zustand des linearen Systems
enthält, lässt sich die Steuergrösse aus
einer Linearkombination der Zu-
standskomponenten und des Sollwertes

gewinnen:

u[k] r[k] - k'x[k] (4)

Der Sollwert r[k] ist der Ausgang
des Vorfilters mit der Führungsgrösse
w[k\ am Eingang; im einfachsten Fall
ist r[k] proportional zu w[/c], Wird die
Steuerbarkeit von A und b vorausgesetzt,

so lassen sich durch Wahl von k'
beliebige Eigenwerte des rückgekoppelten

Systems

x[k+ 1] {A-bk')x[k\ + br[k] (5)

erreichen. Mit c' und A beobachtbar
kann der Zustand *mit gegen Null
gehendem Fehler geschätzt werden. Der
hiefür verwendete Beobachter hat keinen

Einfluss auf das Führungsverhalten
des Regelkreises. Die Struktur des

Gesamtsystems ist in Figur 2 angegeben.

Das Halteglied für den Steuerwert
u[k] und das Stellglied sowie der Abta-

') ' bezeichnet hier transponierte Grössen, in
den andern Aufsätzen T.

ster der Ausgangsgrösse sind der
Regelstrecke zugeschlagen.

Theoretisch wäre auch eine kontinuierliche

Lösung möglich. Die Abtastregelung

jedoch lässt, zusammen mit
einer Amplitudenquantisierung, die
Verarbeitung mittels digitaler Elektronik

zu, was angesichts der angestrebten

Komplexität und der erforderlichen

Genauigkeit unumgänglich ist.

2. Entwurfsmethodik und
Systemstruktur
Man findet in der Literatur kaum

ein einheitliches, abgeschlossenes
Entwurfsverfahren, das man rezeptartig
anwenden könnte. Trotzdem dürften
die Techniken und notwendigen
Stationen für die Reglersynthese hinreichend

bekannt sein. Als wegweisend in
der Methodik ist Ackermann zu erwähnen

[2). Die grundlegende Idee der Zu-
standsregelung ist in der Einleitung
skizziert. Will man den Reglerentwurf
ganz kurz charakterisieren, so sind
folgende Stichworte zu nennen:
Modellierung, Wahl der Abtastzeit,
gewünschtes dynamisches Verhalten und
Eigenwerte des geregelten Systems,
Berechnung der Rückführmatrix,
Wahl des Beobachters (vollständige
oder reduzierte Ordnung, Pollagen)

und Berechnung der Parameter, allfällige

Störungsbekämpfung,
Umformungen für die Realisierung aus
Gründen der Rechengenauigkeit und
-geschwindigkeit.

Es handelt sich um eine ganzheitliche,

ziemlich formale Betrachtungsweise,

die auf der mathematischen
Beschreibung des Modells der
Regelstrecke und auf deren Verhalten im
Zeitbereich basiert. Zwar wird sich die
ursprüngliche Wahl des Zustandsvektors

normalerweise auf physikalische
Gegebenheiten abstützen, im Laufe
des Entwurfs jedoch werden Zustands-
transformationen vorgenommen, so
dass der Zusammenhang mit physikalisch

greifbaren Grössen verlorengeht.
Dies im Unterschied zu klassischen
Entwurfsverfahren z.B. für einen PID-
Regler, welche mehrheitlich im
Frequenzbereich operieren und bei denen
die eingebrachten Änderungen als
Ergänzungen im Modell, das meist als
Kaskade von Laplace-Übertragungs-
funktionen vorliegt, quasi physisch
sichtbar werden.

Es scheint daher weniger die
Unsicherheit bezüglich des einzuschlagenden

Weges als vielmehr der Verlust an
Anschaulichkeit eine Hemmschwelle
für die Anwendung des Zustandsreg-
lers zu sein. Der Praktiker muss sich
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damit abfinden, dass aus der «schwarzen

Kiste», in die Messwert, Steuerwert

und Sollwert eingehen, der neue
Steuerwert u[k] herauskommt. Diese
Kiste enthält, davon kann man heute
ausgehen, Digitalelektronik, sei dies in
Form irgendeines Rechners oder einer
Einzweckschaltung. Dass sich die
Berechnung nicht auf physikalisch
anschauliche Grössen abstützt ist letztlich

unwesentlich. Wesentlich hingegen

ist, dass der Algorithmus in einer
Form vorliegt, die numerische
Schwierigkeiten vermeidet; deshalb sind die
erwähnten Zustandstransformationen
unerlässlich.

Für weitergehende Untersuchungen
in der Entwurfsphase, wie z.B. die
Ermittlung des Schätzwertes des Zustan-
des, bietet sich die Rechnersimulation
an.

3. Abtastzeit
Die Diskretisierung der kontinuierlichen

Regelstrecke darf das
Übertragungsverhalten nicht nachteilig
beeinflussen, was sich durch geeignete Wahl
der Abtastzeit erreichen lässt. Es sind
einerseits die Anforderungen, wie sie
aus der Systemtheorie resultieren,
anderseits die Möglichkeiten der
Signalverarbeitung unter einen Hut zu bringen.

Systemtheoretisch sind die
erreichbare Bandbreite, die Erhaltung
der Steuerbarkeit bei komplexen
Eigenwerten der Regelstrecke und das
Vermeiden der Überlappung von
Teilspektren (Aliasing) von Belang, alles
Auflagen, die um so besser erfüllt werden,

je höher die Abtastfrequenz ist.
Für eine tiefe Abtastfrequenz dagegen
sprechen die geringere Sensitivität
bezüglich Modellierungsgenauigkeit und
Quantisierungsfehler und die resultierenden

geringeren Stellamplituden.
Verarbeitungstechnisch ist ebenfalls
eine kleine Abtastfrequenz erwünscht,
weil dadurch die Zahl der auszuführenden

Operationen pro Zeiteinheit
kleiner wird.

Die mannigfaltigen Überlegungen
systemtheoretischer Art lassen sich auf
ein Rezept zur Wahl der Abtastfrequenz

konzentrieren [3]. Als wesentlicher

Punkt sei in diesem Zusammenhang

angemerkt, dass die erreichbare
Bandbreite des geregelten Systems
bestenfalls ein Achtel der Abtastkreisfrequenz

beträgt. Meist bleiben dem
Praktiker dann zwei Probleme zu
lösen, die Filterung des Ausgangssignals
und die Abstimmung der Taktzeit mit
den verwendeten Rechengeräten.

Bei der Erfassung des Ausgangssignals

darf das Abtasttheorem nicht
verletzt werden. Mit zu hohen
Frequenzanteilen ist zu rechnen, wenn das
Frequenzspektrum der Übertragungsfunktion

der Regelstrecke im Bereich
oberhalb der halben Abtastfrequenz
Anteile aufweist, die nicht vernachlässigbar

sind. Dies ist in etwa gegeben,
wenn einzelne komplexe Polpaare dieser

Übertragungsfunktion einen
Betrag aufweisen, der grösser als ein Achtel

der Abtastkreisfrequenz ist. Derartige

Pole können zwar für die
Regelaufgabe unerheblich sein und treten
nicht in Erscheinung, solange der
Steuerwert bandbegrenzt ist, doch
muss damit gerechnet werden, dass

Störungen, wie z.B. Messrauschen,
höhere Frequenzanteile einbringen. Die
notwendige Filterung ist selten einfach
zu realisieren und immer mit einem
zusätzlichen Zeitbedarf verbunden. Liegt
das Ausgangssignal als elektrische
Grösse (Strom, Spannung) vor, kann
ein Analogfilter helfen, wobei
Genauigkeit und Zeitbedarf zu beachten
sind. Wird aber z.B. die Position einer
Welle mit einer periodisch abgelesenen

Kodierscheibe erfasst, so kann die
Lösung nur darin liegen, die
Abtastfrequenz für die Scheibe genügend
hoch zu machen und mit dieser erhöhten

Frequenz eine diskrete Filterung
vorzunehmen.

Die Realisierung des Beobachters
und des Reglers geschieht natürlich am
direktesten mit einer Einzweckelektronik

nach Mass. Abtastfrequenz,
Datenformat und Rechenablauf lassen
sich frei vorgeben. Wirtschaftliche
Überlegungen lassen diese Maximallösung

selten zu. Oft ist mit zumindest
teilweise gegebenen Rechenschaltungen

auszukommen, die neben der
Regelung noch andere Aufgaben
wahrnehmen. Die Reglerimplementierung
wird dann stark von der vorhandenen
Hardware geprägt, und meist ist die
Taktzeit und damit die erreichbare
Bandbreite zum vornherein fixiert. An
allgemeingültigen Aussagen zu derartigen

Situationen lässt sich etwa
folgendes festhalten:
- Die (äquidistanten) Abtastzeitpunkte

müssen exakt eingehalten werden,

- wird die Ausgangsgrösse gefiltert, so
ist die Laufzeit in Rechnung zu stellen,

- die Sollwertvorgabe muss auf den

Abtastzeitpunkt bezogen sein, für
den ;die Ausgangsgrösse ermittelt
wurde,

- die Steuerwertausgabe soll
raschmöglichst nach dem Auslesezeit¬

punkt erfolgen, aber in zeitlich
konstantem Abstand davon,

- falls die Rechenzeit nicht ausreicht,
sind Schaltungsergänzungen
vorzunehmen, z.B. in Form eines
Hardware-Multiplikators.
Ein einfaches Beispiel möge den

zweiten Punkt verdeutlichen. Als
Messergebnis werde das arithmetische
Mittel zweier aufeinanderfolgender
Messwerte weiterverwendet: yi[fc]
(y[i] + y[i-1])/2. y\ ist dann gültig für
die Zeit tk iT-T/2. Der Sollwert ist
dann ebenfalls auf fk zu beziehen. Die
für die Filterung benötigte Zeit ergibt
eine unvermeidliche Verzögerung, die
nicht als schädliche Totzeit in den
Regelkreis eingehen darf. Beim nächsten
Punkt geht es ebenfalls darum, Totzeit
zu vermeiden. Ist der Berechnungsablauf

richtig organisiert, so sind nach
dem Erfassen des Messwertes und des
Sollwertes im Abtastzeitpunkt nur
noch wenige Operationen auszuführen
(beim Beobachter reduzierter
Ordnung mehr als beim vollständigen
Beobachter), für welche sich eine
Worst-Case-Berechnungszeit ermitteln
lässt, nach der dann die Ausgangsverzögerung

festzulegen ist. Je nach
Anwendung kann diese Totzeit unerheblich

sein und vernachlässigt werden
(dann stört auch eine variable
Verzögerung nicht) oder aber in der Grös-
senordnung von Zehnteln der Taktzeit
liegen, was die explizite Berücksichtigung

im Entwurf notwendig macht. Es

empfiehlt sich in diesem Fall, einen
vollständigen Beobachter zu verwenden,

weil damit erstens die Zahl der in
Kenntnis der aktuellen Ausgangsgrösse

auszuführenden Operationen kleiner

(die Gesamtzahl von Rechenschritten

allerdings grösser) wird, und zweitens

die nun mögliche Extrapolation
des Schätzwertes eine einfache
Kompensation der Totzeit erlaubt. Nachteilig

an diesem Vorgehen ist die um eine
Abtastperiode verzögerte Erfassung
von Störungen auf die Strecke. Bezüglich

der letzten der obgenannten fünf
Punkte bleibt zu erwähnen, dass es unter

Umständen angebracht ist, für die
Messwerterfassung und den Beobachter,

das heisst zur Ermittlung des Zu-
standes unter Berücksichtigung von
Störungen, die Abtastfrequenz separat
festzulegen. Für die Führungsübertragung,

für die allein die Zustandsrück-
führung massgebend ist, genügt
manchmal eine vergleichsweise kleine
Abtastfrequenz. Durch die Aufteilung
in zwei Aufgaben verschiedener
Geschwindigkeit lässt sich dann einiges
an Zeit gewinnen.
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4. Pollagen und Steuerwerte

Einer der Hauptvorteile der Zu-
standsregelung ist die Möglichkeit, die
Pole der Übertragungsfunktion beliebig

vorgeben zu können [4]. Sie bestimmen

weitgehend das dynamische
Verhalten des Regelkreises. Der Ingenieur
hat mit der freien Wahl der Pollagen
ein sehr wirkungsvolles Mittel in der
Hand, dem System die gewünschten
Eigenschaften zu geben. Allerdings
muss er sorgfältig damit umgehen und
darf keine Extremlösungen erzwingen.
Eine beliebige Polplazierung wird unter

Umständen teuer erkauft, indem
grosse Rückkopplungsparameter und
damit hohe Steuerwertausschläge
resultieren. Für gewöhnlich aber genügt
es durchaus vorzuschreiben, die Pole
müssten in ein vorgegebenes Gebiet in
der komplexen z-Eberië zu liegen
kommen, um die gewünschten
dynamischen Eigenschaften zu gewährleisten.

Es geht nun darum, den gegebenen

Spielraum auszunützen und die
Rückführung so zu wählen, dass einerseits

die Pole im verlangten Gebiet
liegen, anderseits die Steuerwertausschläge

klein bleiben.
Für Eingrössensysteme besteht ein

eindeutiger Zusammenhang zwischen
Polen und Rückführvektor k'. Dieser
ist zwar nicht anschaulich, trotzdem
kommt man unter Beachtung einiger
Hinweise (Pole nur soweit als nötig
verschieben, Imaginärteile möglichst
nicht verändern, dominante Pole des
offenen Kreises auf die Gebietsgrenze
verschieben, Pole nicht zu nah
aufeinanderlegen [3]) in wenigen Schritten
durch Versuch und Irrtum zu annehmbaren

Verhältnissen. Für Mehrgrös-
sensysteme finden sich in der Literatur
nur wenige Ideen für eine zweckmässige

Auswahl der Polstellen [5; 6]. Die
recht zahlreichen Aufsätze über die im
Sinne eines quadratischen Gütekriteriums

optimalen Regelverfahren schaffen

da nur scheinbar einen Ausgleich,
weil hier das Problem bei der Wahl
zweckmässiger Bewertungsverfahren
und Gewichtungsmatrizen liegt.
Tatsächlich handeln denn auch viele Artikel

vom Auffinden geeigneter
Gewichtungsmatrizen für das Gütekriterium
derart, dass der Entwurf auf vorgegebene

Eigenwerte [7] bzw. Eigenwerte
in einem vorgegebenen Gebiet führt
[8]. Andere Verfahren erlauben die
Bestimmung der Rückführmatrix mit
minimaler Norm bei Vorgabe der Pole
bzw. des Polgebiets [9; 10].

Für den Anwender dürften jene
Methoden am ehesten zu gebrauchen sein,

welche die Norm des Rückführvektors
bzw. der Rückführmatrix minimalisie-
ren. Weil bei allen Realisierungen das

angestrebte, charakteristische dynamische

Verhalten resultieren muss,
unterscheiden sich deren Normen ||x|| nicht
stark voneinander und wegen
N< INI-INI (Schwarzsehe Ungleichung)

führt eine kleine Norm von k'i
auf einen kleinen Betrag von u\. Das
Gewichtungsproblem ist in entschärfter

Form latent vorhanden; je nach
Wahl und Normierung der Zustands-
variablen sind die k'\ von verschiedenen

Grössenordnungen und es drängt
sich eine gewichtete Norm auf. An
Aufsätzen über dieses Gebiet sind für
den Eingrössenfall [11; 12] zu erwähnen,

für den Mehrgrössenfall [9; 10].
Wie man sieht, ist das Problem der

Minimalisierung der Stellgrössen bei
der Polgebietsvorgabe erst ansatzweise
gelöst. Der Theoretiker hat eine
reizvolle Aufgabe vor sich, der Praktiker
behilft sich mittlerweile mit suboptimalen,

aus Versuch und Irrtum
gewonnenen Lösungen.

5. Massnahmen gegen
Überforderung des
Steuerwerts
Die linearen Gleichungen für ein

physikalisch greifbares System haben
immer einen beschränkten
Gültigkeitsbereich. Dieser wird von natürlichen

Ursachen oder durch technische
Eingriffe bestimmt. Der Ingenieur hat
einige Möglichkeiten der Abstimmung
der Regelstrecke, namentlich aber der
Anpassung des Stellgliedes an die
nachfolgende Anlage. Im Normalfall
wird deshalb die Stellgrössenbe-
schränkung die massgebende
Einschränkung sein. Abhängig von der
Dynamik des Stellgliedes, im einfachsten

Fall eine Konstante, ist damit der
Steuerwert entsprechend zu beschränken.

Als Linearkombination aus Sollwert

und tatsächlichen oder geschätzten

Zustandskomponenten kann der
berechnete Steuerwert theoretisch
unendlich gross werden, praktisch
jedoch, weil auch die Zustandsgrössen
naturgemäss nicht über alle Grenzen
wachsen können, nur endlich gross,
was aber für das Stellglied noch immer
viel zu gross sein kann. Man wird
deshalb in der Praxis den Steuerwert
begrenzen und für den Betrieb mit
beschränkter Stellgrösse spezielle
Massnahmen treffen müssen.

5.1 Steuerwertbegrenzung

Es ist angezeigt, den Steuerwert
schon bei der Berechnung in
Übereinstimmung mit der Stellgrössenbe-
schränkung zu begrenzen und damit
eine Überforderung der Stellgrösse zu
vermeiden. Es ist dafür zu sorgen, dass
die Begrenzung von u[k] erst bei der
Ausgabe erfolgt. Es wäre fatal
anzunehmen, berechnungsinterne Begrenzungen

spielten eine untergeordnete
Rolle, weil das Resultat ja dann ohnehin

begrenzt sei. Selbst Grössen, welche

ausschliesslich zum Ausgangswert
beitragen, dürfen nur dann begrenzt
werden, wenn ihr Überlauf einen
solchen von u[k] impliziert. Berechnungsinterne

Überläufe beeinflussen den
inneren Zustand des Beobachters, deren
Vermeidung garantiert das korrekte
Funktionieren desselben und damit
die stets richtige Ermittlung des
Systemzustandes. Die maximalen
Veränderungen der Eingangssignale des
Beobachters von Takt zu Takt lassen
sich abschätzen (Sprung über den vollen

Wertebereich beim Steuerwert, je
nach Dynamik der Regelstrecke beim
Messwert) und damit die zu verarbeitenden

Grössen. Das Vermeiden von
Begrenzungen ist daher letztlich wieder

eine Frage der Struktur und der
Rechengenauigkeit (vgl. Kap. 2).

5.2 Fahren mit beschränkter
Stellgrösse

Ein guter Regler nützt zur Erfüllung
seiner Aufgabe die zur Verfügung
stehende Leistung bestmöglich aus. Auch
bei geeigneter Wahl der Eigenwerte
des geregelten Systems sind
Steuerwertausschläge bis in die Begrenzung
kaum zu umgehen, will man nicht zum
vornherein installierte Leistung
verschenken. Sie treten auf bei kurzzeitig
hohen Anforderungen z.B. infolge
einer plötzlich auftretenden Störung.
Was in einem solchen Fall passiert,
soll anhand einer Plausibilitätsbe-
trachtung verdeutlicht werden.

Solange der Steuerwert in der
Begrenzung ist, wirkt der Regler nicht
wie gewünscht. Zwar wird der Zustand
richtig geschätzt und der notwendige
Steuerwert lässt sich ausrechnen, er
kann aber nicht angewendet werden,
weil er zu gross ist; das System gerät in
Rückstand. Ist letzterer nahezu aufgeholt,

weil längerfristig die Leistung der
Regelstrecke ausreicht, um die
Störung auszugleichen, oder weil die
Störung verschwindet, so will der Regler
die Aufholjagd abbrechen. Leider
kommt er zu spät, denn er liefert natür-
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lieh wieder die nach linearem Regelgesetz

optimalen Werte, die zu gross sein
werden. Mit begrenztem Steuerwert ist
eben mehr Zeit nötig, um das System
aus voller Fahrt abzubremsen, als der
lineare Regler dafür aufwenden will.
Die Regelgrösse wird mehrfach
überschwingen; ein absolut unbefriedigendes

Verhalten.
Eine geeignete Massnahme für den

Betrieb mit begrenztem Steuerwert
lehnt sich an das Prinzip der zeitoptimalen

Steuerung an; dieses darf als
bekannt gelten: Der Zustand xq eines
kontinuierlichen, linearen Systems der
Ordnung n mit einem einzigen
Steuereingang, das keine Eigenwerte in der
rechten Hälfte der komplexen s-Ebene
aufweist, kann mit maximal n Um-
schaltungen zwischen den beiden
Steuergrössen umi„ und umax in jeden
beliebigen Zustand *1 überführt werden.

Die Verwendung einer derartigen
Bang-Bang-Steuerung in einem
Regelsystem ist darum schwierig, weil die
Umschaltzustände (Schaltflächen)
einerseits aufwendig zu ermitteln,
anderseits aber zeitlich genau einzuhalten

sind. Die Ermittlung ist insbesondere

erschwert, wenn der Zielpunkt
von einem sich ständig ändernden
Sollwert abhängt. Hingegen kann eine
nicht exakte Bang-Bang-Steuerung
gute Dienste leisten, um zeitoptimal in
unmittelbare Nähe des Zielpunktes z,u

fahren, wo dann die bewährte, lineare
Regelung wieder übernehmen kann.
Zu diesem Zweck verwendet man ein
Modell reduzierter Ordnung der
Regelstrecke, so dass die Berechnung der
Schaltfläche mit vertretbarem
Aufwand möglich ist.

Die grösste Unzulänglichkeit im
Vergleich zur exakten zeitoptimalen
Steuerung resultiert aus der Zeitquantisierung.

Diese hat zur Folge, dass
nicht genau auf der Schaltfläche
umgeschaltet und daher nicht genau ins Ziel
gefahren werden kann. Ferner spielt
die Genauigkeit eine Rolle, mit der
sich die beteiligten Variablen ermitteln
lassen (Sollwertableitungen, Störgrös-
sen, einige Zustandskomponenten).
Muss man damit rechnen, dass im
begrenzten Betrieb der Beobachter nicht
mehr richtig funktionieren könnte
(vgl. 5.1), so sind von den erwähnten
Variablen jene, die nicht direkt erfasst
werden, näherungsweise aus Differenzen

aufeinanderfolgender Soll- bzw.
Istwerte zu ermitteln, wobei die
Amplitudenquantisierung dann stark ins
Gewicht fällt.

Nach entsprechender Aufbereitung
des Problems ist der zusätzliche Re¬

chenaufwand tragbar; z.B. sind für
Regelstrecken, die durch einen Doppelintegrator

angenähert und für welche die
benötigten zeitlichen Ableitungen
separat berechnet werden, pro Abtasttakt

ungefähr 4 Vergleiche, 10

Multiplikationen und 14 Additionen zusätzlich

aufzuwenden.

6. Statische Genauigkeit
und Störungsbekämpfung
Das Übertragungsverhalten eines

Regelkreises mit einem gewöhnlichen
Zustandsregler ähnelt jenem eines
Kreises mit PD-Regelung. Insbesondere

führt eine konstante Störung zu
einer statischen Regelabweichung. Der
zumeist erforderliche Integralanteil
lässt sich systemkonform durch die
Berücksichtigung der Störgrössen
beim Entwurf einbauen. Die Bekämpfung

nicht messbarer Störungen mittels

Modellierung und Beobachtung,
wie sie nachstehend erläutert wird, ist
nicht auf statische Störungen
beschränkt, sondern lässt sich für
verschiedene Störungsarten anwenden
und kombinieren. Sie basiert auf den
folgenden Überlegungen [2].

Über die zu erwartenden, nicht
messbaren Störungen, zusammenge-
fasst im Störungsvektor ^(f), die einen
Einfluss Mq(t) auf die zeitliche Ableitung

des Systemzustandes und damit
auf die Ausgangsgrösse haben, lassen
sich gewisse Aussagen machen, denn
es handelt sich ja nicht um Weisses
Rauschen. Vielleicht kennt man Art
und Dynamik der Störung, und lediglich

der Zeitpunkt und die Heftigkeit
des Auftretens sind unbekannt. In
einem solchen Fall ist es möglich, die
Störung zu beobachten. Aus dem
geschätzten Störungszustand lässt sich
dann eine Steuerwertkorrektur ableiten.

Selbst wenn die Modellierung die
tatsächlichen Verhältnisse nur grob
annähert, kann die qualitativ richtige
Korrektur eine wesentliche Verbesserung

bringen.
Die Störung gehorche der

Vektordifferentialgleichung

i(r)
i(<)

FM
» V

q= Vq(t) + ô

wo Sein stochastischer Störimpulsvektor
mit Mittelwert 0 ist. Energie und

Einsatzzeitpunkt des Einzelimpulses
sind unbekannt. Das um den
Störungszustand erweiterte System
enthält ein nichtsteuerbares Teilsystem.

y(t) [C 0'\

m
«w.

x(t)
0(0

«w + (7)

(8)

Das Störungsspektrum sei bandbegrenzt

und die Häufigkeit der Anregung

gering im Vergleich zur
Abtastfrequenz. Bei richtiger Wahl der
Abtastperiode entsteht ein vernachlässigbarer

Fehler, wenn q(t) im Intervall kT
< t < kT + Tdurch den Mittelwert
angenähert wird. Die diskrete Form der
Gleichung ist

x*[/t+1] ^*x*[k] + »*u[kj + tffc]

y[k] c*'x*lfc]

mit den Abkürzungen:

(9a)

(9b)

A*= exp I

FM t) A S
0 V 0 D

b*

(6)

T

S yèxp (F( T-t) • M • exp Vr) d x
0

D= exp(FT)

c*' [c'0' ]

£[/c] enthält ein Faltungsintegral mit
S(t); da über S nichts weiter bekannt
ist als der Mittelwert 0, wird £[fc] 0
gesetzt; es interessiert nur der resultierende

Zustand q.
Der Zustand dieses erweiterten

Systems lässt sich in bewährter Manier
mit Hilfe eines Beobachters ermitteln.
Da es aber ein nicht steuerbares Teilsystem

enthält, kann nicht einfach ein
Rückführvektor k*' nach dem bewährten

Polvorgabeverfahren berechnet
werden. Vielmehr ist der Störungsein-
fluss separat zu berücksichtigen. Mit
dem universellen Ansatz
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u[k] r[k] - k'x[k] - l'q[k\ (10)

gilt für das autonome, geregelte
System

x[k+1] (A-bk')x[k\+(S-bl')q[k] (11)

Man ist bestrebt, S-bl' möglichst
klein zu machen. Der Idealfall S bl'
ist i.a. nicht zu erreichen. In der Wahl
von l' liegt eine Gewichtung.
Beispielsweise kann das Ziel sein, Wq [k]
-l'q[k] so zu wählen, dass der Einfluss
von q[k\ auf x[k+l] minimal wird im
Sinne des kleinsten Quadrats, dass
also

Fig. 3

Bodediagramm der 0

Störungsübertragung
eines geregelten
Antriebs 10

a Amplitudengang
ohne Störgrössen-
modellierung

b Phasengang ohne
Störgrössen-
modellierung

c Amplitudengang mit
Störgrössen-
modellierung

d Phasengang mit
Störgrössen-
modellierung

V(uq) (q'S'+b'u^QiSq+buJ (12)

minimal wird. Dabei ist Q eine
quadratische, symmetrische Matrix, die je
nach Gegebenheiten zu wählen ist
(Ackermann sieht lediglich Q /vor).
Die Lösung ergibt

V (b' Qb)-] b' QS (13)

Das Vorgehen ist sehr zu empfehlen
für die Eliminierung statischer Fehler
und zur generellen Verbesserung des

Störungsfrequenzganges. Ein
typisches Beispiel zeigt die Figur 3. Hier ist
die skalare Störung /(<) als Konstante
mit überlagerter, ungedämpfter 10-Hz-
Schwingung modelliert
{(ä 2 7t/,;/, 10 Hz):

Weiter oben wurde als Ziel die
langfristig vollständige Eliminierung des
Einflusses der Störung auf die Regel-
grösse angegeben. Die Berechnung
dieses Falles führt auf

t' [c\I-A + bk')-\b]-lc'(I-A + bk')-{S (14)

also die nämliche Formel wie (13),
wenn

f\t) + co2f(t) 0

oder

q(t) Vq{t)

mit

ico -iff fr

(16)

(17)

und

V=
0 1 0
0 0 1

0 -co2 0

b'Q= c'V-A + bk'y (15)

Für die konstante Störung wird der
Fehler auf 0 ausgeregelt, für eine solche

von 10 Hz (theoretisch unendlich)

stark gedämpft. Störungen aller
interessierenden Frequenzen werden
mindestens gleich stark abgedämpft wie
ohne Störgrössenmodellierung. Die
Figur 4 zeigt den Unterschied in den
Störungsschrittantworten.

Will man stationäre Fehler für
bestimmte Verläufe der Führungsgrösse
vermeiden, das heisst im eingeschwungenen

Zustand ein exaktes Übereinstimmen

von Regelgrösse und
Führungsgrösse für einen spezifischen
Verlauf der letzteren erzwingen, ist ein
Vorfilter das Gegebene, für dessen

Synthese je nach Aufgabenstellung ein
weites Experimentierfeld zur Verfügung

steht. Bewährt hat sich der
Entwurf über die Übertragungsfunktion.
Die Ordnung des Filters wird gleich
der Anzahl der zu erfüllenden
Bedingungen gewählt und das Nennerpolynom

über eine sinnvolle Wahl der Pole
willkürlich festgelegt, was Stabilität
und geeignete Dynamik garantiert.
Das Zählerpolynom ergibt sich dann
eindeutig aus den Bedingungen.

gesetzt wird.
Zum Gesamtsystem mit Störgrös-

senbeobachter ist insbesondere
anzumerken, dass das Prinzip der Separation

nach wie vor gilt, d.h. die für die
Zustandsrückführung festgelegten
Eigenwerte werden durch den Stör-
grössenbeobachter nicht beeinflusst.
Natürlich lassen sich nur die Eigenwerte

von A verschieben, jene von D
bleiben unverändert; nur k' trägt zur
Eigenwertverschiebung bei, l' hingegen

bewirkt, dass der Streckenzustand
x von der modellierten Störung q nur
noch in vermindertem Mass beeinflusst

wird.

Fig. 4 Störungsschrittantwort eines geregelten Antriebs

Winkelabweichung y infolge der Drehmomentstörung
[ 0 Nm, k < 0

1 Nm, k < 0q (k) in Funktion von k, wobei die Taktzeit 10 ms beträgt

1 ohne Störgrössenmodellierung 2 mit Störgrössenmodellierung
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7. Schlussbemerkungen
Es wurde auf diverse praktische

Probleme hingewiesen, die bei der
konkreten Realisierung eines direkten
Abtast-Zustandsreglers auftreten können,

und es wurde versucht aufzuzeigen,

wie man ihnen begegnen kann.
Ein wichtiges Kapitel wurde weggelassen,

weil es den Rahmen gesprengt
hätte: die Fragen der
Amplitudenquantisierung und der Rechengenauigkeit.

Wenn man bedenkt, dass selbst
mit idealem Regelfilter die Quantisierung

der Ausgangsgrösse allein
Rauschamplituden derselben von
mehr als einer Quantisierungseinheit
und - bei etwas ungünstiger Dimensionierung

- Rauschamplituden des
Steuerwerts in der Grössenordnung
des Linearitätsbereichs erzeugen kann,
sieht man leicht ein, dass der Frage der
Quantisierung und erst recht bei realen
Filtern jener der Rechengenauigkeit
besondere Sorgfalt zu widmen ist. Hier
muss die Angabe zweier Standardwerke

[13; 14], in denen derartige Fragen
behandelt werden, genügen. Schliess¬

lich dürfte klar geworden sein, dass
der Reglerentwurf, ausgenommen
vielleicht für Systeme bis maximal
dritter Ordnung, weder algebraisch
noch mit grafischen Methoden zu
bewältigen ist. Er stützt sich auf die
Matrizenrechnung ab. Eine
Rechnerunterstützung ist daher fast
unumgänglich, wobei diese je nach Umfeld
und Aufgabe von verschiedenster Art
sein kann, sei es, dass jemand seine
eigene Subroutinensammlung für den
Arbeitsplatzrechner aufbaut, sei es,
dass er eine spezialisierte Programmbibliothek

eines Instituts mitbenützt,
wie beispielsweise RASP (Regelungstechnische

Analyse- und Syntheseprogramme)

der Ruhr-Universität
Bochum und der Deutschen Forschungsund

Versuchsanstalt für Luft- und
Raumfahrt e.V., Institut für Dynamik
der Flugsysteme, Oberpfaffenhofen.
Jedenfalls aber sollte interaktiv
gearbeitet werden.
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