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Hinweise zur Anwendung des diskreten
Zustandsreglers

J. Ulrich

Es wird nach den Ursachen gefragt, weswe-
gen der diskrete Abtast-Zustandsregler in
der Praxis noch relativ selten eingesetzt wird,
obwohl die Theorie bekannt und gefestigt
und das Entwurfswerkzeug vorhanden ist. Es
werden Probleme genannt, die bei der Reall-
sierung eines geregelten Systems auftreten
kénnen, und Hinweise gegeben, wie man
ihnen begegnen kann. Zu diesen Problemen
gehdren Entwurfsmethodik, Strukturfragen,
Festlegen und Einhalten der Abtastzeit, resul-
tierende Stellgréssen bei Vorgabe der Pole,
Betrieb bei beschrankter Stellgrosse und
Storungsbekampfung.

L‘auteur analyse les raisons pour lesquelles
le régulateur discret d'état, dont la théorie est
pourtant connue et établie et dont les
moyens d'élaboration sont disponibles, est
encore peu utilisé. Certains problémes pou-
vant se présenter lors de la réalisation d'un
systeme réglé ainsi que la facon de les résou-
dre sont indiqués. Il s'agit de la méthodique
de conception, de questions de structure, de
la détermination et du maintien de la période
d'échantillonnage, des grandeurs de réglage

résultant de la position des pdles, du service -

avec des grandeurs de réglage limitées et de
la lutte contre les perturbations.

Adresse des Autors

Jiirg Ulrich, dipl. El.-Ing. ETH, Contraves AG,
8052 Ziirich.

1. Einleitung

Runde 25 Jahre sind vergangen, seit
die Beschreibung kausaler dynami-
scher Systeme mittels Zustandsgrdssen
und deren Regelung durch lineare Zu-
standsrickfiihrung Eingang in die
Literatur fand [1], und zahllos sind
mittlerweile die Veroffentlichungen
rund um den Zustandsregler. Auch
iiber Laborversuche wird recht hiufig
berichtet. Noch immer aber sind An-
wendungen in der Praxis eher Ausnah-
me denn Regel. Vor nur 10 Jahren war
dies noch durchaus verstdndlich, muss-
te doch der Praktiker aus den verstreu-
ten theoretischen Erkenntnissen zu-
sammentragen, was fir die Anwen-
dung brauchbar und den Entwurf
eines Zustandsreglers notig war. Aus-
serdem stellt ein Zustandsregler hohe
Anforderungen an die Signalverarbei-
tungskapazitit und -genauigkeit. Auf-
wand und Entwicklungsrisiko waren
daher gross und nur in besonderen
Fillen gerechtfertigt. Mit den heutigen
Mitteln der Mikroelektronik jedoch ist
der Entwurf mit Hilfe des Rechners
und die Realisierung mittels hochinte-
grierter Schaltungen ziemlich pro-
blemlos, und die grundlegenden Theo-
rien werden zusammengefasst an den
Hochschulen vermittelt. Anscheinend
sind andere Ursachen fiir die langsame
Entwicklung in der Praxis massge-
bend. Vermutlich ist es die Summe der
gegeniiber den klassischen Entwurfs-
verfahren neu oder in anderer Form zu

16senden Aufgaben, welche dem Prak-
tiker als zu hohes Hindernis erscheint.

Der vorliegende Aufsatz kommen-
tiert einige der spezifisch mit der Reali-
sierung eines diskreten Zustandsreglers
zusammenhédngenden Aufgaben und
skizziert Losungswege. Ersoll dazu bei-
tragen, den Uberblick iiber die zu be-
handelnden Probleme zu verbessern,
und damit den Praktiker zur Anwen-
dung der Zustandsregelung mit ihren
unbestreitbaren Vorteilen ermuntern.
Die ausgewihlten Kapitel basieren auf
den Erfahrungen des Autors und seines
verstorbenen Kollegen Albert Miiller
beim Entwurf von elektromechani-
schen Antrieben. Deshalb beziehen
sich die Kommentare und Beispiele
meist auf Eingrossensysteme kleiner
Ordnung; sie lassen sich sinngemass
auf Mehrgrossensysteme erweitern.

Es sei die Aufgabe gestellt, die Aus-
gangsgrosse y einer kontinuierlichen,
linearen bzw. linearisierten Regelstrek-
ke (Fig. 1) mit dem Eingang u, deren
dynamisches Verhalten unzuldnglich
ist und auf die Stérungen einwirken
konnen, der Fiihrungsgrosse u nach-
folgen zu lassen. Die nachstehend kurz
skizzierte, theoretische Losung wird
als bekannt vorausgesetzt [2]; die Her-
leitung mag gleichzeitig als Referenz
fiir die Terminologie dienen, wobei die
halbfetten grossen Buchstaben (A, F,
...) Matrizen und die kleinen (¢, x, ...)
Vektoren bezeichnen.

‘Die lineare Regelstrecke, beschrie-
ben durch die Vektordifferentialglei-

Fig. 1

Zustandsregelung

w(t) Fithrungsgrosse

r(t) Sollwert w(t) r(tH+
—| V

u(t) Steuerwert

x (1) Zustandsvektor

y (1) Ausgangsgrosse

V  Vorfilter

RS Regelstrecke
x=Fx(t)+gu(t)

R Regler

C’  Ausgangsvektor

u(t) x(t)
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chung 1. Ordnung (1a) und die Aus-
gangsgleichung ohne Beriicksichti-
gung der Durchgangsmatrix d(1b)

(la)
(1b)")

wird im Intervall kT< t < kT+T, k=
0, 1, 2, ... mit einem stiickweise kon-
stanten Steuerwert u(f) = u(kT) = u[k]
angesteuert, wobei Ausdruck u[k] die
abgekiirzte Schreibweise definiert. Die
Ausgangsgrosse y wird nur in den Zeit-
punkten ¢ = kT erfasst. Das derart zeit-
lich diskretisierte System gehorcht der
Differenzengleichung

x(t) = Fx(t) + gu(t)

y(t) = e'x(1)

x[k+1] = Ax[k] + bu[k] 2
Man kann zeigen [2], dass sich die
Koeffizienten von (2) aus den Koeffi-
zienten des kontinuierlichen Systems
folgendermassen berechnen lassen:

A= exp(FT) (3a)
T
b=/[exp(F-1)dt-g (3b)

0

Da der Zustandsvektor x die voll-
stindige Information iber den inne-
ren Zustand des linearen Systems ent-
hilt, lasst sich die Steuergrosse aus
einer Linearkombination der Zu-
standskomponenten und des Sollwer-
tes gewinnen:
ulk] = r[k] - k’x[k] 4)

Der Sollwert r[k] ist der Ausgang
des Vorfilters mit der Fiithrungsgrosse
w[k] am Eingang; im einfachsten Fall
ist r[k] proportional zu w[k]. Wird die
Steuerbarkeit von 4 und b vorausge-
setzt, so lassen sich durch Wahl von k’
beliebige Eigenwerte des riickgekop-
pelten Systems

x[k+1] = (4-bk")x[k] + br[k] %)

erreichen. Mit ¢ und A beobachtbar
kann der Zustand x mit gegen Null ge-
hendem Fehler geschitzt werden. Der
hiefiir verwendete Beobachter hat kei-
nen Einfluss auf das Fithrungsverhal-
ten des Regelkreises. Die Struktur des
Gesamtsystems ist in Figur 2 angege-
ben. Das Halteglied fiir den Steuerwert
u[k] und das Stellglied sowie der Abta-

') ' bezeichnet hier transponierte Grossen, in
den andern Aufsitzen T.

r===="" |
,_EEF_.]:jStﬁrungs-L_._.-_
Y :generator: """"
Storung 1 G i
:- Regelstrecke |
l 2 '
] Messr'auschenl
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Fig.2 Schema des diskreten zustandsgeregelten Eingrossensystems

x [k] Zustandsvektor

% [k] Schitzwert des Zustandsvektors
8  Storimpulsvektor

q[k] Storungsvektor

ster der Ausgangsgrosse sind der Re-
gelstrecke zugeschlagen.

Theoretisch wire auch eine kontinu-
ierliche Lésung moglich. Die Abtastre-
gelung jedoch ldsst, zusammen mit
einer Amplitudenquantisierung, die
Verarbeitung mittels digitaler Elektro-
nik zu, was angesichts der angestreb-
ten Komplexitdt und der erforderli-
chen Genauigkeit unumginglich ist.

2. Entwurfsmethodik und
Systemstruktur

Man findet in der Literatur kaum
ein einheitliches, abgeschlossenes Ent-
wurfsverfahren, das man rezeptartig
anwenden konnte. Trotzdem diirften
die Techniken und notwendigen Sta-
tionen fiir die Reglersynthese hinrei-
chend bekannt sein. Als wegweisend in
der Methodik ist Ackermann zu erwéh-
nen [2]. Die grundlegende Idee der Zu-
standsregelung ist in der Einleitung
skizziert. Will man den Reglerentwurf
ganz kurz charakterisieren, so sind fol-
gende Stichworte zu nennen: Model-
lierung, Wahl der Abtastzeit, ge-
wiinschtes dynamisches Verhalten und
Eigenwerte des geregelten Systems,
Berechnung der Riickfiihrmatrix,
Wahl des Beobachters (vollstindige
oder reduzierte Ordnung, Pollagen)

¢’ Ausgangsvektor

d Durchgangsmatrix (hier skalar)
k' Rickfiihrvektor

I Riickfiihrvektor fiir Stérung

und Berechnung der Parameter, allfil-
lige Storungsbekdmpfung, Umfor-
mungen fiir die Realisierung aus
Griinden der Rechengenauigkeit und
-geschwindigkeit.

Es handelt sich um eine ganzheitli-
che, ziemlich formale Betrachtungs-
weise, die auf der mathematischen Be-
schreibung des Modells der Regel-
strecke und auf deren Verhalten im
Zeitbereich basiert. Zwar wird sich die
urspriingliche Wahl des Zustandsvek-
tors normalerweise auf physikalische
Gegebenheiten abstiitzen, im Laufe
des Entwurfs jedoch werden Zustands-
transformationen vorgenommen, so
dass der Zusammenhang mit physika-
lisch greifbaren Gréssen verlorengeht.
Dies im Unterschied zu klassischen
Entwurfsverfahren z.B. fiir einen PID-
Regler, welche mehrheitlich im Fre-
quenzbereich operieren und bei denen
die eingebrachten Anderungen als Er-
gdnzungen im Modell, das meist als
Kaskade von Laplace-Ubertragungs-
funktionen vorliegt, quasi physisch
sichtbar werden.

Es scheint daher weniger die Unsi-
cherheit beziiglich des einzuschlagen-
den Weges als vielmehr der Verlust an
Anschaulichkeit eine Hemmschwelle
fiir die Anwendung des Zustandsreg-
lers zu sein. Der Praktiker muss sich
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damit abfinden, dass aus der «schwar-
zen Kiste», in die Messwert, Steuer-
wert und Sollwert eingehen, der neue
Steuerwert u[k] herauskommt. Diese
Kiste enthélt, davon kann man heute
ausgehen, Digitalelektronik, sei dies in
Form irgendeines Rechners oder einer
Einzweckschaltung. Dass sich die Be-
rechnung nicht auf physikalisch an-
schauliche Grossen abstiitzt ist letzt-
lich unwesentlich. Wesentlich hinge-
gen ist, dass der Algorithmus in einer
Form vorliegt, die numerische Schwie-
rigkeiten vermeidet; deshalb sind die
erwiahnten Zustandstransformationen
unerlésslich.

Fiir weitergehende Untersuchungen
in der Entwurfsphase, wie z.B. die Er-
mittlung des Schitzwertes des Zustan-
des, bietet sich die Rechnersimulation
an.

3. Abtastzeit

Die Diskretisierung der kontinuier-
lichen Regelstrecke darf das Ubertra-

gungsverhalten nicht nachteilig beein-

flussen, was sich durch geeignete Wahl
der Abtastzeit erreichen lisst. Es sind
einerseits die Anforderungen, wie sie
aus der Systemtheorie resultieren, an-
derseits die Moglichkeiten der Signal-
verarbeitung unter einen Hut zu brin-
gen. Systemtheoretisch sind die er-
reichbare Bandbreite, die Erhaltung
der Steuerbarkeit bei komplexen
Eigenwerten der Regelstrecke und das
Vermeiden der Uberlappung von Teil-
spektren (Aliasing) von Belang, alles
Auflagen, die um so besser erfiillt wer-
den, je hoher die Abtastfrequenz ist.
Fiir eine tiefe Abtastfrequenz dagegen
sprechen die geringere Sensitivitit be-
ziiglich Modellierungsgenauigkeit und
Quantisierungsfehler und die resultie-
renden geringeren Stellamplituden.
Verarbeitungstechnisch ist ebenfalls
eine kleine Abtastfrequenz erwiinscht,
weil dadurch die Zahl der auszufiih-
renden Operationen pro Zeiteinheit
kleiner wird.

Die mannigfaltigen Uberlegungen
systemtheoretischer Art lassen sich auf
ein Rezept zur Wahl der Abtastfre-
quenz konzentrieren [3]. Als wesentli-
cher Punkt sei in diesem Zusammen-
hang angemerkt, dass die erreichbare
Bandbreite des geregelten Systems be-
stenfalls ein Achtel der Abtastkreisfre-
quenz betrdgt. Meist bleiben dem
Praktiker dann zwei Probleme zu 16-
sen, die Filterung des Ausgangssignals
und die Abstimmung der Taktzeit mit
den verwendeten Rechengeriten.

Bei der Erfassung des Ausgangssi-
gnals darf das Abtasttheorem nicht
verletzt werden. Mit zu hohen Fre-
quenzanteilen ist zu rechnen, wenn das
Frequenzspektrum der Ubertragungs-
funktion der Regelstrecke im Bereich
oberhalb der halben Abtastfrequenz
Anteile aufweist, die nicht vernachlés-
sigbar sind. Dies ist in etwa gegeben,
wenn einzelne komplexe Polpaare die-
ser Ubertragungsfunktion einen Be-
trag aufweisen, der grosser als ein Ach-
tel der Abtastkreisfrequenz ist. Derar-
tige Pole konnen zwar fiir die Regel-
aufgabe unerheblich sein und treten
nicht in Erscheinung, solange der
Steuerwert bandbegrenzt ist, doch
muss damit gerechnet werden, dass
Storungen, wie z.B. Messrauschen, ho-
here Frequenzanteile einbringen. Die
notwendige Filterung ist selten einfach
zu realisieren und immer mit einem zu-
sdtzlichen Zeitbedarf verbunden. Liegt
das Ausgangssignal als elektrische
Grosse (Strom, Spannung) vor, kann
ein Analogfilter helfen, wobei Ge-
nauigkeit und Zeitbedarf zu beachten
sind. Wird aber z.B. die Position einer
Welle mit einer periodisch abgelese-
nen Kodierscheibe erfasst, so kann die
Losung nur darin liegen, die Abtast-
frequenz fiir die Scheibe geniigend
hoch zu machen und mit dieser erhdh-
ten Frequenz eine diskrete Filterung
vorzunehmen.

Die Realisierung des Beobachters
und des Reglers geschieht natiirlich am
direktesten mit einer Einzweckelektro-
nik nach Mass. Abtastfrequenz, Da-
tenformat und Rechenablauf lassen
sich frei vorgeben. Wirtschaftliche
Uberlegungen lassen diese Maximal-
16sung selten zu. Oft ist mit zumindest
teilweise gegebenen Rechenschaltun-
gen auszukommen, die neben der Re-

‘gelung noch andere Aufgaben wahr-

nehmen. Die Reglerimplementierung
wird dann stark von der vorhandenen
Hardware geprigt, und meist ist die
Taktzeit und damit die erreichbare
Bandbreite zum vornherein fixiert. An
allgemeingiiltigen Aussagen zu derar-

tigen Situationen ldsst sich etwa fol-~

gendes festhalten:

- Die (dquidistanten) Abtastzeitpunk-
te miissen exakt eingehalten werden,

- wird die Ausgangsgrosse gefiltert, so
ist die Laufzeit in Rechnung zu stel-
len,

- die Sollwertvorgabe muss auf den
Abtastzeitpunkt bezogen sein, fiir
den die Ausgangsgrosse ermittelt
wurde,

- die Steuerwertausgabe soll rasch-
moglichst nach dem Auslesezeit-

punkt erfolgen, aber in zeitlich kon-

stantem Abstand davon,

- falls die Rechenzeit nicht ausreicht,
sind Schaltungsergdnzungen vorzu-
nehmen, z.B. in Form eines Hard-
ware-Multiplikators.

Ein einfaches Beispiel moge den
zweiten Punkt verdeutlichen. Als
Messergebnis werde das arithmetische
Mittel zweier aufeinanderfolgender
Messwerte weiterverwendet: yj[k] =
(y[i] + y[i-11)/2. y ist dann giltig fir
die Zeit tx = iT-T/2. Der Sollwert ist
dann ebenfalls auf # zu beziehen. Die
fiir die Filterung bendétigte Zeit ergibt
eine unvermeidliche Verzogerung, die
nicht als schéddliche Totzeit in den Re-
gelkreis eingehen darf. Beim néchsten
Punkt geht es ebenfalls darum, Totzeit
zu vermeiden. Ist der Berechnungs-
ablauf richtig organisiert, so sind nach
dem Erfassen des Messwertes und des
Sollwertes im Abtastzeitpunkt nur
noch wenige Operationen auszufiihren
(beim Beobachter reduzierter Ord-
nung mehr als beim vollstindigen
Beobachter), fiir welche sich eine
Worst-Case-Berechnungszeit ermitteln
lasst, nach der dann die Ausgangsver-
zogerung festzulegen ist. Je nach An-
wendung kann diese Totzeit unerheb-
lich sein und vernachléssigt werden
(dann stdrt auch eine variable Verzo-
gerung nicht) oder aber in der Gros-
senordnung von Zehnteln der Taktzeit
liegen, was die explizite Beriicksichti-
gung im Entwurf notwendig macht. Es
empfiehlt sich in diesem Fall, einen
vollstindigen Beobachter zu verwen-
den, weil damit erstens die Zahl der in
Kenntnis der aktuellen Ausgangsgros-
se auszufithrenden Operationen klei-
ner (die Gesamtzahl von Rechenschrit-
ten allerdings grosser) wird, und zwei-
tens die nun mogliche Extrapolation
des Schitzwertes eine einfache Kom-
pensation der Totzeit erlaubt. Nachtei-
lig an diesem Vorgehen ist die um eine

‘Abtastperiode verzogerte Erfassung

von Storungen auf die Strecke. Beziig-
lich der letzten der obgenannten fiinf
Punkte bleibt zu erwdhnen, dass es un-
ter Umstdnden angebracht ist, fiir die
Messwerterfassung und den Beobach-
ter, das heisst zur Ermittlung des Zu-
standes unter Beriicksichtigung von
Stérungen, die Abtastfrequenz separat
festzulegen. Fiir die Fiihrungsiibertra-
gung, fiir die allein die Zustandsriick-
fihrung massgebend ist, geniigt
manchmal eine vergleichsweise kleine
Abtastfrequenz. Durch die Aufteilung
in zwei Aufgaben verschiedener Ge-
schwindigkeit lisst sich dann einiges
an Zeit gewinnen.
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4. Pollagen und Steuerwerte

Einer der Hauptvorteile der Zu-
standsregelung ist die Moglichkeit, die
Pole der Ubertragungsfunktion belie-
big vorgeben zu konnen [4]. Sie bestim-
men weitgehend das dynamische Ver-
halten des Regelkreises. Der Ingenieur
hat mit der freien Wahl der Pollagen
ein sehr wirkungsvolles Mittel in der
Hand, dem System die gewiinschten
Eigenschaften zu geben. Allerdings
muss er sorgfiltig damit umgehen und
darf keine Extremldsungen erzwingen.
Eine beliebige Polplazierung wird un-
ter Umstidnden teuer erkauft, indem
grosse Riickkopplungsparameter und
damit hohe Steuerwertausschlige re-
sultieren. Fiir gewOhnlich aber geniigt
es durchaus vorzuschreiben, die Pole
miissten in ein vorgegebenes Gebiet in
der komplexen z-Ebene zu liegen
kommen, um die gewiinschten dyna-
mischen Eigenschaften zu gewihrlei-
sten. Es geht nun darum, den gegebe-
nen Spielraum auszuniitzen und die
Riickfithrung so zu wéhlen, dass einer-
seits die Pole im verlangten Gebiet lie-
gen, anderseits die Steuerwertaus-
schlédge klein bleiben.

Fiir Eingrossensysteme besteht ein
eindeutiger Zusammenhang zwischen
Polen und Riickfiithrvektor k’. Dieser
ist zwar nicht anschaulich, trotzdem
kommt man unter Beachtung einiger
Hinweise (Pole nur soweit als notig
verschieben, Imaginédrteile moglichst
nicht verindern, dominante Pole des
offenen Kreises auf die Gebietsgrenze
verschieben, Pole nicht zu nah aufein-
anderlegen [3]) in wenigen Schritten
durch Versuch und Irrtum zu annehm-
baren Verhéltnissen. Fiir Mehrgros-
sensysteme finden sich in der Literatur
nur wenige Ideen fiir eine zweckmassi-
ge Auswahl der Polstellen [5; 6]. Die
recht zahlreichen Aufsitze liber die im
Sinne eines quadratischen Giitekriteri-
ums optimalen Regelverfahren schaf-
fen da nur scheinbar einen Ausgleich,
weil hier das Problem bei der Wahl
zweckmadssiger Bewertungsverfahren
und Gewichtungsmatrizen liegt. Tat-
sdchlich handeln denn auch viele Arti-
kel vom Auffinden geeigneter Gewich-
tungsmatrizen fiir das Giitekriterium
derart, dass der Entwurf auf vorgege-
bene Eigenwerte [7] bzw. Eigenwerte
in einem vorgegebenen Gebiet fiihrt
[8]. Andere Verfahren erlauben die Be-
stimmung der Riickfithrmatrix mit mi-
nimaler Norm bei Vorgabe der Pole
bzw. des Polgebiets [9; 10].

Fiir den Anwender diirften jene Me-
thoden am ehesten zu gebrauchen sein,

welche die Norm des Riickfiithrvektors
bzw. der Riickfiihrmatrix minimalisie-
ren. Weil bei allen Realisierungen das
angestrebte, charakteristische dynami-
sche Verhalten resultieren muss, unter-
scheiden sich deren Normen ||x|| nicht
stark  voneinander und  wegen
) < |[K7i|| - ]| || (Schwarzsche Unglei-
chung) fiihrt eine kleine Norm von k*;
auf einen kleinen Betrag von u;. Das
Gewichtungsproblem ist in entscharf-
ter Form latent vorhanden; je nach
Wahl und Normierung der Zustands-
variablen sind die k‘ von verschiede-
nen Grossenordnungen und es drangt
sich eine gewichtete Norm auf. An
Aufsidtzen iber dieses Gebiet sind fiir
den Eingrossenfall [11; 12] zu erwéh-
nen, fiir den Mehrgrossenfall [9; 10].

- Wie man sieht, ist das Problem der
Minimalisierung der Stellgrossen bei
der Polgebietsvorgabe erst ansatzweise
geldst. Der Theoretiker hat eine reiz-
volle Aufgabe vor sich, der Praktiker
behilft sich mittlerweile mit subopti-
malen, aus Versuch und Irrtum ge-
wonnenen Losungen.

5. Massnahmen gegen
Uberforderung des
Steuerwerts

Die linearen Gleichungen fiir ein
physikalisch greifbares System haben
immer einen beschrinkten Giiltig-
keitsbereich. Dieser wird von natiirli-
chen Ursachen oder durch technische
Eingriffe bestimmt. Der Ingenieur hat
einige Moglichkeiten der Abstimmung
der Regelstrecke, namentlich aber der
Anpassung des Stellgliedes an die
nachfolgende Anlage. Im Normalfall
wird deshalb die Stellgréssenbe-
schrinkung die massgebende Ein-
schrinkung sein. Abhdngig von der
Dynamik des Stellgliedes, im einfach-
sten Fall eine Konstante, ist damit der
Steuerwert entsprechend zu beschrén-
ken. Als Linearkombination aus Soll-
wert und tatsdchlichen oder geschitz-
ten Zustandskomponenten kann der
berechnete Steuerwert theoretisch un-
endlich gross werden, praktisch je-
doch, weil auch die Zustandsgrossen
naturgemadss nicht iiber alle Grenzen
wachsen konnen, nur endlich gross,
was aber fiir das Stellglied noch immer
viel zu gross sein kann. Man wird des-
halb in der Praxis den Steuerwert be-
grenzen und fiir den Betrieb mit be-
schrankter Stellgrosse spezielle Mass-
nahmen treffen miissen.

5.1 Steuerwertbegrenzung

Es ist angezeigt, den Steuerwert
schon bei der Berechnung in Uberein-
stimmung mit der Stellgréssenbe-
schrankung zu begrenzen und damit
eine Uberforderung der Stellgrosse zu
vermeiden. Es ist dafiir zu sorgen, dass
die Begrenzung von u[k] erst bei der
Ausgabe erfolgt. Es wire fatal anzu-
nehmen, berechnungsinterne Begren-
zungen spielten eine untergeordnete
Rolle, weil das Resultat ja dann ohne-
hin begrenzt sei. Selbst Grossen, wel-
che ausschliesslich zum Ausgangswert
beitragen, diirfen nur dann begrenzt
werden, wenn ihr Uberlauf einen sol-
chen von u[k] impliziert. Berechnungs-
interne Uberldufe beeinflussen den in-
neren Zustand des Beobachters, deren
Vermeidung garantiert das korrekte
Funktionieren desselben und damit
die stets richtige Ermittlung des Sy-
stemzustandes. Die maximalen Verin-
derungen der Eingangssignale des
Beobachters von Takt zu Takt lassen
sich abschitzen (Sprung iiber den vol-
len Wertebereich beim Steuerwert, je
nach Dynamik der Regelstrecke beim
Messwert) und damit die zu verarbei-
tenden Grdssen. Das Vermeiden von
Begrenzungen ist daher letztlich wie-
der eine Frage der Struktur und der
Rechengenauigkeit (vgl. Kap. 2).

5.2 Fahren mit beschrdnkter
Stellgrosse

Ein guter Regler niitzt zur Erfiillung
seiner Aufgabe die zur Verfiigung ste-
hende Leistung bestmoglich aus. Auch
bei geeigneter Wahl der Eigenwerte
des geregelten Systems sind Steuer-
wertausschldge bis in die Begrenzung
kaum zu umgehen, will man nicht zum
vornherein installierte Leistung ver-
schenken. Sie treten auf bei kurzzeitig
hohen Anforderungen z.B. infolge
einer plotzlich auftretenden Storung.
Was in einem solchen Fall passiert,
soll anhand einer Plausibilititsbe-
trachtung verdeutlicht werden.

Solange der Steuerwert in der Be-
grenzung ist, wirkt der Regler nicht
wie gewlinscht. Zwar wird der Zustand
richtig geschitzt und der notwendige
Steuerwert ldsst sich ausrechnen, er
kann aber nicht angewendet werden,
weil er zu gross ist; das System gerit in
Riickstand. Ist letzterer nahezu aufge-
holt, weil lingerfristig die Leistung der
Regelstrecke ausreicht, um die Sto-
rung auszugleichen, oder weil die Sto-
rung verschwindet, so will der Regler
die Aufholjagd abbrechen. Leider
kommt er zu spét, denn er liefert natiir-
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lich wieder die nach linearem Regelge-
setz optimalen Werte, die zu gross sein
werden. Mit begrenztem Steuerwert ist
eben mehr Zeit nétig, um das System
aus voller Fahrt abzubremsen, als der
lineare Regler dafiir aufwenden will.
Die Regelgrosse wird mehrfach {iber-
schwingen; ein absolut unbefriedigen-
des Verhalten.

Eine geeignete Massnahme fiir den
Betrieb mit begrenztem Steuerwert
lehnt sich an das Prinzip der zeitopti-
malen Steuerung an; dieses darf als be-
kannt gelten: Der Zustand X eines
kontinuierlichen, linearen Systems der
Ordnung n mit einem einzigen Steuer-
eingang, das keine Eigenwerte in der
rechten Halfte der komplexen s-Ebene
aufweist, kann mit maximal n Um-
schaltungen zwischen den beiden
Steuergrossen umin und umax in jeden
beliebigen Zustand X; iiberfiihrt wer-
den. Die Verwendung einer derartigen
Bang-Bang-Steuerung in einem Regel-
system ist darum schwierig, weil die
Umschaltzustdnde (Schaltflichen) ei-
nerseits aufwendig zu ermitteln, an-
derseits aber zeitlich genau einzuhal-
ten sind. Die Ermittlung ist insbeson-
dere erschwert, wenn der Zielpunkt
von einem sich stindig 4dndernden
Sollwert abhéngt. Hingegen kann eine
nicht exakte Bang-Bang-Steuerung
gute Dienste leisten, um zeitoptimal in
unmittelbare Nihe des Zielpunktes zu
fahren, wo dann die bewihrte, lineare
Regelung wieder iibernehmen kann.
Zu diesem Zweck verwendet man ein
Modell reduzierter Ordnung der Re-
gelstrecke, so dass die Berechnung der
Schaltfliche mit vertretbarem Auf-
wand moglich ist.

Die grosste Unzuldnglichkeit im
Vergleich zur exakten zeitoptimalen
Steuerung resultiert aus der Zeitquan-
tisierung. Diese hat zur Folge, dass
nicht genau auf der Schaltfliche umge-
schaltet und daher nicht genau ins Ziel
gefahren werden kann. Ferner spielt
die Genauigkeit eine Rolle, mit der
sich die beteiligten Variablen ermitteln
lassen (Sollwertableitungen, Storgros-
sen, einige Zustandskomponenten).
Muss man damit rechnen, dass im be-
grenzten Betrieb der Beobachter nicht
mehr richtig funktionieren konnte
(vgl. 5.1), so sind von den erwéhnten
Variablen jene, die nicht direkt erfasst
werden, ndherungsweise aus Differen-
zen aufeinanderfolgender Soll- bzw.
Istwerte zu ermitteln, wobei die Am-
plitudenquantisierung dann stark ins
Gewicht fillt.

Nach entsprechender Aufbereitung
des Problems ist der zusétzliche Re-

chenaufwand tragbar; z.B. sind fiir Re-
gelstrecken, die durch einen Doppelin-
tegrator angenédhert und fiir welche die
bendtigten zeitlichen Ableitungen se-
parat berechnet werden, pro Abtast-
takt ungefidhr 4 Vergleiche, 10 Multi-
plikationen und 14 Additionen zusitz-
lich aufzuwenden.

6. Statische Genauigkeit
und Stérungsbekampfung

Das Ubertragungsverhalten eines
Regelkreises mit einem gewdhnlichen
Zustandsregler &dhnelt jenem eines
Kreises mit PD-Regelung. Insbeson-
dere fiihrt eine konstante Stérung zu
einer statischen Regelabweichung. Der
zumeist erforderliche Integralanteil
lasst sich systemkonform durch die
Beriicksichtigung der  Storgrossen
beim Entwurf einbauen. Die Bekamp-
fung nicht messbarer Storungen mit-
tels Modellierung und Beobachtung,
wie sie nachstehend erldutert wird, ist
nicht auf statische Storungen be-
schriankt, sondern lasst sich fir ver-
schiedene Storungsarten anwenden
und kombinieren. Sie basiert auf den
folgenden Uberlegungen [2].

Uber die zu erwartenden, nicht
messbaren Stérungen, zusammenge-
fasst im Stérungsvektor g(t), die einen
Einfluss Mq(¢) auf die zeitliche Ablei-
tung des Systemzustandes und damit
auf die Ausgangsgrosse haben, lassen
sich gewisse Aussagen machen, denn
es handelt sich ja nicht um Weisses
Rauschen. Vielleicht kennt man Art
und Dynamik der Stérung, und ledig-
lich der Zeitpunkt und die Heftigkeit
des Auftretens sind unbekannt. In
einem solchen Fall ist es moglich, die
Stérung zu beobachten. Aus dem ge-
schitzten Storungszustand lédsst sich
dann eine Steuerwertkorrektur ablei-
ten. Selbst wenn die Modellierung die
tatsdchlichen Verhiltnisse nur grob
anndhert, kann die qualitativ richtige
Korrektur eine wesentliche Verbesse-
rung bringen.

Die Storung gehorche der Vektor-
differentialgleichung

g="rq(1)+4é (6

wo O ein stochastischer Stérimpulsvek-
tor mit Mittelwert 0 ist. Energie und
Einsatzzeitpunkt des Einzelimpulses
sind unbekannt. Das um den Sto-
rungszustand erweiterte System ent-
hélt ein nichtsteuerbares Teilsystem.

[ LiON

o |~ 51‘;][2231"[5]““)*[;] ™

=101 [ 50 ®

Das Stérungsspektrum sei bandbe-
grenzt und die Héufigkeit der Anre-
gung gering im Vergleich zur Abtast-
frequenz. Bei richtiger Wahl der Ab-
tastperiode entsteht ein vernachlissig-
barer Fehler, wenn ¢(¢) im Intervall kT
< t < kT + Tdurch den Mittelwert an-
gendhert wird. Die diskrete Form der
Gleichung ist

x*[k+1] = A*x*[k] + b*u[k] + &k (9a)

Yk} = e*'x* k] (%b)

mit den Abkiirzungen:

x
q

x*=

S= /exp (F(T-t))-M-exp (V1)dt
0

D=exp(VT)

c*/ = [c/ 0/]

£[k] enthélt ein Faltungsintegral mit
6(1); da iiber & nichts weiter bekannt
ist als der Mittelwert 0, wird g[k] = 0
gesetzt; es interessiert nur der resultie-
rende Zustand g¢.

Der Zustand dieses erweiterten Sy-
stems ldsst sich in bewihrter Manier
mit Hilfe eines Beobachters ermitteln.
Da es aber ein nicht steuerbares Teilsy-
stem enthilt, kann nicht einfach ein
Riickfiihrvektor k*/ nach dem bewihr-
ten Polvorgabeverfahren berechnet
werden. Vielmehr ist der Storungsein-
fluss separat zu beriicksichtigen. Mit
dem universellen Ansatz
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ulk] = r[k] - k’x[k]- I’q[k] (10)

gilt fiir das autonome, geregelte Sy-
stem

x[k+1] = (4-bk")x[k]+(S-bl")q[k]  (11)

Man ist bestrebt, S-bl’ moglichst
klein zu machen. Der Idealfall S = bl’
ist i.a. nicht zu erreichen. In der Wahl
von [’ liegt eine Gewichtung. Bei-
spielsweise kann das Ziel sein, ug[k] =
-1’q[k] so zu wihlen, dass der Einfluss
von g[k] auf x[k+ 1] minimal wird im
Sinne des kleinsten Quadrats, dass
also

V(ug) = (¢°S"+b"uq) Q(Sq + bug) (12)

minimal wird. Dabei ist Q eine qua-
dratische, symmetrische Matrix, die je
nach Gegebenheiten zu wihlen ist
(Ackermann sieht lediglich Q = I'vor).
Die Losung ergibt

I'= (b’ Qb)' b’ OS (13)

Weiter oben wurde als Ziel die lang-
fristig vollstindige Eliminierung des
Einflusses der Stérung auf die Regel-
grosse angegeben. Die Berechnung
dieses Falles fiihrt auf

U =[c(I-A+bk’)-1b]-1c’(I-A+bk’)1S (14)

also die némliche Formel wie (13),
wenn

b'Q = c’(I-A+bk’)"! (15)

gesetzt wird.

Zum Gesamtsystem mit Storgros-
senbeobachter ist insbesondere anzu-
merken, dass das Prinzip der Separa-
tion nach wie vor gilt, d.h. die fiir die
Zustandsriickfiihrung festgelegten
Eigenwerte werden durch den Stor-
grossenbeobachter nicht beeinflusst.
Natiirlich lassen sich nur die Eigen-
werte von A verschieben, jene von D
bleiben unverdndert; nur k’ trigt zur
Eigenwertverschiebung bei, /” hinge-
gen bewirkt, dass der Streckenzustand
x von der modellierten Stérung ¢q nur
noch in vermindertem Mass beein-
flusst wird.

Fig.3 A Amplitude [dB]

Bodediagramm der 0

Phase [rad]A

Storungsiibertragung
eines geregelten
Antriebs 104

a Amplitudengang .
ohne Storgrossen-
modellierung 04

b Phasengang ohne
Storgrossen-

modellierung 30
¢ Amplitudengang mit
Storgrossen-
modellierung 40+
d Phasengang mit
Storgrossen-
modellierung 50+

601

Das Vorgehen ist sehr zu empfehlen
fiir die Eliminierung statischer Fehler
und zur generellen Verbesserung des
Storungsfrequenzganges. Ein typi-
sches Beispiel zeigt die Figur 3. Hier ist
die skalare Storung f(¢) als Konstante
mit liberlagerter, ungeddmpfter 10-Hz-
Schwingung modelliert
(0 =2mnf; fi = 10 Hz):

f+w?f(t)=0 (16)
oder
q(t) = Vq(1) (17)
mit
q)=1f f f1" und

01 0
y=10 0 1 ]

0-w?0

Fiir die konstante Storung wird der
‘Fehler auf 0 ausgeregelt, fiir eine sol-
che von 10 Hz (theoretisch unendlich)

stark geddmpft. Storungen aller inter-
essierenden Frequenzen werden min-
destens gleich stark abgeddmpft wie
ohne Stérgrossenmodellierung. Die
Figur 4 zeigt den Unterschied in den
Stérungsschrittantworten.

Will man stationédre Fehler fiir be-
stimmte Verldufe der Fiihrungsgrosse
vermeiden, das heisst im eingeschwun-

genen Zustand ein exaktes Uberein-
stimmen von Regelgrosse und Fiih-

rungsgrosse fiir einen spezifischen
Verlauf der letzteren erzwingen, ist ein
Vorfilter das Gegebene, fiir dessen
Synthese je nach Aufgabenstellung ein
weites Experimentierfeld zur Verfii-
gung steht. Bewéhrt hat sich der Ent-
wurf iiber die Ubertragungsfunktion.
Die Ordnung des Filters wird gleich
der Anzahl der zu erfiillenden Bedin-
gungen gewihlt und das Nennerpoly-
nom iiber eine sinnvolle Wahl der Pole
willkiirlich festgelegt, was Stabilitit
und geeignete Dynamik garantiert.
Das Zihlerpolynom ergibt sich dann
eindeutig aus den Bedingungen.

104 [mrad]  x

0 5 10

‘ly[k] xxxxxxxxxxxxxxxxx:
x

*x ﬁ’\‘nzah'l Takte [k]
15 20 25

Fig.4 Storungsschrittantwort eines geregelten Antriebs
Winkelabweichung y infolge der Drehmomentstérung

_ |ONm, k<0
400 =1 Nm. k<0

1 ohne Storgréssenmodellierung

in Funktion von k, wobei die Taktzeit 10 ms betrigt

2 mit Storgrossenmodellierung
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7. Schlussbemerkungen

Es wurde auf diverse praktische
Probleme hingewiesen, die bei der
konkreten Realisierung eines direkten
Abtast-Zustandsreglers auftreten kon-
nen, und es wurde versucht aufzuzei-
gen, wie man ihnen begegnen kann.
Ein wichtiges Kapitel wurde weggelas-
sen, weil es den Rahmen gesprengt
hatte: die Fragen der Amplituden-
quantisierung und der Rechengenau-
igkeit. Wenn man bedenkt, dass selbst
mit idealem Regelfilter die Quantisie-
rung der Ausgangsgrosse allein
Rauschamplituden derselben von
mehr als einer Quantisierungseinheit
und - bei etwas ungiinstiger Dimensio-
nierung - Rauschamplituden des
Steuerwerts in der Grossenordnung
des Linearititsbereichs erzeugen kann,
sicht man leicht ein, dass der Frage der
Quantisierung und erst recht bei realen
Filtern jener der Rechengenauigkeit
besondere Sorgfalt zu widmen ist. Hier
muss die Angabe zweier Standardwer-
ke [13; 14], in denen derartige Fragen
behandelt werden, geniigen. Schliess-

lich diirfte klar geworden sein, dass
der Reglerentwurf, ausgenommen
vielleicht fiir Systeme bis maximal
dritter Ordnung, weder algebraisch
noch mit grafischen Methoden zu be-
waéltigen ist. Er stiitzt sich auf die Ma-

trizenrechnung ab. Eine Rechner-.

unterstiitzung ist daher fast unum-
géanglich, wobei diese je nach Umfeld
und Aufgabe von verschiedenster Art
sein kann, sei es, dass jemand seine
eigene Subroutinensammlung fiir den
Arbeitsplatzrechner aufbaut, sei es,
dass er eine spezialisierte Programm-
bibliothek eines Instituts mitbeniitzt,
wie beispielsweise RASP (Regelungs-
technische Analyse- und Synthesepro-
gramme) der Ruhr-Universitdt Bo-
chum und der Deutschen Forschungs-
und Versuchsanstalt fiir Luft- und
Raumfahrt e.V., Institut fiir Dynamik
der Flugsysteme, Oberpfaffenhofen.
Jedenfalls aber sollte interaktiv gear-
beitet werden.
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