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Erweiterte Standardmodelle der Linearen
Optimierung zur Planung elektrischer
Energieverteilsysteme

A. Sillaber

Flir bestimmte Aufgaben der Ausbau-
planung elektrischer Energieverteilsysteme in
stadtischen Versorgungsgebieten lassen sich
vorteilhaft erweiterte Standardmodelle der
Linearen Optimierung heranziehen. In der vor-
liegenden Arbeit werden Modelle zur
Umspannwerkplanung, zur Planung von
Ringnetzen sowie zur Ermittlung optimaler
Strukturen von Niederspannungs-Strahlen-
netzen vorgestellt. Unter Beachtung sinnvol-
ler Obergrenzen fur den jeweiligen Modell-
umfang sind diese Modelle durchaus fir klei-
nere Aufgabenstellungen aus der Praxis ein-
setzbar.

Zwei Anwendungsbeispiele dienen zur Ver-
anschaulichung der praktischen Einsatzmog-
lichkeiten. Die Arbeit gibt dariber hinaus Hin-
weise und Anregungen flir die Modellierung
des Ausbauprozesses elektrischer Energie-
verteilsysteme und die Anwendung der
Linearen Optimierung auf diesem Gebiet.

Dans le cadre de la planification du dévelop-
pement de systemes de distribution d'éner-
gie électrique dans les zones d'approvision-
nement citadines, il est avantageux, pour cer-
tains travaux, de faire appel a des modeles
standards élargis d'optimisation linéaire. Cet
article présente des modeles pour la planifi-
cation de stations de transformation et de
réseaux bouclés ainsi que pour la détermina-
tion de structures optimums pour les réseaux
radiaux basse tension. En tenant compte,
pour I'ampleur de chaque modéle, de limites
supérieures raisonnables, ces modeéles peu-
vent tres bien étre utilisés dans le cadre de
petits problemes pratiques de planification.
Deux exemples d'application servent a illus-
trer les possibilités pratiques d'utilisation. Par
aillleurs, l'article donne des informations et
des idées pour la réalisation de modeles
pour le processus de développement de sys-
temes de distribution d'énergie et pour ['utili-
sation de l'optimisation linéaire dans ce
domaine.
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Alfons Sillaber, Dipl.-Ing., Dr. techn., Mitarbeiter der
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1. Allgemeines

In den letzten Jahren wurde eine
Vielzahl linearer Optimierungsmodel-
le fiir die Planung der zukiinftigen
Struktur elektrischer Energieverteilsy-
steme angegeben [1, 2, 3]. Es sollen
hier Modelle vorgestellt und deren
praktische Anwendbarkeit diskutiert
werden, die durch Erweiterung und
Anpassung linearer Standardmodelle
entstanden sind. Auf allgemeine Inve-
stitionsmodelle zur Ausbauplanung
elektrischer Versorgungssysteme wird
in diesem Zusammenhang nicht einge-
gangen [4].

Fiir spezielle Planungsaufgaben auf
diesem Gebiet lassen sich vorteilhaft
Standardmodelle der Linearen Opti-
mierung heranziehen:

- Hinweise zur kostengiinstigen Auf-
teilung eines Versorgungsgebietes in
mehrere Umspannwerkbereiche er-
hédlt man durch Anwendung von
Transportmodellen.

- Die Aufgabe, mehrere Transforma-
torstationen mit einem Umspann-
werk durch einen Kabelring mini-
maler Lange zu verbinden, stellt ein
Traveling-salesman-Problem  dar,
welches sich als dquivalentes Zuord-
nungsmodell formulieren lasst.

- Wenn die Spannungshaltung kein
Problem darstellt, kann zur Ausbau-
planung von Strahlennetzen ein
Transshipmentmodell [5] herangezo-
gen werden, das die ndherungsweise
Beriicksichtigung von Investitions-
und Verlustkosten gestattet.

Die genannten Planungsaufgaben
stellen selbstverstandlich nur eine cha-
rakteristische Auswahl dar, die keinen
Anspruch auf Vollstandigkeit erhebt.
Bei der Anwendung dieser Modelle
samt eventuellen Erweiterungen treten
wie bei anderen Aufgaben der Unter-
nehmensforschung die Fragen der Ge-
nauigkeit der Modellbildung und des
vertretbaren Rechenaufwandes auf.
Deshalb wird im folgenden nicht nur
auf die Modelle selbst eingegangen,

sondern auch deren praktische An-
wendbarkeit diskutiert und anhand
von zwei Beispielen dargestellt.

2. Ein erweitertes
Transportmodell

Wie bereits erwidhnt, kann ein
Transportmodell zum Aufteilen eines
Versorgungsgebietes in mehrere Um-
spannwerkbereiche herangezogen
werden. Wegen der wesentlichen Ver-
einfachungen bei der Modellbildung
ist das Ergebnis jedoch nur als Richtli-
nie bei der langfristigen Ausbaupla-
nung heranzuziehen.

Das gesamte Versorgungsgebiet ist
in elementare Teilflichen zu zerlegen,
welche jeweils durch einen Ersatzkno-
ten mit entsprechender Wirklast repra-
sentiert werden. Neben den Energie-
transportkosten werden nunmehr
noch die Investitions- und Betriebsko-
sten der Umspannwerke in der Ziel-
funktion beriicksichtigt. Es wird ange-
nommen, dass entsprechend einem be-
reits vorliegenden Ausfiihrungskon-
zept fiir Umspannwerke eine bestimm-
te Anzahl von Standardtypen bereits
festgelegt ist. Als fiir die Ausbaupla-
nung relevante Betriebskosten werden
die Kosten fiir die Kupferverluste der
Transformatoren explizit im Optimie-
rungsmodell formuliert. Sie hidngen
quadratisch von der Umspannwerkbe-
lastung ab. Alle iibrigen Betriebsko-
sten, wie jene fiir Instandhaltung und
Uberwachung oder fiir die Eisenverlu-
ste der Transformatoren kénnen nach
entsprechender Kapitalisierung den
Investitionskosten zugeschlagen wer-
den. Die spezifischen Energietrans-
portkosten werden zweckmaéssigerwei-
se anhand eines charakteristischen
Verteilnetzes mit durchschnittlicher
Auslastung ermittelt [6].

Zur Nachbildung der Investitions-
entscheidungen dienen ganzzahlige
Variablen, die nur die Werte 0 oder 1
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annehmen koénnen. Da gleichzeitig
eine Auswahlentscheidung unter meh-
reren moglichen Umspannwerktypen
zu treffen ist, werden diese bindren Va-
riablen zu speziell angeordneten Va-
riablenmengen [7] zusammengefasst.
Dies gestattet den Einsatz einer effi-
zienten Strategie zur Losung des ge-
mischt-ganzzahligen linearen Opti-
mierungsproblems.

Die quadratische Abhéngigkeit der
Verlustkosten von der Umspannwerk-
belastung und der gewéhlten Um-
spannwerktype wird ndherungsweise
durch eine Schar von Polygonziigen
nachgebildet. Diese Polygonziige wer-
den den jeweils entsprechenden Um-
spannwerktypen mit Hilfe der bindren
Entscheidungsvariablen und eigener
Restriktionen zugeordnet. Das eigent-
liche kontinuierliche Transportmodell
besteht aus den Leistungsbilanzen in
den Umspannwerk- und Lastknoten.
Die genaue Modellformulierung fin-
det manin [2].

Dieses Modell stellt selbstverstdnd-
lich nur eine von vielen anderen
zweckmissigen Nachbildungen des
realen Systems dar. So ist insbesonde-
re auch die genauere Modellierung des
Verteilnetzes z.B. mittels eines Trans-
shipmentmodells moglich. Modelle bis
zu etwa zehn moglichen Umspannwer-
ken mit jeweils fiinf verschiedenen Ty-
pen und einigen hundert Umspannsta-
tionen lassen sich mit Hilfe leistungs-
fahiger Standardsoftware ohne allzu
grossen Aufwand 16sen [7]. Vorteilhaft
erscheint der Einsatz des beschriebe-
nen oder eines dhnlichen Optimie-
rungsmodells, wenn eine grundsitzli-
che Umgestaltung eines stiddtischen
Mittel- oder Hochspannungsnetzes be-
vorsteht. Dies kann beispielsweise
durch den Ubergang auf andere Span-
nungsebenen bedingt sein [8]. Ahnli-
che Ausbaumodelle findet man in
[6, 9]

3. Ein erweitertes
Zuordnungsmodell

Die Eigenschaft von Transportmo-
dellen, dass unter gewissen Vorausset-
zungen [10] die optimale Losung ganz-
zahlig ist, ldsst sich vorteilhaft zur Pla-
nung elementarer Netzstrukturen wie
beispielsweise von Kabelringen aus-
niitzen. Dabei tritt folgende Problem-
stellung auf: Eine Anzahl von Netzsta-
tionen ist mit einem oder mehreren
Umspannwerken durch einige Kabel-
ringe moglichst geringer Gesamtlidnge

unter Beachtung der maximalen Ka-
belbelastbarkeit zu verbinden. Dieses
Routenplanungsproblem ldsst sich als
gemischt-ganzzahliges lineares Modell
formulieren, dessen ganzzahliger Teil
die Netzstationen auf die verschiede-
nen Kabelringe aufteilt. Der kontinu-
ierliche Teil stellt ein Zuordnungsmo-
dell, den Sonderfall eines Transport-
modells, mit zusitzlichen Nebenbe-
dingungen dar.

In das Modell gehen die Investi-
tionskosten zur Errichtung der Kabel-
strecken sowie deren thermische Be-
lastbarkeit unter der Beriicksichtigung
von Einfachausfillen ein. Die Investi-
tionsentscheidungen zur Errichtung
einer Kabelstrecke zwischen zwei
Netzknoten werden nunmehr durch
kontinuierliche Variablen nachgebil-
det, die jedoch in der Optimalldsung
aur die Werte 0 oder 1 annehmen. Die
Zuordnung der Netzstationen zu den
einzelnen Kabelringen erfolgt mit Hil-
fe bindrer Variablen, die wiederum zu
speziell angeordneten Variablenmen-
gen zusammengefasst werden. Neben
den Restriktionen zur Nachbildung
der thermischen Belastbarkeitsgrenze
der Kabel sind noch zuséatzliche Re-
striktionen fiir den Ausschluss soge-
nannter Kurzzyklen erforderlich, um
eine Degeneration der Optimallosung
zu verhindern [2].

Da die Anzahl der zuletzt genannten
Nebenbedingungen sehr rasch mit der
maximalen Zahl von Netzstationen je
Kabelring steigt, sind als praktische
Obergrenze etwa 10 Umspannstellen
je Ring anzusehen. Bei der Anwen-
dung von Standardprogrammen der
Linearen Optimierung [7] ist die An-
zahl der speziell angeordneten Varia-
blenmengen, die in diesem Modell der
Lastknotenzahl entspricht, durch den
erforderlichen Rechenaufwand mit
ungefdhr 100 beschriankt. Dies ent-
spricht gut den Anwendungsfillen in
der Praxis, meist diirfte jedoch der
Nachweis der Optimalitét einer gefun-
denen Losung zu aufwendig sein.

Es soll noch darauf hingewiesen
werden, dass auch Modifikationen
und Erweiterungen des dargelegten
Modells von praktischem Interesse
sein konnen. Zur Beriicksichtigung
von Mehrfachkabellegungen, insbe-
sondere bei Stufenausbaumodellen,
kann die Nachbildung des Strassen-
netzes in einem stddtischen Versor-
gungsgebiet erforderlich sein. Dann
dirfte auch der Einsatz von Dekom-
positions- und Partitionierungsverfah-
ren [11] oder anderer Spezialmethoden
unerlésslich sein.

p

Fig. 1 Abhiingigkeit der Investitions- (K;) und
Verlustkosten (Kvy) von der iibertragenen Hochst-
last bei unterschiedlichen Kabelquerschnitten

4. Ein erweitertes
Transshipmentmodell

Dieses Modell dient zur Ausbaupla-
nung rdaumlich eng begrenzter Strah-
lennetze unter Beriicksichtigung der
Investitions- und Verlustkosten. Ste-
hen mehrere genormte Kabelquer-
schnitte zur Auswahl, erhidlt man fiir
den funktionalen Zusammenhang zwi-
schen den Gesamtkosten einer Kabel-
strecke und der im Hochstlastzustand
iibertragenen Wirkleistung eine Schar
von Parabeln gemaéss Figur 1.

Wihlt man zu jeder Ubertragungs-
wirkleistung den jeweils optimalen
Leitungstyp, so wird die entsprechen-
de Kostenfunktion durch die Einhiil-
lende dieser Parabelschar gebildet.
Diese kann im technisch interessanten
Bereich durch eine Gerade approxi-
miert werden.

Die Zielfunktion enthilt somit
einen Fixkostenanteil, formuliert mit-
tels bindrer Variablen, sowie einen va-
riablen Kostenanteil, der von der
hochsten zu iibertragenden Wirklei-
stung abhingt. Als Nebenbedingun-
gen fungieren die Leistungsbilanzen in
den Lastknoten und thermische Be-
schrankungen unter Beriicksichtigung
der Investitionsentscheidungen. Eine
gegebenenfalls eingebaute Zusatzbe-
dingung gewahrleistet, dass alle gefun-
denen Loésungen nur Strahlennetze
darstellen.

Das beschriebene Modell lasst sich
vorteilhaft zur Planung von Nieder-
spannungs-Kabelnetzen in neu errich-
teten Wohngebieten verwenden [12].
Zusitzlich zu den Netzkosten kdonnen
auch die Kosten der speisenden Um-
spannstellen in das Modell einbezogen
werden [13]. Bei Niederspannungs-
Freileitungsnetzen in landlichen Sied-
lungsgebieten sind die Investitionsko-
sten im Vergleich zu den Verlustkosten
meist so gering, dass die Fixkosten im
mathematischen Modell vernachlds-
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sigt werden koénnen [14]. Da jedoch die
Spannungsabfille nicht nachgebildet
werden, ist es nur zur Planung rdum-
lich eng begrenzter Verteilnetze geeig-
net. Probleme mit einem vertretbaren
Rechenaufwand umfassen bis etwa
200 ganzzahlige Variablen, wenn man
sich mit praktisch brauchbaren, sub-
optimalen Losungen begniigt. Die An-
zahl der kontinuierlichen Variablen
stellt fiir Aufgaben aus der Praxis kei-
ne Beschrinkung dar. ‘

5. Anwendungsbeispiele

5.1 Einstufiges Planungsmodell fiir
ein Kabelringnetz

Zehn Umspannstellen (Knoten 1 bis
10) sind durch drei Kabelringe mit
einem Umspannwerk (Knoten 0) so zu
verbinden, dass die gesamte Kabelldn-
ge minimal ist. Die Knotenlasten kon-
nen nachfolgender Zusammenstellung
entnommen werden:

Knoten: Last (kVA)
1 800
2 200
3 800
4 200
5 200
6 300
7 400
8 200
9 500

10 800

Es ist ein einziger Kabeltyp vorgese-
hen, dessen maximale Ubertragungs-

o~

1 ... Knotennummer
32... Trassenlange

Fig.2 Anordnung der Netzknoten im unter-

60 . . .Knotenlast [kW]
49.2 . . Zweiglange [m]

Fig.4 Ausgangsdaten fiir das zu optimierende Niederspannungsnetz

leistung aufgrund seiner thermischen
Belastbarkeit 1500 kVA betrigt. We-
gen der Reserveerfordernisse bei Ein-
fachausfillen darf die Belastung eines
Kabelrings im Normalbetrieb nicht
mehr als 1500 kVA betragen.

Figur 2 zeigt die in regelmissigen
Abstinden angeordneten Netzknoten.
Als mogliche Kabeltrassen sind alle
denkbaren geradlinigen Verbindun-
gen zwischen den Netzknoten zugelas-
sen. Diese vereinfachenden Annah-
men stellen keine Einschriankung der
Allgemeinheit fiir praktische Anwen-
dungen dar, sondern dienen nur zur
Gestaltung eines ilibersichtlichen Test-
beispiels. Alle vorkommenden Tras-
senldngen sind in Form eines Kabel-
rings eingetragen. Die Ausdehnung
des Versorgungsgebietes sei so gering,
dass die Spannungsabfille im Netz
keine einschrinkenden Nebenbedin-
gungen fiir die Netzplanung darstellen
mogen.

Das mathematische Modell stellt ein
erweitertes Zuordnungsmodell geméss
Kapitel 3 dar. Es umfasst 30 binére
Variablen, zusammengefasst zu 10
speziell angeordneten Variablenmen-

gen, 330 kontinuierliche Variablen
und 234 explizite Nebenbedingungen.
Mit Hilfe des Standardprogrammpa-
ketes MPSX/MIP 370 der Firma IBM
[7] werden ganzzahlige Losungen mit
einem Zielfunktionswert unter 207 ge-
sucht. Es wurde nach 2,82 min eine
ganzzahlige Losung gefunden, deren
Optimalitdt nach 3,71 min bewiesen
war. Der optimale Zielfunktionswert
betrdgt 206, die optimale Losung ist in
Figur 3 dargestellt.

5.2 Einstufiges Planungsmodell fiir
ein Niederspannungs-Kabelnetz

Ein projektiertes Wohngebiet ist
von einer Umspannstelle aus iiber ein
Niederspannungs-Kabelnetz mit elek-
trischer Energie zu versorgen. Das zur
Verfiigung stehende Trassennetzwerk
mit Angaben der Zweiglingen und
Knotenlasten ist in Figur 4 dargestellt.
Ein dhnliches Beispiel wurde bereits in
[12] veroffentlicht.

Fiir die spezifischen Transportko-
sten werden aufgrund der linearisier-
ten Kostenfunktion gemdss Figur 5
400 GEm™! + 8 GEKW-'m™! angesetzt.

suchten Beispiel E:ﬁ;zrisierte K [GE/m] 70° 9%° 1852 3002
Kostenfunktion %000 / / //
3200 ~
1 2 3 / / //
|
0 A y 1600 j —
e # |
800 - :
9 10 :
65 11105 ' 220 P [kW]
Fig.3 Das Kabelnetz im optimalen Fall 100 200 300
Bull. SEV/VSE 76(1985)2, 26. Januar (B39) 95



Fig.6 Die beste der gefundenen Losungen fiir das Niederspannungsnetz (Kabelquerschnitte im mm?)

Das Fixkosten-Transshipmentmo-
dell umfasst 33 bindre Variablen, 55
kontinuierliche Variablen und 55 Ne-
benbedingungen. Es wurde wiederum
das Standardsoftwarepaket MPSX/
MIP 370 der Firma IBM verwendet [7].
Die CPU-Zeit bis zum Auffinden der
ersten ganzzahligen Losung betrug
0,07 min, der Wert der Zielfunktion
betrug 1,267-10° Geldeinheiten (GE).
Die beste ganzzahlige Losung mit
einem Zielfunktionswert von
1,237-10° GE wurde nach 0,63 min er-
mittelt. Insgesamt wurden vier ganz-
zahlige Losungen gefunden. Der
Nachweis der Optimalitdt gelang nicht
beim ersten Versuch, da die standard-
méssige «node table» mit 132 nodes zu
klein war. Die beste der gefundenen
Losungen ist in Figur 6 dargestellt.

6. Zusammenfassung

Bestimmte Standardmodelle der Li-
nearen Optimierung werden um einen
ganzzahligen Teil erweitert und zur
Planung der zukiinftigen Struktur
elektrischer Energieverteilsysteme ein-
gesetzt. Ein erweitertes Transportmo-
dell eignet sich zur Planung der Um-

spannwerkkonfiguration in stddti-
schen Versorgungsgebieten. Die wirt-
schaftlich optimale Struktur eines Ka-
belringnetzes ldsst sich mit Hilfe eines
erweiterten Zuordnungsmodells fin-
den. Ein Fixkosten-Transshipment-
modell dient zur Planung von Strah-
lennetzen in rdumlich eng begrenzten
Versorgungsgebieten.

Moderne Standardprogramme der
Linearen Optimierung ermoglichen
die Losung von kleineren Aufgaben-
stellungen aus der Praxis mit einem
vertretbaren Rechenaufwand. Sie bie-
ten den Vorteil, dass sie direkt vom
Planungsingenieur eingesetzt werden
konnen und keine detaillierten mathe-
matischen Kenntnisse erfordern. Das
wichtigste Kriterium fiir den Modell-
umfang stellt immer die Anzahl der
ganzzahligen Variablen dar, da diese
entscheidend fiir die notwendige Re-
chenzeit ist. Fiir umfangreichere Pro-
blemstellungen wird man auf Dekom-
positions- und Partitionierungsmetho-
den zuriickgreifen miissen.

In dieser Arbeit wurden nur einstu-
fige Ausbaumodelle vorgestellt, eine
Erweiterung auf Mehrstufenmodelle
ist jedoch ohne zusitzliche Schwierig-
keiten moglich. Anhand von zwei

praktischen Beispielen wurden die
Aufgabenstellung, der Modellumfang
und der Losungsaufwand demon-
striert. Fiir bestimmte Aufgaben der
Ausbauplanung elektrischer Energie-
verteilsysteme stellt somit die Lineare
Optimierung  ein  zweckmissiges
Werkzeug zum Auffinden wirtschaft-
lich-technisch giinstiger Losungen dar.
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