Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 75 (1984)

Heft: 24

Artikel: Services Industriels de la Commune de Monthey

Autor: Jäger, L. R.

DOI: https://doi.org/10.5169/seals-904528

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

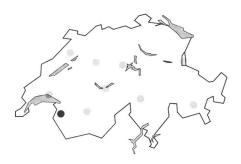
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

substituer de nouvelles sources énergétiques au pétrole. Ce phénomène est encore plus marqué dans les villages de montagne. Le recours à la pompe à chaleur pour le chauffage est également à prendre en considération de façon sérieuse.


La merveilleuse polyvalence de l'électricité quant à ses applications ne

fait que renforcer et accélérer le mouvement vers le «tout-électrique».

Soyons confiants en l'avenir: les recherches de pointe en matière d'énergie tendent à développer de nouvelles techniques capables de produire de l'électricité, que ce soit à partir du rayonnement solaire, du mouvement des marées, ou encore de la fusion nucléaire.

En étudiant l'histoire des SIS, on peut mesurer à quel point la domestication de l'électricité constitua une aventure pleine de risques et d'imprévus.

Au début du siècle, la fée électricité apparut comme une révolution, aujourd'hui elle demeure une merveille!

Services Industriels de la Commune de Monthey

L. R. Jäger

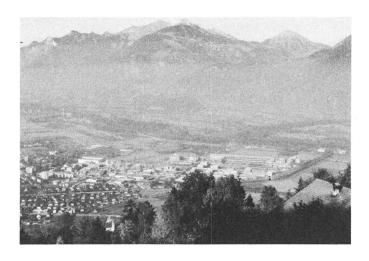
Une petite entreprise d'électricité peut elle aussi suivre ses propres voies pour résoudre des problèmes techniques et de politique énergétique. Les Services Industriels de la Commune de Monthey en sont un exemple: ainsi les câbles aériens sur poteaux en béton utilisés à Monthey, qui sont d'ailleurs répandus dans plusieurs pays, ne se trouvent pratiquement dans aucun autre endroit de Suisse, et le cadastre de la densité énergétique de la commune constitue pour les Services Industriels une excellente base de planification. D'autres initiatives soulignent encore le dynamisme de ces Services Industriels en matière d'utilisation rationnelle de l'énergie.

Auch ein kleines EW kann eigene Wege zur Lösung technischer und energiepolitischer Probleme gehen. Ein Beispiel hierfür ist das EW der Gemeinde Monthey: Die in Monthey eingeführten Kabel-Freileitungen auf Betonmasten, die in verschiedenen Ländern durchaus üblich sind, sind beispielsweise andernorts in der Schweiz kaum anzutreffen, und der Energiebedarfskataster der Gemeinde stellt eine ausgezeichnete Planungsgrundlage auch für das EW dar. Weitere Untersuchungen unterstreichen die initiative Haltung dieses EWs in Sachen rationelle Energienutzung.

Adresse de l'auteur

Louis Robert Jäger, Services Industriels de la Commune de Monthey, 1870 Monthey

1. Histoire


Les Services Industriels de la Commune de Monthey, ville de 12 000 habitants (fig. 1), ont été créés en 1930 par le rachat du réseau 5 kV et 220/127 V, à l'usine chimique CIBA, qui reste son fournisseur unique. Les Services Industriels de Monthey ont connu un développement rapide comme le montre le tableau I.

En 1945 a eu lieu la création du réseau «Montagne» et en 1950 le passage au 380/220 V.

2. Situation actuelle

Les Services Industriels appartiennent à la municipalité et sont gérés dans le cadre du budget communal.

Fig. 1 Le site de Monthey

Evolution entre 1930 et 1983

Tableau I

Année	Energie achetée	Nombre de transformateurs	Personnel affecté	Rapport énergie/personnes
1930	0,2 mio kWh	6	3	0,07 mio kWh/p
1969	13 mio kWh	30	12	1,1 mio kWh/p
1983	40 mio kWh	100	12	3,3 mio kWh/p

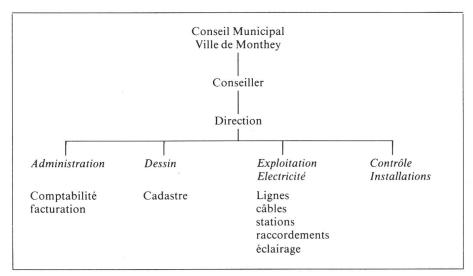


Fig. 2 Organisation des Services Industriels de Monthey

L'organisation est présentée en figure 2.

Douze personnes travaillent actuellement pour le service de l'électricité. La région d'approvisionnement de ce dernier est constituée par le territoire communal. Les installations de transport et de distribution comprennent le réseau «Plaine» 5 kV avec 12 km de câble H.T. et 66 stations, ainsi que le réseau «Montagne» 16 kV formé d'un réseau mixte avec celui de Ciba-Geigy et d'un réseau propre de 4 km avec 39 stations. L'énergie est livrée par Ciba-Geigy via 7 départs à 5 kV et un départ à 16 kV.

3. Achat et vente d'énergie

Ciba-Geigy est le seul fournisseur d'énergie électrique des Services Industriels. Les principales données statistiques concernant l'énergie fournie par les S.I. de Monthey sont indiquées ci-après.

Achat d'énergie	40 mio kWh
Pointe	7400 kW
Temps d'utilisation	5400 h
Vente aux abonnés dont: artisanat, industries, magasins secteur domestique	33,5 mio kWh 16,1 mio kWh 17,4 mio kWh
Besoins des bâtiments publics	2 mio kWh
Eclairage public	1 mio kWh
Service des eaux	1 mio kWh
Pertes	4 mio kWh
Total fourniture	40 mio kWh
Part du chauffage électrique	6 mio kWh

Abonnés

Nombre d'abonnés: 6000 Nombre de compteurs: 6500 Il ressort de ces données que le chauffage électrique représente une part relativement importante de la consommation (18% du total des ventes aux abonnés). Pour environ deux tiers il s'agit de chauffage direct et pour seulement un tiers de chauffage à accumulation. De cette manière on a évité que de trop grandes pointes de charge se présentent.

Une des raisons de la diffusion relativement grande du chauffage électrique est que des prix assez bas lui sont accordés, également durant la journée. Par ailleurs, les Services Industriels favorisent l'utilisation du chauffage électrique pour le réseau «Montagne» ainsi que pour les villas et transformations d'immeubles anciens.

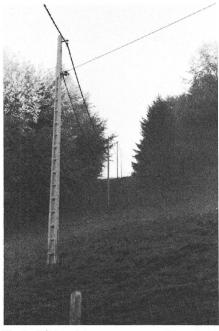


Fig. 3 Câbles aériens sur poteau en béton du réseau BT

Les Services Industriels encouragent de plus l'utilisation d'énergie «douces» comme par exemple celle de la nappe phréatiques pour les pompes à chaleur (voir aussi chapitre 5).

4. Câbles aériens avec supports en béton – une solution inhabituelle en Suisse

Un grand nombre de réseaux BT aériens ont été transformés en réseaux «câbles aériens sur poteaux en béton (fig. 3). Pourquoi? Les câbles aériens

Comparaison entre ligne classique fils nus et câble aérien

Tableau II

	Ligne classique fils nus B.T.	Ligne câble aérien B.T.
Prix	légèrement moins cher	
Rapidité de montage		plus rapide
Incidence de pannes		nettement moins
Emondage		nettement moins
Fils ou câbles rompus	plus vite réparés	
Inductance		moindre
Conditions de mise au neutre		meilleure
Esthétique	moins belle, vu le grand nombre d'isolateurs	câble plus gros que les fils
Neige		fond plus vite
Conducteurs	Cu ou Al	Al
Section	Ø 4, 5, 6, 8, etc.	$4 \times 25, 35, 50, 70, 95 \text{ mm}^2$
Section maximum	Aldrey 150, évent. 240	Al 95 mm ²

x béton 11 m	C	à Fr. 9	00	Fr. 3 600.– Fr. 2 700.– Fr. 750.–
dise				Fr. 7 050
n		à Fr. 1	10	Fr. 770
ble aérien 4 ×	50 mm ² Al	à Fr.	6	Fr. 3 000
nts				Fr. 600
rchandise				Fr. 11 420
ligne (entrep	rise privée)			Fr. 15 500
viron				Fr. 27 000
	x béton 11 m x bois 11 m adise on ble aérien 4 × nts rchandise	ndise on ble aérien 4 × 50 mm² Al nts rchandise ligne (entreprise privée)	x béton 11 m $E^* = 800 \text{ kg}$ à Fr. 2 x bois 11 m à Fr. 2 dise on à Fr. 1 ble aérien $4 \times 50 \text{ mm}^2 \text{ Al}$ à Fr. 1 tr. 1 rts rchandise ligne (entreprise privée)	x béton 11 m E* = 800 kg à Fr. 900 x bois 11 m à Fr. 250 adise on à Fr. 110 ble aérien 4 × 50 mm² Al à Fr. 6 nts rchandise ligne (entreprise privée)

^{*} E = Effet en tête

fournissent un éventail intéressant d'avantages tels que:

- Sécurité d'exploitation au moins doublée
- Incidence d'intervention réduite (des deux tiers pour les SI de Monthey)

Même si une dérivation en 4×16 ou 25 mm² Aluminium est arrachée, la ligne principale en 4×35, 50 ou 70 mm² Aluminium reste en exploitation. Même si un arbre tombe sur la ligne, les «fusibles mécaniques» lâchent avant que les conducteurs soient détruits. L'émondage est moins conséquent. Le montage est facile et plus rapide qu'une ligne quatre fils nus avec isolateurs. Les dangers d'électrocution sont très faibles. De plus, la neige tient moins longtemps à cause de l'isolation à la fois électrique et thermique. La chaleur du conducteur est accumulée. Les praticiens préfèrent ce système au traditionnel.

Une comparaison sommaire du câble aérien avec une ligne classique est effectuée dans le tableau II.

Le tableau III présente le calcul des coûts pour une ligne BT avec câbles aériens comme celles des SI de Monthey. Pour une longueur totale de 500 m, on obtient un coût total de fr. 27 000.-, soit fr. 54.- par mètre.

Comparativement, on a estimé le coût d'une ligne traditionnelle à fr. 22 000.-.

Malgré cela, on a opté pour la solution câble aérien BT sur poteaux en béton pour les raisons citées ci-dessus.

Les figures 4a et 4b montrent la technique employée. On distingue

- les pinces d'ancrage, posées sur chaque quatrième poteau
- les supports de suspension
- l'élément de connection pour une dérivation
- le fusible mécanique, qui se rompt avant le câble aérien.

Lors de son introduction, en 1972, ce concept inhabituel se heurta tout d'abord à une résistance, notamment sur le plan de la protection de l'environnement. Aujourd'hui, on s'est habitué aux lignes aériennes et pour la pose de nouvelles lignes il n'y a pas davantage de problèmes que pour les lignes aériennes conventionnelles.

De pair avec ces câbles va l'emploi systématique des supports en béton, dont l'usage a été généralisé. Des supports en béton avec les têtes ou efforts suivants sont utilisés: 200, 400, 800, 1200 kg et plus. Malgré leur poids allant de 1000 kg à 2 ou 3 tonnes, ils offrent les avantages suivants:

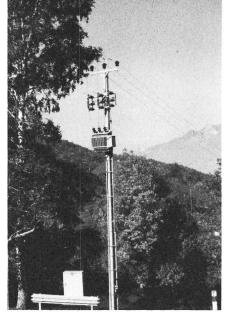


Fig. 5 Poteau en béton, à la fois support de ligne $16~\mathrm{kV}$ et support de transformateur 50 à $160~\mathrm{kVA}$

- pas de hauban
- pas de contrefiche
- plus solides
- résistent au temps

En terrain difficile, on se contente d'angles ou d'arrêts.

Pour porteurs, ou utilise alors le bois.

Un autre point fort est l'utilisation de poteaux en béton pour combiner le support de ligne 16 kV et le support de transformateur 50 à 160 kVA, jusqu'à 850 kg.

Le calcul des coûts pour une telle combinaison, comme présentée en figure 5, donne le résultat suivant:

Poteau 12 m, 800 kg	Fr.	900
Sectionneur	Fr.	2 000
Transformateur 100 kVA,		
16 kV	Fr.	3 500
Ferrures, isolateurs, cuivre	Fr.	800
Caisson B.T.	Fr.	1 500
Glissière de sécurité	Fr.	300
Génie civil	Fr.	1 200
Main-d'œuvre (entreprise privée)	Fr.	9 000
Total	Fr.	19 200

En variante, voici ci-après le calcul pour une station compacte de 5 kV, comme représentée en figure 6.

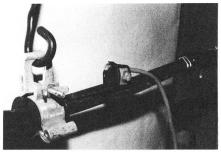
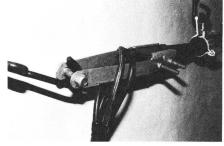



Fig. 4a Fig. 4b Détails de la technique employée pour la suspension des câbles aériens

Station transformatrice	
100 kVA, avec sectionneur	
16 kV, sans B.T.	Fr. 19 000
B.T.	Fr. 3 000
Génie civil	Fr. 2500
Adduction H.T. 30 m de	
câble 3×25 mm ² , 16 kV	Fr. 6 000
Main-d'œuvre SI	Fr. 6 500
Total	Fr. 37 000

Station compacte 5 kV

La différence pecuniaire entre les deux méthodes est evidente.

5. Concept énergétique

Le directeur des S.I. dirige un groupe de travail, dont le but est d'élaborer un concept en matière d'énergie. Le premier labeur consistait à élaborer un cadastre de toutes les énergies de chauffage:

- mazout
- gaz
- électricité

Sur cette base a été façonnée une carte géographique de Monthey (voir fig. 7), qui montre la densité énergétique en kW/m² en vertu des valeurs recensées et du plan communal des zones à construire.

Les densités établies vont de 0 à 0,300 kW/m². On distingue aisément sur le plan trois catégories:

- basse densité, jusqu'à 0,035 kW/m² (périphérie)
- moyenne densité, jusqu'à 0,115 kW/m²
- haute densité, jusqu'à 0,300 kW/m² Le but de l'étude est de traiter particulièrement deux points:
- Recommandation au sujet de l'emploi de quelle énergie dans quelle zone, tel que
- basse densité: gaz, électricité

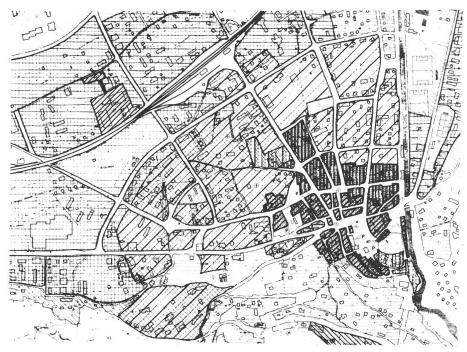


Fig. 7 Cadastre de la densité énergétique (vue partielle). Les densités différentes sont indiquées par différents types de hâchures.

- moyenne densité: gaz, électricité à exclure sauf pour les villas
- haute densité: gaz, pas d'électricité, chauffage à distance.

On a fait élaborer également en 1983 un projet de chauffage à distance, qui est encore à l'étude.

Pour le chauffage électrique, l'attitude suivante est recommandée:

- Pour les villas et les transformations d'anciens immeubles, le client reste
- Pour les locatifs (plus grands que 30 kW), le chauffage électrique est déconseillé au client, sans pour autant l'interdire, faute de base légale.
- Par contre, les Services Industriels se refusent d'investir pour le seul chauffage électrique dans les zones à haute et moyenne densité. Dans ce

cas, le client serait obligé de payer toute l'infrastructure (amenée H.T., station transformatrice, B.T.), ce qui le découragerait sûrement. De cette façon on obtient un critère pour la planification future du développement du réseau d'électricité.

Energies douces

L'emploi des énergies de substitution telles que

- solaire
- pompes à chaleur de toute forme (air, nappe souterraine)

est préconisé.

L'emploi rationnel de la nappe souterraine nécessite une étude spéciale (prévue pour 1985) de la capacité thermique exploitable sans nuire à l'environnement.