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Uber die Berechnung von Impedanzen
P. Leuchtmann

Die numerisch berechenbaren elektrischen
und magnetischen Felder sind umständlich

zu handhaben. Der vorliegende Aufsatz zeigt
deshalb, wie aus den Feldern die in der Praxis

gebräuchlichen Impedanzen,
Widerstände und Induktivitäten berechnet werden
können. Dazu wird hergeleitet, wann eine
statische Feldberechnung zulässig ist, und
gezeigt, wie das elektromagnetische Feld

aufgeteilt und vereinfacht berechnet werden
kann. Dann werden die Formeln zur Bestimmung

der Induktivität, der inneren und äusseren

Impedanz sowie der Gegenimpedanz
hergeleitet.

Grâce aux méthodes numériques, il est
maintenant possible de calculer un grand nombre
de champs électriques et magnétiques. L'article

montre comment on en déduit en
pratique les différentes impédances, résistances

et inductivités. En partant des cas généraux,
les possibilités et les limites des calculs
statiques sont montrées. Les subdivisions
usuelles du champ électromagnétique, ainsi

que des cas particuliers bien connus sont
introduits. Puis, les différentes formules pour
calculer l'impédance intérieure et extérieure
ainsi que l'impédance induite sont déduites.

Adresse des Autors
P. Leuchtmann, dipl. El.-Ing. ETH, Institut für Elektronik,

Gruppe elektromagnetische Felder, ETH-Zentrum,
8092 Zürich.

1. Einleitung
Da die numerische Feldberechnung

dank leistungsfähiger Computer
immer einfacher wird, können heute
vermehrt «exakte» Rechnungen auch für
Geometrien, die nicht mit einfachen
Formeln beschrieben werden können,
durchgeführt werden. Der vorliegende
Artikel gibt eine Übersicht über die
Zusammenhänge zwischen den Feld-
grössen einerseits und den Impedanzen

(Widerständen, Induktivitäten)
andererseits. Erstere sind als vektor-
wertige Ortsfunktionen zu umständlich

für den Praktiker, letztere sind als
komplexe (oder reelle) Zahlen nicht
mit einfachen Formeln berechenbar,
wohl aber leicht messbar.

1.1 Begriffsabgrenzung

Impedanzen haben komplexe Werte.
Sie sind Verhältnisse zwischen
zugeordneten komplexen Grössen von
Spannungen und Strömen. Implizit
sind also nur sinusförmige Zeitabhängigkeiten

zugelassen. Verallgemeinerte
Impedanzen, z.B. die (Wellen-)Impe-
danz des Raumes, werden nicht
behandelt.

Widerstände und Induktivitäten
haben reelle Werte. Sie sind bei beliebiger

Zeitabhängigkeit von Strömen und
Spannungen brauchbar. Im folgenden
wird oft nur einer der beiden obigen
Begriffe stellvertretend für beide
gebraucht. Der Zusammenhang
zwischen Widerständen, Induktivitäten
und Impedanzen ist in Abschnitt 3.4

behandelt.

1.2 Maximale Abmessungen von
Feldgebieten

Die Verknüpfung von Feld und
Induktivität geschieht mit Hilfe der
Energie (bzw. Leistung): Falls z.B. eine
Stromverteilung mit Gesamtstrom /
insgesamt die (magnetische) Feldenergie

Wm aufweist, gehört dazu eine
Induktivität

L 2 WM/I2 (1)

Ist der Strom zeitlich veränderlich,
bleibt diese Definition nur sinnvoll,
wenn Wm gleichartig von der Zeit t

abhängt wie /2. Dies ist sicher dann der
Fall, wenn in jedem Punkt /-des zu L
gehörigen Feldgebietes G sowohl die
Stromdichte j{r, t) als auch die magnetische

Feldstärke H(r, t) in der Form

j(> 0 j (r) At)

bzw. H(r, t)= H (r) f(t) (2)

geschrieben werden können. Dies ist
möglich, wenn das Feldgebiet nicht zu
grosse Abmessungen hat. Da sich
Änderungen von Feldgrössen mit der
(materialabhängigen)
Fortpflanzungsgeschwindigkeit v ausbreiten, verursacht

die Schreibweise (2) nämlich
höchstens einen Fehler von

H(r) • max\df/dt\ At< 8 • H(r)

wobei öder maximal zulässige relative
Fehler ist. Mit At d/verhält man für
den maximal zulässigen Durchmesser
dvon G die Ungleichung

d < min (vô/\df/dt\) (3)

Ist anderseits (3) für ein bestimmtes
Problem erfüllt, können die Felder
statisch gerechnet werden. Allerdings
muss die Materialabhängigkeit von v
beachtet werden: Im dielektrischen
Medium gilt \/v f~ps mit der
Permeabilität p und der Dielektrizitätskonstante

£. In Metallen hingegen ist v
ein Funktional von/(t). Zerlegt man J
nach Fourier, dann sind die höchsten
Frequenzanteile massgebend. Für
harmonische Zeitabhängigkeit (/(f)
cos at) gilt v f2co/pa und damit
anstelle von (3):

dlvlet 8 " j doiel ~ (3a)
copo (ofpë
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1.3 Zulässigkeit statischer Rechnung

Die Ungleichungen (3a) geben
Schranken für die Ausdehnung von
Gebieten an, wo
a) die statische Feldberechnung zuläs¬

sig ist und
b) aus der Feldenergie Induktivitäten

usw. abgeleitet werden dürfen.

Ist die Bedingung (3a) verletzt, muss
in jedem Fall dynamisch gerechnet
werden. Hingegen gilt b) unter
Umständen immer noch. Dies ist
insbesondere im stationären Zustand (feste
Kreisfrequenz o) für die Impedanzen
möglich: Da bei der Berechnung der
gesamten Feldenergie die örtliche
Phasenverschiebung berücksichtigt werden

kann, darf G beliebig ausgedehnt
sein. Lediglich das Tor (d.h. der Ort,
wo Strom und Spannung definiert
sind) muss eindeutig bezeichnet sein
(typisches Beispiel: Fusspunktimpedanz

einer Antenne).
Eine zahlenmässige Auswertung der

Gl. (3a) ergibt bei S 1% und a> 2n
•106 s~' für Luft d < 0,5 m und für
Kupfer d < 0,7 p.m.

Es gilt daher für viele praktische
Fälle:

- Die Felder im Dielektrikum können
statisch gerechnet werden.

- Die Felder im Leiter müssen
dynamisch behandelt werden.
Im folgenden ist ein solcher Fall

angenommen.

2. Aufteilung des
Gesamtfeldes in separat
berechenbare Teilfelder
Da im Dielektrikum vorausset-

zungsgemäss statisch gerechnet werden

darf und in der Statik keine Kopplung

zwischen magnetischem Feld 77

und elektrischem Feld E besteht, ist
die folgende Aufteilung des gesamten
elektromagnetischen Feldes F in drei
Teile vorteilhaft:

Fe enthält das elektrische Feld im
Dielektrikum. Man erhält es als

Lösung eines Randwertproblems für das
elektrostatische Potential <p aus Ee

- grad (p. Im Leiter ist Fe nach Voraussetzung

null. Falls das Dielektrikum
eine (geringe) Leitfähigkeit ob
aufweist, zählt das zugehörige Stromdichtefeld

je (JdEe auch zu Ee.

Zu Em gehört die im Leiter vorhandene

Stromdichte /vi, das durch _/m

verursachte Magnetfeld Hm sowie das im
Leiter mit Leitfähigkeit ol vorhandene

elektrische Feld Em ,/m/cfl- Hm ist
im allgemeinen sowohl im Leiter als

auch ausserhalb desselben von null
verschieden.

Das Restfeld Er schliesslich wird
vernachlässigbar klein. Zu ihm zählen
das durch je erzeugte He sowie
E-Komponenten, die noch nicht er-
fasst wurden, wie Verschiebungsstromdichte

im Leiter, zu Ee orthogonale

Komponenten im Dielektrikum
usw. Die Impedanzen werden somit in
zwei Schritten berechnet:
1. Berechnung von Fe: Lösung des

Randwertproblems für tp.

2: Berechnung von Em:

a) dynamische Rechnung zur Be¬

stimmung der Felder im Leiter,
insbesondere der Stromdichte
ju- Dieser Schritt wird oft durch
eine Näherungsrechnung erledigt

(s. 2.1).
b) Statische Rechnung im Dielek¬

trikum mit jetzt bekanntem ju-

Vereinfachung der dynamischen
Rechnung im Leiter

In vielen Fällen kann 2a vereinfacht
werden. Für genügend dicke Leiter
nimmt nämlich ju nach dem Leiterinnern

hin (x-Richtung) exponentiell ab

(3a):

,/m(x) ./m,, exp (-x/df: -1 /—— (4)
y cojia

jmo Stromdichte auf der Leiterober¬
fläche

4 Skin-oder Eindringtiefe

Des weiteren darf angenommen
werden, dass jmo näherungsweise
proportional zu Ee ist (Proximity-Effekt).

Auf die Feldberechnungen wird im
folgenden nicht weiter eingegangen.
Es wird angenommen, die Felder seien
berechnet und die Frage gestellt, wie
daraus die Impedanzen abzuleiten
sind. Dies wird im nächsten Abschnitt
unter Beschränkung auf das Feld Em

getan.

3. Der Begriff der
Eigenimpedanz
3.1 Die Berechnung der
magnetischen Feldenergie

Eine geschlossene Stromverteilung j
j(r, t) mit dem Gesamtstrom I(t) sei

in der Form j'{f) I(t) darstellbar, d.h.,
die Näherung (2) ist zulässig, y erzeugt
ein magnetisches Feld H(r,t) H' (#•)

7(f), wobei hier und im folgenden alle
mit ' markierten Grössen die Struktur-

Fig. 1 Komplizierte Leiterstruktur
Im schraffierten Bereich V\ ist die Stromdichte j
von null verschieden. Ausserhalb von V\, d.h. in
V2, ist j 0. Die Feldstärke H und das Vektorpotential

A ist im ganzen Raum V V\ U Vi)
vorhanden. Der Radius R der Kugel Kwird beliebig
gross.

funktionen der entsprechenden Grössen

bezeichnen. Ausserdem kann das
magnetische Vektorpotential A(r,t)
A'(r) I(t) definiert werden, wobei A
und Hüber

jiH= rot A oder jiH' rot A' (5)

zusammenhängen. Die totale magnetische

Energie IVm des Feldes erhält
man als Integral über den gesamten
Feldraum F (Fig. l)zu

WM=jf,uHHdV=^-fu\HfdV (6)

Mit (5) folgt

p77' H' H' rot A' div(A' x H'

+ ,4' rot H'

Mit dem Satz von Gauss gilt

fdiv(A'xH')dV=f(A'xH')àO (7)

Für grosse R gilt A' ~ 1 / R, 77' —

1 / R2, und somit (7) — 0.

Mit der Maxwellgleichung rot 77'

/ folgt schliesslich

WM=j Ij'A'dV (8)
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Drahtschieife S

Fig. 2 Linienleiler
Fliesst der Strom in einem dünnen Draht, kann
das Integral über V\ (Fig. 1) auf ein Umlaufintegral

über Svereinfacht werden.

Falls der Strom I in einem dünnen
Draht fliesst, kann man (8) umschreiben

(Fig. 2):

Wm =-y- f A' dl

Mit (5) und dem Satz von Stokes

folgt endlich

/2 rWM -—V pH' dO (9)
2 F

3.2 Drei verschiedene Integralefür
die Induktivität
Da in jedem Fall (1) gilt, stehen

wegen (6), (8) und (9) drei verschiedene
Integrale zur Berechnung der Induktivität

L zur Verfügung:

L=fp\HfdV (10)

L I j'A'dV (11)
V\

v 7

L= I pH'dO (12)

Durch Aufteilung der Integrationsbereiche

können in allen drei Fällen
Teilinduktivitäten abgeleitet werden.
Das Integral (10) summiert die
Energiedichte. Daher entspricht dort einer
Aufteilung des Integrationsbereiches
eine physikalische Trennung von
Energien. Die sogenannten inneren
und äusseren Induktivitäten werden
gewöhnlich von diesem Integral abge¬

leitet. Eine Aufteilung des
Integrationsbereiches bei den Intergralen (11)
und (12) hat im allgemeinen keine
physikalische Bedeutung. Trotzdem
können formal Teilinduktivitäten
definiert werden, aber es muss im
allgemeinen dann genau angegeben werden,

welchem der drei Integrale (10),
(11), (12) die Aufteilung entstammt.

3.3 Die Berechnung des
Widerstandes

Der Strom I fliesst normalerweise in
einem Leiter mit Leitfähigkeit ct. Die
gesamte ohmsche Verlustleistung
Perrechnet sich durch Integration der
Verlustleistungsdichte p über den
stromführenden Leiter V\ in Fig. 1 zu

P= f p(r)dV l1 / j'E'dV
V\ 1

I2/~\j'\2àV
l CT

Anderseits gilt

P= RI2

und daraus folgt für den Widerstand R

R J- |if dV= f o\EfdV (13)
U CT Fi

3.4 Verbindung von R und innerem L

zur inneren Impedanz

Da einerseits das Integral (13) des

Widerstandes einer Stromschleife nur
über den stromführenden Bereich des

Raumes zu erstrecken ist und man
anderseits die Feldgrössen im Leiter oft
mit dynamischen Methoden rechnet

(wo E und H simultan erhalten
werden), teilt man das Integral (10) in
einen inneren und einen äusseren Teil
auf. Es kann dann bei sinusförmiger
Zeitabhängigkeit die Integration für R

und Ljn unter Verwendung zugeordneter
komplexer Grössen (im folgenden

durch Unterstreichen gekennzeichnet)
kombiniert werden.

Es sei eine Stromverteilung j mit
dem Gesamtstrom / gegeben. Im
Innern des stromführenden Leiters ist
dann das Magnetfeld H I H' und
das elektrische Feld E IE' vorhanden.

Die komplexe Scheinleistung S,

die im Innern des Leiters umgesetzt
wird, errechnet sich durch Integration
des komplexen Poynting Vektors E x
H* über die Leiteroberfläche:

S= -f(E*H*)dO= -II* f( E' x IJ'*)dO
(14)

(dO ist nach aussen orientiert, *

bedeutet konjugiert komplex.) Mit Hilfe
der komplex geschriebenen
Maxwellgleichungen

rot H' / oE'\ rot E' - i cop ff
und der Identität

div (F x //'*)= ff * rotF -Et • rot ff *

ergibt sich mit (14) und dem Gauss-
schen Satz

- /(£'x H'*)dO= - fdiv (E'x H'*)à V
o — — V — —

der bekannte Poyntingsche Satz

S iœf uH H * dV+ foE' E'* dV
y r— — V — —

(15)

Mit (10), (13) und (14) erhält man

S \I\2(\a)L,n + R) \I\2Zln (15a)

Die innere Impedanz Zjn kann also
mit Hilfe der Feldgrössen auf der
Oberfläche ausgedrückt werden und
heisst deshalb auch Oberflächenimpedanz

(Surface Impedance).
Man beachte, dass die Oberflächenimpedanz

den Energieinhalt des Feldes

im Dielektrikum nicht berücksichtigt.

Dieser (äussere) Energieinhalt
führt zur sog. äusseren Impedanz Zd

ico La, wobei die äussere Induktivität
E natürlich ebenfalls mit (10),
erstreckt über Vz, berechnet werden
muss. Die totale Impedanz Zdes Kreises

ist die Summe beider Impedanzen:

Z=Zin+Za (16)

4. Der Begriff der
Gegenimpedanz
In der Praxis kommen oft mehrere

Stromkreise vor, deren Felder sich
überlagern. Da nur die Felder überlagert

werden dürfen, in den Integralen
(10), (11) und (12) aber Produkte von
Feldgrössen auftreten, müssen zusätzlich

die sog. Gegenimpedanzen (Mutual
Impedances) eingeführt werden.
Es seien zwei Stromverteilungen j\

/11\ und]2 j'ih gegeben. Sie verursa-
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chen die Felder H\ H\ I\ und H'2
H'ih sowie entsprechende elektrische
Felder. Die gesamte magnetische
Energie Wm berechnet sich aus der
Energie des Feldes H= H\ + H2zu

fß(H\ + H2) (//, + //;)dK

- y fn\Hl\2dV+^fn\H2\2dV+ fßHtHz dV (17)

Aus den ersten beiden Termen
folgen die Selbstinduktivitäten der beiden

Stromkreise, der letzte Term führt
auf die Gegeninduktivität AT2, wobei
offenbar Mn M2\ gilt, denn die
Energie zweier verkoppelter Stromkreise

kann man bekanntlich auch als

+|E2/22 + M,2/1/2 (18)

schreiben. Analog zu den früheren
Überlegungen erhält man verschiedene

Integrale für die Gegeninduktivität
M|2

Mn-fnH[ H'2AV (19)

M\2 fj'\ A'2 âV= ffr A[ dV (20)

AT2= fnH[ d02 fpH[ dO, (21)

Ähnliches gilt für den Widerstand
überlappender Stromverteilungen,
denn analog zu (18) gilt für die
Verlustleistung

P= /?,/,+ R2l\+2Rnhh

Für den Gegenwiderstand R\2 gilt in
Analogie zu (13)

Rn=f h àV= foE; EUV

Fig. 3

Beispiel: langes
Koaxialkabel über
leitender Erde

a Prinzipieller Aufbau
b Mögliches

Ersatzschaltbild (pro
Längeneinheit)

Der mit (19) berechnete innere Anteil

der Gegeninduktivität AT 2 und der
Gegenwiderstand Rn können wie im
Abschnitt 3.4 zu einer inneren
Gegenimpedanz verbunden werden. Diese
Impedanz heisst Transferimpedanz
(Transfer Impedance) oder auch
Kopplungsimpedanz.

5. Beispiel
Abschliessend seien die theoretischen

Betrachtungen anhand eines
Beispiels wiederholt. Die Figur 3a

zeigt ein Koaxialkabel mit runden
Innen- und Aussenleitern über der Erde
sowie die für eine Längeneinheit
geltende Ersatzschaltung (Fig. 3b).
Entsprechend den drei Leitern können
zwei Stromkreise definiert werden.
- h fliesst im Innenleiter hin und im

Aussenleiter zurück.
- h fliesst im Aussenleiter hin und in

der Erde zurück.
Diese Wahl ist willkürlich; man hätte

auch beide Kreise über die Erde
schliessen können. Die Impedanzbestimmung

verläuft im weiteren wie
folgt:
1. Getrennte Berechnung des

elektrostatischen Feldes (Laplace-Glei-
chung) in den beiden dielektrischen
Gebieten, analytisch oder mittels
Computerprogramm. Daraus folgen

die Eigenkapazitäten Ci und C2

(Integration des E-Feldes).

2. Ermittlung der genauen
frequenzabhängigen Stromverteilung in den
Leitern mittels eines zweiten
Programms. Im Beispiel könnte j\
analytisch berechnet und j2 geschätzt
werden (Kap. 2.1).

3. Berechnung der Felder H\ und H2

über eine einfache Integration (z.B.
Biot-Savart). Es zeigt sich, dass H\
ausserhalb des Kabels verschwindet
und H2 innerhalb des Kabels praktisch

konstant ist.
4. Aufteilung des Feldraumes in In¬

nenleiter V\. Kabeldielektrikum Vi,

Aussenleiter K, Luft V\ und Erde
Vf

5. Berechnung der beiden Eigenimpedanzen

Z\ und Z? sowie der
Gegenimpedanz Z12 Z21 mit Hilfe der
Integrale 10), 13) und 19).

Z\ _Zl,in,i 3" Zijn.a _Z|,a,d

Z> Ztin.a +Z2,in,e + Z),a.l

Z12 Z]2,in,a

Der erste Index bezeichnet den
Stromkreis, der zweite die innere oder
äussere Impedanz, der dritte das
Integrationsgebiet. Die Gleichungen 10

und 13 liefern z.B.:

Z\ ^ i I o\E'\2ûV+ \(o I ultf'pdK— ' '
V\

1

V\

Die übrigen Komponenten errechnen

sich analog dazu.
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