Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 75 (1984)

Heft: 18

Artikel: L'"Action COST 302": coopération européenne dans le domaine du

véhicule routier électrique

Autor: Aquarone, J.-C.

DOI: https://doi.org/10.5169/seals-904470

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

L'«Action COST 302», Coopération européenne dans le domaine du véhicule routier électrique

J.-Ch. Aquarone

En collaboration avec dix autres pays européens, la Suisse participe à un programme de recherche de plusieurs années qui a pour but d'étudier les conditions techniques et économiques de l'utilisation de véhicules routiers électriques. Pour aider à définir l'orientation à donner aux recherches, deux études ont été effectuées en Suisse sur la situation actuelle des véhicules électriques routiers en Suisse et les possibilités futures de développement des véhicules électriques à batteries. L'article donne une vue générale de l'organisation des recherches qui sont en cours dans le cadre européen et présente les résultats des deux études suisses.

Zusammen mit zehn anderen europäischen Ländern beteiligt sich die Schweiz an einem mehrjährigen Forschungsprogramm zur Untersuchung der technischen und wirtschaftlichen Voraussetzungen für die Nutzung elektrischer Strassenfahrzeuge. Zur Unterstützung bei der Definition der Ziele dieser Studie wurden in der Schweiz zwei Studien über die aktuelle Situation der Elektro-Strassenfahrzeuge in der Schweiz sowie über zukünftige Entwicklungsmöglichkeiten von batteriegetriebenen Elektrofahrzeugen erarbeitet. Der Beitrag gibt eine Übersicht über die Organisation der im europäischen Rahmen in Gang befindlichen Untersuchungen und stellt die Ergebnisse der beiden schweizerischen Studien vor.

Adresse de l'auteur

Jean-Charles Aquarone, chef de section à l'état-major pour les questions de transport (Stab für Gesamtverkehrsfragen) du Département fédéral des transports, des communications et de l'énergie, Effingerstrasse 14, 3003 Berne

1. L'Action européenne de recherche COST 302

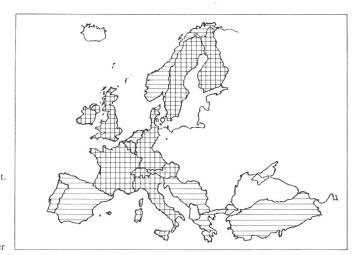
Onze pays européens auxquels s'est associée la Commission des Communautés européennes ont décidé d'unir leurs efforts pour étudier les «conditions techniques et économiques de l'utilisation des véhicules routiers électriques». Ces 11 pays sont: la République fédérale d'Allemagne, l'Autriche, la Belgique, le Danemark, la Finlande, la France, l'Irlande, l'Italie, le Royaume-Uni, la Suède et la Suisse.

Cette action de recherche commune (qui porte le N° 302) se développe dans le cadre de la «Coopération européenne dans le domaine de la recherche scientifique et technique». Cette association – dont l'abréviation est CO.S.T – permet en effet, depuis sa création en 1971, à ses 19 membres¹) de coopérer

¹⁾ Les dix pays des Communautés européennes et 9 autres pays: Autriche, Espagne, Finlande, Norvège, Portugal, Suède, Suisse, Turquie et Yougoslavie de façon souple à des actions concrètes de recherche; il suffit, pour qu'une action démarre, que trois pays au moins en aient établi le programme, auquel peuvent alors s'associer en toute liberté les autres pays membres qui le désirent.

La figure 1 présente l'«Europe COST» avec ses 19 pays, parmi lesquels les 11 pays de l'Action COST 302 sur le véhicule routier électrique.

L'Action COST 302 sur le véhicule routier électrique a débuté officiellement en octobre 1982 avec la première séance de son Comité de gestion. Ces travaux devraient durer trois ans et demi et donc s'achever en 1986 par un rapport final adressé aux autorités responsables et contenant les éléments nécessaires à toute décision, au niveau national ou européen, sur la mise en œuvre de ces véhicules routiers électriques.


Deux phases d'étude sont prévues:

 Phase 1: Evaluation des résultats de l'état actuel de la technique, des programmes en cours et futurs, avec un accent particulier mis sur l'étude

19 pays de
l'Europe COST
(Coopération
Recherche scient.
et techn.)

11 pays de l'Action COST 302: Véhicule électrique routier

coûts-avantages résultant d'une introduction significative des véhicules électriques, évaluation assortie de recommandations.

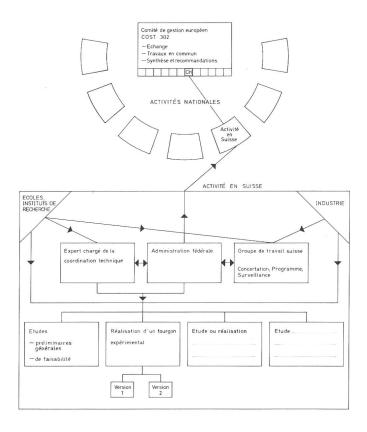
Phase 2: Définition des mesures que gouvernements pourraient prendre pour éliminer les obstacles à la diffusion des véhicules électriques et recommandations d'axes de recherche et développement futurs.

Les types de véhicule routier sur lesquels portent la recherche ne sont en fait pas limités, du moins au stade actuel, puisqu'elle envisage de s'attacher à la diffusion aussi bien des voitures que des véhicules commerciaux légers et des véhicules de transports publics.

Exprimé d'une façon plus détaillée, le programme de travail de la phase 1, très étendu, porte sur les points suivants:

- Etude d'impact dans les domaines
 - de l'énergie: substitution de carburant et meilleure utilisation de la production électrique
 - de l'environnement: amélioration de la qualité de l'air et de l'eau, diminution du bruit
 - de la production: industrie et matières premières
 - de l'utilisation:

circulation, sécurité (des conducteurs et passagers ainsi que des autres usagers de la route), parking, infrastructures, aspects sociaux en se basant sur différents scénarios de pénétration du véhicule électrique.


 Besoins en matière de recherche, de développement, d'essais et de démonstration.

Cette première phase donnera une indication du degré nécessaire de pénétration du véhicule électrique pour avoir une influence significative en terme de bilan coûts-avantages.

La seconde phase ayant pour but de définir les moyens nécessaires à l'introduction de ce véhicule, portera sur les points suivants:

- Standardisation (normes: d'homologation, de caractéristiques des composants, pour la mesure de la consommation d'énergie, de performances pour compatibilité avec la circulation générale).
- Situation du développement technologique (nouveaux systèmes de propulsion, stockage de l'énergie).
- Analyse des expérimentations commerciales (véhicules utilitaires légers, autobus urbains, systèmes de location, etc.).

Fig. 2 Organisation de l'action COST 302

 Analyse des incitations directes (aides financières, autorisations spéciales de circuler dans certaines zones et à certaines périodes de la journée ou de la semaine, législation

Les travaux de la première phase seront présentés dans un rapport final au début 1985. Ceux de la seconde phase vont débuter au début de l'automne 1984.

L'ensemble de l'action européenne, comprenant tous les travaux et développements nationaux publics et privés qui y sont intégrés, devrait représenter un effort de l'ordre de 20 millions de francs. La participation de la Suisse a été décidée le 3 novembre 1982 par le Conseil fédéral qui a prévu à cet effet un crédit de soutien de fr. 600 000.- pour encourager et développer les efforts de l'industrie et des centres de recherche sur le sujet.

La contribution de la Suisse à cette action européenne est exposée au chapitre suivant et son organisation est schématiquement présentée à la figure 2.

Il faut ici mentionner en outre l'Action COST 303 parallèle, qui concerne le trolleybus bimode; cette action européenne a par but d'étudier les conditions techniques et économiques d'utilisation de ce véhicule routier électrique de transports publics, auquel est adjointe la possibilité de circuler de façon indépendante de la ligne de contact sur certains tronçons grâce à un groupe d'autonomie performant (moteur Diesel ou batteries, parfois combinaison des deux).

La contribution de la Suisse consiste, d'une part, à participer aux travaux menés en commun au sein du Comité de gestion par tous les pays adhérant à l'action et, d'autre part, à présenter les études et réalisations effectuées en Suisse dans ce contexte.

2. Participation aux travaux en commun

L'action est dirigée par un Comité de gestion où chacun des 11 pays est représenté par un délégué. C'est l'organe qui permet la coordination des efforts, l'échange des informations, le contrôle et l'approbation des travaux de calcul et de rédaction des rapports; il a enfin la mission de présenter la synthèse et les recommandations. C'est l'unique organe «central» permettant l'unité de l'action; il s'est toutefois assuré pour la première phase, grâce à un mandat de la Commission des Communautés européennes, de la collaboration de l'A.V.E.R.E. (Association européenne des véhicules électriques routiers). Celle-ci recueille les contributions nationales, effectue certains calculs d'ensemble et réunit tous ces éléments dans

un rapport technique commun. Le Comité de gestion se réunit en moyenne trois fois par an à Bruxelles (il a tenu jusqu'à ce jour six séances); des petits sous-groupes (avec participation variable des pays) créés selon les besoins, ont de plus la charge de préparer des documents et propositions (sous-groupes: énergie, environnement, économie, utilisation, batterie, etc.).

L'Administration fédérale, par son délégué²) et par les différents services fédéraux spécialisés qui le soutiennent, a pris en charge les tâches découlant de cette participation. Qu'il soit ici mentionné en particulier les travaux relativement importants effectués aux chapitres de l'énergie et de l'environnement par les Offices fédéraux de l'énergie et de la protection de l'environnement.

3. Etudes et réalisations en Suisse

Afin de coordonner les études et réalisations COST dans notre pays, un groupe de travail suisse a été mis sur pied en mars 1982 déjà. Il est composé de représentants de l'industrie (entreprises construisant des véhicules électriques ou fabriquant des composants et des batteries), des écoles et instituts de recherche, des producteurs d'électricité, des PTT et de l'Administration (énergie/environnement/ fédérale police/transports/militaire/éducation et science). C'est un organe de consultation et de concertation où se définit l'orientation générale et où sont examinées et discutées les propositions d'étude et de réalisation. Une fois décidée, la recherche fait l'objet d'un accord ou contrat entre la Confédération et l'organe d'étude ou de réalisation; cet accord est élaboré par l'Office fédéral de l'éducation et de la science qui a pour tâche de superviser l'ensemble et de gérer le financement fédéral.

Etant donné le degré de spécialisation et l'évolution rapide du secteur industriel concerné, la Confédération a en outre fait appel à la collaboration suivie de M. René Jeanneret, professeur à l'Ecole d'ingénieurs de Bienne, en tant qu'expert mandaté pour la coordination des activités scientifiques et techniques se déroulant en Suisse dans le contexte COST 302; il coordonne en particulier la réalisation d'un véhicule utilitaire expérimental.

2) l'auteur du présent article

En Suisse, l'essentiel de l'activité a consisté pour le moment en deux études préliminaires générales et le lancement de la réalisation de ce véhicule utilitaire.

3.1 Etudes préliminaires générales

Deux études préliminaires ont été effectuées pour aider à définir l'orientation à donner aux recherches COST 302 en Suisse. Ces deux études sont:

«La situation actuelle des véhicules électriques routiers en Suisse» de juillet 1983, effectuée par l'ASVER (Association suisse des véhicules électriques routiers)

et

«Zukünftige Entwicklungsmöglichkeiten von Batterie-getriebenen Elektrofahrzeugen für den normalen Strassenverkehr» de juin 1983, effectuée par Battelle, Centres de recherche de Genève.

3.1.1 La situation actuelle en Suisse

Le premier rapport (ASVER) donne une riche documentation sur le parc automobile suisse et son évolution récente et situe dans ce cadre le véhicule électrique. Il est utile de relever ici quelques-unes des conclusions:³)

- le nombre des véhicules électriques routiers immatriculés pour circuler sur la voie publique était en 1982 de 2938:67 voitures de tourisme, 94 camionnettes ou camions, 2772 chariots à moteur et machines de travail (plus de 90% du tout), 4 tracteurs et 1 bus; ces 2938 véhicules électriques représentent env. 1‰ des 2,8 millions de véhicules routiers circulant en Suisse (en 1960, les chiffres correspondants étaient de 1532 et 3‰);
- la moitié environ du parc 1982 des véhicules électriques routiers était de fabrication suisse, mais pour la mise en circulation de véhicules neufs cette proportion n'était que de 36%, 30% puis 23% en 1980, 1981 et 1982 (les nombres absolus de ces véhicules de fabrication suisse tombant de 36 en 1980 et 1981 à 19 en 1982); on trouvera dans l'étude maintes in-
- 3) Il faut noter, d'une façon générale, que le «maniement» des statistiques pour situer le véhicule électrique sur le marché s'est rélévé difficile, pour des raisons de définition, de terminologie, de délimitation, etc.; les estimations faites dans l'étude en sont d'autant plus méritoires et intéressantes. Que l'Office fédéral des troupes de transport soit ici remercié pour son aide efficace.

- dications sur les différents fabricants suisses et étrangers;
- le Valais est de loin le premier des cantons avec ses 414 véhicules électriques routiers, dont env. 90% sont dans ses stations de montagne (Zermatt et Saas Fee étant les plus importantes et les plus connues à ce point de vue, puisque interdites aux véhicules à moteur à explosion);
- le nombre de véhicules électriques «non routiers» (ou plus exactement non immatriculés et circulant sur le domaine privé: essentiellement véhicules utilitaires lents de 25 à 30 km/h de vitesse max.) est estimé, à ±20% près, à 26 000 pour 1982 (environ 60% de ces véhicules sont des petits véhicules sans cabine ou même avec conducteur «accompagnant», utilisés principalement à l'intérieur de locaux ou dépôts industriels);
- en 1982, les PTT avaient 1439 véhicules électriques, soit env. 13% de leurs 11 498 véhicules; il s'agit essentiellement de tracteurs, de chariots élévateurs et de fourgonnettes à timon; 30% de ces véhicules électriques PTT étaient de fabrication suisse; alors qu'en 1960 et 1972 il y avait, respectivement, 192 et 43 véhicules électriques du type fourgon postal, il n'en restait plus qu' un en 1982 (les raisons de cette désaffection étant surtout jusqu'alors, en plus de leur coût, leur faible vitesse - 35 à 40 km/h - et leurs faibles performances en montée):
- l'effort de recherche est à envisager dans le secteur des véhicules utilitaires plutôt que du côté de la voiture de tourisme.

L'étude contient des analyses détaillées des cantons du Valais, de Berne et Zurich (ces deux cantons ayant été traités par le bureau Infraplan de Berne) ainsi que sur le parc des véhicules Swissair.

3.1.2 Les perspectives en Suisse

Le second rapport (Battelle) a livré:

- a) une étude des «profils d'utilisation» envisageables pour le véhicule électrique routier, compte tenu des contraintes techniques (vitesse, autonomie, charge utile);
- b) une analyse comparative des prix et des coûts entre véhicule thermique et véhicule électrique;
- c) une estimation du marché potentiel en Suisse:
- d) une orientation sur les spécifications techniques souhaitables dans la perspective d'une réalisation de

	Véhicule thermique	Véhicule électrique		
	mermique	1 unité/an	100 unités/an	
Prix (sans batterie) (Fr.) Indice	15 000 100	48 000 320	30 000 200	
Coûts fixes (Fr./km)	0,26	0,67	0,45	
Coûts variables (Fr./km)	0,16	0,431)		0,262)
Coûts totaux (Fr./km)	0,42	1,10	0,88	0,71
Indice	100	260	210	170

- 1) avec batterie de 7000 fr. et d'une durée de 2 ans/20 000 km
- 2) avec batterie de 7000 fr. et d'une durée de 4 ans/40 000 km
- (Les relations, pour le fourgon, serait, d'après Battelle, du même ordre de grandeur.)

prototype, avec des conseils sur les programmes de test à effectuer.

On se limitera ici à ne donner que les résultats de l'analyse des coûts et du marché potentiel. Les coûts kilométriques établis pour une voiture thermique et une voiture électrique, toutes deux «conventionnelles» sont présentés dans le tableau I d'une façon simplifiée, avec l'hypothèse d'un parcours annuel de 10 000 km.

Pour l'estimation du marché potentiel en Suisse, un questionnaire a été adressé à plus de 100 entreprises ou organismes publics et semi-publics ou associations faîtières.

Ce questionnaire portait sur

- le parc à disposition;
- les caractéristiques des véhicules par catégorie: poids moyen à vide, charge utile, puissance, parcours quotidien, longueur moyenne d'un déplacement, nombre d'heures d'utilisation par jour;
- les coûts d'investissement annuels totaux pour le parc à disposition;
- les coûts d'exploitation par catégorie;
- les besoins éventuellement non satisfaits par le parc à disposition;
- le besoin de déplacement durant la nuit;
- la disposition d'acquérir un véhicule électrique s'il remplit les conditions requises.

Les réponses ont été relativement peu nombreuses; il a fallu les compléter par un certain nombre de visites ou d'entretiens téléphoniques, limité par le temps disponible (trois mois au total, pour l'ensemble de l'étude). Le traitement statistique a pu être fait sur environ 1000 véhicules pour la voiture, 1000 véhicules pour le fourgon et 500 pour le camion.

En se basant approximativement sur les organismes s'étant déclarés favorables à l'acquisition de véhicules électriques s'ils étaient équivalents aux véhicules thermiques au point de vue des coûts, et en ne retenant que le nombre de véhicules pour lesquels les exigences de charge, distance, etc. peuvent être satisfaites par le véhicule électrique, le marché «potentiel» serait en terme de production annuelle dans le cas d'une durée de vie de 12 ans d'environ 200 véhicules routiers.

Comme l'indique l'Institut Battelle, ces chiffres ne constituent qu'un potentiel «théorique» «puisqu'aucune raison économique n'en est à la base et qu'à cela s'ajoute le fait qu'aucun avantage supplémentaire au point de vue technique d'exploitation n'est apporté par le véhicule électrique («à demi-performance, prix double»).»

Cette analyse de type «réaliste» mais strictement limitée au territoire de la Suisse ne doit toutefois pas faire oublier que si une action internationale d'une certaine ampleur pouvait être entreprise, les conclusions pourraient être autres; elle ne tient également pas compte que la situation générale de l'environnement, ainsi que les politiques de l'environnement et des trans-

ports sont peut-être en train d'évoluer. Des études économiques allemandes montrent d'autre part qu'un marché devrait exister à partir de quelques dizaines de milliers de véhicules produits annuellement par un ou deux producteurs en raison des prix de vente unitaires alors obtenus; une telle production serait donc de l'ordre d' 1% de la production automobile annuelle européenne.

Les recommandations finales (chapitre 11) du rapport Battelle sont ici intégralement reproduites:

«L'étude a montré que, sans innovation importante, il n'y avait pas de marché en Suisse pour le véhicule électrique dans le secteur privé. Ceci se confirme par la tendance au rétrécissement du marché observé ces dernières années, après une période de croissance liée aux inquiétudes nées du premier choc pétrolier.

Plus que pour des raisons techniques, le motif principal de cette chute réside dans le coût de ces véhicules qui est considéré comme prohibitif eu égard aux performances. Face à cette situation, il pourrait apparaître «économiquement» sain de cesser tout investissement en la matière. Or, l'examen des politiques suivies dans les pays industrialisés, tant de la part des autorités publiques que privées, montre que, tous les pays conservent une activité non négligeable dans ce secteur, même si les grands programmes ont été abandonnés, sauf au Japon. La raison principale est que chaque pays souhaite être prêt au cas ou les contraintes économiques feraient que ce mode de transport devienne plus attractif.

On peut donc estimer qu'il y a de la des autorités une action d'exemple à entreprendre afin de maintenir une activité et d'acquérir une expérience indispensable si jamais l'utilisation de véhicule électrique devient, sinon nécessaire, du moins intéressante. On peut voir là aussi une valeur d'incitation qui pourrait, à terme, permettre à l'industrie du véhicule électrique de devenir plus rentable. On se trouve en effet devant un dilemme: L'une des raisons du coût des véhicules provient de l'insuffisance du marché, or ce marché pourra croître d'une manière très lente d'ailleurs, seulement lorsque les coûts auront baissé grâce à un certain seuil de production. Ce seuil est très différent selon le type d'industrie. Pour une production, à partir d'une industrie de taille moyenne, habituée aux petites séries, il se situerait vers 600 à 800 véhicules/an, selon l'avis des milieux industriels.

Compte tenu de cette situation, qui ne sera certainement pas améliorée dans l'immédiat par un marché vers l'exportation, il apparaît nécessaire que les pouvoirs publics adoptent une attitude plus volontariste quant à l'utilisation de véhicules électriques dans leurs services.

En raison du volume limité des séries, il sera nécessaire de concentrer les efforts sur un modèle de base aussi modulaire que possible afin qu'il soit disponible dans différentes versions. Il ne serait pas inutile de prévoir d'ailleurs une version hybride. Afin d'amé-

liorer la position future de l'industrie, d'élargir si possible son marché à l'exportation, ce développement devra reposer impérativement sur des innovations, seules capables d'apporter une valeur ajoutée par rapport aux produits existants.»

3.2 Réalisations concrètes

Il est donc ressorti des études précédentes que, d'une façon générale, sans innovation importante, il n'y avait pas de marché en Suisse pour le véhicule électrique dans le secteur privé, mais qu'en revanche les pouvoirs publics devaient maintenir et faire acquérir

une expérience indispensable, si jamais l'utilisation du véhicule électrique devenait sinon nécessaire du moins intéressante.

De cette conclusion a découlé la décision de soutenir la recherche sur différents moteurs électriques et composants auxiliaires par l'expérimentation d'un fourgon correspondant tout d'abord à un cahier des charges des PTT pour la distribution des colis, mais pouvant être adapté et expérimenté dans d'autres services publics.

Lorsque les essais seront bien avancés et que l'on disposera de résultats substantiels, une information sera diffusée.

Praktische Erprobung von Elektrotransportern in der Schweiz

W. Klingler

In einem vierjährigen Test mussten sich drei Elektrotransporter bei verschiedenen schweizerischen Elektrizitätswerken im Alltagsbetrieb bewähren. Obwohl die Erfahrungen der Betreiber zum Teil unterschiedlich ausgefallen sind, kann an der praktischen Einsetzbarkeit der umweltfreundlichen, das heisst abgasfreien, energiesparenden und leisen Elektrotransporter im Stadt- und Nahverkehr nicht gezweifelt werden. Verschiedene, zunächst aufgetretene Probleme sind inzwischen gelöst. Den günstigen Betriebskosten steht allerdings der noch hohe Anschaffungspreis gegenüber.

Dans le cadre d'un test de quatre ans, trois fourgonnettes électriques ont été utilisées par différentes entreprises électriques suisses pour faire leurs preuves à l'usage quotidien. Bien que les expériences faites par les entreprises en question soient en partie différentes, on ne peut contester la possibilité d'utilisation, en ville et dans la périphérie, de ces véhicules écologiques, c'est-à-dire sans émissions de gaz, économes en énergie et silencieux. Des problèmes qui se sont présentés au début ont pu être résolus entretemps. Mais face aux frais d'exploitation modérés se dresse le prix d'achat encore très élevé.

Adresse des Autors

W. Klingler, W. Klingler Fahrzeugtechnik AG, 5024 Küttigen/Aarau

1. Einleitung

Im Rahmen eines international angelegten Grossversuches der GES-Gesellschaft für elektrischen Strassenverkehr in Essen wurden insgesamt 130 Elektrotransporter in 25 Städten unter praktischen Betriebsbedingungen getestet. An diesem Grossversuch waren auch drei schweizerische Elektrizitätswerke – BKW, CKW und NOK – beteiligt. Betreut wurde dieser rund vier Jahre dauernde Versuch durch die Firma Klingler Fahrzeugtechnik AG, Küttigen/Aarau, im Auftrag der GES.

Die Erfahrungen des in der Schweiz inzwischen abgeschlossenen Versuches liegen jetzt vor. Übereinstimmend stellten die beteiligten Unternehmen fest, dass die Elektrotransporter für den normalen Strassenverkehr geeignet sind. Eine entsprechende Motorisierung ermöglicht ein problemloses «Mitschwimmen» im normalen Verkehrsfluss. In der Stadt sind die Elektrotransporter ihren konventionellen Diesel-Kollegen sogar durch bessere Beschleunigung beim Ampelstart überlegen. Den vergleichsweise niedrigen Betriebskosten stehen im Augenblick aber immer noch die durch Einzelfertigung bedingten hohen Anschaffungspreise gegenüber.

Wie unterschiedlich allerdings die Bewertungen solcher Versuchseinsätze ausfallen können, zeigen die nachfolgenden, hier leicht gekürzt wiedergegebenen Erfahrungsberichte der Herren M. Läderach, BKW, F. Pfister, CKW, und M. Mattenberger, NOK.

2. BKW: Elektrotransporter für hügeliges Gelände nicht sehr geeignet

Von 1979 bis 1983 stand ein VW-Elektrotransporter bei den Bernischen Kraftwerken im Einsatz. Das Fahrzeug legte in vorwiegend hügeligem Gelände insgesamt rund 10 000 km zurück. Der Antrieb des Transporters war ausgelegt für eine maximale Geschwindigkeit von 70 km/h im ebenen Gelände.

Für das hügelige Gelände der Schweiz entwickelte der Antrieb ein zu kleines Drehmoment, so dass bergwärts nur sehr langsam gefahren werden konnte. Da kein Schaltgetriebe vorhanden war, wurde der Antrieb dadurch rasch thermisch überlastet. Zudem war das Fahrzeug recht schwer (Leergewicht etwa 2300 kg, davon etwa 900 kg Batterien) und bei schlechten Strassenverhältnissen (Schnee, Regen usw.) nicht unproblematisch zu fahren.

Bei energiebewusster Fahrweise und im ebenen Gelände erreichte man mit